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Abstract

Integrability is an important property of models of quantum mechanics and statistical
physics that makes an exact solution possible. One of the main methods that is used
to study integrable systems is the Bethe ansatz approach based on the Yang-Baxter
equation. The study and classification of existing R-matrices as well as the search of
the new ones become a problem of mathematical physics. One of the major sources of
R-matrix representations is the representations of the braid group on three strings and
its finite-dimensional quotient algebras. New results were obtained in two directions.

The first direction is the classification of low dimensional irreducible representations
of the braid group on three strings. We consider families of the finite dimensional quotient
algebras of the group algebra of the braid group on three strings by a p-th order generic
monic polynomial relation on the elementary braids (also known as Artin generators).
These are the cases of power p = 2, 3, 4, 5 polynomial relation with the corresponding
dimensions of quotient algebras equal to 6, 24, 96, and 600, respectively. We construct
a series of representations of dimension ≤ 6 (Proposition 1.2) and find the conditions
under which they are irreducible (Proposition 1.3). For the considered quotient algebras
we formulate semisimplicity criteria, and if those criteria are satisfied we give a complete
classification of irreducible representations (Theorem 1.1). Our classification complements
the list of all the irreducible representations of the braid group on three strings of dimen-
sions ≤ 5 found by I. Tuba and H. Wenzl (2001) by adding irreducible representations of
dimension 6. The study of these 6-dimensional representations brings new criteria.

Another subject of the research is stochastic integrable particle systems. Our interest
concerns the statistics of a particle flow in the q-boson zero range process (ZRP) on a
ring. With the use of Bethe ansatz and TQ-relation methods we calculate the first two
cumulants of the particle current. The exact formula for the second cumulant is obtained
in the form of an infinite sum of double contour integrals (Theorem 2.1). This represen-
tation allows us to perform the asymptotic analysis of the large system size limit. In this
limit we find that at generic values of parameter controlling interparticle interaction the
second cumulant reproduces the scaling expected for the models in the Kardar-Parisi-
Zhang universality class (Theorem 2.2). Another result is the universal scaling function
describing the crossover between the Kardar-Parisi-Zhang and Edwards-Wilkinson uni-
versality classes. It is obtained from the exact formula for the second cumulant in a
scaling limit corresponding to the KPZ-EW transition (Theorem 2.3). It agrees with the
scaling function first found for the asymmetric simple exclusion process and conjectured
to be universal.

Introduction

Integrable models of quantum systems, lattice models of statistical physics and stochastic
interacting particle systems play an important role in mathematics and theoretical physics.
The property of a model to be integrable suggests a special mathematical structure, which
makes an exact solution possible. In its core there is the Yang-Baxter equation, which is
an essential ingredient of the quantum inverse scattering method (algebraic Bethe ansatz),
(see [1, 2] and references therein).

The quantum inverse scattering method also gave birth to the theory of quantum
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groups that became a separate area of modern mathematics. An important problem
in this theory is the classification and study of R-matrices satisfying the Yang-Baxter
equation and of related quantum matrix algebras such as reflection equation and RTT
algebras. One of the major sources of R-matrices are the R-matrix representations of
the braid group. By definition, all these representations are constructed starting from
R-matrix representations of the free 3-string braid group B3. They necessarily factorize
through finite dimensional quotient algebras of the group algebra C[B3].

Quotient algebras of the group algebra of the braid group

A classical theorem by H.S.M. Coxeter [3] states that the quotient of the n-string braid
group Bn by the p-th order relation bp = 1 on the elementary braid b is finite if and only
if

1/n + 1/p > 1/2 . (1)

In case of B3 we obtain finite quotient groups of orders 6, 24, 96, and 600, for p = 2, 3, 4,
and 5, respectively [3]. Generalizing this setting one can consider quotients of the group
algebra C[Bn] obtained by imposing a p-th order polynomial relation on the elementary
braids. Under condition (1) the resulting quotient algebras are finite dimensional and, by
the Tits deformation theorem (see [4], §68, or [5], section 5), in a generic situation these
algebras are isomorphic to the group algebras of the corresponding Coxeter’s quotient
groups. In particular, they are semisimple. As a next step it would be interesting to
find the semisimplicity conditions and to describe explicitly irreducible representations of
these finite dimensional quotients.

The significant contribution in this direction was made by I. Tuba and H. Wenzl. In
the paper [9] they classified all the irreducible representations of B3 in dimensions d ≤ 5.
Their classification scheme in dimensions d ≤ 4 yields all the irreducible representations
for the quotients in cases n = 3, p = 2, 3, 4 and describes their semisimplicity conditions.
However, for p = 5 the above-mentioned quotients of C[B3] admit irreducible represen-
tations of dimensions up to 6 and the classification in [9] does not include them. In the
thesis we continue the search and study of irreducible representations of the braid group
B3. We construct all the irreducible representations of these algebras of dimension d ≤ 6
and find criteria for their semisimplicity conditions. In dimensions d ≤ 5 we reproduce
the classification of the irreducible representations of B3 from [9]. In dimension d = 6 our
list gives all the irreducible representations of B3 that factor through representations of
the quotients of C[B3]. The latter factorization for the d = 6 dimensional representations
means that their spectrum contains 5 different values, one of them with multiplicity 2.
We are working in the diagonal basis for the first elementary braid generator g1, and we
restrict our considerations to the case where all p roots of its minimal polynomial are
distinct. For the sake of completeness we present formulae for representations from I.
Tuba and H. Wenzl list in this basis too.

Let us describe briefly some related approaches and results.
B. Westbury suggested an approach to representation theory of B3 that uses rep-

resentations of a particular quiver[10]. It was subsequently used by L.Le Bruyn who
constructed Zariski dense rational parameterizations of the irreducible representations of
B3 of any dimension [11, 12]. The method was effective for solving a problem of braid
reversion, however, it does not give semisimplicity criteria for the representations con-
structed. A 5-dimensional variety of the irreducible 6-dimensional representations of B3
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that we present below is contained in an 8-dimensional family of B3-representations of
type 6b (see Fig.1 in [11]).

