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1 Introduction
Many theoretical and applied problems in mathematics, computer science, en-

gineering are naturally related to the study of high-dimensional random objects,
such as random matrices, graphs, processes, algorithms, etc. At first sight, these
different objects have quite little in common. Each has its own ideas, mathemati-
cal approaches, and methods. Even the probabilistic nature and structure may be
different. But there are some basic probabilistic principles that appear in the study
of the above objects in high-dimensional spaces. These general principles usually
take the form of non-asymptotic probability inequalities. The term non-asymptotic
here means that we are not dealing with limit theorems as in many probabilistic
results, but with explicit estimates that can be either dimension-free or contain a
dependence on a dimension parameter.

In this dissertation we will look at three topics, which the author has dealt with
over the last five years:

• Bootstrap method and Bayesian inference;

• Linear stochastic approximation (LSA) and Temporal difference (TD) algo-
rithms;

• Markov chain Monte-Carlo algorithms and variance minimization.

Theoretical analysis of these algorithms requires to develop new non-asymptotic
inequalities for linear and non-linear statistics of random objects which could be of
independent interest. We will briefly discuss the content of the thesis.

In chapter 1 we study the problem of Gaussian comparison, i.e. one has to
evaluate how the probability of a ball under a Gaussian measure is affected, if the
mean and the covariance operators of this Gaussian measure are slightly changed.
We present particular examples motivating our results when such “large ball prob-
ability” problem naturally arises in probability and statistics, including bootstrap
validation, Bayesian inference, high-dimensional CLT. We derive sharp bounds for
the Kolmogorov distance between the probabilities of two Gaussian elements to
hit a ball in a Hilbert space. The key property of these bounds is that they are
dimension-free and depend on the nuclear (Schatten-one) norm of the difference be-
tween the covariance operators of the elements. We also state a tight dimension free
anti-concentration bound for a squared norm of a Gaussian element in Hilbert space
which refines the well known results on the density of a chi-squared distribution

In chapter 2 we study the exponential stability of random matrix products
driven by independent identically distributed (i.i.d.) noise or a general (possi-
bly unbounded) state space Markov chain. Exponential stability plays a crucial
role in the analysis of linear stochastic approximation (LSA) algorithms. This
family of methods arises in many machine learning tasks and used to obtain ap-
proximate solutions of a linear system Āθ = b̄ for which Ā and b̄ can only be
accessed through random estimates {(A(Zn),b(Zn))}n∈N, where A : Z → Rd×d,
b : Z → Rd are measurable functions and (Zk)k∈N is either an i.i.d. sequence with
distribution π satisfying E[A(Z1)] = Ā and E[b(Z1)] = b̄, or a Markov chain,
taking values in a general state-space Z with unique invariant distribution π and
limn→+∞ E[A(Zn)] = Ā, limn→+∞ E[b(Zn)] = b̄. As an application we provide
non-asymptotic bounds for LSA and TD algorithms.

In chapter 3 we propose a novel and practical variance reduction approach for
additive functionals of dependent sequences. This approach combines the use of
control variates with the minimisation of an empirical variance estimate. We anal-
ysed finite sample properties of the proposed method and derive finite-time bounds
of the excess asymptotic variance to zero. We applied this methodology to Stochas-
tic Gradient MCMC (SGMCMC) methods for Bayesian inference on large data sets
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and combine it with existing variance reduction methods for SGMCMC. The crucial
role in the theoretical analysis play novel concentration inequalities for quadratic
forms of Markov chain.

Object and goals of the dissertation The goal of the dissertation is twofold.
The first goal is to obtain non-asymptotic inequalities for high-dimensional random
objects which could be of independent interest. In particular, we develop Gaussian
comparison and anti-concentration inequalities, concentration for quadratic forms of
Markov chains, moment bounds for products of random matrices driven by i.i.d. or
Markovian noise. The second goal is to apply obtained result for theoretical analysis
of machine learning algorithms. We study particular problems of Bayesian inference
and bootstrap method, variance reduction methods for MCMC, convergence of LSA
and RL algorithms.

The obtained results

1. We derived tight non-asymptotic bounds for the Kolmogorov distance between
the probabilities of two Gaussian elements to hit a ball in a Hilbert space. We
also established an anti-concentration bound for the squared norm of a non-
centered Gaussian element in a Hilbert space.

2. We offered a bootstrap procedure for building sharp confidence sets for the
true spectral projector of covariance matrix from the given data. We proved
validity of the proposed procedure for Gaussian samples with an explicit error
bound for the error of bootstrap approximation.

3. We study the exponential stability of random matrix products driven by a
general (possibly unbounded) state space Markov chain, provided that (i)
the underlying Markov chain satisfies a super-Lyapunov drift condition, (ii)
the growth of the matrix-valued functions is controlled by an appropriately
defined function Using this result, we give finite-time p-th moment bounds
for constant and decreasing stepsize linear stochastic approximation schemes
with Markovian noise on general state space and for TD algorithms with linear
function approximation.

4. We provided a non-asymptotic analysis of linear stochastic approximation
(LSA) algorithms with fixed stepsize and driven by i.i.d. noise. Our analysis
is based on new results regarding moments and high probability bounds for
products of matrices which are shown to be tight. We derive high probability
bounds on the performance of LSA under weaker conditions than previous
works. However, in contrast, we establish polynomial concentration bounds
with order depending on the stepsize. We show that our conclusions cannot
be improved without additional assumptions on the sequence of random ma-
trices {A(Zn) : n ∈ N∗}, and in particular that no Gaussian or exponential
high probability bounds can hold. Finally, we pay a particular attention to
establishing bounds with sharp order with respect to the number of iterations
and the stepsize.

5. We proposed a novel and practical variance reduction approach for additive
functionals of dependent sequences. We analysed finite sample properties of
the proposed method and derive finite-time bounds of the excess asymptotic
variance to zero. We applied this methodology to Stochastic Gradient MCMC
(SGMCMC) methods.
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2 Notations
This section gathers the general notations that are used throughout the thesis.

Some additional notations may arise in individual chapters.
Let (Z, d) be a complete separable metric space with sigma-algebra Z. Fix a

measurable function V : Z → [1,∞). Let P : Z×Z → R+ be a Markov kernel. Let
m ∈ N∗, ν a probability on Z and ϵ. A set C ∈ Z is said to be (m, ϵν)-small for P
if for all z ∈ C and A ∈ Z, Pm(z,A) ≥ ϵν(A). A set A ∈ Z is said to be accessible
if for all z ∈ Z, there exists m ∈ N∗ such that P(z,A) > 0.

We denote by P and Q symmetric positive definite matrices.

Table 1: Table of notation use throughout the paper

Notation Meaning

∥g∥V , g : Z → R ∥g∥V = supz∈Z |g(z)|/V (z)

LV∞ set of all measurable functions g : Z → R satisfying ∥g∥V <∞
PV (z), z ∈ Z PV (z) =

∫
Z
V (z′)P(z, dz′)

M1(Z) set of probability measures on (Z,Z)
∥µ∥V , µ ∈ M1(Z) ∥µ∥V = supf :∥f∥V ≤1

∫
Z
f(z)µ(dz)

Sp(Z, d), p ≥ 1 Sp(Z, d) := {λ ∈ M1(Z) :
∫
Z
dp(x, y)λ(dy) <∞ for all x ∈ Z}

Π(λ, ν), λ, ν ∈ M1(Z)
coupling set, i.e. ξ ∈ Π(λ, ν) is the measure on Z× Z satisfying
for all A ∈ B(Z), ξ(A,Z) = λ(A) and ξ(Z,A) = ν(A)

W d
p (λ, ν), p ≥ 1 and

λ, ν ∈ Sp(Z, d)
W d
p (λ, ν) := infΠ(λ,ν){

∫
Z×Z d

p(x, y) ξ(dx, dy)}1/p

KL(λ|ν), λ, ν ∈ M1(X)
Kullback-Leibler divergence of λ with respect to ν, i.e.,
KL(λ|ν) =

∫
log(dλ/dν)dλ if λ≪ ν and KL(λ|ν) = ∞ otherwise

∥h∥Lip, h : Z → R ∥h∥Lip := supx ̸=y∈Z{|h(y)− h(x)|/d(x, y)}
|h|∞, h : Z → R |h|∞ = supz∈Z |h(z)|
Lipd(L) class of Lipschitz functions with ∥h∥Lip ≤ L

Lipb,d(L,B) class of bounded Lipschitz functions with ∥h∥Lip ≤ L and |h|∞ ≤ B

a ≲ b (a ≳ b) there exists some absolute constant C such that a ≤ Cb (a ≥ Cb resp.)
a ≍ b there exist c,C such that c a ≤ b ≤ C a
Id d-dimensional identity matrix
∥x∥Q ∥x∥Q = {x⊤Qx}1/2 (note that ∥x∥ = ∥x∥Id)
κQ the condition number of Q, i.e. κQ = λ−1min(Q)λmax(Q)
∥A∥Q ∥A∥Q = max∥x∥Q=1 ∥Ax∥Q (again note that ∥A∥ = ∥A∥Id)
∥A∥P ,Q ∥A∥P ,Q = max∥x∥P=1 ∥Ax∥Q
∥A∥p, p ≥ 1 the Schatten p-norm, i.e. ∥A∥p = {

∑d
ℓ=1 σ

p
ℓ (A)}1/p

∥X∥p,q, p, q ≥ 1 ∥X∥p,q = {E[∥X∥qp}1/q
Sd−1 Sd−1 = {x ∈ Rd : ∥x∥ = 1}

X ∈ SG(σ2)
Sub-Gaussian random variable X with variance factor σ2,
i.e. for all λ ∈ R, logE[eλX ] ≤ λ2σ2/2
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3 Large-ball probabilities and applications to boot-
strap and Bayesian inference

3.1 Gaussian comparison and anti-concentration inequalities
The results of this subsection are published in [48], [81], [83] and [82].
In many statistical and probabilistic applications one faces the problem of Gaus-

sian comparison, i.e. one has to evaluate how the probability of a ball under a Gaus-
sian measure is affected, if the mean and the covariance operators of this Gaussian
measure are slightly changed. Below we present particular examples motivating our
results when such “large ball probability” problem naturally arises, including boot-
strap validation, Bayesian inference, high-dimensional CLT. This chapter presents
sharp bounds for the Kolmogorov distance between the probabilities of two Gaus-
sian elements to hit a ball in a Hilbert space. The key property of these bounds is
that they are dimension-free and depend on the nuclear (Schatten-one) norm of the
difference between the covariance operators of the elements. We also state a tight
dimension free anti-concentration bound for a squared norm of a Gaussian element
in Hilbert space which refines the well known results on the density of a chi-squared
distribution; see Theorem 3.7.

Section 3.2 presents some application examples where the “large ball probabil-
ity” issue naturally arises and explains how the new bounds of this paper can be
used to improve the existing results. The key observation behind the improvement
is that in all mentioned examples we only need to know the properties of Gaus-
sian measures on a class of balls. It means, in particular, that we would like to
compare two Gaussian measures on the class of balls instead on the class of all mea-
surable sets. The latter can be upperbounded by general Pinsker’s inequality via
the Kullback–Leibler divergence. In case of Gaussian measures this divergence can
be expressed explicitly in terms of parameters of the underlying measures, see e.g.
[101]. However, the obtained bound involves the inverse of the covariance operators
of the considered Gaussian measures. In particularly, small eigenvalues have the
largest impact which is contra-intuitive if a probability of a ball is considered. Our
bounds only involve the operator and Frobenius norms of the related covariance
operators and apply even in Hilbert space setup.

The proofs of the present optimal results are based in particular on Theorem 3.6
below. This theorem gives sharp upper bounds for a probability density function
pξ(x, a) of ∥ξ−a∥2, where ξ is a Gaussian element with zero mean in a Hilbert space
H with norm ∥ · ∥ and a ∈ H. It is well known that pξ(x, a) can be considered as a
density function of a weighted sum of non-central χ2 distributions. An explicit but
cumbersome representation for pξ(x, a) in finite dimensional space H is available
(see e.g. Section 18 in [60]). However, it involves some special characteristics of the
related Gaussian measure which makes it hard to use in specific situations. Our
result from Theorem 3.6 is much more transparent and provide sharp uniform upper
bound on the underlying density.

One can even get two-sided bounds for pξ(x, a) but under additional conditions,
see e.g. [18]. Asymptotic properties of pξ(x, a), small balls probabilities P

(
∥ξ−a∥ ≤

ε
)
, or large deviation bounds P

(
∥ξ∥ ≥ 1/ε

)
for small ε can be found e.g. in [19],

[71], [72], [73] and [113].

3.1.1 Main results

Let H be a real separable Hilbert space with a scalar product ⟨·, ·⟩ and norm
∥ · ∥. If dimension of H is finite and equals p, we shall write Rp instead of H.
Let Σξ be a covariance operator of an arbitrary Gaussian random element in H.
By {λkξ}k≥1 we denote the set of its eigenvalues arranged in the non-increasing
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order, i.e. λ1ξ ≥ λ2ξ ≥ . . ., and let λξ := diag(λjξ)
∞
j=1. Note that

∑∞
j=1 λjξ < ∞.

Introduce the following quantities

Λ2
kξ :=

∞∑
j=k

λ2jξ, k = 1, 2,

and

κ(Σξ) :=


Λ−1ξ , if 3λ21,ξ ≤ Λ2

1ξ ,

(λ1ξΛ2ξ)
−1/2, if 3λ21ξ > Λ2

1ξ, 3λ22ξ ≤ Λ2
2ξ,

(λ1ξλ2ξ)
−1/2, if 3λ21ξ > Λ2

1ξ, 3λ22ξ > Λ2
2ξ.

(3.1)

It is easy to see that ∥Σξ∥Fr = Λ1ξ. Moreover, it is straightforward to check that

0.9

(Λ1ξΛ2ξ)1/2
≤ κ(Σξ) ≤

1.8

(Λ1ξΛ2ξ)1/2
.(3.2)

Hence, κ(Σξ) ≍ (Λ1ξΛ2ξ)
−1/2 and therefore equivalent results can be formulated in

terms of any of the quantities introduced. The following theorem is the main result
of this section.

Theorem 3.1. Let ξ and η be Gaussian elements in H with zero mean and covari-
ance operators Σξ and Ση respectively. For any a ∈ H

sup
x>0

|P(∥ξ − a∥ ≤ x)− P(∥η∥ ≤ x)|

≲
{
κ(Σξ) + κ(Ση)

}(
∥λξ − λη∥1 + ∥a∥2

)
.(3.3)

We see that the obtained bounds are expressed in terms of the specific charac-
teristics of the matrices Σξ and Ση such as their operator and the Frobenius norms
rather than the dimension p. Another nice feature of the obtained bounds is that
they do not involve the inverse of Σξ or Ση. In other words, small or vanishing
eigenvalues of Σξ or Ση do not affect the obtained bounds in the contrary to the
Pinsker bound. Similarly, only the squared norm ∥a∥2 of the shift a shows up in
the results, while the Pinsker bound involves ∥Σ−1/2ξ a∥ which can be very large or
infinite if Σξ is not well conditioned.

Let us consider κ(Σξ) in the first factor on the r.h.s of (3.3): κ(Σξ) + κ(Ση).
The representation (3.1) mimics well the three typical situations: in the “large-
dimensional case” with three or more significant eigenvalues λjξ, one can take
κ(Σξ) = ∥Σξ∥−1Fr = λ−11ξ . In the “two dimensional” case, when the sum Λ2

kξ is of
the order λ2kξ for k = 1, 2, we have that κ(Σξ) behaves as the product (λ1ξλ2ξ)−1/2.
In the intermediate case of a spike model with one large eigenvalue λ1ξ and many
small eigenvalues λjξ, j ≥ 2, we have that κ(Σξ) behaves as (λ1ξΛ2ξ)

−1/2.
As it was mentioned earlier (see (3.2)), the result of Theorem 3.1 may be equiv-

alently formulated in a “unified” way in terms of (Λ1ξΛ2ξ)
−1/2 and (Λ1ηΛ2η)

−1/2.
Moreover, we specify the bound (3.3) in the “high-dimensional” case, 3∥Σξ∥2 ≤
∥Σξ∥2Fr, 3∥Ση∥2 ≤ ∥Ση∥2Fr, which means at least three significantly positive eigenval-
ues of the matrices Σξ and Ση. In this case Λ2

2ξ ≥ 2Λ2
1ξ/3, Λ

2
2η ≥ 2Λ2

1η/3 and we
get the following corollary.
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Corollary 3.2. Let ξ and η be Gaussian elements in H with zero mean and covari-
ance operators Σξ and Ση respectively. Then for any a ∈ H

sup
x>0

|P(∥ξ − a∥ ≤ x)− P(∥η∥ ≤ x)|

≲

(
1

(Λ1ξΛ2ξ)1/2
+

1

(Λ1ηΛ2η)1/2

)(
∥λξ − λη∥1 + ∥a∥2

)
.

Moreover, assume that

3∥Σξ∥2 ≤ ∥Σξ∥2Fr and 3∥Ση∥2 ≤ ∥Ση∥2Fr .

Then for any a ∈ H

sup
x>0

|P(∥ξ − a∥ ≤ x)− P(∥η∥ ≤ x)|

≲

(
1

∥Σξ∥Fr
+

1

∥Ση∥Fr

)(
∥λξ − λη∥1 + ∥a∥2

)
.

