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The study of multidimensional dynamical systems has its own speci�cs, due to the fact

that many methods for studying such systems are based on the approximation of smooth

invariant subsets of the system by piecewise linear objects. For example, a topological

classi�cation of Morse-Smale di�eomorphisms on a multidimensional sphere [9] was obtained

by considering their topological analogues, Morse-Smale homeomorphisms, for which an

analog of Smale's theorem [38, theorem 2.3] was proved (detailed proof Smale's theorems

can be found, for example, in the monograph [14]).

The transition to the topological category is related to the possible existence of several

smooth structures on the same manifold, starting from dimension 4. Initially, this was

discovered by J. Milnor in the form of exotic 7-spheres [29]. Moreover, the closures of

invariant manifolds of periodic points of a smooth system are often not even topological

submanifolds, due to which the dynamics on such subsets is no longer smooth. Numerous

examples of such subsets were induced by the work of D. Pixton [34] (see, for example, [42],

[25]), as well as by the study of systems with surface dynamics (see, for example, [8], [11]).

Starting from dimension four, so-called exotic manifolds appear that do not allow smooth

structures; manifolds that do not allow triangulation, and other features that prevent the

use of the technique of studying smooth manifolds. A nonsmooth topological manifold was

�rst demonstrated by Kervaire M. [20] in dimension 10. Thanks to S. Donaldson and M.

Friedman [6] it became clear that many simply connected compact topological 4-manifolds

do not admit smooth structures. There are examples of topological manifolds on which it

is impossible to introduce a smooth structure, but at the same time there are topological

�ows on them. Such a situation arises, for example, in cases when non-smoothable manifolds

admit the existence of a continuous Morse function, which (see, for example, [21]) generates

a continuous �ow there. A good illustration of this situation is the projective-like manifolds

of dimensions 4, 8 and 16, including non-smooth ones, on which J. Ils and N. Cooper [7]

constructed topological Morse functions with exactly three critical points.

In connection with the above, the idea of describing the properties of dynamical systems

or functions on multidimensional manifolds exclusively in topological terms is quite natural.

Moreover, in the absence of a di�erentiable structure for the phase space, these properties

are interpreted as a topological tracing paper of the behavior of a smooth object. Often,

topological dynamical systems and continuous functions retain the properties of their

smooth counterparts and remain closely related to the topology of the ambient manifold. For

example, the concept of a continuous Morse function was introduced back in 1959 in [30], at

the same time the validity of Morse's inequalities was proved for it. However, the question

of the existence of a continuous Morse function on an arbitrary topological manifold is still

an open question. Similarly to its smooth counterpart, a continuous Morse-Bott function is

de�ned, which also retains a close connection with the topology of the carrier space.

The classical de�nition of a hyperbolic set of a smooth dynamical system uses the

decomposition of the tangent bundle into a direct sum of subspaces on which the di�erential

acts in a special way (compresses, stretches). Dynamical systems with a hyperbolic chain-
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recurrent set consisting of a �nite number of orbits with transversally intersecting invariant

manifolds are widely known as Morse-Smale systems, and are so named because S. Smale

proved the analogs of Morse inequalities [39] for such �ows. Topological analogues of Morse-

Smale systems with continuous and discrete time were introduced in [27], [10]. Moreover,

the question of the existence of such systems on an arbitrary manifold is also open, in

contrast to smooth analogues.

In this dissertation work, the concept of regular homeomorphisms and topological �ows

on topological manifolds is introduced. Regular topological dynamical systems are de�ned

as dynamical systems whose chain-recurrent set is topologically hyperbolic and consists of a

�nite number of �xed points and periodic orbits. For such systems, the dissertation provides

an exhaustive description of the behavior of invariant manifolds of chain components, both

from the point of view of asymptotics and from the point of view of the topology of their

embedding in the carrier manifold.

Also in the dissertation it is proved that for a regular �ow without periodic orbits,

given on a topological manifold of any dimension, there exists a (continuous) Morse energy

function. The result obtained is an ideological continuation of the work of S. Smale [40],

in which he established the existence of a smooth energy Morse function for any gradient-

like �ow on a manifold, and a partial solution of the Morse problem on the existence of

continuous Morse functions on any topological manifolds. Namely, a topological manifold

admits a continuous Morse function if and only if it admits a regular topological �ow

without periodic orbits. This result was obtained in the present work within the framework

of constructing a continuous Morse-Bott energy function for an arbitrary continuous regular

�ow on a topological manifold, and is an analogue of the theorem K. Meyer [28], who in

1968 constructed the Morse-Bott energy function for an arbitrary Morse-Smale �ow on a

smooth closed n-manifold (see also the review [15] on the construction of energy functions

for structurally stable systems).