For the more general case of Bn, n > 3, series of irreducible representations related
to Iwahori-Hecke algebras Hn(q) (p = 2 case) are well investigated. With an isomorphism
Hn(q) ≃ C[Bn] for generic values of the parameter q, they are labelled by Young diagrams
of size n. The other family of finite-dimensional quotient algebras of C[Bn] is Birman-
Murakami-Wenzl algebras. They are constructed by imposing p = 3 polynomial relation
on elementary braid and polynomial relations containing several neighbouring generators.
The complete classification of irreducible representations and their irreducibility condi-
tions are known. Every irreducible representation is labeled by a sequence of partitions
in which each partition differs from the previous one by either adding or removing a box.
(for a review see [6]). Some other particular families of the Bn-representations were also
found [7, 8].

In another direction of research Broué, C. Malle and R. Rouquier [13, 14] generalized
the notions of the braid group and of the Hecke algebra associated not only to Coxeter
group, but to an arbitrary finite complex reflection group W . They defined generic Hecke
algebra over certain polynomial ring R = Z[{ui}] and conjectured that it is a free module
of rank |W |. This conjecture is now proved [15, 16, 17, 18], [19] (Theorem 3.5 and
references therein). The quotient algebras of C[B3], we deal with, are specializations of
generic Hecke algebras of the groups S3 and G4, G8, G16 (the notation used corresponds
to the complete classification of finite complex reflection groups constructed by Shepard
and Todd [20]) under homomorphism R → C that assigns certain complex values to
the variables ui. The freeness conjecture in these cases is proved in [21, 22, 23], so
the dimensions of the algebras QX coincide with the cardinalities of their corresponding
Coxeter groups.

Stochastic integrable systems of interacting particles

An important application of the integrability is to the stochastic systems of interacting
particles. We consider stochastic diffusive or driven diffusive particle systems in 1 + 1
dimension, which are systems of particles with local inter-particle interactions subject to
uncorrelated random force. The particle density field in such models can be associated
with the gradient of the interface height function. Conversely the height function of a
one-dimensional interface is related to the time-integrated particle current. Thus, the
results for a particle system can be translated to the interface language and vice versa.
Integrability of particle models, in turn, implies a possibility of obtaining exact results to
be used as a source of results about interface random growth behaviour.

Two broad universality classes, Edwards-Wilkinson(EW) [24] and Kardar-Parisi-
Zhang(KPZ) [25], are believed to capture the large scale behavior of various natural
phenomena, including the interface random growth. These two classes unify plenty math-
ematical models and diverse phenomena: random growth of interfaces like borders of bac-
terial colonies, wetting, crystallization and combustion fronts, polymers in random media,
traffic flows, etc. [26]. The common feature of these random systems is the universal be-
haviour at large scales characterized by universal scaling exponents and universal scaling
functions. Each of EW and KPZ universality classes includes the continuous interface
growth model defined by the eponymous stochastic PDE for the the height function. The
analysis of the properties of their solutions was the first analytic effort in characterization
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of these universality classes.
The stochastic linear Edward-Wilkinson PDE was solved right after the introduction

[24]. The analytic solution predicts the universal behavior of interface defined by two
independent critical exponents, namely, the roughness exponent ζ and the dynamical
exponent z and gives the exact expression for the scaling functions. In 1+1 dimension
the critical exponents are ζ = 1/2 and z = 2. They characterize the large scale behaviour
of the interface width, which scales as N ζ in the stationary state of the system of size
N and saturates to this stationary value after the relaxation time of order of N z. The
first exponent indicates that the stationary interface looks like Brownian motion, while
the second exponent suggests that the propagation of fluctuations is purely diffusive. The
exponents ζ and z can be translated to another pair of exponents α = ζ/z and β = 1/z
responsible for fluctuation and correlation scales respectively. Specifically, the interface
width grows as tα with time t in the non-stationary regime, while the correlation length
scales as the tβ. For EW universality class they are α = 1/4 and β = 1/2.

The stochastic nonlinear KPZ equation was introduced in 1986 [25]. The novelty of
this equation was the non-linearity that made its analysis much more involved. Though
the analytic solution had not been found for other 25 years, the scaling exponents and
the scaling hypotheses about the form of the model dependent constants in 1+1 dimen-
sion were predicted heuristically from the dimensional analysis, mode coupling theory
and renormalization group [25, 27, 28]. Both the roughness exponent ζ = 1/2 and the
dynamical exponent z = 3/2 are used to describe the height function behaviour of the
corresponding interface. These exponents can also be translated to α = 1/3, β = 2/3.
However, finer characteristics of the large scale behaviour, e.g. universal scaling functions,
were beyond the mentioned approaches. This is when stochastic integrable systems were
proven to be useful.

The most prominent integrable interacting particle models are symmetric and asym-
metric simple exclusion processes, abbreviated as SSEP and ASEP [29] respectively. They
are systems of particles performing random walks on 1D lattice subject to the exclusion
rule, which prevents two particles from coming to the same site. They are paradigmatic
models belonging to the EW and KPZ universality classes, respectively. The results about
these models can be divided into two groups.

The first group includes results about the stationary state and the large time be-
haviour of finite systems with periodic boundary conditions or with particle reservoirs
attached to the ends. These are stationary state density and current profiles [30, 31],
correlation functions [32], the large deviation functions for particle current and density
on a ring [33, 34] and on a segment [35, 36, 37, 38, 39, 40], e.t.c. In particular, the two
first cumulants of time integrated particle current, which we refer to below, were found
in [41] (for more references see [42, 43, 44]).

The second group consists of results about the transient dynamics in the infinite
system. They are the one point current distributions for several types of initial conditions
[45, 46, 47, 48]. In the case of TASEP, the totally asymmetric version of ASEP, it was
also possible to find all the equal-time multipoint current distributions [49, 50] as well as
those for unequal times [51, 52] and space-time points on space-like paths [53, 54, 55].
Some progress was also achieved for the time-like correlation functions [56, 57].