We complement the result of Theorem 3.1 and Corollary 3.2 with several ad-
ditional remarks. The first remark is that by the Weilandt–Hoffman inequality,
∥λξ − λη∥1 ≤ ∥Σξ − Ση∥1, see e.g. [77]. This yields the bound in terms of the
nuclear norm of the difference Σξ − Ση, which may be more useful in a number of
applications.

Corollary 3.3. Under conditions of Theorem 3.1 we have

sup
x>0

∣∣P(∥ξ − a∥ ≤ x)− P(∥η∥ ≤ x
)∣∣ ≲ {

κ(Σξ) + κ(Ση)
}(

∥Σξ − Ση∥1 + ∥a∥2
)
.

Since the right-hand-side of (3.3) does not change if we exchange ξ and η, The-
orem 3.1 and its Corollaries hold for the balls with the same shift a. In particular,
the following corollary is true.

Corollary 3.4. Under conditions of Theorem 3.1 we have

sup
x>0

∣∣∣P(∥ξ − a∥ ≤ x)− P(∥η − a∥ ≤ x)
∣∣∣ ≲ {

κ(Σξ) + κ(Ση)
}(

∥λξ − λη∥1 + ∥a∥2
)
.

The result of Theorem 3.1 may be also rewritten in terms of the operator norm

∥Σ−1/2ξ ΣηΣ
−1/2
ξ − I ∥.

Indeed, using the inequality ∥AB∥1 ≤ ∥A∥1∥B∥ we immediately obtain the follow-
ing corollary.

Corollary 3.5. Under conditions of Theorem 3.1 we have

sup
x>0

|P(∥ξ − a∥ ≤ x)− P(∥η∥ ≤ x)|

≲
{
κ(Σξ) + κ(Ση)

}(
Tr
(
Σξ
)
∥Σ−1/2ξ ΣηΣ

−1/2
ξ − I ∥+ ∥a∥2

)
.
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We now discuss the origin of the value κ(Σξ) which appears in the main theorem
and its corollaries. Analysing the proof of Theorem 3.1 one may find out that it is
necessary to get an upper bound for a probability density function (p.d.f.) pξ(x)
(resp. pη(x)) of ∥ξ∥2 (resp. ∥η∥2) and the more general p.d.f. pξ(x, a) of ∥ξ − a∥2
for all a ∈ H. The same arguments remain true for pη(x). The following theorem
provides uniform bounds.

Theorem 3.6. Let ξ be a Gaussian element in H with zero mean and covariance
operator Σξ. Then it holds for any a that

sup
x≥0

pξ(x, a) ≲ κ(Σξ)(3.4)

with κ(Σξ) from (3.1). In particular, κ(Σξ) ≲ (Λ1ξΛ2ξ)
−1/2.

Since ξ d
=
∑∞
j=1

√
λjξZjejξ, we obtain that ∥ξ∥2 d

=
∑∞
j=1 λjξZ

2
j . Here and in

what follows {ejξ }∞j=1 is the orthonormal basis formed by the eigenvectors of Σξ
corresponding to {λjξ}∞j=1. In the case H = Rp, a = 0,Σξ ≍ I one has that the
distribution of ∥ξ∥2 is close to standard χ2 with p degrees of freedom and

sup
x≥0

pξ(x, 0) ≍ p−1/2.

Hence, the bound (3.4) gives the right dependence on p because κ(Σξ) ≍ p−1/2.
However, a lower bound for supx≥0 pξ(x, a) in the general case is still an open
question. Another possible extension is a non-uniform upper bound for the p.d.f.
of ∥ξ − a∥2. In this direction for any λ > λ1ξ we can prove that

pξ(x, a) ≤
exp
(
−(x1/2 − ∥a∥)2/(2λ)

)
2
√
λ1ξλ2ξ

∞∏
j=3

(1− λjξ/λ)
−1/2;

see [48][Lemma B.1]. It is still an open question whether it is possible to replace
the λkξ’s in the denominator by Λkξ, k = 1, 2.

A direct corollary of Theorem 3.6 is the following theorem which states for
a rather general situation a dimension-free anti-concentration inequality for the
squared norm of a Gaussian element ξ. In the “high dimensional situation”, this
anti-concentration bound only involves the Frobenius norm of Σξ.

Theorem 3.7 (ε-band of the squared norm of a Gaussian element). Let ξ be a
Gaussian element in H with zero mean and a covariance operator Σξ. Then for
arbitrary ε > 0, one has

sup
x>0

P(x < ∥ξ − a∥2 < x+ ε) ≲ κ(Σξ) ε

with κ(Σξ) from (3.1). In particular, κ(Σξ) can be replaced by (Λ1ξ Λ2ξ)
−1/2.

The lower bounds that justify the structure of estimates in Theorem 3.1 and
Theorem 3.7 may be found in [48].

3.2 Application examples
This section collects some examples where the developed results seem to be very

useful.
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3.2.1 Bootstrap validity for the Maximum Likelihood Estimation (MLE)

Consider an independent sample Y = (Y1, . . . ,Yn)
T with a joint distribution

P =
∏
i=1,...,n Pi. The parametric maximum likelihood approach assumes that P

belongs to a given parametric family
(
Pθ , θ ∈ Θ ⊆ Rp

)
dominated by a measure

µ, that is, P = Pθ∗ for θ∗ ∈ Θ. The corresponding log-likelihood function can be
written as a sum of marginal log-likelihoods ℓi(Yi, θ):

L(θ) := log
dPθ
dµ

(Y) =

n∑
i=1

ℓi(Yi, θ), ℓi(Yi, θ) = log
dPi,θ
dµi

(Yi).

The MLE θ̃ of the true parameter θ∗ is defined as the point of maximum of L(θ):

θ̃ := argmax
θ∈Θ

L(θ), L(θ̃) := max
θ∈Θ

L(θ).

If the parametric assumption is misspecified, the target θ∗ is defined as the best
parametric fit:

θ∗ := argmax
θ∈Θ

EL(θ).

The likelihood based confidence set E(ζ) for the target parameter θ∗ is given by

E(ζ) :=
{
θ : L(θ̃)− L(θ) ≤ ζ

}
.

The value ζ should be selected to ensure the prescribed coverage probability 1−α:

P
(
θ∗ ̸∈ E(ζ)

)
≤ α.(3.5)

However, it depends on the unknown measure P. The bootstrap approach is a
resampling technique based on the conditional distribution of the reweighted log-
likelihood L◦(θ)

L◦(θ) =

n∑
i=1

ℓi(Yi, θ)wi

with i.i.d. random weights wi given the data Y. Below we assume that wi ∼ N (1, 1).
The bootstrap confidence set is defined as

E◦(ζ) :=
{
θ : sup

θ′∈Θ
L◦(θ′)− L◦(θ) ≤ ζ

}
.

The bootstrap distribution is perfectly known and the bootstrap quantile ζ◦ is
defined by the condition

P◦
(
θ̃ ̸∈ E◦(ζ◦)

)
= P◦

(
sup
θ∈Θ

L◦(θ)− L◦(θ̃) > ζ◦
)
= α.

The bootstrap approach suggests to use ζ◦ in place of ζ to ensure (3.5) in an
asymptotic sense. Bootstrap consistency means that for n large

P
(
θ∗ ̸∈ E(ζ◦)

)
= P

(
L(θ̃)− L(θ∗) > ζ◦

)
≈ α;

see e.g. [101]. A proof of this result is quite involved. The key steps are the following
two approximations:

sup
θ∈Θ

L(θ)− L(θ∗) ≈ 1

2

∥∥ξ + a
∥∥2,(3.6)

sup
θ∈Θ

L◦(θ)− L◦(θ̃) ≈ 1

2

∥∥ξ◦∥∥2,
14



where ξ is a Gaussian vector with the variance Σ given by

Σ := D−1 Var
[
∇L(θ∗)

]
D−1, D2 = −∇2 EL(θ∗),

while ξ◦ is conditionally (given Y) Gaussian w.r.t. the bootstrap measure P◦ with
the covariance Σ◦ given by

Σ◦ := D−1

(
n∑
i=1

∇ℓi(Yi, θ∗)
{
∇ℓi(Yi, θ∗)

}T)
D−1.

The vector a in (3.6) is the so called modeling bias and it vanishes if the parametric
assumption P = Pθ∗ is precisely fulfilled. The matrix Bernstein inequality ensures
that Σ◦ is close to Σ in the operator norm for n large; see e.g. [107]. This yields boot-
strap validity under the true parametric assumption in a weak sense. However, for
quantifying the quality of the bootstrap approximation one has to measure the dis-
tance between two high dimensional Gaussian distributions N (a, Σ) and N (0, Σ◦).
The recent paper [101] used the approach based on the Pinsker inequality which
gives a bound in the total variation distance ∥ · ∥TV via the Kullback-Leibler diver-
gence between these two measures. A related bound involves the Frobenius norm
∥ · ∥Fr of the matrix Σ−1/2Σ◦Σ−1/2 − Ip and the norm of the vector β := Σ−1/2a:

∥∥N (a, Σ)−N (0, Σ◦)
∥∥
TV

≤ 1

2

(∥∥Σ−1/2Σ◦Σ−1/2 − Ip
∥∥
Fr
+
∥∥Σ−1/2a∥∥);(3.7)

see e.g. [101]. However, if we limit ourselves to the centered balls then these
bounds can be significantly improved. Namely, by the main result of Theorem 3.1
and Corollary 3.2 below, we get under some technical conditions∣∣∣P(∥∥ξ + a

∥∥2 > 2ζ◦
)
− α

∣∣∣ ≤ C

∥Σ∥Fr

(
∥Σ− Σ◦∥1 + ∥a∥2

)
.(3.8)

The “small modeling bias” condition on a from [101] means that the value ∥Σ−1/2a∥
is small and it ensures that a possible model misspecification does not destroy the
validity of the bootstrap. Comparison of (3.8) with (3.7) reveals a number of benefits
of (3.8). First, the “shift” term is proportional to the squared norm of the vector a,
while the bound (3.7) depends on the norm of Σ−1/2a, i.e. on the whole spectrum
of Σ. Normalization by Σ−1/2 can significantly inflate the vector a in directions
where the eigenvalues of Σ are small. In the contrary, the bound (3.8) only involves
the squared norm ∥a∥2 and the Frobenius norm of Σ, and the improvement from∥∥Σ−1/2a∥∥ to ∥a∥2/∥Σ∥Fr can be enormous if some eigenvalues of Σ nearly vanish.
Further, the Frobenius norm

∥∥Σ−1/2Σ◦Σ−1/2 − Ip
∥∥
Fr

can be much larger than the
ratio

∥∥Σ− Σ◦
∥∥
1

/
∥Σ∥Fr by the same reasons.

3.2.2 Prior impact in linear Gaussian modeling

Consider a linear regression model

Yi = ΨT
i θ + εi

The assumption of homogeneous Gaussian errors εi ∼ N (0,σ2) yields the log-
likelihood

L(θ) = − 1

2σ2

n∑
i=1

(Yi −ΨT
i θ)

2 +R = − 1

2σ2

∥∥Y −ΨTθ
∥∥2 +R,
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where the term R does not depend on θ. A Gaussian prior π = πG = N
(
0,G−2

)
results in the posterior

ϑG
∣∣Y ∝ exp

(
L(θ)− 1

2
∥Gθ∥2

)
∝ exp

(
− 1

2σ2

∥∥Y −ΨTθ
∥∥2 − 1

2
∥Gθ∥2

)
.

We shall represent the quantity LG(θ) := L(θ)− 1
2∥Gθ∥

2 in the form

LG(θ) = LG(θ̆G)−
1

2

∥∥DG(θ − θ̆G)
∥∥2,

where

θ̆G :=
(
ΨΨT + σ2G2

)−1
ΨY,

D2
G := σ−2ΨΨT +G2.

In particular, it implies that the posterior distribution P(ϑG
∣∣Y) of ϑG given Y is

N (θ̆G,D
−2
G ). A contraction property is a kind of concentration of the posterior on

the elliptic set

EG(r) =
{
θ : ∥W (θ − θ̆G)∥ ≤ r

}
,

where W is a given linear mapping from Rp. The desirable credibility property
manifests the prescribed conditional probability of ϑG ∈ E(rG) given Y with rG
defined for a given α by

P
(∥∥W (ϑG − θ̆G

)∥∥ ≥ rG
∣∣Y) = α.(3.9)

Under the posterior measure ϑG ∼ N (θ̆G,D
−2
G ), this bound reads as

P
(
∥ξG∥ ≥ rG

)
= α(3.10)

with a zero mean normal vector ξG ∼ N (0, ΣG) for ΣG =WD−2G WT. The question
of a prior impact can be stated as follows: whether the obtained credible set signif-
icantly depends on the prior covariance G. Consider another prior π1 = N (0,G−21 )
with the covariance matrix G−21 . The corresponding posterior ϑG1

is again normal
but now with parameters θ̆G1 =

(
ΨΨT + σ2G2

1

)−1
ΨY and D2

G1
= σ−2ΨΨT + G2

1.
We aim at checking the posterior probability of the credible set EG(rG):

P
(∥∥W (ϑG1 − θ̆G

)∥∥ ≥ rG
∣∣Y).

Clearly this probability can be written as

P
(∥∥ξG1 + a

∥∥ ≥ rG
)

with ξG1
∼ N (0, ΣG1

) for ΣG1
=WD−2G1

WT and

a := W
(
θ̆G1 − θ̆G

)
.

Therefore,∣∣∣P(∥∥W (ϑG1
− θ̆G

)∥∥ ≥ rG
∣∣Y)− α

∣∣∣ ≤ sup
r>0

∣∣∣P(∥∥ξG1
+ a
∥∥ ≥ r

)
− P

(∥∥ξG∥∥ ≥ r
)∣∣∣ .
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Again, the Pinsker inequality allows to upperbound the total variation distance
between the Gaussian measures N (0, ΣG) and N (a, ΣG1), however the answer is
given via the Kullback-Leibler distance between these two measures:∥∥N (0, ΣG)−N (a, ΣG1

)
∥∥
TV

≤ C
(∥∥Σ−1/2G ΣG1

Σ
−1/2
G − Ip

∥∥
Fr
+
∥∥Σ−1/2G1

a
∥∥);(3.11)

see e.g. [86]. Results of this paper allow to significantly improve this bound. In
particular, only the nuclear norm

∥∥ΣG − ΣG1

∥∥
1
, the norm of the vector a and the

Frobenius norm of ΣG are involved. If G2 ≥ G2
1, then ΣG ≤ ΣG1 and∥∥ΣG − ΣG1

∥∥
1
= TrΣG1

− TrΣG

and thus, by the main result of Theorem 3.1 and Corollary 3.2 below, it holds under
some technical conditions∣∣∣P(∥∥W (ϑG1 − θ̆G

)∥∥ ≥ rG
∣∣Y)− α

∣∣∣ ≤ C
(
TrΣG1

− TrΣG + ∥a∥2
)

∥ΣG∥Fr
.

This new bound significantly outperforms (3.11); see the discussion of the previous
paragraph.

3.2.3 Nonparametric Bayes approach

One of the central question in the nonparametric Bayes approach is whether one
can use the corresponding credible set as a frequentist confidence set for the true
underlying mean EY = f = ΨTθ∗. Here we consider the model Y = f+ε = ΨTθ+ε
in Rn with a homogeneous Gaussian noise ε ∼ N (0,σ2 In) and a Gaussian prior
N (0,G−2) on θ. The credible set EG(r) for ϑG yields the credible set EG(r) for the
corresponding response f = ΨTθ:

EG(r) =
{
f = ΨTθ : ∥AΨT(θ − θ̆G)∥ ≤ r

}
,

with some linear mapping A. The radius r = rG is fixed to ensure the prescribed
credibility 1− α for the corresponding set EG(rα) due to (3.9) or (3.10) with W =

AΨT and ΣG = AΨTD−2G ΨAT = σ2AΠGA
T, with ΠG = ΨT

(
ΨΨT + σ2G2

)−1
Ψ.

The frequentist coverage probability of the true response f is given by

P
(
f ∈ EG(r)

)
= P

(
∥A(f −ΨTθ̆G)∥ ≤ r

)
= P

(
∥AΨT(θ∗ − θ̆G)∥ ≤ r

)
.

The aim is to show that the the latter is close to 1 − α. For the posterior mean
θ̆G =

(
ΨΨT + σ2G2

)−1
ΨY, it holds

E
[
A
(
f −ΨTθ̆G

)]
= A

(
I−ΠG

)
f =: a.

Further,

Σ := Var
{
A
(
f −ΨTθ̆G

)}
= Var

{
AΠG ε

}
= σ2AΠ2

GA
T

and hence, the vector A
(
f −ΨTθ̆G

)
is under P normal with mean a = A

(
I−ΠG

)
f

and variance Σ = σ2AΠ2
GA

T. Therefore,

P
(
f ∈ EG(r)

)
= P

(∥∥a+ ξ
∥∥ ≤ r

)
.
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Here ξ ∼ N (0, Σ). So, it suffices to compare two probabilities

P
(∥∥a+ ξ

∥∥ ≤ r
)

vs P
(∥∥ξG∥∥ ≤ r

)
for all r ≥ 0. Existing results cover only very special cases; see e.g. [62, 20, 86,
23, 24, 6] and references therein. Most of the mentioned results are of asymptotic
nature and do not quantify the accuracy of the coverage probability. The results of
this paper enable to study this accuracy in a straightforward way. Note first that
the covariance operators Σ = σ2AΠ2

GA
T and ΣG = σ2AΠGA

T satisfy Σ ≤ ΣG.
This yields that ∥∥ΣG − Σ

∥∥
1
= TrΣG − TrΣ .