The global properties of regular homeomorphisms, made it possible to obtain a complete

topological classi�cation of some classes of regular homeomorphisms that have classical

smooth analogs, studied in the works of E. A. Leontovich, A. G. Mayer, M. M. Peixoto

[23], [33], [24]. Namely, in the language of a three-color graph with periodic substitution, a

complete topological invariant of gradient-like homeomorphisms of surfaces is described. At

the same time, an exhaustive description of the set of admissible graphs is obtained and the

implementation problem is solved. An e�cient algorithm is also found (the running time of

the algorithm has a polynomial dependence on the number of input data) for distinguishing

isomorphism classes of allowable three-color graphs. The n-dimensional Cartesian products

of regular homeomorphisms of the circle are also classi�ed.

Within the framework of this dissertation work, methods have been developed for

studying the dynamics of regular topological dynamical systems, as well as approaches to

solving the problem of their classi�cation and constructing energy functions for them. The

dissertation consists of an introduction, four chapters, a conclusion and a list of references.
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In Chapter 1 formulated the main results of the work and provided information on

approbation of the results of the study.

In Chapter 2 introduced the notion of a regular dynamical system. Namely, in Section

2.1 regular homeomorphisms f on a topological n-manifold Mn are introduced.

Recall that an ε-chain of length m ∈ N connecting a point x to a point y for

a homeomorphism f is called a �nite set of points x = x0, . . . , xm = y such that

d(f(xi−1), xi) < ε for 1 6 i 6 m (see Fig. 1).

An ε-chain of length T connecting a point x to a point y for the �ow f t is called a �nite

set of points x = x0, . . . , xn = y which corresponds to a set of times t1, . . . , tn such that

d(f ti(xi−1), xi) < ε, ti > 1 for 1 6 i 6 n and t1 + · · ·+ tn = T .
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Fig. 1: ε-chain of length m ∈ N

A point x ∈ Mn is called chain recurrent for a homeomorphism f (a �ow f t) if for

any ε > 0 there exists m (T ) depending on from ε > 0, and an ε-chain of length m (T )

connecting the point x to itself. The set of all chain-recurrent points is called the chain-

recurrent set and is denoted by Rf (Rf t). On a chain-recurrent set, one can introduce an

equivalence relation by the following rule: x ∼ y if for any ε > 0 there are ε-paths connecting

x to y and y to x. Then the chain-recurrent set is divided into equivalence classes called

chain components.

De�nition 1. A �xed point p of a homeomorphism f : Mn → Mn is called topologically

hyperbolic if its neighborhood Up ⊂ Mn exists, the numbers λp ∈ {0, 1, ..., n}, µp, νp ∈
∈ {−1,+1} and homeomorphism hp : Up → Rn conjugating the homeomorphism f |Up∩f−1(Up)

with the linear di�eomorphism aλp,µp,νp : Rn → Rn, given formula

aλp,µp,νp(x1, ..., xλp , xλp+1, ..., xn) = (µ · 2x1, 2x2, ..., 2xλp , ν · 2−1xλp+1, 2
−1xλp+2, ..., 2

−1xn).

The number λp will be called theMorse index of the hyperbolic point p. The index points

n and 0 will be called source and sink, respectively; any point p such that λp ∈ {1, · · · , n−1}
will be called a saddle point (see Fig. 2). The topological hyperbolicity of a periodic point

p of period per(p) is determined by the hyperbolicity of the point p as a �xed point of the

homeomorphism fper(p).
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Fig. 2: Dynamics in the vicinity of a topologically hyperbolic �xed point: a) saddle point,
b) source point, c) sink point

De�nition 2. A homeomorphism f : Mn → Mn is called regular if its chain-recurrent set

is �nite (hence, it consists of a �nite number of periodic orbits) and topologically hyperbolic.

Denote by G the class of regular homeomorphisms.