The transition between transient and stationary regimes has also received attention
recently. Some finite size results for TASEP with periodic boundary conditions far from
the equilibrium were obtained and analysed asymptotically at different time scales [58,
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59, 60, 61, 62, 63].
Although the mentioned results for interacting particle models make a significant

contribution to the theory of EW and KPZ universality in 1+1 dimensions, it is still
far from being complete. That is why testing the results obtained and hypotheses made
against other interacting particle systems with richer dynamics is of interest. In the the-
sis we address probably the next simplest integrable interacting particle system, the zero
range process (ZRP) [29]. It is a continuous time particle system on a one-dimensional
lattice with jump probabilities depending only on the number of particles at the site of
departure. Like in SSEP and ASEP, its stationary measure has the factorized form [64] in
the infinite and periodic cases. We consider a particular case of this model known as the
q-boson ZRP, whose jump rates ensure the Bethe ansatz integrability of the stochastic
generator. The model received its name from the fact that algebraically its evolution
operator can be realized in terms of the representation of q-boson algebra. It was initially
introduced by Bogoliubov and Bullough [65] and then adapted by Sasamoto and Wadati
[66] to be considered as the stochastic interacting particle model. It was also rediscovered
as a ZRP solvable by the coordinate Bethe ansatz [67]. An intriguing fact is the duality
under particle-hole transformation between q-boson ZRP and the q-TASEP model ap-
peared much later as a degeneration of the Macdonald process [68]. On the one hand,
there are much less results on q-boson ZRP, than for ASEP and SSEP. On the other hand,
that model is a good candidate for testing the universality of results obtained from ASEP
and SSEP.

The hopping rates of the model are parameterized by a real parameter q ∈ R. The
model is believed to belong to the KPZ universality class when q ̸= 1 and to the EW
universality class when q = 1. Several results were obtained on the q-boson ZRP. The
mean group velocity and the diffusion coefficient for two particles on the infinite lattice
were calculated [66]. The scaling form of the large deviation function of the particle
current was obtained for the periodic lattice in the large system size limit for q ̸= 1 [67].

We undertake the further research of the large time regime of q-Boson ZRP on
the ring of size N evaluating the exact diffusion coefficient for the particle position and
the associated interface height. The problem of calculation of the current cumulants in
exclusion processes has a long history. The diffusion coefficient was first obtained for
TASEP on a ring [69] and on a segment [70] using the matrix product ansatz [31]. Later
the matrix product technique was extended to ASEP [41]. The whole large deviation
function of the distance traveled by a particle in TASEP, which in particular yielded all
the exact scaled cumulants including the diffusion coefficient, was derived using the Bethe
ansatz in [33]. This solution used significantly a special structure of the TASEP Bethe
equations, which is not present in the more general ASEP case. The large deviation
function for the ASEP was constructed in the large system size limit under a special KPZ
scaling by the method of asymptotic solution of the Bethe equations proposed in [71, 72].
The universal current cumulants in SSEP on the ring were obtained asymptotically both
from the Bethe ansatz and from the fluctuating hydrodynamics in [34]. Technique based
on asymptotic solutions of the Bethe equations was also applied to evaluate the current
large deviation function in the ASEP on the segment with open ends [37]. Finally, the
approach to finding the exact expressions of current cumulants based on the functional
Bethe ansatz or T-Q Baxter equation was developed for ASEP on the finite ring by Prolhac
and Mallick in [74]. The exact large deviation function for the ASEP on a segment was
also found by adapting the matrix product ansatz [38, 39] and using the T-Q Baxter
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equation [40, 75].
In the thesis we apply the method by Prolhac and Mallick [74] to q-boson ZRP on

a ring. Our interest is two-fold. First, it is a technical aspect of a reformulation of the
Bethe equations in the form of T-Q Baxter polynomial that can be solved perturbatively
order by order in powers of the parameter of the moment generating function of particle
current. It delivers the exact representation of the diffusion coefficient (Theorem 2.1).
Comparing q-boson ZRP with the ASEP one notices that the similar Bethe ansatz leads
to very different TQ-polynomial solutions. This can be explained by the relation of q-
boson ZRP to the infinite-dimensional q-boson representation while ASEP is related to
the two-dimensional representation of the quantum affine algebra Uq(ŝl2). In both cases
the solution of TQ equations are given in terms of polynomial truncation of the generating
function of stationary weights. Complexity of this function seems to depend crucially on
the dimension of underlying representation. While in the ASEP the single site weight is
a simple binomial, in the q-boson ZRP we show that the single site function is an infinite
sum representing the entire or meromorphic q-exponential function. Consequently, the
exact expression of the diffusion coefficient obtained in [41] is an explicit sum of quantities
constructed of binomial coefficients. In our case we were able to represent the final result
(Theorem 2.1) in the form of an infinite sum of double contour integrals, which being less
explicit, however, is well suited for asymptotic analysis.

Our second interest is the study of the scaling limit of the formulae obtained and,
thus, the check of the scaling hypotheses made before on the basis of the analysis of EW
and KPZ equations and ASEP. It is expected that in the infinite system of KPZ and EW
universality classes a particle moves subdiffusively, with fluctuations growing with time
t as tα. So does the height of the associated interface. However, in the finite periodic
system of size N at large time t ≫ N z particles move diffusively, i.e. the variance of
the fluctuations grows linearly with time with the proportionality factor, named diffusion
coefficient, that vanishes in the infinite system size limit as N2ζ−z, i.e. as 1/N for EW
and as 1/

√
N for KPZ universality class (for details see review [27] and discussion in

the text). The latter power law was one of the first demonstrations of KPZ scaling
behaviour obtained from exact solution [69]. The universal power law form of cumulants
of KPZ interface height of arbitrary order was conjectured in [28, 73] basing on the
analysis of dimensions supplied with the scaling invariance arguments. Specifically the
model dependent dimensionful factors were predicted, which come with the power laws,
while the universal dimensionless constants are to be determined from exact solutions.
The program of determining the universal constants was first realized within the exact
calculation of the second current cumulant [69, 41] and of the cumulants of arbitrary order
[33, 72] in TASEP and ASEP. For the EW universality class a few first current cumulants
were also calculated exactlty in [34], the mentioned solution of SSEP. The asymptotic
scaling form of the cumulants was also verified at several other models [67, 76, 77, 78].
Here, using the method of TQ-equation we reproduce the earlier result [67] on the scaling
form of the diffusion coefficient in the q-boson ZRP. We obtain expected power law of
1/
√
N in Theorem 2.2 which agrees with the hypothesis of the KPZ class universality.
In addition the scaling form of the current cumulants and the scaling functions that

describes the crossover between the KPZ and EW universality classes are also expected to
be universal. The first attempts to determine the form of the scaling functions were also
realized within TASEP [33] and ASEP [41], respectively. We derive the scaling function
interpolating between the EW and KPZ classes, which confirms the universality of the
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expression conjectured from the ASEP solution [41]. This result is given by Theorem 2.3.