Theorem 3.1 and Corollary 3.2 allow to evaluate under some technical conditions
the coverage probability of the credibility set

∣∣P(f ̸∈ EG(rG)
)
− α

∣∣ ≤ C
(
TrΣG − TrΣ + ∥a∥2

)
∥Σ∥Fr

.

The right hand-side of this bound can be easily evaluated. The value ∥a∥ =
A
(
I−ΠG

)
f is small under usual smoothness assumptions on f . The difference

TrΣG − TrΣ = σ2 Tr
{
A(ΠG −Π2

G)A
T
}

is small under standard condition on the design Ψ and on the spectrum of G2; see
e.g. [100].

3.2.4 Central Limit Theorem in finite- and infinite-dimensional spaces

Another motivation for the current paper comes from the limit theorem in high-
dimensional spaces for convex sets, in particular, for non-centred balls. Applica-
tions of smoothing inequalities require to evaluate the probability of hitting the
vicinity of a convex set, see e.g. [13], [12]. This question is closely related to the
anti-concentration inequalities considered below in Theorem 3.7. Recently, signif-
icant interest was shown in understanding of the anti-concentration phenomenon
for weighted sums of random variables, particularly, in random matrix and number
theory. We refer the interested reader to [96], [50].

Let Y1, . . . ,Yn be i.i.d. random vectors in Rp. Assume that all these vectors have
zero mean and the covariance operator Σ. Let X be a Gaussian random vector in
Rp with zero mean and the same covariance operator Σ. We are interested to bound

δ(C) = sup
A∈C

∣∣∣∣P(Y1 + · · ·+ Yn√
n

∈ A

)
− P(X ∈ A)

∣∣∣∣(3.12)

for some class C of Borel sets. It is worth emphasizing that the probabilities of
hitting the vicinities of a set A ∈ C, play the crucial role in the form of the bound
for δ(C). Assume the class C satisfies the following two conditions:

(i) Class C is invariant under affine symmetric transformations, that is, DA+a ∈
C if A ∈ C, a ∈ Rp and D : Rp → Rp is a linear symmetric invertible operator.

(ii) Class C is invariant under taking ε-neighborhoods for all ε > 0. More
precisely, Aε,A−ε ∈ C if A ∈ C, where

Aε = {x ∈ Rp : ρA(x) ≤ ε} and A−ε = {x ∈ A : Bε(x) ⊂ A},
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with ρA(x) = infy∈A |x − y| as the distance between A ⊂ Rp and x ∈ Rp, and
Bε(x) = {y ∈ Rp : |x− y| ≤ ε}.

Let X0 be a Gaussian random vector in Rp with zero mean and the identity
covariance operator I. Assume that the class C in (3.12) is such that for all A ∈ C
and ε > 0

P(X0 ∈ Aε\A) ≤ ap ε, P(X0 ∈ A\A−ε) ≤ ap ε,(3.13)

where ap = ap(C) is the so called isoperimetric constant of C, e.g. taking C as the
class of all convex sets in Rp we get ap ≤ 4 p1/4; see [5].

It is known (see [12][Theorem 1.2]) that if C satisfies conditions (i), (ii) and (3.13)
then for some absolute constant C one has

δ(C) ≤ C (1 + ap) E |Y1|3/
√
n.(3.14)

Therefore, the inequalities (3.13), i.e. knowledge of ap, play the crucial role in the
form of the bound (3.14).

We have a similar situation in infinite-dimensional spaces. Though contrary to
the finite dimensional case even if C is a rather small class of "good" subsets, e.g.
the class of all balls, the convergence of P

(
(Y1 + · · ·+ Yn)/

√
n ∈ A

)
to P

(
X ∈ A

)
for each A ∈ C, implied by the central limit theorem, can not be uniform in A ∈ C;
see e.g. [98][pp. 69–70]. However, the convergence becomes uniform for a class of
all balls with center at some fixed point, say a. Such classes naturally appear in
various statistical problems; see e.g. [90] or our previous application examples. Thus,
similar to the inequalities (3.13) we need to get sharp bounds for the probability
P(x < ∥X − a∥2 < x+ ε) for the Gaussian element X in a Hilbert space H. Due to
our Theorem 3.7 below, it holds under some technical conditions that

P
(
x < ∥X − a∥2 < x+ ε

)
≤ C ε

∥Σ∥Fr

for an absolute constant C .

3.2.5 Bootstrap confidence sets for spectral projectors of sample covari-
ance

Let X,X1, . . . ,Xn be independent identically distributed (i.i.d.) random vectors
taking values in Rp with mean zero and E ∥X∥2 < ∞. Denote by Σ its p × p
symmetric covariance matrix defined as Σ := E(XXT). We also consider the sample
covariance matrix Σ̂ of the observations X1, . . . ,Xn defined as the average of XjX

T
j :

with X := [X1, . . . ,Xn] ∈ Rp×n,

Σ̂ :=
1

n

n∑
j=1

XjX
T
j =

1

n
XXT.

In statistical applications, the true covariance matrix Σ is typically unknown and
one often uses the sample covariance matrix Σ̂ as its estimator. The accuracy
∥Σ̂ − Σ∥ of estimation of Σ by Σ̂, in particular, for p much larger than n, has
been actively studied in the literature. We refer to [107] for an overview of the
recent results based on the matrix Bernstein inequality; see also [110]. A bound
in term of the effective rank r(Σ) := Tr(Σ)/∥Σ∥ can be found in [65] and [55].
This or similar bounds on the spectral norm ∥Σ̂−Σ∥ can be effectively applied to
relate the eigenvalues of Σ and of Σ̂ under the spectral gap condition. This paper
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focuses on a slightly different problem of recovering the spectral projectors on the
eigen-subspaces of Σ for few significantly positive eigenvalues. Such tasks naturally
arise in many dimensionality reduction techniques for large p. In particular, the
famous principal component analysis (PCA) projects the vectorX onto the subspace
spanned by the eigenvectors for the first principal eigenvalues. Surprisingly, the
problem of recovering the spectral projectors (eigenvectors or eigen-subspaces) of
Σ from the sample X1, . . . ,Xn for significantly positive spectral values is much
less studied than the problem of recovering the covariance matrix Σ. Recently [66]
established sharp non-asymptotic bounds on the Frobenius distance ∥Pr − P̂r∥2
between the spectral projectors Pr and its empirical counterparts P̂r for the rth
eigenvalue, as well as its asymptotic behaviour for large samples. This enables to
build some asymptotic confidence sets for the target projector Pr as a proper elliptic
vicinity of P̂r. However, it is well known that such asymptotic results apply only
for really large samples due to a slow convergence of the normalized U-statistics to
the limiting normal law.

To formulate the main result we need to introduce additional notations. Let σ1 ≥
σ2 ≥ . . . ≥ σp be the eigenvalues of Σ and uj , j = 1, . . . , p, be the corresponding
orthonormal eigenvectors. Matrix Σ has the following spectral decomposition

Σ =

p∑
j=1

σjuju
T
j .(3.15)

Let µ1 > µ2 > . . . > µq > 0 with some 1 ≤ q ≤ p, be strictly distinct eigenvalues
of Σ and Pr, r = 1, . . . , q, be the corresponding spectral projectors (orthogonal
projectors in Rp). Denote mr := Rank(Pr). We may rewrite (3.15) in terms of
distinct eigenvalues and corresponding spectral projectors, namely

Σ =

q∑
r=1

µrPr.

Denote by ∆r := {j : σj = µr}. Then |∆r| = mr. Define gr := µr − µr+1 > 0 for
r ≥ 1. Let gr := min(gr−1, gr) for r ≥ 2 and g1 := g1. The quantity gr is the r-th
spectral gap of the eigenvalue µr.

Consider now the sample covariance matrix Σ̂. Similarly to (3.15), it can be
represented as

Σ̂ =

p∑
j=1

σ̂jûjû
T
j ,

where σ̂1 ≥ σ̂2 ≥ . . . ≥ σ̂p, û1, . . . , ûp are the eigenvalues and the corresponding
eigenvectors of Σ̂. Following [66] we may define clusters of eigenvalues σ̂j , j ∈ ∆r.
Let Ê := Σ̂−Σ. One can show that

inf
j /∈∆r

|σ̂j − µr| ≥ gr − ∥Ê∥, sup
j∈∆r

|σ̂j − µr| ≤ ∥Ê∥.

Assume that ∥Ê∥ ≤ gr/2. Then all σ̂j , j ∈ ∆r may be covered by an interval

(µr − ∥Ê∥,µr + ∥Ê∥) ⊂ (µr − gr/2,µr + gr/2) .

The rest of the eigenvalues of Σ̂ are outside of the interval(
µr − (gr − ∥Ê∥),µr + (gr − ∥Ê∥)

)
⊃ [µr − gr/2,µr + gr/2] .
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Let ∥Ê∥ < 1
4 min1≤s≤r gs =: δr. The set {σ̂j , j ∈ ∪rs=1∆s} consists of r clusters, the

diameter of each cluster being strictly smaller than 2δr and the distance between
any two clusters being larger than 2δr. We denote by P̂r the projector on subspace
spanned by the direct sum of ûj , j ∈ ∆r.

It follows from [66][Lemma 5] that ∥P̂r − Pr∥22 has nearly weighted χ2 distri-
bution; see also [83][Theorem 4]. Therefore, after centering and standardization, it
can be approximated by the standard normal distribution under some conditions
on the spectrum of Σ:

L

(
∥P̂r −Pr∥22 − E ∥P̂r −Pr∥22

Var1/2(∥P̂r −Pr∥22)

)
≈ N (0, 1),(3.16)

see [66][Theorem 6]. This allows to build an asymptotic elliptic confidence set for
Pr in the form {

Pr :
∥P̂r −Pr∥22 − E ∥P̂r −Pr∥22

Var1/2(∥P̂r −Pr∥22)
≤ zα

}
,

where zα is a proper quantile of the standard normal law. However, there are at
least two drawbacks of this approach. First, weak approximation in (3.16) can be
very poor in some cases, especially if the effective rank of Σ is not large. Second,
this construction requires to know or to estimate the values E ∥P̂r − Pr∥22 and
Var(∥P̂r −Pr∥22) which depend on the unknown covariance operator Σ. A partial
solution of this problem is discussed in [66]. It involves splitting the sample into
three subsamples, and pilot estimation of the mean and the variance of ∥P̂r−Pr∥22.
The approach only applies in some special cases, in particular, if the covariance
matrix has a nearly spike structure.

In this chapter we propose a bootstrap procedure which 1) does not rely on
the asymptotic distribution of the error ∥P̂r −Pr∥22; does not require to know the
moments of ∥P̂r − Pr∥22; does not involve any data splitting; provides an explicit
error bound for the bootstrap approximation in the case when sample comes from
the Gaussian distribution. The procedure is based on the resampling idea which
allows to estimate directly the quantiles

γα := inf

{
γ > 0: P

(
n∥P̂r −Pr∥22 > γ

)
≤ α

}
(3.17)

without estimating the covariance matrix Σ.
Bootstrap methods belong nowadays to most popular ways for measuring the

significance of a test or for building a confidence set. The existing theory based
on the high order expansions of the related statistics states the bootstrap validity
for various parametric methods. However, an extension to a non-classical situation
with a limited sample size and/or high parameter dimension meets serious problems.
We refer to series of works [101], [29] which validate a bootstrap procedure for a
test based on the maximum of huge number of statistics. Here we make a further
step in understanding the range of applicability of a weighted bootstrap method
in constructing a finite sample confidence set for a spectral projector. A proof of
bootstrap validity in this setup is a challenging task. The spectral projector is
a non-linear and non-regular function of the covariance matrix, which itself is a
quadratic function of the underlying multivariate distribution

We introduce the following weighted version of Σ̂:

Σ◦ :=
1

n

n∑
i=1

wiXiX
T
i ,
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where w1, . . . ,wn are i.i.d. random variables, independent of X = (X1, . . . ,Xn),
with Ew1 = 1, Varw1 = 1. A typical example used in this section is to apply
i.i.d. Gaussian weights wi ∼ N (1, 1). Denote by P◦(·) := P(·

∣∣X) and E◦ the
corresponding conditional probability and expectation. It is obvious that

E◦Σ◦ = Σ̂.(3.18)

In what follows we will often refer to “X–world” and “bootstrap world". In the X–
world the sample X is random opposite to the bootstrap world, where X is fixed,
but w1, . . . ,wn are random. Then, equation (3.18) implies that in the bootstrap
world we know precisely the expectation of Σ◦ opposite to the X–world, where Σ
is unknown. Similarly to (3.15) we may write

Σ◦ =

p∑
j=1

σ◦ju
◦
ju
◦
j
T.

Let us denote by P◦r a projector on the subspace spanned by the direct sum of
u◦j , j ∈ ∆r. For a given α we define the quantile γ◦α as

γ◦α := min
{
γ > 0: P◦

(
n∥P◦r − P̂r∥22 > γ

)
≤ α

}
.(3.19)

Note that this value γ◦α is defined w.r.t. the bootstrap measure, therefore, it depends
on the data X. This bootstrap critical value γ◦α is applied in the X–world to build
the confidence set

E(α) :=
{
P : n∥P− P̂r∥22 ≤ γ◦α

}
.

The main result given below justifies this construction and evaluate the coverage
probability of the true projector Pr by this set. It states that

P(Pr ̸∈ E(α)
)
= P(n∥Pr − P̂r∥22 > γ◦α

)
≈ α.

To formulate the main result of this section we introduce additional notation. Define
the following block-matrix

Γr :=


Γr1 O . . . O
O Γr2 O . . . O
. . .
O . . . O Γrq

 ,(3.20)

where Γrs, s ̸= r are diagonal matrices of ordermrms×mrms with values 2µrµs/(µr − µs)
2

on the main diagonal. Let λ1(Γr) ≥ λ2(Γr) ≥ . . . be the eigenvalues of Γr. The
available bounds on the distance between the covariance matrix and its empiri-
cal counterpart claim that the eigenvalues of Σ can be recovered with accuracy
O(1/

√
n); see e.g. [107], [110], [65], [55]. Therefore, the part of the spectrum of Σ

below a threshold of order O(1/
√
n) cannot be estimated. The same applies to the

matrix Γr. Introduce the corresponding value m:

λm(Γr) ≥ TrΓr

(√
log n

n
+

√
log p

n

)
> λm+1(Γr).(3.21)

Denote by Πm a projector on the subspace spanned by the eigenvectors of Γr corre-
sponding to its largest m eigenvalues. Now we state our main result of this section.
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Theorem 3.8. Let observations X,X1, . . . ,Xn be i.i.d. Gaussian random vectors
in Rp with EX = 0 and EXXT = Σ. Let γ◦α be defined by (3.19) for any α : 0 <
α < 1, with i.i.d. Gaussian random weights wi ∼ N (1, 1) for i = 1, . . . ,n. Then
the following bound is fulfilled∣∣∣∣α− P

(
n∥P̂r −Pr∥22 > γ◦α

)∣∣∣∣ ≲ ♢,

where

♢ :=
m TrΓr√

λ1(Γr)λ2(Γr)

(√
log n

n
+

√
log p

n

)
+

Tr(I−Πm)Γr√
λ1(Γr)λ2(Γr)

+
mr Tr

3 Σ

g3r
√
λ1(Γr)λ2(Γr)

(√
log3 n

n
+

√
log3 p

n

)
and m is defined by (3.21).

The proof of Theorem 3.8 may be found in [83]. We outline its main steps. We
may show (see [83][Section 4.2])

X–world: L
(
n∥P̂r −Pr∥22

)
≈ L

(
∥ξ∥2

)
, ξ ∼ N (0, Γr),

where Γr defined in (3.20). Further, in [83][Section 4.3] we demonstrate that the
similar relation holds in the bootstrap world, namely

Bootstrap world: L
(
n∥P◦r − P̂r∥22

)
≈ L

(
∥ξ◦∥2

)
, ξ◦ ∼ N (0, Γ◦r),

where Γ◦r is defined in [83][Eq. 24]. To compare ξ and ξ◦ we apply Gaussian
comparison inequality, Theorem 3.1.

Although an analytic expression for the value γ◦α is not available, one can eval-
uate it from numerical simulations by generating a large number M of independent
samples {w1, . . . ,wn} and computing from them the empirical distribution function
of n∥P◦r − P̂r∥22. In fact, standard arguments, see e.g. [99][Section 5.1], in combina-
tion with [83][Theorem 5] suggest that the accuracy of Monte-Carlo approximation
is of order M−1/2. Theorem 3.8 justifies the use of this value γ◦α in place of γα
defined in (3.17) provided that the error ♢ is sufficiently small

In the conclusion of this section we illustrate the performance of the bootstrap
procedure on an artificial example.