For a topologically hyperbolic �xed point p of a homeomorphism f of the set

W s
p =

⋃
k∈Z

fk(h−1p (Es
λp)), W u

p =
⋃
k∈Z

fk(h−1p (Eu
λp)),

where Es
λp

= {(x1, ..., xn) ∈ Rn : x1 = · · · = xλp = 0}, Eu
λp

= {(x1, ..., xn) ∈ Rn : xλp+1 =

= · · · = xn = 0}, we will call stable and unstable invariant manifolds of the point p. Invariant

manifolds W s
p (f), W u

p (f) of the periodic point p with respect to the homeomorphism f

coincide with invariant manifolds W s
p (fper(p)), W u

p (fper(p)) of a �xed point p relative to

fper(p). For a periodic orbit O of a regular homeomorphism f ∈ G, we set

W s
O =

⋃
p∈O

W s
p , W

u
O =

⋃
p∈O

W u
p , λO = λp.

For the class G of regular homeomorphisms, are established the basic dynamical

properties in Sec. 2.1. In particular, we prove the existence and uniqueness of stable and

unstable varieties of periodic points, and the absence of cycles for any homeomorphism

f ∈ G in the sense of the following de�nition.

On the set of periodic orbits of the homeomorphism f ∈ G, we introduce the S. Smale

relation by the condition

Oi ≺ Oj ⇐⇒ W s
Oi
∩W u

Oj
6= ∅.

A k-cycle (k > 1) is a set of pairwise distinct periodic orbits O1,O2, · · · ,Ok satisfying
the condition O1 ≺ O2 ≺ · · · ≺ Ok ≺ O1.

Since the homeomorphisms of the class G have no cycles (see Statement 2.2), Smale's

relation on the set of periodic orbits of a regular homeomorphism extends by transitivity

to a partial order relation, and, therefore, by Szpilrajn's Theorem [41], can be extended to
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the set of all periodic orbits to a full order relation. In what follows, we assume that the

orbits of the homeomorphism f ∈ G are numbered, consistent with some �xed order:

O1 ≺ · · · ≺ Ok.

The complete ordering of the orbits of a regular homeomorphism allows us to describe its

global dynamics as follows.

Theorem 1. ([36]∗1, theorem 1). Let f ∈ G. Then

(1) Mn =
k⋃
i=1

W u
Oi

=
k⋃
i=1

W s
Oi
;

(2) each connected component of the manifold W u
Oi

(W s
Oi

) is a topological submanifold of

Mn, homeomorphic RλOi (Rn−λOi );

(3) cl(W u
Oi

) \W u
Oi
⊂

i−1⋃
j=1

W u
Oj

(cl(W s
Oi

) \W s
Oi
⊂

k⋃
j=i+1

W s
Oj

).

In Section 2.2 introduced the notion of a regular topological �ow.

Recall that a topological �ow on a manifold Mn is a family of homeomorphisms f t :

Mn →Mn that depends continuously on t ∈ R and has group properties:

1) f 0(x) = x for any point x ∈Mn;

2) f t(f s(x)) = f t+s(x) for any s, t ∈ R, x ∈M .

The trajectory or orbit of a point x ∈ Mn with respect to the �ow f t is the set Ox =

= {f t(x), t ∈ R} .

De�nition 3. A �xed point p of a topological �ow f t is said to be topologically hyperbolic

if there exists its neighborhood Up ⊂ Mn, the number λp ∈ {0, 1, ..., n}, and the

homeomorphism hp : Up → Rn conjugating the �ow f t|Up∩(f t)−1(Up) with the linear �ow

atλp : Rn → Rn, given formula

atλp(x1, ..., xλp , xλp+1, ..., xn) = (2tx1, ..., 2
txλp , 2

−txλp+1, ..., 2
−txn).

De�nition 4. A periodic orbit ` of period T` of a topological �ow f t is said to be topologically

hyperbolic if there exists its neighborhood U` ⊂Mn, numbers λ` ∈ {0, 1, ..., n− 1}, µ`, ν` ∈
{−1,+1} and the homeomorphism h` : U` → Rn−1 × S1 for µ`ν` = 1 (h` : U` → Rn−1×̃S1

for µ`ν` = −1)2 conjugating �ow f t|Up∩(f t)−1(Up) with superstructure btλ`,µ`,ν`,T` over a linear

di�eomorphism aλ`,µ`,ν` : Rn−1 → Rn−1, given formula

aλ`,µ`,ν`(x1, ..., xλ` , xλ`+1, ..., xn−1) = (µ`·2x1, 2x2, ..., 2xλ` , ν`·2−1·xλ`+1, 2
−1·xλ`+2, ..., 2

−1·xn−1).