Thesis results

In the thesis we study the families of the finite dimensional quotient algebras of C[B3] by
a p-th order generic monic polynomial relation on the elementary braids and the statistics
of particle current for the q-boson zero range process.

• In the diagonal basis for the first elementary braid generator we construct a series
of representations of dimension ≤ 6 and find the conditions under which they are
irreducible. For the considered quotient algebras we formulate semisimplicity crite-
ria, and if those criteria are satisfied we give a complete classification of irreducible
representations.

• We have calculated exact expressions for the first two current cumulants in the q-
boson ZRP on a ring in the form of contour integrals. In the large system size limit
we find that at generic values of parameter q controlling interparticle interaction
the second cumulant reproduces the scaling expected for the models in the Kardar-
Parisi-Zhang universality class. Another result is the universal scaling function
describing the crossover between the Kardar-Parisi-Zhang and Edwards-Wilkinson
universality classes.

Below we formulate the results of the thesis in more details. Note that introduction
in the thesis almost coincides with the Summary, although there are more references and
links to the main part of the Thesis. We hope it will help a reader to navigate.

1 Representations of finite-dimensional quotients of

C[B3]

Next, we provide a summary of the first chapter of the thesis, presenting the finite-
dimensional quotient algebras and formulating the results.

1.1 Braid group B3 and its quotient algebras QX

In the first section we introduce the finite dimensional quotient algebras of C[B3].

Definition 1.1. Braid group B3 on three strings is an abstract associate group, generated
by a pair of elementary braids – g1 and g2 – satisfying the braid relation

g1g2g1 = g2g1g2. (2)

Alternatively it can be given in terms of generators

a = g1g2, b = g1g2g1, (3)

and relations
a3 = b2 = c , (4)
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where c = (g1g2)
3 = (g1g2g1)

2 is a central element of B3 which generates the center Z(B3)
[80]. Thus, the quotient group B3/Z(B3) = ⟨a, b| a3 = b2 = 1⟩ is the free product Z3 ∗ Z2

of two cyclic groups, which is known to be isomorphic to PSL(2,Z).

Definition 1.2. For a finite set X of pairwise different nonzero complex numbers:

X = {x1, x2, . . . , xn}, xi ∈ C \ {0}, xi ̸= xj ∀i ̸= j. (5)

and a polynomial

PX(g) :=

n=|X|∏
i=1

(g − xi1), where g ∈ {g1, g2}. (6)

the quotient algebra of the braid group on 3-strings is

QX := C[B3]/⟨PX(g)⟩ (7)

Remark 1.1. It is enough to impose a polynomial condition in the first braid only. Since
all elementary braids are conjugate to each other, therefore, conditions on them are iden-
tical.

As it was already mentioned in the introduction the quotient algebras QX are fi-
nite dimensional if and only if |X|= n < 6. With a particular choice of polynomials
PX(g) = gn − 1 they are the group algebras of the quotient groups B3/⟨gn⟩. By the Tits
deformation argument, in the generic situation the algebras QX with |X|≤ 5 are isomorpic
to C[B3/⟨g|X|⟩] and, hence, in a generic situation semisimple.

1.1.1 Spectra of the central element and of generators

Our aim is to construct enough irreducible representations for quotient algebras QX and
using the Artin-Wedderburn prove that we obtain the complete classification of the ir-
reducible representations. It turns out that their dimensions do not exceed 6. We show
that in these irreducible representations the spectra of the central element c (2) and of
generators a and b (3) are, up to a discrete factor, defined by the eigenvalues xi of the
elementary braids.

Let V be a finite dimensional linear space, with dimV = d and let

ρX,V : QX → End(V )

be an irreducible representation of QX .

Statement 1.1. The characteristic polynomial of elementary braids g1, g2 in representa-
tion ρX,V (g) has the form

Πρ(g) :=

n=|X|∏
i=1

(g − xi)
mi , where mi ∈ N+ such that

n∑
i=1

mi = d. (8)

Since c is central, we apply Schur’s lemma and we have that c acts in the irreducible
representation ρX,V as a scalar operator. We denote

A := ρX,V (a), B := ρX,V (b), ρX,V (c) := Cρ IdV . (9)

The following proposition describes explicitly the spectrum of operators A and B in low
dimensional representations.
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Proposition 1.1. Let ρX,V : QX → End(V ) be a family of irreducible representations of
algebras QX (7) such that
a) their characters are continuous functions of parameters xi ∈ X;
b) the characteristic and minimal polynomials of the matrices ρX,V (g1) and ρX,V (g1) are
given by Πρ (8) and PX (6), respectively.

Let A, B, Cρ be as defined in (9). Denote ν := e2πi/3, and introduce notation ek(X)
for k-th elementary symmetric polynomial in the set of variables X = {xi}i=1,...,n.

Then for n = |X|≤ 5 and d = dimV ≤ 6 the coefficient Cρ and eigenvalues of
operators A and B can take the following values.

If d = n = 2, then Cρ = −e2(X)3,

SpecA = −e2(X)·{ν, ν−1}, SpecB = i e2(X)
3
2 ·{1,−1}; (10)

If d = n = 3, then Cρ = e3(X)2,

SpecA = e3(X)
2
3 ·{1, ν, ν−1}, SpecB = e3(X)·{1,−1♯2}, (11)

where m♯n denotes an eigenvalue m with multiplicity n ;

If d = n = 4, then for any root h(X) := 2
√

e4(X): Cρ = h(X)3,

SpecA = h(X)·{1♯2, ν, ν−1}, SpecB = h(X)
3
2 ·{1♯2,−1♯2}; (12)

If d = n = 5, then for any root f(X) := 5
√

e5(X): Cρ = f(X)6,

SpecA = f(X)2 ·{1, ν♯2, (ν−1)♯2}, SpecB = f(X)3 ·{1♯3,−1♯2};(13)

If d = 6, n = 5, mi = 2, 1 ≤ i ≤ 5, then Cρ = −xie5(X),

SpecA = − 3
√

xie5(X)·{1♯2, ν♯2, (ν−1)♯2}, SpecB = i 2
√

xie5(X)·{1♯3,−1♯3}. (14)

Therefore, the spectra of elements a and b in all irreducible representations are, up to
a discrete factor, defined by the eigenvalues xi of the elementary braids. This proposition
becomes a key ingredient that makes the search of all irreducible representations possible.