Example 1. First we describe our setup. Let n be a sample size. We consider the dif-
ferent values of n, namely n = 100, 300, 500, 1000, 2000, 3000. Let X1, . . . ,Xn have
the normal distribution in Rp, with zero mean and covariance matrix Σ. The value
of p and the choice of Σ will be described below. The distribution of n∥P̂1 −P1∥22
is evaluated by using M = 3000 Monte-Carlo samples from the normal distribution
with zero mean and covariance Σ. The bootstrap distribution for a given real-
ization X is evaluated by M = 3000 Monte-Carlo samples of bootstrap weights
{w1, . . . ,wn}. Since this distribution is random and depends on X, we finally use
the median from 50 realizations of X for each quantile. We consider the following
parameters: p = 500, µ1 = 36,µ2 = 30,µ3 = 25,µ4 = 19 and all other eigenval-
ues µs, s = 5, . . . , 500 are uniformly distributed in [1, 5]. Here we get g1 = 6 and
r(Σ) = 51.79. Figure 1 shows the corresponding PP-plots for the empirical distribu-
tion of n∥P̂1 −P1∥22 against its bootstrap counterpart. Table 2 shows the coverage
probabilities of the quantiles estimated using the bootstrap.
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Figure 1: PP-plot of the bootstrap procedure for Example 1.

Table 2: Coverage probabilities for Example 1. For each n the first line corresponds
to the median value of the coverage probability and the second line corresponds to
the interquartile range.

Confidence levels
n 0.99 0.95 0.90 0.85 0.80 0.75

100 0.997 0.986 0.954 0.924 0.889 0.850
0.004 0.026 0.052 0.074 0.091 0.104

300 0.992 0.937 0.873 0.812 0.754 0.692
0.026 0.093 0.165 0.207 0.236 0.271

500 0,988 0.962 0.902 0.846 0.788 0.623
0.054 0.139 0.227 0.264 0.323 0.174

1000 0.992 0.974 0.943 0.890 0.841 0.783
0.021 0.062 0.114 0.066 0.153 0.170

2000 0.988 0.954 0.891 0.843 0.795 0.741
0.021 0.059 0.081 0.098 0.126 0.142

3000 0.994 0.961 0.908 0.864 0.815 0.763
0.016 0.053 0.073 0.081 0.092 0.101
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4 On the Stability of Random Matrix Product: Ap-
plication to Linear Stochastic Approximation and
TD Learning

This chapter is concerned with the linear stochastic approximation (LSA) algo-
rithm for solving the linear system Āθ = b̄ with the unique solution θ⋆. In partic-
ular, we consider the LSA scheme based on the observations {(A(Zn),b(Zn))}n∈N,
where A : Z → Rd×d, b : Z → Rd are measurable functions and (Zk)k∈N is

1. either an i.i.d. sequence with distribution π satisfying

E[A(Z1)] = Ā and E[b(Z1)] = b̄ . (4.1)

2. or a Markov chain, taking values in a general state-space Z with unique in-
variant distribution π and limn→+∞ E[A(Zn)] = Ā, limn→+∞ E[b(Zn)] = b̄.

With a sequence of stepsizes {αn}n∈N,αn > 0 the LSA algorithm consists in the
sequences of estimates {θn}n∈N, defined by:

θn = θn−1 − αn{A(Zn)θn−1 − b(Zn)} , (4.2)

with the deterministic initialization θ0. The LSA recursion (4.2) encompasses a wide
range of algorithms. LSA is central to the analysis of identification algorithms and
control of linear systems. Early results have focused on these two applications and
studied both the asymptotic behaviour of the sequence (θn)n∈N and the tracking
error; see [43, 51, 53, 74] and the references therein.

LSA is also a cornerstone in the analysis of linear value-function estimation
(LVE) that are popular in reinforcement learning [103, 15]. Seminal works on this
topic [15, 108, 14] established conditions for asymptotic convergence. Finite-time
bound for LVE (and more generally LSA) has attracted a renewed interest. In the
case when (Zi)i∈N∗ is an i.i.d. sequence, [69, 30] have investigated mean-squared
error bounds for LSA. Recent developments [16, 102, 27] have considered the setting
that (Zi)i∈N∗ is a Markov chain, and provided finite-time analysis. On a related
subject, [54, 112, 37, 63] considered linear two-timescale stochastic approximation
that involves coupled LSA recursions.

4.1 LSA driven by general state space Markov chain
The results of this subsection are published in [42].
Most of the existing results on LSA are limited by strong conditions such as

(i) uniform geometric ergodicity (UGE) on the Markov chain and/or (ii) uniformly
bounded A,b, i.e. supz∈Z{∥A(z)∥+∥b(z)∥} < +∞. These conditions are restrictive
since the UGE condition typically requires the state space to be finite or compact
and do not extend to general (unbounded) state space. This is of course a limitation
because many applications involve general unbounded state space; see e.g. [74] and
[15, p. 305].

In this chapter, we aim to provide high-order moment bounds on the LSA
with Markovian noise. Our results are applicable under the relaxed conditions: (i)
(Zi)i∈N∗ is a Markov chain on a general (possibly unbounded) state-space satisfying
a super-Lyapunov drift condition, and (ii) for some constant C ≥ 0, for any z ∈ Z,
∥A(z)∥ ≤ CW1(z), ∥b(z)∥ ≤ CW2(z), with W1,W2 : R+ → [1, +∞) deduced from
the drift condition in (i). They are strictly weaker than the conditions required in
previously reported works. In particular, A,b can be potentially unbounded.

For m,n ∈ N, m < n and zm+1:n = (zm+1, . . . , zn) ∈ Zn−m, we define

Γm+1:n(zm+1:n) =
∏n
i=m+1{Id−αiA(zi)} .

25



A key property used for deriving our bounds is an exponential stability result on
the matrix product above, Γm+1:n(Zm+1:n), for m,n ∈ N, m < n. To motivate why
this is relevant to LSA, suppose that the Markov chain (Zn)n∈N∗ is ergodic so that,
for all z ∈ Z, the following limits Ā = limn→∞ Ez[A(Zn)], b̄ = limn→∞ Ez[b(Zn)]
exist. Assume in addition that the limiting matrix −Ā is Hurwitz, i.e. the real parts
of its eigenvalues are strictly negative, and denote by θ⋆ the unique solution of the
linear system Āθ⋆ = b̄. The n-th error vector θ̃n = θn − θ⋆ may be expressed, for
all n ∈ N, by

θ̃n =
∑n
j=1 αjΓj+1:n(Zj+1:n)ε̄(Zj) + Γ1:n(Z1:n)θ̃0 , (4.3)

where ε̄(Zj) = b(Zj)− b̄−{A(Zj)−Ā}θ⋆. Obtaining a bound on p-th moments for
{∥θ̃n∥}n∈N naturally requires that the sequence of random matrices {A(Zi)}i∈N∗ to
be (V, q)-exponentially stable. Recall that for q ≥ 1 and a function V : Z → [1,∞),
{A(Zi)}i∈N∗ is said to be (V, q)-exponentially stable if there exists aq, Cq > 0 and
α∞,q < ∞ such that, for any sequence of positive step sizes (αi)i∈N∗ satisfying
supi∈N∗ αi ≤ α∞,q, z ∈ Z, m,n ∈ N, m < n,

Ez[∥Γm+1:n(Zm+1:n)∥q] ≤ Cq exp
(
−aq

∑n
i=m+1 αi

)
V(z) . (4.4)

Intuitively, (V, q)-exponential stability means that the q-th moment of the product
of random matrices Γm+1:n(Zm+1:n) behaves similarly to that of the product of
deterministic matrices Gm+1:n =

∏n
i=m+1(Id−αiĀ), under the assumption that

−Ā is Hurwitz.
Fix p, q, r ∈ N∗ such that p−1 = q−1+r−1. Assume that the sequence {A(Zi)}i∈N∗

is (V, q)-exponentially stable for some q > 1, the r-th moments of the noise term
∥ε̄(Zn)∥ and initialization error θ̃0 are bounded. Using (4.3), we can readily de-
rive bounds for the p-th moment, E1/p

z [∥θ̃n∥p] by applying the Hölder’s inequality.
Note that the r-th moment bound for the "noise" terms may follow from classical
Lyapunov drift conditions, which is implied by super-Lyapunov drift conditions.

In this section:

• We establish (V, q)-exponential stability of the sequence of matrices {A(Zk)}k∈N∗ ,
and provide explicit expression for constants appearing in (4.4); see Theo-
rem 4.2. Compared to the prior works, our result can be applied to the
settings where the function A(·) is unbounded, not symmetric and (Zk)k∈N∗

is a Markov chain on a general (unbounded) state-space not constrained to
be uniformly geometrically ergodic. A discussion of how our results relax the
restrictive conditions in previously reported works is given after the statement
of Theorem 4.2.

• We provide finite-time bound and first-order expansion for the p-th moment
of the error (θ̃n)n∈N∗ for LSA recursion (4.3). More precisely, we show that
E1/p
z [∥θ̃n∥p] = O(α

1/2
n )Vp(z) both for constant αn ≡ α (where α is sufficiently

small) or nonincreasing stepsizes under weak additional conditions including
αn = C/(n + n0)

t, for any t ∈ (0, 1]; see Theorem 4.3. From our analysis on
the LSA error θ̃n, we identify a leading term, denoted J (0)

n , which is a weighted
additive linear functional of the error process (ε̄(Zn))n∈N∗ . Furthermore, the
leading term J

(0)
n and its remainder H(0)

n = θ̃n − J
(0)
n admit a separation

of scales. For example, when αn = C/(n + n0), the leading term has a p-
th moment bound of O(n−1/2)Vp(z), and the remainder has a p-th moment
bound of O(n−1 log(n))Vp(z); see Theorem 4.4.

• Finally, we apply our results to TD-learning for LVE. We give sufficient condi-
tions for a Markov Reward Process on general (unbounded) state space (with
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unbounded reward and feature functions) to satisfy the assumptions of Theo-
rem 4.3 and Theorem 4.4. Therefore, the convergence bounds we derive hold
for these algorithms.

4.1.1 Main Results

Consider a Markov chain (Zk)k∈N with Markov kernel P. We assume without loss
of generality that (Zk)k∈N is the canonical process corresponding to P on (ZN,Z⊗N).
We denote by Pµ and Eµ the corresponding probability distribution and expectation
with initial distribution µ. By construction, for any A ∈ Z, Pµ (Zk ∈ A |Zk−1) =
P(Zk−1,A), Pµ-a.s. In the case µ = δz, z ∈ Z, Pµ and Eµ are denoted by Pz and
Ez. In addition, throughout this paper, we assume

UE 1. The Markov kernel P : Z × Z → R+ is irreducible and aperiodic. There
exist c > 0, b > 0, δ ∈ (1/2, 1], R0 ≥ 0, and V : Z → [e,∞) such that by setting
W = log V , C0 = {z :W (z) ≤ R0}, C∁

0 = {z :W (z) > R0}, we have

PV (z) ≤ exp[−cW δ(z)]V (z)1{C∁
0}
(z) + b 1{C0}(z) . (4.5)

In addition, for any R ≥ 1, the level sets {z : W (z) ≤ R} are (mR, εRν)-small for
P, with mR ∈ N∗, εR ∈ (0, 1] and ν being a probability measure on (Z,Z).

Since (Z,Z) is a general state-space, irreducibility here means that the Markov
kernel P admits an accessible small set; see [38, Chapter 9]. The drift condition
(4.5) in UE1 is referred to as a multiplicative or super-Lyapunov drift condition and
plays a key role in studying the large deviations of additive functionals of Markov
chains; see [109]. Eq. (4.5) implies the classical Foster-Lyapunov drift condition,
PV (z) ≤ λV (z) + bb1C0

(z) with

λ = exp(−c infC∁
0
W δ) ≤ exp(−c) < 1 . (4.6)

It follows from [38, Theorem 15.2.4] that under UE 1 the Markov kernel P is V -
uniformly geometrically ergodic and admits a unique stationary distribution π, i.e.
there exists ρ ∈ (0, 1) and BV <∞ such that for each z ∈ Z and n ∈ N,

∥Pn(z, ·)− π∥V ≤ BV ρ
nV (z) . (4.7)

UE 1 is a special case of condition (DV3) in [68, 67] which plays a key role in
multiplicative regularity of Markov chains. A key consequence of UE 1 is a bound
for products (see [42][Lemma 10] and [67, Theorem 1.2]): for any z ∈ Z, n ∈ N, and
non-increasing sequence (αi)i∈N∗ ⊂ [0, 1], we get

Ez[exp{c
∑n−1
k=0 αkW

δ(Zk)}] ≤ exp {b̃
∑n−1
k=0 αk} exp {α1W (z)} ,

where b̃ = log b + supr≥e{crδ − r} and c is defined in (4.5). UE 1 is satisfied with
δ = 1 for Gaussian linear vector auto-regressive process and also non-linear auto-
regressive process under exponential moment condition for innovation process, see
e.g. [89].

We also impose some constraints on A. For ε ∈ (0, 1) consider the following
assumptions

A 1 (ε). Given ε ∈ (0, 1) there exists CA > 0 such that for any 1 ≤ i, j ≤ d, the
(i, j)-th element of A satisfies ∥[A]i,j∥Wβ ≤ CA, where β < min(2δ − 1, δ/(1 + ε))
and δ is given in UE 1.
A2. The square matrix −Ā = −Eπ[A(Z0)] is Hurwitz.
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A 1(ε), A 2 are standard conditions on the parameter matrices in LSA. Mean-
while, A 2 guarantees the existence of a unique solution θ⋆ to Āθ = b̄. It is a
sufficient and necessary condition for the solution of the ordinary differential equa-
tion θ̇t = −Āθt to converge exponentially to θ⋆ [59, Lemma 4.1.2]. The same kind
of result holds for the discrete system θdn+1 − θdn = −αĀθdn.

Proposition 4.1 (See [88][Lemma 9.1, p. 140). ] Assume that −Ā is a Hur-
witz matrix. Then there exists a unique positive definite matrix Q satisfying the
Lyapunov equation Ā⊤Q+QĀ = I. In addition, setting

a = ∥Q∥−1/2 , and α∞ = (1/2)∥Ā∥−2Q ∥Q∥−1 , (4.8)

then for any α ∈ [0,α∞], we get ∥I−αĀ∥2Q ≤ 1− aα. If in addition α ≤ ∥Q∥2 then
1− aα ≥ 1/2.

The above proposition implies that the discrete system converges exponentially
as ∥θdn+1∥ ≤ √

κQ(1− aα)n/2∥θd0∥ for α ∈ (0,α∞).
Our aim is to establish (V, q)-exponential stability of the sequence {A(Zk)}k∈N∗ .

The following example illustrates that, even if the function A(z) is bounded, for
the matrix product to be exponentially stable, it is necessary for the Markov chain
(Zk)k∈N to be geometrically ergodic.

The following theorem establishes the (V, p)-exponential stability of the sequence
{A(Zk)}k∈N∗ . For ease of notation, we simply denote Γm+1:n = Γm+1:n(Zm+1:n).

Theorem 4.2. Assume UE 1, A 1(ε) and A 2. Then for any p ≥ 1, there exists
α∞,p > 0, given in [42][Eq. 87], such that for any non-increasing sequence (αk)k∈N∗

satisfying α1 ∈ (0,α∞,p), z0 ∈ Z and m,n ∈ N, m < n, it holds

E1/p
z0 [∥Γm+1:n∥p] ≤ Cst,p e

−(a/4)
∑n
ℓ=m+1 αℓV 1/2p(z0) , (4.9)

where a, Cst,p, and h are defined in (4.8), [42][Eq. 89], and [42][Eq. 86], respec-
tively.

The theorem shows that provided (αk)k∈N∗ satisfies
∑
k∈N∗ αk = +∞,

E1/p
z [∥Γm+1:n∥p] → 0

as (n−m) → ∞ for any p ≥ 1. Specifically, it has a similar convergence rate as the
deterministic matrix product ∥Gm+1:n∥ = ∥

∏n
i=m+1(Id−αiĀ)∥ ≲ e−a

∑n
ℓ=m+1 αℓ .

Theorem 4.2 generalizes previously reported works. [51, 52] used a slightly differ-
ent definitions allowing to consider non-Markovian processes satisfying more general
mixing conditions (like ϕ- or β-mixing). As we will see later, when specialized to
Markov chains, the results we obtain significantly improve those reported in these
works. [89] established (V, q)-exponential stability for general state-space Markov
chain under a super-Lyapunov drift condition (similar to UE 1). However, the re-
sults in [89] assume constant stepsize and Ā(z) being symmetric and non-negative
definite for any z ∈ Z. Non-negative definiteness plays a key role in the arguments:
in such case, for any z ∈ Z, the spectral norm ∥ Id−αA(z)∥ ≤ 1 provided that
∥A(z)∥ ≤ α−1 for α > 0 which is no longer true for general matrix-valued function
A(z). Similar results, also under the condition that A(z) is symmetric for any
z ∈ Z, were obtained by [35] based on perturbation theory for linear operators in
Banach space and spectral theory. However, the bounds provided in [35] are only
qualitative and it is difficult to make these results quantitative because they are
based on perturbation arguments of linear operators in Banach spaces. The restric-
tions imposed on these prior works have limited their applications to more general
algorithms, in particular to most RL algorithms. As we will see below, the appli-
cation to linear value-function estimation in temporal difference learning involve
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non-symmetric matrix function A. In contrast, our result (cf. Theorem 4.2) can be
applied to the setting where for some z ∈ Z, A(z) is not necessary non-negative
symmetric but only Hurwitz.