1Here and below, a star marks works in which one of the co-authors is a dissertation candidate and the
results of which are presented in this dissertation.

2The notation Rλ`×̃S1 means the skew product of Rλ` by S1.
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Fig. 3: Dynamics in a neighborhood of a topologically hyperbolic saddle periodic orbit ` of
a �ow on a three-dimensional manifold: (a) λ` = 1, µ` = ν` = +1, (b) λ` = 1, µ` = ν` = −1

De�nition 5. A topological �ow f t : Mn →Mn is called regular if its chain-recurrent

set consists of a �nite number of topologically hyperbolic periodic orbits and �xed points.

Denote by Gt the class of regular �ows on a closed n-manifold Mn. The dynamics of

�ows of the class Gt is close in its properties to the dynamics of Morse-Smale �ows. Namely,

if on the set of chain components of the �ow f t ∈ Gt we introduce the S. Smale relation by

the condition

Oi ≺ Oj ⇐⇒ W s
Oi
∩W u

Oj
6= ∅,

then we can prove the absence of cycles and extend the Smale relation to a relation of full

order. In what follows, we assume that the orbits of the �ow f t are numbered in accordance

with some �xed order: O1 ≺ · · · ≺ Ok.
Similarly to theorem 1, the following properties of regular �ows are established.

Theorem 2 ([35]∗, theorem 1).

Let f ∈ Gt. Then

1. Mn =
k⋃
i=1

W u
Oi

=
k⋃
i=1

W s
Oi

;

2. unstable (stable) manifold W u
p (W s

p ) �xed point Oi = p is a topological submanifold of

Mn, homeomorphic to Rλp (Rn−λp).

3. unstable (stable) manifold W u
` (W s

` ) periodic orbit Oi = ` is a topological submanifold

of Mn, homeomorphic Rλ` × S1 (Rn−λ`−1 × S1) for µ` = +1 è Rλ`×̃S1 (Rn−λ`−1×̃S1)

for µ` = −1.

4. cl(W u
Oi

) \W u
Oi
⊂

i−1⋃
j=1

W u
Oj

(cl(W s
Oi

) \W s
Oi
⊂

i−1⋃
j=1

W s
Oj

).

A complete presentation of the results of this chapter is published in the papers [36]∗

and [35]∗.

Chapter 3 proves the existence of a continuous energy function for any regular �ow.

The results of Chapter 3 are the ideological continuation of the works of S. Smale [40] and

K. Meyer [28] on the existence of the Morse energy function for gradient-like �ows and the

Morse-Bott energy function for Morse-Smale �ows, respectively.
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Recall that the Lyapunov function for a dynamical system is a continuous function

that decreases along orbits outside a chain-recurrent set and is a constant on each chain

component3. By virtue of Conley's results [5], such a function exists for any (including

continuous) dynamical system, and the fact of existence itself is called the ¾fundamental

theorem of dynamical systems¿ (see, [37] Chapter IX, Theorem 1.1). It follows from the

de�nition of a topologically hyperbolic point that any Lyapunov function ϕ : Mn → R for

a regular �ow f t has critical points on a chain-recurrent set in the sense of the following

de�nition.

x
n

Fig. 4: Level lines of the ϕ function in a neighborhood of a regular point

Let ϕ : M → R be a continuous function. A point p ∈ M is called a regular point of a

function ϕ if there exists a local map (Vp, φp : y ∈ Vp 7→ (x1(y), . . . , xn(y)) ∈ Rn such that

ϕ(y) = ϕ(p) + xn(y).

Otherwise, p is called a critical point. Denote by Crϕ the set of critical points of the function

ϕ. It is natural to expect that the property of strict decrease of the Lyapunov function

outside a chain-recurrent set leads to the absence of critical points there. However, this is

not true for arbitrary dynamical systems. Therefore, the Lyapunov function whose set of

critical points coincides with the chain-recurrent set of the dynamical system is called the

energy function.

Since the chain-recurrent set of a regular �ow is �nite and hyperbolic, it is natural to

assume that they have an energy function with nondegenerate critical points. Recall that

a point p ∈ Crϕ is called a non-degenerate critical point of index λp ∈ {0, · · · , n} if there
exists a local chart (Vp, φp) such that

ϕ(y) = ϕ(p)−
λp∑
i=1

x2i (y) +
n∑

i=λp+1

x2i (y).