1.1.2 Irreducible representations of quotient algebras QX

We use the data given in the Proposition 1.1 for an explicit construction of the irreducible
representations in QX of dimention up to 6. Choosing the basis of eigenvectors of g1 we
present them.

Proposition 1.2. The algebras QX in cases |X|≤ 5 have the following representations
of dimensions dimV ≤ 6.

If |X|= dimV = 1, there exists a unique representation

ρ
(1)
X (g1) = ρ

(1)
X (g2) = x1. (15)

If |X|= dimV = 2, there exists a unique representation

ρ
(2)
X (g1) = diag{x1, x2}, ρ

(2)
X (g2) =

1

x1 − x2

(
−x2

2 −x1x2

x2
1 − x1x2 + x2

2 x2
1

)
. (16)
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If |X|= dimV = 3, there exists a unique representation

ρ
(3)
X (g1) = diag{x1, x2, x3}, ρ

(3)
X (g2)=


x2x3(x2+x3)

∆1(X)

x3(x2
1+x2x3)

∆1(X)

x2(x2
1+x2x3)

∆1(X)

x3(x2
2+x1x3)

∆2(X)
x1x3(x1+x3)

∆2(X)

x1(x2
2+x1x3)

∆2(X)

x2(x2
3+x1x2)

∆3(X)

x1(x2
3+x1x2)

∆3(X)
x1x2(x1+x2)

∆3(X)

, (17)

where we introduced notation

∆i(X) :=

|X|∏
j=1, j ̸=i

(xj − xi). (18)

If |X|= dimV = 4, there exist two inequivalent representations depending on a choice of

the square root h =
√

e4(X):

ρ
(4)
h,X(g1) = diag{x1, x2, x3, x4},

ρ
(4)
h,X(g2) =


α1

∆1(X)
β1 γ3 γ4
∆1(X)

β1 γ2 γ4
∆1(X)

β1 γ2 γ3
∆1(X)

β2

∆2(X)
α2

∆2(X)
β2 γ2
∆2(X)

β2 γ2
∆2(X)

β3

∆3(X)
β3 γ3
∆3(X)

α3

∆3(X)
β3 γ3
∆3(X)

β4

∆4(X)
β4 γ4
∆4(X)

β4 γ4
∆4(X)

α4

∆4(X)

 . (19)

Here αi(h,X) := e3(X
\i) e1(X

\i) − h e2(X
\i), X\i := X \ {xi},

βi(h,X) := e4(X)/x2
i − h, i = 1, 2, 3, 4, (20)

γa(h,X) := x1xa + xbxc − h, a, b, c ∈ {x2, x3, x4} are pairwise distinct.

If |X|= dimV = 5, there exist five inequivalent representations corresponding to different

values of the root f(X) := 5
√

e5(X):

ρ
(5)
f,X(g1) = diag{x1, x2, x3, x4, x5}, ρ

(5)
f,X(g2) = ||mij||1≤i,j≤5, (21)

mii(f,X) :=
e4(X

\i) e1(X
\i) + f(X)xi e3(X

\i) + f(X)
∏ 5

k=1, k ̸=i(f(X) + xk)

∆i(X)
, (22)

mij(f,X) :=
(x2

i + f(X)xi + f(X)2)
∏ 5

k=1, k ̸=i,j(f(X)2 + xixk)

f(X)xi xj ∆i(X)
, ∀i ̸= j. (23)

If |X|= 5, dimV = 6, there exist five inequivalent representations ρ
(6)
i,X , i = 1, . . . , 5,

corresponding to all admissible values Cρ = −xie5(X) of the central element c. formulae

for ρ
(6)
5,X are given in table 1. formulae for the other representations can be obtained by

the transposition of the eigenvalues x5 and xi: ρ
(6)
i,X = σi5 ◦ ρ(6)5,X , i = 1 . . . 4.

Remark 1.2. As it is noticed above a representation of QX stays also a representation
of QX′ if X ⊂ X ′.
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Table 1: 6-dimensional representation of QX , |X|= 5.

ρ
(6)
5,X(g1) = diag{x1, x2, x3, x4, x5, x5} , ρ

(6)
5,X(g2) = ||gij||1≤i,j≤6,

G := ||gij||1≤i,j≤4 : gii =
e4(X\i)e1(X\i)−xix5e3(X\i)

∆i(X)
, X\i := X \ {xi}, i=1,...,4;

g1a = pa qb qc
x2
1∆a(X)

, ga1 = p1
x2
a∆1(X)

, gab = qa pb
x2
a∆b(X)

,

where indices a, b, c ∈ {2, 3, 4} are pairwise distinct, and

qa(X) := x1xa + xbxc , pi(X) := e5(X)− x3
ix

2
5 ;

G31 :=

(
g51 g52
g61 g62

)
: diag{ 1

∆1(X)
, 1
∆2(X)

};

G32 :=

(
g53 g54
g63 g64

)
:

(
q4 r q3 (σ34◦r)

(σ12◦r) (σ12σ34◦r)

)
, where r(X) := x3

x1(x2−x1)∆3(X\2)
,

and σij◦f(. . . xi . . . xj . . . ) := f(. . . xj . . . xi . . .) for all f(X)

G33 :=

(
g55 g56
g65 g66

)
:

(
u q3 q4 v

(σ12◦v) (σ12◦u)

)
, where v(X) := p2(X)

x1x5(x2−x1)∆5(X\2)
,

and u(X) :=
x1x2(x3+x4)(x3x4−x1x5)+x3x4(x2−x1)(x2

1+x2x5)

(x2−x1)∆5(X\2)
;

G23 :=

(
g35 g36
g45 g46

)
: 1

x5∆5(X)

(
w
x2
3

q3 (σ12◦w)

x2
3

(σ34◦w)

x2
4

q4 (σ12σ34◦w)

x2
4

)
,

w(X) := p1(X)(x1x2x3x4{x1x3+x5(x2+x4)}−x3
5{x1x3(x2+x4)+x5x2x4});

G13 :=

(
g15 g16
g25 g26

)
: 1

∆5(X)

(
z
x1

q3 q4 (σ12σ23◦w)

x2
1x5

(σ23◦w)

x2
2x5

(σ12◦z)
x2

)
,

z(X) := (e1e3−x2
1e2)(x1e1e3−e2x3

5)x1x5 +

e3(x1−x5)(x2
1(e1−x1){e3(x1−x5)−e1x3

5}+(x1e2−e3){x1e2+(x1−x5)x2
5}x5),

where ei are elementary symmetric polynomials in variables x2, x3, x4.