Notice that the case of uniformly geometric ergodic Markov chain is covered by
UE 1. In this case the set Z is small and drift function V can be chosen to be
constant. Together with the assumption of bounded A(·), the exponential stability
of product of random matrices has been implicitly established in [102, 37, 63, 27].
In particular, their results on LSA can be applied on the recursion y0 = y, yn+1 =
{Id−αn+1A(Zn+1)}yn, n ∈ N. Through studying the decomposition:

yn+1 = {Id−αn+1Ā}yn − αn+1(A(Zn+1)− Ā)yn, ∀ n ∈ N, (4.10)

they derived bounds on Ez0 [∥yn+1∥p] = Ez0 [∥Γ1:n+1y∥p]. However, generalizing
this approach for other classes of Markov chains (e.g., UE 1) or unbounded function
appears to be impossible.

4.1.2 Application to Linear Stochastic Approximation

This section illustrates how to apply Theorem 4.2 to analyze LSA schemes with
Markovian noise. First, we state the assumptions on b(·) and step sizes which can
be either constant or diminishing. For K ∈ N∗, consider the following assumption:

A 3 (K). There exists Cb,K > 0 such that max1≤ℓ≤d ∥bℓ∥V 1/K ≤ Cb,K, where bℓ is
the ℓ-th component of b.

A 4. There exists a constant 0 < cα ≤ a/16 such that for k ∈ N, αk/αk+1 ≤
1 + αk+1 cα.

It is easy to check that A 4 is satisfied by diminishing step sizes αn = Ca(n +
n0)
− t, t ∈ (0, 1] and constant step sizes.

Theorem 4.3. Let K ≥ 8. Assume UE 1, A 1(ε), A 2 and A 3(K). For any
2 ≤ p ≤ K/4, there exists α(0)

∞,p defined in [42][Eq. 25] such that for any non-
increasing sequence (αk)k∈N∗ satisfying α1 ∈ (0,α

(0)
∞,p) and A 4, z ∈ Z, and n ∈ N,

it holds

E1/p
z [∥θ̃n∥p] ≤ M0 Cst,2p e

−(a/4)
∑n
ℓ=1 αℓV 1/(4p)(z) + (C

(0)
J,p +C

(0)
H,p)

√
αnV

2/K+1/(4p)(z),
(4.11)

where M0 = E1/(2p)
z [∥θ̃0∥2p] and C

(0)
J,p , C

(0)
H,p are defined in [42][Eq. 32], [42][Eq. 34],

respectively.

Most often, the distribution of the initial value θ̃0 does not depend on the initial
value of the Markov chain z. In this case E1/(2p)

z [∥θ̃0∥2p] is a constant. With
a sufficiently small step size, Theorem 4.3 shows that the Lp norm of error vector
converges under UE1 for the Markov chain. Compared to [102], we consider relaxed
conditions on the Markov chain and allow for diminishing step sizes in the LSA.

We show that the finite-time Lp error bound can be derived through applying
the stability of random matrix product (see Theorem 4.2). We recall that the error
vector θ̃n+1 = θn+1 − θ⋆ may be expressed as

θ̃n+1 = Γ1:n+1θ̃0 +
∑n+1
j=1 αjΓj+1:n+1ε̄(Zj) ≡ θ̃

(tr)
n+1 + θ̃

(fl)
n+1 . (4.12)

Using the Hölder’s inequality and Theorem 4.2, the transient term θ̃
(tr)
n+1 can be

bounded as follows

E1/p
z [

∥∥∥θ̃(tr)n+1

∥∥∥p

] ≤ E1/(2p)
z [∥Γ1:n+1∥2p]E1/(2p)

z [∥θ̃0∥2p] ≤ M0 Cst,2p e
−(a/4)

∑n+1
ℓ=1

αℓV 1/(4p)(z).
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As for the fluctuation term θ̃
(fl)
n+1, it can be verified that θ̃(fl)n+1 = J

(0)
n+1+H

(0)
n+1, where

the latter terms are defined by the following pair of recursions:

J
(0)
n+1 = (Id−αn+1A) J

(0)
n + αn+1ε̄(Zn+1), J

(0)
0 = 0,

H
(0)
n+1 = (Id−αn+1A(Zn+1))H

(0)
n − αn+1Ã(Zn+1)J

(0)
n , H

(0)
0 = 0,

(4.13)

and Ã(z) = A(z)−A. Furthermore, we observe that

J
(0)
n+1 =

∑n+1
j=1 αjGj+1:n+1ε̄(Zj), H

(0)
n+1 = −

∑n+1
j=1 αjΓj+1:n+1Ã(Zj)J

(0)
j−1 . (4.14)

Rosenthal’s inequality for Markov chains implies that

E1/p
z [
∥∥∥J (0)

n+1

∥∥∥p] ≤ C
(0)
J,p

√
αn+1V

1/K(z) , (4.15)

To analyze H(0)
n+1, from (4.14) we apply the Hölder’s inequality twice to get

E1/p
z [∥H(0)

n+1∥p] ≤
∑n+1
j=1 αjE

1/(2p)
z [∥Γj+1:n+1∥2p]E1/(4p)

z [∥Ã(Zj)∥4p]E1/(4p)
z [∥J (0)

j−1∥4p].

Finally, applying (4.15) we get

E1/p
z [∥H(0)

n+1∥p] ≤ C
(0)
H,p

√
αn+1V

2/K+1/(4p)(z). (4.16)

Refining the error bound E1/p
z [∥θ̃(fl)n ∥p] It is possible to obtain a bound on

E1/p
z [∥H(0)

n ∥p] tighter than O(
√
αn) obtained in (4.16). This establishes in particular

that J (0)
n is the leading term in the decomposition of the fluctuation term θ̃

(fl)
n+1 =

J
(0)
n+1+H

(0)
n+1. To this end, we rely on an extra decomposition step similar to (4.13).

We may further decompose the error term H
(0)
n as H(0)

n = J
(1)
n +H

(1)
n such that

J
(1)
n+1 = (Id−αn+1A)J

(1)
n − αn+1Ã(Zn+1)J

(0)
n , J

(1)
0 = 0,

H
(1)
n+1 = (Id−αn+1A(Zn+1))H

(1)
n − αn+1Ã(Zn+1)J

(1)
n , H

(1)
0 = 0,

(4.17)

where J (0)
n is defined in (4.13). For diminishing step sizes, here we should strengthen

the previous assumption A4 as:

A 5. We have A0 < ∞, where An =
∑∞
ℓ=n α

2
ℓ . There exists a constant 0 < cα ≤

a/32 such that for k ∈ N, αk/αk+1 ≤ 1 + αk+1 cα and αk/Ak+1 ≤ (2/3) cα.

It is easy to check that A 5 is satisfied by diminishing step sizes αn = Ca(n +
n0)
− t, t ∈ ( 12 , 1].

Theorem 4.4. Let K ≥ 32 and assume UE 1, A 1(ε), A 2, and A 3(K). For any
2 ≤ p ≤ K/16 and any non-increasing sequence (αk)k∈N satisfying α0 ∈ (0,α

(1)
∞,p)

such that αk ≡ α or A5 holds. For any z ∈ Z, n ∈ N, it holds

E1/p
z [∥H(0)

n ∥p] ≤ V 3/K+9/(16p)(z)

{
C(f)
p α

√
log(1/α), if αn ≡ α,

C(d)
p

√
αnAn log(1/αn), if under A5,

(4.18)

where α(1)
∞,p, C(f)

p , C(d)
p are given in [42][Eq. 92], [42][Eq. 94], respectively.

The theorem shows that the previous bound of E1/p
z [∥H(0)

n ∥p] = O(
√
αn) can

be improved to O(
√
αnAn log(1/αn)). Take for example a diminishing step size

as αn = Ca(n + n0)
−1, our result shows that the fluctuation term admits a clear

separation of scales as

θ̃(fl)n = J (0)
n +H(0)

n with E1/p
z [∥J (0)

n ∥p] = O(n−1/2), E1/p
z [∥H(0)

n ∥p] = O(n−1
√

log n).
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4.1.3 Temporal Difference Learning Algorithms

Following the notation from [104, Chapter 12], we consider a discounted Markov
Reward Process (MRP) denoted by the tuple (X, Q,R, γ), where Q is the state
transition kernel defined on a general state space (X,X ). We do not assume that X
is finite and countable, the only requirement being that X is countably generated:
we may assume for example that X = Rd. For any given state x ∈ X, the scalar
R(x) represents the reward of being at the state x. The reward function is possibly
unbounded. Finally, γ ∈ (0, 1) is the discount factor. The value function V ⋆ : X → R
is defined as the expected discounted reward V ⋆(x) = Ex[

∑∞
k=0 γ

kR(Xk)].
Let d ∈ N∗, we associate with every state x ∈ X a feature vector ψ(x) ∈ Rd

and approximate V ⋆(x) by a linear combination Vθ(x) = ψ(x)⊤θ (see [108, 104]).
Temporal difference learning algorithms may be expressed as

θk+1 = θk + αk+1φk{R(Xk) + γψ(Xk+1)
⊤θk − ψ(Xk)

⊤θk}, (4.19)

where {φk}k∈N is a sequence of eligibility vectors. For the TD(0) algorithm, φk =
ψ(Xk). For the TD(λ) algorithm, φk = (λγ)φk−1 + ψ(Xk). Note that for TD(λ),
(4.19) corresponds to (4.2) with the extended Markov chain Zk = (Xk,Xk+1,φk)
and Ā(Zk) = −φk(ψ(Xk)

⊤ − γψ(Xk+1)
⊤), b(Zk) = φkR(Xk). [102] were able to

study TD(λ) while that (Zk)k∈N∗ is not necessary uniformly ergodic. Indeed, a core
argument in their application is the use of [15, Lemma 6.7] which implies that if Z is
a finite state space and (Xk)k∈N is uniformly ergodic, then

∥∥Ez[Ā(Zk)]− Ā
∥∥ ≤ Cρk

and
∥∥Ez[b(Zk)]− b̄

∥∥ ≤ Cρk, for any z ∈ Z, k ∈ N∗ and for some C ≥ 0, ρ ∈ (0, 1).
This is precisely the condition considered by [102] to derive their bounds. Obviously
[15, Lemma 6.7] does not extend to general (unbounded) state space.

As a replacement, to verify our assumption UE1, we consider here a τ -truncated
version of the eligibility trace

φk = ϕτ (Xk−τ+1:k) where ϕτ (x0:τ−1) =
∑τ−1
s=0 (λγ)

sψ(xτ−1−s) . (4.20)

TD(0) algorithm is a special case of (4.20) with τ = 1 and we recover the TD(λ)
algorithm by letting τ → ∞. The recursion (4.19) with eligibility vector defined in
(4.20) is a special case of (4.2). To see this, we define Zk = [Xk−τ , . . . ,Xk]

⊤ and
observe that (4.19) can be obtained by using in (4.2) the following matrix/vector,
for z = [x0, . . . ,xτ ]

⊤ = x0:τ ∈ Xτ+1,

A(z) = ϕτ (x0:τ−1){ψ(xτ−1)− γψ(xτ )}⊤, b(z) = ϕτ (x0:τ−1)R(xτ−1) . (4.21)

Note that compared to [102], we do not consider TD(λ) but (4.20). Consider the
following assumptions.

M 1. The Markov kernel Q : X × X → R+ is irreducible and strongly aperiodic.
There exist c > 0, b > 0, δ ∈ (1/2, 1], R0 ≥ 0, and Ṽ : X → [e,∞) such that by
setting W̃ = log Ṽ , C0 = {x : W̃ (x) ≤ R0}, C∁

0 = {x : W̃ (x) > R0}, we have

QṼ (x) ≤ exp[−cW̃ δ(x)]Ṽ (x)b1C∁
0
(x) + bb1C0

(x) , (4.22)

in addition, for any R ≥ 1, the level sets {x : W̃ (x) ≤ R} are (1, εRν)-small for Q,
with εR ∈ (0, 1] and ν being a probability measure on (X,X ).

It follows from [38, Theorem 15.2.4] that the Markov kernel Q admits a unique
stationary distribution π0.

M2. π0(ψψ⊤) is positive definite.
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In the following, we show that under M 1, M 2, the TD(λ) algorithm with
truncated eligibility trace (4.19) satisfies the assumptions in Section 4.1.2. In this
case, the state-space is set to be Z = Xτ+1 and the Markov kernel P is given, for
any z = x0:τ ∈ Xτ+1, by

P(x0:τ ; dx
′
0:τ ) =

∏τ
ℓ=1 δxℓ(dx

′
ℓ−1)Q(xτ , dx

′
τ ) , (4.23)

where δx denotes the Dirac measure at x ∈ X.

1. It follows from [42][Lemma 35] that P is irreducible, aperiodic and has a unique
invariant distribution π(dx0:τ ) = π0(dx0)

∏τ
ℓ=1 Q(xℓ−1, dxℓ). By [42][Lemma

36], the super-Lyapunov drift condition (4.5) is satisfied with

V (x0:τ ) = exp
(
c0
∑τ−1
i=0 (i+ 1)W̃ δ(xi) + W̃ (xτ )

)
,

where c0 is defined in [42][Eq. 121]. Hence, UE 1 is verified.

2. Let ∥ψ(x)∥ ≤ CψW
β/2(x) and for K ≥ 1, |R(x)| ≤ CR,K V

1/2K(x), where
Cψ, CR,K > 0 are some constants. Then A1(ε) and A3(K) are satisfied with

C̄A = (1 + γ) C2
ψ /(1− λγ), C̄b,K = CR,K Cψ(βK/e)

β/2/(1− λγ). (4.24)

3. Eq. (4.21) implies

A =
∑τ−1
ℓ=0 Eπ0

[ψ(Xτ−1−ℓ){ψ(Xτ−1)− γψ(Xτ )}⊤] .

Assumption A2 follows from [42][Lemma 33].

Collecting the above results shows that the assumptions required by Theorem 4.3
are satisfied, thereby proving that the Lp error of TD(λ) algorithm (4.19) (with
truncated eligibility trace) converges according to the rate specified in (4.11).

4.2 Tight High Probability Bounds for Linear Stochastic Ap-
proximation with Fixed Stepsize

The results of this subsection are published in [41].
In this section we consider the case i.i.d. noise (Zk)k∈N and fixed stepsize αn ≡ α.

To simplify notations we write An = A(Zn),bn = b(Zn). We obtain new results
regarding moments and high probability bounds for products of matrices which
are shown to be tight. These results clarify the stability result (4.4). We derive
high probability bounds on the performance of LSA under weaker conditions on
the sequence {(An,bn) : n ∈ N∗} than previous works. However, in contrast, we
establish polynomial concentration bounds with order depending on the stepsize.
We show that our conclusions cannot be improved without additional assumptions
on the sequence of random matrices {An : n ∈ N∗}, and in particular that no Gaus-
sian or exponential high probability bounds can hold. Finally, we pay a particular
attention to establishing bounds with sharp order with respect to the number of
iterations and the stepsize and whose leading terms contain the covariance matrices
appearing in the central limit theorems.

We require the following main assumption in this section:

A6. {(An,bn)}n∈N∗ is an i.i.d. sequence satisfying the following conditions.

1. E[b1] = b̄ and there exists C̄b > 0 such that, for any u ∈ Sd−1, u⊤(b1 − b̄) ∈
SG(C̄

2
b).

2. There exists C̄A > 0 such that ∥A1∥ ≤ C̄A almost surely.
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3. The matrix −Ā = −E[A1] is Hurwitz, i.e. for any eigenvalue λ of Ā, Re(λ) >
0.

Both conditions A6-1, 2 are standard in analysis of LSA, e.g., in [30, 102, 76].
For example, the assumption on the sub-Gaussianity of b1 is used in [30] and is
relaxed from [102], the almost sure boundedness of A1 is also used in [30, 102].

The aim of this section is to derive high probability bounds on u⊤{θn − θ⋆} for
any n ∈ N, u ∈ Sd−1.

Below, we present a counterexample to show that under only A 6, if α > 0 is
fixed, then there exists p̄ > 0 such that limn→+∞ E[∥θn − θ⋆∥p] = +∞ for p ≥ p̄.
As a corollary, it is impossible to obtain any exponential high probability bounds
for {∥θn − θ⋆∥ : n ∈ N}.

Example 2. Consider (4.2) with d = 1 taking bn = 0 for any n ∈ N∗ and for
{An : n ∈ N∗} an i.i.d. sequence of biased Rademacher r.v.s with parameter
qA ∈ (1/2, 1):

An =

{
1 with probability qA ,

−1 with probability 1− qA .
(4.25)

This choice is associated with θ⋆ = 0 and corresponds to the recursion: θn =∏n
k=1(1 − αAk)θ0, for some θ0 ̸= 0. For any p ≥ 1 and α ∈ (0, 1), we have by

definition,
E [|θn|p] = {qA(1− α)p + (1− qA)(1 + α)p}n |θ0|p .

Using the lower bounds (1 − α)p ≥ 1 − αp and (1 + α)p ≥ 1 + αp + p(p − 1)α2/2,
we get for any p ≥ 1 and α ∈ (0, 1),

E [|θn|p] ≥ {1− pα[(2qA − 1)− (p− 1)α(1− qA)/2]}n |θ0|p .