A function ϕ is called a continuous Morse function if the set Crϕ consists of non-

degenerate critical points.

3Outside the chain-recurrent set, the points on the trajectories are ordered by time.

7



Fig. 5: Level lines of the function ϕ in a neighborhood of a non-degenerate critical point

A connected topological submanifold C ⊂ Crϕ of dimension k ∈ {1, . . . , n − 1} of Mn

is called a non-degenerate critical k-manifold of index λp ∈ {0, · · · , n − k} if at any point

p ∈ C there exists a local map (Vp, φp) such that φp(Vp ∩ C) ⊂ {(x1, . . . , xn) ∈ Rn : x1 =

= · · · = xn−k = 0} and

ϕ(y) = ϕ(p)−
λp∑
i=1

x2i (y) +
n−k∑

i=λp+1

x2i (y).

Fig. 6: Level lines of the function ϕ in a neighborhood of a non-degenerate critical manifold

A function ϕ is called a continuous Morse-Bott function if any connected component of

the set Crϕ is either a non-degenerate critical point or belongs to a non-degenerate critical

submanifold.

Statement 3.1 ([26]∗, theorem). Any regular topological �ow f t : Mn → Mn without

periodic orbits has a continuous energy Morse function4.

The concept of a continuous Morse function was introduced by Morse back in 1959 in

4For n = 2 the result follows from [43]∗.
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[30], at the same time the validity of the Morse inequalities was proved for it, and later

(in [21]) a number of properties similar to the properties of the smooth Morse function

. However, the question of the existence of a continuous Morse function on an arbitrary

topological manifold is still an open question. Since the continuous Morse function generates

a topological gradient-like �ow on the manifold [21], then Statement 3.1 is a partial solution

of the Morse problem: a topological manifold admits a continuous Morse function if and

only if it admits a topological �ow with a �nite hyperbolic chain-recurrent set.

Statement 3.1 follows directly from a more general result in Chapter 3.

Theorem 3. ([35]∗, theorem 2). Any regular �ow f t ∈ Gt has a continuous energy

Morse-Bott function whose critical points are either non-degenerate or form non-degenerate

one-dimensional manifolds.

The existence of an energy function fundamentally distinguishes �ows from cascades. For

the latter, an obstacle to the construction of the energy function is the possible presence of

wild saddle separatrices discovered by D. Pixton [34] in 1977 in dimension three. Examples of

regular �ows with wild separatrices are also known; such �ows are constructed, for example,

in recent works by V. Medvedev and E. Zhuzhoma [27]. However, it follows from the results

of this paper that for regular �ows, the wildness of the separatrices is not an obstacle to

the existence of the Morse energy function.

A complete presentation of the results of this chapter is published in the papers [35]∗,

[26]∗, [43]∗.

In Chapter 4 a topological classi�cation of some meaningful classes of regular

homeomorphisms is obtained. Namely, in section 4.1. we introduce gradient-like

homeomorphisms, regular homeomorphisms f : M2 → M2, whose invariant manifolds

of di�erent saddle points do not intersect. Denote by Q the class of such homeomorphisms.

The dynamics of a gradient-like surface di�eomorphism is closely related to the dynamics

of a gradient-like �ow, since it di�ers from it by multiplying by a periodic transformation

(see, for example, [4], [14]). The dynamics of gradient-like �ows has historically been studied

by selecting cells � regions with the same asymptotic behavior of trajectories [33], [1], [23],

[2], [3].

In Chapter 4 it is proved that the cells of gradient-like homeomorphisms have the

same types as the cells of Leontovich-Mayer-Peixoto [23], [33]. Further, these cells are

subdivided into triangular regions with uniform dynamic behavior, similar to Oshemkov-

Sharko atoms [31]. Each homeomorphism f ∈ Q is associated with a three-color graph Tf

(see Fig.7), whose vertex set is isomorphic to the set of triangular regions, and whose edge

set is isomorphic to the set of boundaries of these regions. The graph is equipped with

the automorphism Pf induced by the dynamics of the homeomorphism on the cells. The

following theorem is proved.

Theorem 4. ([12]∗, Theorem 1). Homeomorphisms f , f ′ from the class Q are

topologically conjugate if and only if the graphs (Tf ;Pf ), (Tf ′ ;Pf ′) are isomorphic .