1.1.3 Semisimplicity criteria for algebras QX

In this subsection we present reducibility conditions for the obtained representations and
formulate semisimplisity criteria for algebras QX .

Proposition 1.3. For the algebras QX (7) defined by the set of data X (5) the represen-
tations ρ(d)... , d ≤ 5, described in Proposition 1.2 are irreducible if and only if the following
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conditions on their parameters are satisfied.

For ρ
(2)
X , |X|= 2 I

(2)
ij := x2

i − xixj + x2
j ̸= 0, (24)

where indices i,j∈{1,2} are distinct;

For ρ
(3)
X , |X|= 3 I

(3)
ijk := x2

i + xjxk ̸= 0, (25)

where i,j,k∈{1,2,3} are pairwise distinct;

For ρ
(4)
h,X , |X|= 4 I

(4)
h,i := x2

i − h ̸= 0, J
(4)
h,ijkl := xixj + xkxl − h ̸= 0, (26)

where i,j,k,l∈{1,2,3,4} are pairwise distinct;

For ρ
(5)
f,X , |X|= 5 I

(5)
f,i := x2

i + xif + f 2 ̸= 0, J
(5)
f,ij := xixj + f 2 ̸= 0, (27)

where i,j∈{1,2,3,4,5} are pairwise distinct;

Otherwise, they are reducible but indecomposable.
For representations ρ

(6)
s,X , s = 1, . . . , 5, also given in proposition 1.2 we present less

detailed statement, which describes conditions under which all of them are irreducible.

If |X|= 5, ρ
(6)
s,X , 1 ≤ s ≤ 5 are irreducible if

I
(6)
i := e5(X) + x5

i ̸= 0, J
(6)
ij := e5(X)− x3

ix
2
j ̸= 0, K

(6)
i,jklm := xjxk + xlxm ̸= 0, (28)

where i,j,k,l,m∈{1,2,3,4,5} are pairwise distinct. Otherwise, among them there are reducible
but indecomposable representations.

As a direct consequence of Proposition 1.2 and Proposition 1.3 we formulate our
main result.

Theorem 1.1. For |X|≤ 5 the algebra QX (7) defined by a set of data X (5) is semisimple
if and only if one of the following conditions holds.

|X|= 2 : I
(2)
12 ̸= 0; (29)

|X|= 3 : {I(2)ij , I
(3)
ijk} ∩ {0} = ∅ for all pairwise distinct indices i, j, k ∈ {1, 2, 3}; (30)

|X|= 4 : {I(2)ij , I
(3)
ijk , I

(4)
h,i , J

(4)
h,ijkl} ∩ {0} = ∅ (31)

for any h such that : h2 = e4(X), and for all pairwise distinct indices i, j, k, l ∈ {1, 2, 3, 4};

|X|= 5 : {I(2)ij , I
(3)
ijk , I

(4)
h,i , J

(4)
h,ijkl, I

(5)
f,i , J

(5)
f,ij, I

(6)
i , J

(6)
ij , K

(6)
i,jklm} ∩ {0} = ∅ (32)

for any h such that : f 5 = e5(X), ∀h : h2 = e4(X
\i),

and for all pairwise distinct indices i, j, k, l,m ∈ {1, 2, 3, 4, 5}.

In the semisimple case all irreducible representations of these algebras are described
in Proposition 1.2.

2 q-boson zero range process

In the second chapter of the thesis we introduce the q-boson zero range process and
the particle flow as an observable of our interest, sketch necessary information about
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Figure 1: q-boson zero range process on a ring with N sites and p = 9 particles.

the stationary state and current cumulants and state one of the main the results, exact
expression for the diffusion coefficient. Then, we analyze the asymptotic and scaling limit
of the obtained exact formulae testing the scaling hypotheses formulated for the models
in KPZ and EW universality classes.

2.1 The model and its observables

ZRP is a stochastic interacting particle system. We define it on a periodic one dimensional
lattice with N sites (sites i and N + i are identical) and p particles. Each lattice site can
be occupied by an integer number of particles ni ≥ 0. A particle configuration is specified
by the set of occupation numbers n = {n1, . . . nN}. The total number of configurations
is Cp

N+p−1.
We consider a continuous time Markov process on the set of particle configurations.

Each site has its own Poissonian alarm clock, which rings with rate u(ni). When the clock
rings a particle from site i jumps to the neighbouring site i+1 (we imply that u(0) = 0).
See figure 1.

Let Pt(n) be the probability for the system to be in configuration n at time t. The
probability solves the forward Kolmogorov equation

∂tPt(n) = LPt(n). (33)

Here L is the operator, whose action on probability is defined by

LPt(n) =
∑
n′

(u(n′ → n)Pt(n
′)− u(n → n′)Pt(n)),

where the rate u(n′ → n) of transition from configuration n′ to n is equal to u(n′
i) if the

configuration n is obtained from n′ by a single jump of a particle from site i the to the
site i + 1 and zero otherwise. In the following we will deal with the particular choice of
the rates

u(n) = [n]q =
1− qn

1− q
,

which was shown to be the one necessary for the Bethe ansatz integrability [67]. These
rates are positive when q > −1. This is the range we consider below.
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Having a solution of the master equation corresponding to particular initial conditions
one can compute the expectation of any function of configuration at given time. Often
one would also like to study the statistics of additive functionals on trajectories of the
process, by which we mean a quantity Yt changing its value by a fixed amount δYn′→n

every time the system jumps from n′ to n. To this end, one considers the joint probability
Pt(n, Y ) for the configuration to be n and the value of Yt to be Y at time t. Its generating
function

Gt(n, γ) =
∞∑

Y=0

Pt(n, Y )eγY

is a solution of the non-stochastic deformation of (33)

∂tGt(n, γ) = LγGt(n, γ),

where the matrix of the deformed operator Lγ is obtained from that of L by multiplying
every off-diagonal element corresponding to transition from n′ to n by eγδYn′→n . We
consider a particular example of Yt, the total distance traveled by all particles by time t.
In this case the increase of Yt due to jump of a single particle is always δYn′→n = 1, so
that the action of Lγ is as follows.