If α ∈ (0, 1) is fixed, then for any p > p̄q,α = 1 + 2(2qA − 1)/[α(1 − qA)], we
have limn→+∞ E [|θn|p] = +∞. On the other hand, if α ∈ (0, 2(2qA − 1)/(1− qA)),
then limn→+∞ E[θ2n] = 0. Therefore {θn, n ∈ N} converges in distribution to the
Dirac measure at 0 which corresponds to the unique stationary distribution of this
sequence as a Markov chain. In such a case, this distribution admit p moments for
any p ≥ 0.

However, this result is specific to this particular case and does not hold if only
A6 holds. Consider {θn, n ∈ N} defined by (4.2) with {An, n ∈ N∗} given in (4.25)
and {bn, n ∈ N∗} be an i.i.d. sequence of zero-mean Gaussian random variables
with unit variance independent of {An, n ∈ N∗}. We show in [41][Appendix B.2]
that there exists α2,∞ such that for any α ∈ (0,α2,∞], the Markov chain {θn, n ∈
N} admits a unique invariant distribution πα for any α > 0. Further, for any
α ∈ (0,α2,∞] there exists pα ≥ 1 such that

∫
R |θ|p dπα(θ) = +∞ for any p ≥ pα.

It is, however, possible to obtain any p-th moment uniform bound for {∥θn − θ⋆∥ :
n ∈ N} by strengthening A6-3 to:

A7. There exist ã ∈ (0, 1), α̃∞ > 0 and a positive definite d-dimensional matrix Q̃
such that almost surely, for any α ∈ (0, α̃∞], ∥I−αA1∥Q̃ < 1− ãα.

Conditions similar to A 7 are considered in [25] for the analysis of SA schemes
with decreasing stepsize. For example, A 7 holds in the case of regularized linear
regression. We take A1 = λ I+a1a

⊤
1 , for some λ > 0 and under the assumption that

∥a1∥ is bounded almost surely. The LSA recursion (4.2) approximates the solution
to (λ I+E[a1a⊤1 ])θ = b̄, which admits a unique solution.

On the other hand, examples where A7 does not hold are common. For instance,
we may consider TD(0) learning with linear function approximation. For a Markov
Reward Process with X as the state space, P : X × X → [0, 1] as the transition
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probability, R : X → R as the reward function, and γ ∈ (0, 1) as a discount factor,
TD(0) learning is described as in (4.2) with

An = ϕ(xn){ϕ(xn)− γϕ(x′n)}⊤, bn = R(xn)ϕ(xn) , (4.26)

where ϕ : X → Rd is a feature map. A typical setting is when xn is drawn from
the stationary distribution of P and x′n ∼ P(xn, ·). It is easy to verify A6 provided
that ∥ϕ(x)∥, R(x) are bounded for all x ∈ X [108]. However, A7 is violated as An

is only rank-one.
Our next endeavor is to establish moment estimates on the product below:

Γ
(α)
m:n =

∏n
i=m(I−αAi) , m,n ∈ N∗, m ≤ n . (4.27)

Here for A1, . . . ,AN , d-dimensional matrices we denote
∏j
ℓ=iAℓ = Aj . . . Ai if i ≤ j

and with the convention
∏j
ℓ=iAℓ = Id if i > j. We also define its expected value as

G
(α)
m:n = E[Γ(α)

m:n] = (I−αĀ)n−m+1.

4.2.1 Moment and High-probability Bounds for Products of Random
Matrices

Recall from Proposition 4.1 that the norm of the expected value G(α)
1:n = E[Γ(α)

1:n]

decays exponentially with n as
∥∥∥G(α)

1:n

∥∥∥ ≤ √
κQ(1 − αa)n/2. We expect a similar

phenomenon for the moment bound of ∥Γ(α)
1:n∥. Precisely, in this section, we show

that if p is fixed, then there exists αp,∞ > 0 such that for any α ∈ (0,αp,∞], the
p-th moment of Γ(α)

m:n decays exponentially with n−m.
We present the main technical result on the product of general random matrices

as follows, whose proof is based on the framework introduced in [58].

Proposition 4.5. Let {Yℓ, ℓ ∈ N} be an independent sequence and P be a positive
definite matrix. Assume that for each ℓ ∈ N there exist mℓ ∈ (0, 1) and σℓ > 0

such that ∥E[Yℓ]∥2P ≤ 1 − mℓ and ∥Yℓ − E[Yℓ]∥P ≤ σℓ almost surely. Define
Zn =

∏n
ℓ=0 Yℓ = YnZn−1, for n ≥ 1 and starting from Z0. Then, for any 2 ≤ q ≤ p

and n ≥ 1,

∥Zn∥2p,q ≤ κP

n∏
ℓ=1

(1−mℓ + (p− 1)σ2
ℓ )
∥∥∥P 1/2Z0P

−1/2
∥∥∥2
p,q

, (4.28)

where we recall that κP = λ−1min(P )λmax(P ).

In order to bound Γ
(α)
1:n using Proposition 4.5, we identify the latter with Yℓ =

I−αAℓ, ℓ ≥ 1, Y0 = I. As −Ā is Hurwitz, applying Proposition 4.1 yields
∥E[Yℓ]∥2Q =

∥∥I−αĀ∥∥2
Q
≤ 1− aα. Further, A6-2 ensures that almost surely,

∥Yℓ − E[Yℓ]∥Q = α
∥∥Aℓ − Ā

∥∥
Q
≤ 2α

√
κQC̄A = bQα .

Therefore, (4.28) holds with mℓ = aα and σℓ = bQα. As ∥I∥p = d1/p, we obtain the
following corollary.

Corollary 4.6. Assume A6-2-3. Then, for any α ∈ [0,α∞], 2 ≤ q ≤ p, and n ∈ N,

E1/q
[
∥Γ(α)

1:n∥q
]
≤
∥∥∥Γ(α)

1:n

∥∥∥
p,q

≤ √
κQd

1/p(1− aα+ (p− 1)b2Qα
2)n/2 , (4.29)

where α∞ was defined in (4.8), and bQ = 2
√
κQC̄A.
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Note that Corollary 4.6 shows supn∈N E[∥Γ(α)
1:n∥p] < +∞ for any α ∈ (0,αp,∞],

where
αp,∞ = α∞ ∧ a/(2b2Q(p− 1)) . (4.30)

This kind of condition relating the choice of α with the required order p is necessary
as illustrated in Example 2. Corollary 4.6 further leads to the high-probability
bound:

Corollary 4.7. Assume A6-2-3. Then, for any α ∈ (0,α∞) where α∞ was defined
in (4.8), δ ∈ (0, 1) and n ∈ N, with probability at least 1− δ,

∥Γ(α)
1:n∥ ≤ √

κQ exp
[
−(anα− α2b2Qn)/2 + bQα

√
2n log(d/δ)

]
.

The result in Corollary 4.7 is tight with respect to δ. See example in [41] that
continues Example 2.

We conclude the section with a complementary result of Corollary 4.6 that does
not require A6-2:

Proposition 4.8. Assume A 6-3,
∥∥A1 − Ā

∥∥ ∈ SG(C̄
′
A) for some C̄

′
A > 0. Then,

for any α ∈ (0,α∞) where α∞ was defined in (4.8), 2 ≤ q ≤ p, and n ∈ N,

E1/q
[
∥Γ(α)

1:n∥q
]
≤
∥∥∥Γ(α)

1:n

∥∥∥
p,q

≤ √
κQd

1/p(1− aα+ q(p− 1)(b′Q)
2α2)n/2 , (4.31)

where b′Q = 2
√
κQC̄

′
A.

Finite-time High-probability Bounds for LSA Relying on the results estab-
lished in Section 4.2.1 and the decomposition (similar to (4.12))

θn − θ⋆ = θ̃
(tr)
n + θ̃

(fl)
n , θ̃

(tr)
n = Γ

(α)
1:n{θ0 − θ⋆} , θ̃

(fl)
n = α

∑n
j=1 Γ

(α)
j+1:nε̄j . (4.32)

we derive high probability bounds on u⊤{θn − θ⋆} for any n ∈ N and u ∈ Sd−1,
where {θn, n ∈ N} is defined in (4.2). We begin our study with the transient term
θ̃
(tr)
n . Observe that

Proposition 4.9. Assume A 6 and let p0 ≥ 2. Then, for any n ∈ N∗, α ∈
(0,αp0,∞), where αp0,∞ is defined in (4.30), u ∈ Sd−1 and δ ∈ (0, 1) it holds with
probability at least 1− δ that

|u⊤Γ(α)
1:n(θ0 − θ⋆)| ≤ √

κQd
1/p0(1− aα/4)n ∥θ0 − θ⋆∥ δ−1/p0 ,

where a was defined in (4.8).

Proposition 4.9 only provides a polynomial high probability bound with respect
to δ. This is due to the fact that only polynomial moments of ∥Γ(α)

1:n∥ up to a
maximal order are uniformly bounded in the number of iterations n.

We now turn to the fluctuation term θ̃
(fl)
n defined in (4.32). Note that under A

6, the sequence {ε̄n, n ∈ N} is i.i.d.. From this observation and following [42], we
consider the decomposition

θ̃(fl)n = α

n∑
j=1

Γ
(α)
j+1:nε̄j = J (α,0)

n +H(α,0)
n , (4.33)

where {(J (α,0)
n ,H

(α,0)
n ) : n ∈ N} are defined by induction for n ≥ 0 as:

J
(α,0)
n+1 =

(
I−αĀ

)
J
(α,0)
n + αε̄n+1 , J

(α,0)
0 = 0 ,

H
(α,0)
n+1 = (I−αAn)H

(α,0)
n − α(An+1 − Ā)J

(α,0)
n , H

(α,0)
0 = 0 .

(4.34)
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The latter recurrence can be written as

J (α,0)
n = α

n∑
j=1

G
(α)
j+1:nε̄j , H(α,0)

n = −α
n∑
j=1

Γ
(α)
j+1:n(Aj − Ā)J

(α,0)
j−1 .

Note that J (α,0)
n is a linear statistics of the random variables {ε̄j , j ∈ {1, . . . ,n}}

which are centered and i.i.d. under A 6. Next, we show that J (α,0)
n is the leading

term as the stepsize α ↓ 0. Denote for any n ∈ N∗ and α > 0, the covariance matrix
of J (α,0)

n as
Σα
n = Cov(J (α,0)

n ) . (4.35)

We obtain the following statement:

Proposition 4.10. Assume A6. Then for any n ∈ N∗, α ∈ (0,α∞], where α∞ is
defined in (4.8), u ∈ Sd−1 and δ ∈ (0, 1), it holds with probability at least 1− δ,∣∣u⊤J (α,0)

n

∣∣ < D1

√
{u⊤Σα

nu} log(2/δ) + α
√
1 + log(1/(aα))D2 log

3/2(2/δ) , (4.36)

where D1 = 60
√
3e4/3 and D2 is defined in [41][Eq. 49].

We analyze further the covariance associated with J (α,0)
n and its dependence with

respect to n and α. First, note that for any α ∈ (0,α2,∞], {Σα
n, n ∈ N∗} converges

to αΣα as n → ∞ where Σα = α
∑∞
k=0G1:kΣεG

⊤
1:k is the unique solution of the

Ricatti equation

ĀΣα +ΣαĀ⊤ − αĀΣαĀ⊤ = Σε , with Σε = E[ε1ε⊤1 ] . (4.37)

Notice that we focus on the cases where Σε is full-rank. Using Proposition 4.1, we
obtain that for any n ≥ 0,

∥Σα
n − αΣα∥ ≤ α2

∑
k>n

∥G1:k∥2 ∥Σε∥ ≤ αa−1κQ ∥Σε∥ (1− αa)n . (4.38)

We now give an expansion of Σα with respect to α. It is well-known that as
α ↓ 0, Σα converges to Σ, the unique solution of the Lyapunov equation (see [88,
Lemma 9.1])

ĀΣ+ΣĀ⊤ = Σε . (4.39)

Our next result states the convergence of Σα to Σ is of the order of the stepsize α.

Proposition 4.11. Assume that A 6-3 holds. Then, for any α ∈ (0,α∞], where
α∞ is defined in (4.8),

∥Σα −Σ∥ [Q] ≤ αa−1∥ĀΣĀ⊤∥Q ,

where Σα and Σ are defined in (4.37) and (4.39) respectively and a is given in (4.8).

The last step in bounding θ̃
(fl)
n is to consider H(α,0)

n . We proceed similarly to
(4.34) and consider the decompositionH(α,0)

n = J
(α,1)
n +H

(α,1)
n , where {(J (α,1)

n ,H
(α,1)
n ) :

n ∈ N} are defined by induction for n ≥ 0 as:

J
(α,1)
n+1 = (I−αĀ)J

(α,1)
n − α(An+1 − Ā)J

(α,0)
n , J

(α,1)
0 = 0 ,

H
(α,1)
n+1 = (I−αAn+1)H

(α,1)
n − α(An+1 − Ā)J

(α,1)
n , H

(α,1)
0 = 0 .

(4.40)

In our next result we bound each term of this decomposition separately.
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Proposition 4.12. Assume A 6 and let p0 ≥ 2. Then, for any n ∈ N, α ∈
(0,αp0,∞), where αp0,∞ is defined in (4.30), u ∈ Sd−1 and δ ∈ (0, 1/2), with proba-
bility at least 1− 2δ, it holds∣∣u⊤J (α,1)

n

∣∣ < eD3α log2(1/δ) ,
∣∣u⊤H(α,1)

n

∣∣ < D4αp
2
0δ
−1/p0 , (4.41)

where D3 and D4 are given in [41][Eq. 57 and 60].

Now we are ready to combine the previous bounds and to state the main result
of this section.

Theorem 4.13. Assume A6 and let p0 ≥ 2. Then, for any n ∈ N, α ∈ (0,αp0,∞),
where αp0,∞ is defined in (4.30), u ∈ Sd−1 and δ ∈ (0, 1/4), with probability at least
1− 4δ, it holds

α−1/2|u⊤(θn − θ⋆)| < D1

√
{u⊤Σαu} log(2/δ) + α1/2q(1)(α, δ) + (1− aα/4)n∆(1)(α, δ) ,

(4.42)
where Σα is the unique solution of (4.37), D1 = 60

√
3e4/3, a is defined in (4.8),

q(1)(α, δ) =
(
eD3 log

2(1/δ) +
√

1 + log(1/aα)D2 log
3/2(2/δ)

)
+ D4p

2
0δ

−1/p0 ,

∆(1)(α, δ) = D1

√
a−1κQ∥Σε∥ log(2/δ) +

√
κQd

1/p0∥θ0 − θ⋆∥α−1/2δ−1/p0 ,
(4.43)

where κQ and Σε are defined in (4.8) and (4.37) respectively.

We now discuss the high probability bound (4.42). First, the term ∆(1)(α, δ),
and in particular the initial condition vanishes exponentially fast in the number of
iterations n. In addition, q(1)(α, δ) and ∆(1)(α, δ) are of order δ−1/p0 as δ → 0 and
therefore (4.42) provides polynomial high probability bounds on LSA. However, this
conclusion is expected as illustrated in Example 2. Finally, the discussion of (4.42)
with respect to α is postponed to the next section.

Under A7 we can provide a better bound for H(α,1)
n .

Proposition 4.14. Assume A6 and A7. Then, for any n ∈ N, α ∈ (0,α∞ ∧ α̃∞),
where α∞ is defined in (4.8), u ∈ Sd−1 and δ ∈ (0, 1/2), with probability at least
1− 2δ, it holds∣∣u⊤J (α,1)

n

∣∣ < eD3α log2(1/δ) ,
∣∣u⊤H(α,1)

n

∣∣ < eD5α log2(1/δ) , (4.44)

where D3 and D5 are given in [41][Eq. 57 and 61].

As a result, we can establish exponential high probability bounds with respect
to δ.

Theorem 4.15. Assume A 6 and A 7. Then, for any n ∈ N, α ∈ (0,α∞ ∧ α̃∞),
u ∈ Sd−1 and δ ∈ (0, 1/4), with probability at least 1− 4δ, it holds

α−1/2|u⊤(θn − θ⋆)| < D1

√
{u⊤Σαu} log(2/δ) + α1/2q(2)(α, δ) + (1− αã)n/2∆(2)(α, δ) ,

where D1 = 60
√
3e4/3, Σα is solution of (4.37),

q(2)(α, δ) = e(D3 + D5) log
2(1/δ) +

√
1 + log(1/ãα)D2 log

3/2(2/δ) ,

∆(2)(α, δ) = D1

√
ã−1κQ̃∥Σε∥ log(2/δ) + κ

1/2

Q̃
∥θ0 − θ⋆∥α−1/2 ,

(4.45)

where Σε is defined in (4.37).
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Optimality of the derived bounds with respect to α: analysis of (θn)n∈N
as a Markov chain In this section, we study the sequence {θn, n ∈ N} defined in
(4.2) as a Markov chain. This perspective will allow us to show that the bounds that
we derived in Theorem 4.13 are near-Berstein high probability bounds with respect
to the stepsize α. Denote by Rα the Markov kernel associated with {θn : n ∈ N}.
First, we show that if α is small enough thenRα is geometrically ergodic with respect
to the Wasserstein distance of order 2 denoted by W2 and give a representation of
its stationary distribution as an infinite sum.