To solve the implementation problem, a set of admissible three-color graphs (T, P ) is
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Fig. 7: Homeomorphism of the class Q and the corresponding three-color graph

singled out, for each of which a procedure for implementing a gradient-like homeomorphism

on it is described.

Theorem 5. ([12]∗, Proposition 3). For any admissible graph (T, P ), there exists a

homeomorphism f : M2 → M2 from the class Q whose graph (Tf , Pf ) is isomorphic to the

graph (T, P ).

An e�cient algorithm for distinguishing isomorphism classes of admissible three-color

graphs is also found.

Theorem 6. ([13]∗, theorem 7). An isomorphism of two three-color n-vertex graphs Tf ,

Tf ′ homeomorphisms f, f ′ ∈ Q can be recognized in time

O(n3log(n)).

Moreover, the orientability and genus of the supporting surface M2 can be determined in

linear time from the number of vertices of the three-color graph Tf .

Chapter 4 also considers the class Hn of φ homeomorphisms that are Cartesian products

of n regular circle homeomorphisms

φ = φ1 × · · · × φn, φi : S1 → S1.

Regular homeomorphisms of the circle are a topological generalization of rough

transformations of the circle, which were exhaustively studied by A. G. Mayer in [24]. Thus,

orientation-preserving transformations are a composition of regular homeomorphisms with

�xed points and rotations through a rational angle, while transformations that change are

compositions of regular homeomorphisms and orientation-changing involutions.

Homeomorphisms of the considered class Hn are regular homeomorphisms of the n-

dimensional torus Tn. One of the main results of Chapter 3 is �nding necessary and su�cient

conditions for topological conjugacy of homeomorphisms φ, φ′ ∈ Hn.
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Theorem 7. ([16]∗, Theorem 1). Homeomorphisms φ = φ1 × · · · × φn, φ′ =

φ′1 × · · · × φ′n ∈ Hn are topologically conjugate if and only if when there is a substitution

η =

(
1 2 . . . n

η1 η2 . . . ηn

)
on the index set {1, 2, . . . , n}, η(i) = ηi, such that the

homeomorphisms φi and φ
′
ηi

are topologically conjugate for i = 1, . . . , n.5

Note that if we consider n-multiple Cartesian products of rotations by a rational

number on the circle, as was done in [22], then the period of their periodic points is a

complete invariant under the topological conjugation of such homeomorphisms. The case

of the topological classi�cation of products of regular homeomorphisms of the circle di�ers

essentially from the results presented in the above paper.

A full presentation of the results of this chapter is published in the papers [18]∗, [16]∗,

[12]∗, [13]∗.

Conclusion. This dissertation is devoted to the study of the dynamics of regular

homeomorphisms and topological �ows, as well as the topological classi�cation and

construction of energy functions for such systems. All the results obtained in the dissertation

are new and the author of the dissertation owns the proofs of all the main results of the

work submitted for defense.

� A class of regular dynamical systems is introduced, the dynamics of regular

homeomorphisms (theorem 1) and topological �ows (theorem 2) is studied, including

- representation of the ambient manifold as a union of invariant manifolds of �xed

points and periodic orbits;

- description of the topology of embedding invariant manifolds of �xed points and

periodic orbits in the ambient manifold;

- description of the asymptotic behavior of invariant manifolds of �xed points and

periodic orbits.

� For regular topological �ows without periodic orbits, a constructive proof of the

existence of a continuous energy Morse function is obtained (statement 3.1).

� For arbitrary regular topological �ows, we prove the existence of a continuous energy

Morse-Bott function whose critical points are either non-degenerate or form non-

degenerate one-dimensional manifolds. (theorem 3).

� A complete topological classi�cation is obtained for the following meaningful classes

of regular homeomorphisms

- gradient-like homeomorphisms of surfaces, including the construction of a

combinatorial invariant, which is a three-color graph with periodic substitution and

the proof of the topological conjugacy criterion by means of graph isomorphism

5For n = 2 the result follows from [18]∗.
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(theorem 4); selection of a class of admissible three-color graphs with periodic

substitutions with the help of which the implementation problem is solved

(theorem 5); �nding an e�cient algorithm for distinguishing isomorphism classes of

admissible three-color graphs (theorem 6).

- n-multiple Cartesian products of regular circle homeomorphisms (theorem 7).
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