LγGt(n, γ) =
∑
n′

(eγu(n′ → n, γ)Gt(n
′, γ)− u(n → n′)Gt(n, γ)) (34)

The moment generating function of the random variable Yt is given in terms of Gt(n, γ).

EeγYt =
∑
n

Gt(n, γ)

The utility of Gt(n, γ) reveals itself in an observation that in the long time limit its
behaviour is dominated by the largest eigenvalue λ(γ) of matrix Lγ,

λ(γ) = lim
t→∞

lnEeγYt

t
=

∞∑
n=1

cn
γn

n!
,

i.e the function λ(γ) plays the role of the generating function of scaled cumulants

cn = lim
t→∞

⟨Y n
t ⟩c
t

of Yt, where we use notation ⟨ξn⟩c for n−th cumulant of the random variable ξ. In
particular, the first two scaled cumulants, which we deal with below, have a simple physical
meaning. The first one

J = J(N, p) := c1 = λ′(0)

is the expected number of particle jumps in the system per unit time, aka mean integral
particle current, obtained by time-averaging of the expected total number of jumps made
by all particles by time t growing to infinity. The second scaled cumulant is the group
diffusion coefficient

∆ = ∆(N, p) := c2 = λ′′(0)

associated with the joint motion of all particles.
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2.2 Stationary state and scaled current cumulants

The peculiarity of ZRP is the factorized form of the stationary probability distribution
[64], which makes the analysis of the stationary state particularly simple. This is to say
that the probability of finding the system in a configuration n is given by a product of
one-site weights

Pst(n) =

∏N
i=1 f(ni)

Z(N, p)
, (35)

where the one-site weight is given by

f(m) =

{ ∏m
j=1

1
u(j)

, m > 0

1, m = 0
, (36)

and

Z(N, p) =
∑

{n:n1+···+nN=p}

N∏
i=1

f(ni). (37)

is the normalization factor referred to as the (canonical) partition function. The partition
function can be given an integral representation with the use of the generating function
of one-site weights

F (z) =
∞∑
n=0

f(n)zn.

In the case of q-boson ZRP the series F (z) is convergent for z in the disk |z| < 1/(1− q)
when |q|≤ 1 and for z in the whole complex plain when |q|> 1 to infinite products, which
give two different q-exponential functions.

F (z) =

{
eq(z) := (z(1− q); q)−1

∞ , |q|< 1,
E1/q(z) := (z(q−1 − 1); q−1)∞, |q|> 1,

(38)

where (z; q)∞ =
∏∞

i=0(1 − zqi). The canonical partition function Z(N, p) has a contour
integral representation

Z(N, p) =

∮
FN(z)

zp+1

dz

2πi
, (39)

and appear further. For example, the integrated particle current calculated from the
stationary state analysis is

Proposition 2.1.

J = E

(
N∑
i=1

u(ni)

)
= N

Z(N, p− 1)

Z(N, p)
. (40)

The second scaled cumulant, aka diffusion coefficient, can not be obtained from the
simple stationary state analysis, being the simplest observable that implicitly contains
unequal time correlations. To find this quantity we need to address the full dynamical
problem. Here we give the final expression, which is one of the main results of the thesis.
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Theorem 2.1. The group diffusion coefficient ∆ has the following representation

∆ = pJ +
2N2

Z(N, p)2

∮
dy

2πi

FN(y)

yp

∮
|y|<|t|

dt

2πi

FN(t)

tp
ϕ(y)

t− y

+
2N2

Z(N, p)2

∞∑
i=1

∮
dt

2πi

FN(t)

tp

∮
|y|<|t|

dy

2πi

FN(y)

yp
q±iϕ(yq±i) + ϕ(y)

t− yq±i
, (41)

where plus and minus signs in the powers of q correspond to |q| < 1 and q > 1 respec-
tively and the integration contours are two nested simple counterclockwise loops around
the origin, which do not contain any other poles. Also we defined the function

ϕ(z) =
J

p
(lnF (z))′ − 1. (42)

where we use notation (lnF (z))′ = ∂z(lnF (z)) for derivative of function lnF (z).

The formula (41) is valid for −1 < q ̸= 1.
Of course of physical interest is the behaviour of the cumulants in the thermodynamic

limit, in which the notion of universality becomes relevant.

2.3 Interface growth and KPZ-EW universality

Exploiting the relation of q-boson ZRP with an interface growth model we discuss the
asymptotic limit of the announced exact formulae in context of the KPZ-EW universality.
We formulate the scaling hypotheses which can be extracted from the KPZ equation. Then
we match this picture with the asymptotic results obtained for the interface associated
with the q-boson ZRP.

The q-boson zero range process on the periodic lattice can be mapped onto a growing
interface on a cylinder R×[0, N ]. For x ∈ [0, N ] and time t we define a piece-wise constant
height function h(x, t), which experiences a jump

h(x+ 0, t)− h(x− 0, t) = nx(t) (43)

at each integer coordinate x = 1, . . . N and is constant otherwise. Periodicity of the
particle system implies helicoidal boundary conditions for the height (see Fig.2)

h(x+N, t) = ρN + h(x, t), (44)

where the particle density ρ = p/N plays the role of the mean tilt of the interface. We
are interested in the late-time behaviour of the large system, implying that that the limit
t → ∞ is taken first. The statistics of the interface height in this limit is dictated by the
KPZ-EW universality.

2.3.1 KPZ equation and scaling hypotheses

The aim we pursue in the discussion below is to describe a few conjectures made on the
basis of the heuristic analysis of the KPZ equation [27], [28], as well as the exact solution
of ASEP [41].
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Figure 2: The mapping between configuration n = (0, 3, 0, 1, 2, 1, 3, 0, 0, 0, 3, 1, 0, . . . , 0)
and an interface.