Theorem 4.16. Assume A6. Then, for any α ∈ (0,α2,∞), where α2,∞ is defined
in (4.30), Rα admits a unique stationary distribution πα ∈ P2(Rd) and for any
n ∈ N,

W 2
2 (δθR

n
α,πα) ≤

√
κQd(1− aα/2)n

∫
Rd

∥∥∥θ̃ − θ
∥∥∥2 dπα(θ̃) . (4.46)

Further, if {(Ak,bk) : k ∈ N−} is any sequence of i.i.d. random variables with the
same distribution as (A1,b1), then the following limit exists almost surely and in
L2 and has distribution πα:

θ(α)∞ = lim
n→−∞

θ(α,←)
n , θ(α,←)

n = α

1∑
k=n

Γk:0bk−1 , Γk:0 =

0∏
i=k

(Id−αAi) . (4.47)

Based on Theorem 4.13, we easily get concentration bounds for the family of
distributions {πα : α ∈ (0,α2,∞)} around θ⋆.

Theorem 4.17. Assume A6 and let p0 ≥ 2. Then, for any α ∈ (0,αp0,∞), where
αp0,∞ is defined in (4.30), u ∈ Sd−1 and δ ∈ (0, 1/4), with probability at least 1−4δ,
it holds

α−1/2|u⊤(θ(α)
∞ − θ⋆)| < D1

√
{u⊤Σu} log(2/δ) + α1/2[a−1/2∥ĀΣĀ⊤∥1/2Q + q(1)(α, δ)] ,

(4.48)
where Σ is the unique solution of (4.39), D1 = 60

√
3e4/3, a is defined in (4.8), and

q(1)(α, δ) in (4.43).

Our results is only polynomial in δ and we cannot expect improving this depen-
dency as illustrated in Example 2 for fixed α. The leading term in (4.48) as α ↓ 0
is
√

D1{u⊤Σu}. In our next result, we establish a central limit theorem for the
family (θ

(α)
∞ )α∈(0,α2,∞] where Σ plays the role of the asymptotic covariance matrix.

As a result, (4.48) is a Bernstein-type high probability bound with respect to α and
therefore (4.48) is sharp. Define for any α ∈ (0,α2,∞],

θ̃(α)∞ = α−1/2{θ(α)∞ − θ⋆} . (4.49)

Theorem 4.18. Assume A6. Then, the family {θ̃(α)∞ : α ∈ (0,α2,∞]} converges in
law as α ↓ 0 to a zero-mean Gaussian random variable with covariance matrix Σ
defined by (4.39).

Note that this result was established in [87, Theorem 1] for general stochastic
approximation schemes but under stronger conditions on the sequence {εn, n ∈ N∗}.
In particular, it is assumed that the distribution of ε1 admits a density with respect
to the Lebesgue measure. We relax this condition and provide a new proof for this
result.
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5 Variance reduction in MCMC algorithms
The results of this subsection are published in [8] and [11].
Variance reduction aims at reducing the stochastic error of a Monte Carlo esti-

mate; see [92], [95], [47], and [46] for a an introduction to this field. Recently one
witnessed a revival of interest in variance reduction techniques for dependent se-
quences with applications to Bayesian inference and reinforcement learning among
others; see, for instance, [79], [61], [33], [26], [2], and references therein.

Suppose that we wish to compute the integral of an arbitrary function f : X 7→ R
with respect to a probability measure π on a general state-space (X,X ), that is,
π(f) =

∫
X
f(x)π(dx). If sampling i.i.d. from π is an option, a natural estimator for

π(f) is the sample mean

πN (f) := N−1
∑N−1

k=0
f(Xk) , N ∈ N,

where (Xk)
N−1
k=0 is an i.i.d. sample from π. Using the central limit theorem, one can

construct an asymptotically valid confidence interval for the value π(f) of the form
πN (f) ± qN−1/2(Varπ(f))1/2, where q is a quantile of a normal distribution, and
Varπ(f) =

∫
X
{f(x)−π(f)}2π(dx). A general way to reduce the variance Varπ(f) is

to select another function g in a set G such that π(g) = 0 and Varπ(f−g) ≪ Varπ(f).
Such a function g is called a control variate (CV). A natural approach to learn g ∈ G
is to minimize the empirical variance

Dn(f − g) = (n− 1)−1
∑n−1

k=0

(
f(Xk)− g(Xk)− πn(f − g)

)2
, (5.1)

constructed using a new independent learning sample (Xk)
n−1
k=0 . This leads to the

Empirical Variance Minimisation (EVM) method recently studied in [7] and [10].
In many problems of interest, drawing an i.i.d. sample from π is not an option,
yet it is possible to obtain a non-stationary dependent sequence (Xk)

∞
k=0 whose

marginal distribution converges to π. This situation is typical in Bayesian statistics,
where π represents a posterior distribution and (Xk)

∞
k=0 is sampled using Markov

chain Monte Carlo (MCMC) methods. Under appropriate conditions, the central
limit theorem also holds and therefore, it is possible to construct the asymptotic
confidence interval for π(f) of the form[

πN (f)− q

√
V∞(f)

N
,πN (f) + q

√
V∞(f)

N

]
, (5.2)

where V∞(f) is the asymptotic variance defined as

V∞(f) := lim
N→∞

N · E
[(
πN (f)− π(f)

)2]
. (5.3)

A sensible approach is to select a control variate g ∈ G by minimizing an estimate
for the asymptotic variance V∞(f − g). When the spectral estimate of V∞(f − g) is
used, this leads to the Empirical Spectral Variance Minimization (ESVM); see [9].

In this chapter, a special attention is paid to the case when X = Rd and π admits
a smooth and everywhere positive density (also denoted by π) w.r.t to the Lebesgue
measure, such that the gradient ∇U := −∇ log π can be evaluated. We study be-
low sampling methods derived from the discretization of the overdamped Langevin
Dynamics (LD). It is defined by the following Stochastic Differential Equation:

dYt = −∇U(Yt) dt+
√
2dWt , (5.4)

where (Wt)t≥0 is the standard Brownian motion. Note that ∇U does not depend
on the normalizing constant of π which is typically unknown in Bayesian inference.
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Under some technical conditions, the distribution of Yt converges to π as t → ∞,
see [93]. The gradient-based MCMC algorithms are based on a time-discretized
version of (5.4). In the Bayesian setting, a computational bottleneck of these algo-
rithms is that the complexity of the gradient ∇U evaluation scales proportionally
to the number of observations (sample size) K which can be very time consuming
in the “big data" limit. To alleviate this problem, [111] proposed to replace the
"full" gradient ∇U by a stochastic gradient estimate based on sums over random
minibatches. This algorithm, Stochastic Gradient Langevin Dynamics (SGLD), has
emerged as a key MCMC algorithm in Bayesian inference for large scale datasets.
The analysis of SGLD and its finite sample performance has attracted a wealth of
contributions; see, for example, [75], [106], [80], [32], and the references therein.
These works show that the use of stochastic gradient comes at a price: while the
resulting estimate of the gradient is still unbiased, its variance might annihilate
the computational advantages of SGLD [32]. Several proposals have been made
to reduce the variance of the stochastic gradient estimate of the “full" gradient,
inspired by several methods, proposed for incremental stochastic optimization; see
[94], [61], and [33]. [39] has investigated the properties of the Stochastic Average
Gradient (SAGA) and Stochastic Variance Reduced Gradient (SVRG) estimators
for Langevin dynamics. These results have been later completed and sharpened by
[32], [26], [22]. Other variance reduction approaches include various subsampling
schemes and constructing alternative estimates for the gradient (see, for instance,
[2] and [114]).

This chapter is organized as follows. In Section 5.1, we analyze the ESVM
approach for general dependent sequences. In particular, the ESVM method is
described in Section 5.1.1. In Section 5.1.2, we study the theoretical properties of
the ESVM method for asymptotically stationary dependent sequences. Here we
provide a bound for the excess risk V∞(f − ĝn)− infg∈G V∞(f − g), where a control
variate ĝn ∈ G is chosen by minimization of the spectral variance Vn based on
(Xk)

n−1
k=0 , that is, ĝn ∈ argminVn(f − g). The precise definition of Vn will be given

in Section 5.1.1. In Section 5.2, we apply these results to Markov chains which
are uniformly geometrically ergodic in Wasserstein distance. While Section 5.2.1
is devoted to the (undajusted) Langevin Dynamics, in Section 5.2.2 we use the
ESVM approach for variance reduction in SGLD-type algorithms. We show that
in both cases, the excess variance can be bounded, with high probability and up to
logarithmic factors, as

V∞(f − ĝn)− infg∈G V∞(f − g) = O
(
n−1/2

)
.

This implies asymptotically valid confidence intervals (conditional on the sample
used to learn ĝn) of the form

πN (f − ĝn)± q

√
infg∈G V∞(f − g) + Cn−1/2

N

for some constant C > 0. Note that these intervals can be much tighter than ones
in (5.2), provided that n is large and infg∈G V∞(f−g) is small. The latter condition
is satisfied if the class G is rich enough. In Section 5.3, we illustrate performance of
the proposed variance reduction method on various benchmark problems.

5.1 Empirical Spectral Variance Minimization
5.1.1 Method

Let (Ω,F, (Fk)k≥0,P◦) be a filtered probability space and (Xk)
∞
k=0 be a random

process adapted to the filtration (Fk)k≥0 and taking values in X. Let f : X → R be
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a function such that π(f2) <∞ and E[f2(Xk)] <∞ for all k ∈ N. Let also G be a
set of control variates, that is, functions g ∈ G satisfying π(g2) <∞, π(g) = 0, and
E[g2(Xk)] < ∞ for all k ∈ N. Particular examples of classes G are given below in
Section 5.2. Denote the class of functions h = f − g for g ∈ G by H,

H := {f − g : g ∈ G}.

CS1. For any h ∈ H, there exists a symmetric, summable, and positive semidefinite
sequence (ρ(h)(ℓ))ℓ∈Z satisfying

1) ρ(h)(0) = Varπ(h),

2) for any ℓ ∈ N0 and constant R > 0 independent of h and ℓ,∑
k∈N0

∣∣∣E[h̃(Xk)h̃(Xk+ℓ)
]
− ρ(h)(ℓ)

∣∣∣ ≤ R,

3) lim
ℓ→∞

∑
k∈N0

∣∣∣E[h̃(Xk)h̃(Xk+ℓ)
]
− ρ(h)(ℓ)

∣∣∣ = 0.

Proposition 5.1. Assume that the condition CS1 holds. Then, for all h ∈ H, the
asymptotic variance V∞(h) defined in (5.3) exists and can be represented as

V∞(h) =
∑

ℓ∈Z
ρ(h)(ℓ). (5.5)

The spectral variance estimator Vn(h) is based on truncation and weighting of
the sample autocovariance functions:

Vn(h) :=
∑
|ℓ|<bn

wn(ℓ)ρ
(h)
n (ℓ), (5.6)

where wn is the lag window, bn is the truncation point, and ρ
(h)
n (ℓ) is the sample

autocovariance function given, for ℓ ∈ N0, by

ρ(h)n (ℓ) = ρ(h)n (−ℓ) := n−1
∑n−ℓ−1

k=0

(
h(Xk)− πn(h)

)(
h(Xk+ℓ)− πn(h)

)
. (5.7)

Here the truncation point bn is an integer depending on n and the lag window wn is
a kernel of the form wn(ℓ) = w(ℓ/bn), where w is a symmetric non-negative function
supported on [−1, 1] such that supy∈[0,1] |w(y)| ≤ 1 and w(y) = 1 for y ∈ [−1/2, 1/2].
There are several other estimates for the asymptotic variance V∞(h); see [44] and
the references therein. The ESVM estimator is obtained by

ĥn ∈ argminh∈H Vn
(
h
)
. (5.8)

The ESVM method is summarized in Algorithm 1.

Algorithm 1: Empirical Spectral Variance Minimization (ESVM) method

Input: Two independent sequences: Xn = (Xk)
n−1
k=0 and X′N = (X ′k)

N−1
k=0 .

1. Choose a class G of functions with π(g) = 0 for all functions g ∈ G.
2. Find ĝn ∈ argming∈G Vn(f − g), where Vn is computed based on Xn.
Output: πN (f − ĝn) computed based on X′N .

5.1.2 Theoretical analysis

For our theoretical analysis, instead of looking for a function with the smallest
spectral variance in the whole class H we will perform optimization over a finite
approximation (net) of H. It turns out that both estimators have similar theoretical
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properties. Fix some ε > 0. Assuming that the class H is totally bounded, let Hε be
a minimal ε-net in the L2(π)-norm, that is, the smallest possible (finite) collection
of functions Hε ⊂ H with the property that for any h ∈ H there exists hε ∈ Hε

such that the distance between h an hε in L2(π)-norm is less than or equal to ε.
The cardinality of Hε is called the covering number and is denoted by |Hε|. Define

ĥn,ε ∈ argminh∈Hε Vn(h).

To obtain a quantitative bound for the asymptotic variance of ĥn,ε, we need to
specify the decay rate of the sequence (ρ(h)(ℓ))ℓ∈Z from CS1.

CD1. There exist ς > 0 and λ ∈ [0, 1) such that, for any h ∈ H and ℓ ∈ N0,∣∣ρ(h)(ℓ)∣∣ ≤ ςλℓ.

The following theorem provides a general bound on the excess of asymptotic
variance.

Theorem 5.2. Assume that CS1 and CD1 hold. Assume additionally that for any
n ∈ N there exists a decreasing continuous function αn satisfying

suph∈H P
(∣∣Vn(h)− E[Vn(h)]

∣∣> t
)
≤ αn(t), t > 0.

Then, for any δ ∈ (0, 1) and ε > 0, it holds with probability at least 1− δ that

V∞(ĥn,ε)− infh∈H V∞(h) ≲ α−1n

(
δ

2|Hε|

)
+
(√
Rn−1/2 +

√
D
)
bnε+

√
RD bnn

−1/2

+
(
R+ ς(1− λ)−1

)
bnn
−1 + ς(1− λ)−2n−1 + ς(1− λ)−1λbn/2,

where α−1n is an inverse function for αn and D = suph∈HVarπ(h).

Under some additional assumptions on the covering number of H and the func-
tion αn(t), a suitable choice of the size of ε-net and the truncation point bn, yields
the following high-probability bound

V∞(ĥn,ε)− infh∈H V∞(h) ≲ n−1/(2+ρ) for some ρ > 0,

where ≲ stands for inequality up to a constant depending on λ, R, D, and ς. In the
next section we shall apply Theorem 5.2 to the analysis of the ESVM algorithm for
dependent sequences in ULA and SGLD.

5.2 Applications
In general, Theorem 5.2 can be applied to different types of dependent sequences

satisfying conditions CS 1 and CD 1. In what follows, we let (X, d) be a complete
separable metric space (equipped with its Borel σ-algebra X ) and consider P to be
a Markov kernel on (X,X ). Let Ω = XN be the set of X-valued sequences endowed
with the σ-field F = XN, (Xk)

∞
k=0 be the coordinate process, and Fk = σ(Xℓ, ℓ ≤ k)

be the canonical filtration. For every probability measure ξ on (X,X ) there exists
a unique probability Pξ on (XN,X⊗N) such that the coordinate process (Xk)

∞
k=0 is

a Markov chain with Markov kernel P and initial distribution ξ. We denote by Eξ
the associated expectation. We focus below on the case where P is W d

p -uniformly
ergodic for p = 1 or p = 2.
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W 1 (p). There exists x0 ∈ X such that
∫
X
d(x0,x)P (x0, dx) < ∞ and a constant

∆p(P ) ∈ [0, 1) such that

sup
(x,x′)∈X2, x ̸=x′

W d
p (δxP, δx′P)

d(x,x′)
= ∆p(P) .

[38, Theorem 20.3.4] shows that if W1 (p) holds for some p ≥ 1, then P admits
a unique invariant probability measure which is denoted by π below. Moreover,
π ∈ Sp(X, d) and for any ξ ∈ Sp(X, d),

W d
p (ξP

n,π) ≤ ∆n
p (P)W

d
p (ξ,π) , n ∈ N. (5.9)

If there is no risk of confusion, we denote for simplicity ∆p = ∆p(P). Let us start
with a general result for Markov kernels satisfying W 1 (2). We show below that
this assumption implies CS 1 and CD 1 when H is a subset of Lipschitz functions,
and establish an exponential concentration inequality for Vn(h), h ∈ H. As it was
emphasized in [78] and [36], powerful tools for exploring concentration properties
of W d

2 -ergodic Markov kernels are the transportation cost-information inequalities.

Definition 5.3. For p ≥ 1, we say that µ ∈ M1(X) satisfies Lp-transportation
cost-information inequality with constant α > 0 if for any ν ∈ M1(X), W d

p (µ, ν) ≤√
2αKL(ν|µ). We write briefly µ ∈ Tp(α) for this relation.

Lp-transportation cost-information inequalities are well-studied in the literature,
see, for instance, [4] and references therein. The cases p = 1 and p = 2 are of par-
ticular interest. Relations between T1(α) and concentration inequalities are covered
in [70] and [17]. In particular, T1(α) is known to be equivalent to Gaussian concen-
tration for all Lipschitz functions, see [17]. In turn T2(α) is a stronger inequality
than T1(α). It was first established for the standard Gaussian measure on Rd by
Talagrand in [105]. Moreover, the celebrated result by Bakry-Emery [3] implies that
the measure π(dx) = e−U(x)dx satisfies T2(α) if ∇2U ≥ α−1 I, see [4, Chapter 9.6].
We are especially interested in T2(α), since it is known to be stable under both
independent and Markovian tensorisations, see [85] and [36].