Let us consider the KPZ equation for the interface height h(x, t)

∂h

∂t
= ν

∂2h

∂x2
+

λ

2

(
∂h

∂x

)
2 + η(x, t), (45)

η(x, t) is a Gaussian white noise with zero mean and covariance

Eη(x, t), η(x′, t′) = Dδ(x− x′)δ(t− t′), (46)

where ν, λ and D are three parameters of the model. The particular case λ = 0 is referred
to as EW equation. We choose helicoidal boundary conditions h(x+N, t) = h(x, t) + ρN
with the tilt ρ for it to agree with the mapping (43). We are interested in the statistics
of interface height function in the large time limit. In this limit the statistics should not
depend on initial conditions. Consider the quantity characterizing the fluctuations of the
interface height on the cylinder, its dispersion,

W 2(N, t) =
〈
h2(x, t)

〉
c
, (47)

with a particular case of the flat initial conditions, which ensure that this quantity do not
depend on the coordinate x at any time.

In the thesis we reproduce the arguments of dimensional analysis about the behaviour
of the fluctuations in the asymptotic limits, make scaling argument about the interpolation
of this quantity between size independent small regime and the diffusive late regime and
use the Family-Viseck-like ansatz [83]. These arguments leads us to the following scaling
hypotheses for KPZ and EW universality classes.

Scaling hypothesis 1. The late-time behaviour of the fluctuations W 2(N, t) of the inter-
face height in the large system (limit t → ∞ is taken first) in the KPZ class universality
is

W 2(N, t) ≃ κKPZ(D/2ν)
3
2 |λ|N− 1

2 t, t ≫ N3/2, N → ∞, (48)

and in the EW class universality

W 2(N, t) ≃ κEW
Dt

N
, t ≫ N2, N → ∞, (49)

where κKPZ and κEW are the universal dimensionless constants specific for given univer-
sality class.
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These constants can be obtained from exact solutions. The latter

κEW = 1 (50)

follow directly from the EW equation, while the former

κKPZ =

√
π

4
(51)

was first obtained from the exact solution of the TASEP [33] and conjectured to be
universal for the whole KPZ universality class.

Note that there are two different scaling functions used in the scaling arguments for
EW and KPZ universality classes. The crossover between their late time asymptotics is
given in terms of yet another scaling function.

Scaling hypothesis 2. The late-time evolution of height dispersion in the diffusive scale
t/N2 → ∞ under the scaling λ ≍ 1/

√
N, N → ∞ is described by the crossover function

so that

lim
t→∞

W 2(N, t)

t
=

D

N
F(g,∞), g =

λ2DN

ν3
(52)

is given in terms of F(g,∞), which is conjecturally the universal crossover function. The
candidate for this function

F(g,∞) =

√
g

2
√
2

∫ +∞

0

y2e−y2

tanh((
√
g/
√
32)y)

dy. (53)

was first obtained in [41] as a scaling limit of the exact diffusion constant at the weak
asymmetry.

2.3.2 Dimensionful invariants and asymptotic results.

We explain how to identify the model parameters with those of the KPZ equation and
then test the formulated conjectures against the asymptotic results obtained from the
q-boson ZRP.

The way of identification of the model dependent constants in the KPZ universality
class was proposed in [28, 73]. It is based on the observation that the parameters A =
D/2ν and λ are stable with respect to scale transformation

x → bx, t → bzt, h → bζh, (54)

with z = 3/2 and ζ = 1/2, which together with the corresponding transformation of D,λ
and ν leaves the KPZ equation invariant. It was then conjectured that the dimensionful
model-dependent constants within the universal functions must appear as a combination
of these two parameters. It is indeed the case in (48), which suggests

W 2(N, t) ≃ κKPZA
3
2 |λ|N− 1

2 t, (55)

and is conjecturally true for all the systems of KPZ class.
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Statement 2.1. For an associated interface corresponding to the q-boson ZRP the non-
linearity coefficient is

λ =
z∗

h2

(
1

|h2|
− h3

h2
2

)
(56)

given in terms of derivatives hk = (z∂z)
kh(z)|z=z∗ of the function h(z) = lnF (z)− ρ ln(z)

calculated at the critical point z∗ which is the smallest positive solution of the equation
z∗(lnF (z∗))′ = ρ. The constant A is

A = h2. (57)

This statement is a result of identification procedure that includes saddle point approxi-
mation of countour integrals.

The first part of the asymptotic analysis which we undertake in the thesis is aimed
to the calculation of the diffusion coefficient in the thermodynamic limit.

Theorem 2.2. Diffusion coefficient in the large system size limit

lim
N→∞

∆

N
3
2

=

√
π

8
√
h2

(
ϕ1h3

|h2|
− ϕ2

)
, (58)

where ϕk = (z∂z)
kϕ(z)|z=z∗ with ϕ(z) defined in (42).

The second part of the asymptotic analysis is devoted to the crossover regime. It
corresponds to the scaling, in which the dimensionless variable g = λ2DNν−3 from (52)
stays finite as N → ∞. This can be realized by taking

q = e
− α√

N .

Then calculation yields

λ ≃ − α√
N
.

Thus α varying from zero to infinity brings the system from EW to KPZ universality
class. Calculating the dimensional parameters in both classes of universality, we test the
second scaling hypothesis.

Theorem 2.3.

lim
N→∞

∆

N
= ρ F(g,∞), (59)

which matches with the conjectured expression (52) with the universal scaling function
F(g,∞) from (53).

Statement 2.2. The scaling hypothesis 1 and 2 are true for the associated interface
corresponding to the q-boson ZRP.

Applications of the results

We indicate several areas in which the results of this thesis are relevant

• the theory of knots,

• representation theory,

• quantum groups theory,

• stochastic integrable processes.
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Publications

The main results of the thesis are presented in two papers:
1. Pyatov P., Trofimova A., Representations of finite-dimensional quotient algebras

of the 3-string braid group, Moscow Math. J., 2021, 21, 427-442.

2. A. Trofimova, A. Povolotsky, Current statistics in the q-boson zero range process,J.
Phys. A: Math. Theor. 2020, 53, 283003-1–283003-35.
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51 Birkhäuser Boston), 185-204

[48] Ferrari P and Spohn H 2006 Comm. Math. Phys. 265 1

[49] Sasamoto T 2005 J. Phys. A 38(33) L549

[50] Borodin A, Ferrari PL , Prähofer M and Sasamoto T 2007 J. Stat. Phys. 129 1055

[51] Imamura T and Sasamoto T 2007 J. Stat. Phys. 128 799

[52] Povolotsky A M, Priezzhev V B and Schütz G M 2011 J. Stat. Phys. 142 754
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