Our results on W d
2 -ergodic Markov kernels are summarized below.

Proposition 5.4. Let H ⊆ Lipd(L) and assume that W1 (2) holds. Then, for any
initial distribution ξ ∈ S2(X, d), CS1 is satisfied with

ρ(h)(ℓ) = Eπ
[
h̃(X0)h̃(X|ℓ|)

]
, R = A1L

2(1−∆2)
−1W2(ξ,π), (5.10)

where A1 is a constant given in [11][Eq. A.12], and CD1 is satisfied with

ς = L
√
D

[∫
{W d

2 (δx,π)}2π(dx)
]1/2

, λ = ∆2, D = suph∈HVarπ(h). (5.11)

Moreover, if P(x, ·) ∈ T2(α) for any x ∈ X and some α > 0, then, for any initial
distribution ξ ∈ T2(α), n ∈ N, and t > 0,

Pξ
(∣∣Vn(h)− Eξ[Vn(h)]

∣∣ ≥ t
)
≤ 2 exp

(
− (1−∆2)

2nt2

cαL2b2n
(
D +Rn−1 + t

)) , (5.12)

where c > 0 is an absolute constant.

It is also possible to remove a quite restrictive assumption P(x, ·) ∈ T2(α) and
to relax W1 (2) to W1 (1), but in this case CS1 and CD1 can be verified only for
H being a subset of bounded Lipschitz functions. As a price for such generalisation,
the exponential concentration bound is replaced by a polynomial one.
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Proposition 5.5. Let H ⊂ Lipb,d(L,B) and assume that W1 (1) holds. Then for
any initial distribution ξ ∈ S1(X, d), 1 is satisfied with

ρ(h)(ℓ) = Eπ
[
h̃(X0)h̃(X|ℓ|)

]
, R = A2B(1−∆

1/2
1 )−1, (5.13)

where A2 is a constant given in [11][Eq. A.18], and CD1 is satisfied with

ς = 2LB

∫
W d

1 (δx,π)π(dx), λ = ∆1, D = suph∈HVarπ(h). (5.14)

Moreover, for any p ∈ N,

Pξ
(∣∣Vn(h)− Eξ[Vn(h)]

∣∣ ≥ t
)
≤

C
p
R,1B

2pb
3p/2
n pp

np/2tp
+

C
p
R,2B

2pb2pn p
2p

np−1tp
, (5.15)

where constants CR,1 and CR,2 are given in [11][Eq. A.28].

5.2.1 Langevin dynamics

In this case, X = Rd and we assume that π has an everywhere positive density
w.r.t the Lebesgue measure, i.e., π(θ) = Z−1e−U(θ), where Z =

∫
e−U(ϑ)dϑ is the

normalization constant. Consider the first-order Euler-Maruyama discretization of
the Langevin Dynamics from (5.4),

θk+1 = θk − γ∇U(θk) +
√
2γ ξk+1, (5.16)

where γ > 0 is a step size and (ξk)
∞
k=1 is an i.i.d. sequence of the standard Gaussian

d-dimensional random vectors. The idea of using (5.16) to approximately sam-
ple from π has been advocated by [93] which coin the term Unadjusted Langevin
Algorithm (ULA). Consider the following assumption on U .

ULA 1. The function U is continuously differentiable on Rd with gradient ∇U
satisfying the following two conditions.

1) Lipschitz gradient: there exists LU > 0 such that for all θ, θ′ ∈ Rd it holds that
∥∇U(θ)−∇U(θ′)∥ ≤ LU∥θ − θ′∥;

2) Strong convexity: there exists a constant mU > 0, such that for all θ, θ′ ∈ Rd it
holds that U(θ′) ≥ U(θ) + ⟨∇U(θ) , θ′ − θ⟩+ (mU/2)∥θ′ − θ∥2.

The Unadjusted Langevin Algorithm has been widely studied under the above
assumptions, see, for example, [40] and [31]. As it is known from [40], under ULA
1 the associated Markov kernel, denoted by P

(ULA)
γ , is W d

2 -uniformly ergodic. For
completeness, we state below [40, Proposition 3].

Proposition 5.6. Assume ULA1 and set κ = 2mULU/(mU + LU ). Then for any
step size γ ∈ (0, 2/(mU + LU )), P

(ULA)
γ satisfies W 1 (2) with d(ϑ,ϑ′) = ∥ϑ − ϑ′∥

and ∆2 =
√
1− κγ. Moreover, P(ULA)

γ has a unique invariant measure π(ULA)
γ .

It is shown in [40, Corollary 7] that, for any step size γ ∈ (0, 2/(mU + LU )),

W d
2

(
π,π(ULA)

γ

)
≤

√
2κ−1/2LUγ

1/2
{
κ−1 + γ

}1/2 {2d+ dL2
Uγ/mU + dL2

Uγ
2/6}1/2 .

We define the asymptotic variance as

V (ULA)
∞ (h) :=

∑
ℓ∈Z

E
π
(ULA)
γ

[(
h(X0)− π(ULA)

γ (f)
)(
h(X|ℓ|)− π(ULA)

γ (f)
)]
.
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At each iteration of the algorithm, ∇U is computed. Hence it is an appealing
option to use this gradient to construct Stein control variates (see, for instance, [1],
[79], and [84]), given by

gϕ(θ) = −⟨ϕ(θ) , ∇U(θ)⟩+ div
(
ϕ(θ)

)
, (5.17)

where ϕ : X → Rd is a continuously differentiable Lipschitz function, ⟨· , ·⟩ is the
standard scalar product in Rd, and div(ϕ) is the divergence of ϕ. Under rather
mild conditions on π and ϕ, it follows from the integration by parts that π(gϕ) = 0
(see [79, Propositions 1 and 2]). Note that if ϕ(θ) ≡ b, b ∈ Rd, we get gb(θ) =
−⟨b , ∇U(θ)⟩. Then for a parametric class H = {f − gb : ∥b∥ ≤ B}, assuming that
f ∈ Lipd(L1) and that condition 1 holds, we get H ⊂ Lipd(max(L1,BLU )). For
other approaches to construct control variates we refer reader to [57], [34], and [21].
The next result follows now from Theorem 5.2 and Proposition 5.4.

Theorem 5.7. Let H ⊂ Lipd(L) and assume that ULA 1 holds. Assume addi-
tionally that ξ ∈ T2(β) for some β > 0. Fix any γ ∈ (0, 2/(mU + LU )) and set
bn = 2⌈log(n)/ log(1/∆2)⌉ with ∆2 =

√
1− κγ and κ = 2mULU/(mU + LU ).

Then, for any ε > 0 and δ ∈ (0, 1), with probability at least 1− δ,

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h)

≲ C1 ε log(n) + C2

√
log2(n)log(|Hε|/δ)

n
+ C3

log2(n) log (|Hε|/δ)
n

,

where

C1 =

√
R+

√
D

κγ
, C2 =

L
√
(β ∨ γ)(D +R)

κ2γ2
+

√
DR

κγ
, C3 =

L2(β ∨ γ)
κ4γ4

+
R

κγ
+

ς

κ2γ2

with R, ς from Proposition 5.4 and D = suph∈HVar
π
(ULA)
γ

(h).

Corollary 5.8. Under the assumptions of Theorem 5.7, the following holds.

1) if class H is parametric, that is, |Hε| ≤ Cρε
−ρ for all ε ∈ (0, 1) and some

constants Cρ, ρ > 0, then it holds with probability at least 1− 1/n,

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h) ≲ n−1/2 log1/2(n),

2) if class H is non-parametric, that is, |Hε| ≤ Cρ exp(ε
−ρ) for all ε ∈ (0, 1) and

some constants Cρ, ρ > 0, then it holds with probability at least 1− 1/n,

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h) ≲ n−1/(2+ρ).

Here ≲ stands for inequality up to a constant depending on ρ and other constants
from Theorem 5.7. Moreover, if additionally the constant π(ULA)

γ (f) is in the class
H, then infh∈H V

(ULA)
∞ (h) = 0 and these bounds hold for the asymptotic variance

itself.

5.2.2 Extension to the Stochastic Gradient Langevin Dynamics

In this section, we shall consider the situations where the target π is given
by the posterior distribution in the Bayesian inference problem, that is, π(θ) ∝
exp (−U(θ)), where U(θ) = U0(θ) +

∑K
i=1 Ui(θ) with K being a number of obser-

vations. Computing ∇U(θ) requires a computational budget that scales linearly
with K. Hence it is often impossible to apply procedures based on discretisation of
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Langevin Dinamics directly. One possible solution advocated by [111] is to replace
∇U(θ) by an unbiased estimate. This gives rise to the SGLD algorithm, where the
parameters are updated according to

θk+1 = θk − γG(θk,Sk+1) +
√
2γ ξk+1,

G(θ,S) = ∇U0(θ) +KM−1
∑

i∈S
∇Ui(θ),

(5.18)

where each Sk+1 is a random batch taking values in SM (here SM is the set of all
subsets S of {1, . . . ,K} with |S| = M) which is sampled from a uniform distri-
bution over SM independently of Fk (here (Fk)k≥0 is the filtration generated by
{(θℓ,Sℓ)}ℓ≥0). Note that E[G(θk,Sk+1)|Fk] = ∇U(θk) and therefore G(θk,Sk+1)
is an unbiased estimate of ∇U(θk). The available variance reduction techniques
for SGLD usually replace the stochastic gradient in (5.18) with more sophisticated
estimates which preserve unbiasedness but have lower variance.

The simplest variance reduction technique is the fixed-point method (SGLD-
FP) proposed in [2]. This method is applicable when the posterior distribution is
strongly log-concave. We set θ̂ ∈ Θ to be a fixed value of the parameter, typically
chosen to be close to the mode of posterior distribution. We estimate the gradient
∇U(θ) by

GFP(θ,S) = ∇U0(θ) +KM−1
∑

i∈S

(
∇Ui(θ)−∇Ui(θ̂)

)
+
∑K

i=1
∇Ui(θ̂). (5.19)

The SGLD-FP algorithm is obtained by plugging this approximation into (5.18).
More sophisticated variance reduction methods typically use reference values

(gik)
K
i=1 of the gradient (∇Ui)Ki=1 from previous iterates (and not only the last iter-

ate); as a result, constructed sequence (θk)
∞
k=0 is often not Markovian. One partic-

ular example is SAGA-LD method, adapted from [94, 33]. If i ∈ Sk, the reference
value is updated, that is, gik+1 = ∇Ui(θk). Otherwise, the reference value is simply
propagated, that is, gik+1 = gik. One then considers the following gradient estimator

GkSAGA(θ,S) = ∇U0(θ) +KM−1
∑

i∈S

(
∇Ui(θ)− gik

)
+ gk , gk =

∑K

i=1
gik .

(5.20)
The recursion is initialized with gi0 = ∇Ui(θ0), i ∈ {1, . . . ,K}, and g0 =

∑K
i=1 g

i
0.

Finally, the gradient is computed according to (5.20) and plugged into (5.18).
For theoretical analysis of SGLD and SGLD-FP algorithms we need the following

assumptions on U . Without loss of generality, we consider only SGLD; the same
reasoning applies to SGLD-FP.

SGLD1. The function U(θ) = U0(θ)+
∑K
i=1 Ui(θ) satisfies the following conditions.

1) Lipschitz gradient: for any i ∈ {0, . . . ,K}, Ui is continuously differentiable on
Rd with L̃U -Lipschitz gradient;

2) Convexity: for any i ∈ {0, . . . ,K}, Ui is convex;

3) Strong convexity: there exists a constant mU > 0, such that for any θ, θ′ ∈ Rd it
holds that U(θ′) ≥ U(θ) + ⟨∇U(θ) , θ′ − θ⟩+ (mU/2)∥θ′ − θ∥2.

Note that using Stein control variates with SGLD-based sampling procedure
(5.18) eliminates benefits of using G(θ,S) instead of exact gradient ∇U(θ). Fol-
lowing [45], we replace ∇U by its stochastic counterpart. More precisely, for k-th
iteration of SGLD algorithm, we consider the control variates of the form

gϕ(θ,S) = −⟨ϕ(θ) , G(θ,S)⟩+ div
(
ϕ(θ)

)
. (5.21)
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The control variate gϕ depends now on the pair (θ,S). Let H = {f(θ) − gϕ(x) :

ϕ ∈ Φ}, where x = (θ,S) ∈ X = Θ × SM . Consider another sequence
(
S̃k
)∞
k=0

of independent batches uniformly distributed over SM such that for any k, S̃k is
independent of Fk. Denote by PSGLD the transition kernel of SGLD and let ΥM be
a uniform distribution over SM . Set P := PSGLD ⊗ΥM and Xk = (θk, S̃k).

Proposition 5.9. Assume SGLD1. Then for any step size γ ∈
(
0, L̃−1U (K+1)−1

)
,

P satisfies W 1 (2) with ∆2 =
√
1− γmU and d(x,x′) = ∥ϑ − ϑ′∥ + b1S ̸=S′ for

any x = (ϑ,S) and x′ = (ϑ′,S′). Moreover, P has a unique invariant measure
π = π

(SGLD)
γ ⊗ΥM .

Similarly to Langevin Dynamics, we define

V (SGLD)
∞ (h) :=

∑
ℓ∈Z

Eπ
[(
h(X0)− π(f)

)(
h(X|ℓ|)− π(f)

)]
.

Theorem 5.10. Let H ⊆ Lipb,d(L,B) and assume that 1 holds. Fix any γ ∈(
0, L̃−1U (K+1)−1

)
and set bn = 2⌈log(n)/ log(1/∆1)⌉ with ∆1 =

√
1− γmU . Then,

for any ε > 0 and δ ∈ (0, 1), with probability at least 1− δ,

V (SGLD)
∞ (ĥn,ε)− infh∈H V

(SGLD)
∞ (h)

≲ C4 ε log(n) + C5

√
log5(n)

n

(
|Hε|
δ

)1/ log(n)

+ C6
log n

n
,

where

C4 =

√
R+

√
D

mUγ
, C5 =

B2R1(L, ξ)

(mUγ)2
+

B2R2(L, ξ)

(mUγ)4+2/ logn
+

√
RD

mUγ
, C6 =

D(mUγ) + ς

(mUγ)2

with R, ς from Proposition 5.5, D = suph∈HVar
π
(SGLD)
γ

(h), and constants R1(L, ξ),
R2(L, ξ) which can be tracked from [11][Eq. A.27].

Proof. By Proposition 5.9, 1-2 holds with ∆2 =
√
1− γmU , and, by Lyapunov in-

equality, W1 (1) also holds with ∆1 = ∆2. Hence, the second part of Proposition 5.5
can be applied with p = log n. The remaining part follows from Theorem 5.2 with
computation of the inverse function in the right-hand side of (5.15).

Corollary 5.11. Under the assumptions of Theorem 5.10, if class H is parametric,
that is, |Hε| ≤ Cρε

−ρ for all ε ∈ (0, 1) and some constants Cρ, ρ > 0. Then it holds
with probability at least 1− 1/n,

V (SGLD)
∞ (ĥn,ε)− infh∈H V

(SGLD)
∞ (h) ≲ n−1/2 log5/2(n),

where ≲ stands for inequality up to a constant depending on ρ and other constants
from Theorem 5.10. Moreover, if additionally π(f) ∈ H, then infh∈H V

(SGLD)
∞ (h) =

0 and these bounds hold for the asymptotic variance itself.

Remark. If the class H is constructed using Stein control variates, we can ensure the
inclusion H ⊆ Lipb,d(L,B) by taking smooth and compactly supported functions
ϕ. This in turn can be achieved by multiplying a given smooth function ϕ with a
mollifier function, that is, an infinitely smooth compactly supported function.

5.3 Experiments
In this section, we numerically compare the following two methods to choose

control variates: Empirical Variance Minimisation (EVM) method, where a control
variate is determined by minimizing the marginal variance, see (5.1), and Empirical
Spectral Variance Minimisation (ESVM) method, where a control variate is deter-
mined by minimizing the spectral variance, see (5.6). Implementation is available
at https://github.com/svsamsonov/vr_sg_mcmc.
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5.3.1 Toy example

We first consider a multimodal distribution in R2 from [91]. Namely, let π(x1,x2) =
Z−1e−U(x1,x2), where Z is the normalization constant and

U(x1,x2) =
(∥x∥ − µ)2

2M2
− log

(
e−(x1−µ)2/2σ2

+ e−(x1+µ)
2/2σ2

)
.

We choose M = 1 and µ = σ = 3; the respective density profile is presented
in Figure 2. Our aim is to estimate π(f) with f(x1,x2) = x1 + x2 using ULA.
The parametric class gφ in (5.17) is generated by φ(x) =

∑p
k=1 βkψk(x), where

ψk = e−∥x−µk∥
2/2σ2

ψ with all µk regularly spaced in [−3, 3] × [−3, 3] and σψ = 2.
Boxplots displaing variation of 100 estimates for EVM and ESVM are presented in
the same Figure 2. Furthermore, we compute sample autocovariance functions for a
trajectory with and without adding ESVM and EVM control variates. The results
reflect a spectacular decrease in high-order autocovariance for ESVM, see Figure 2.
Note that EVM aims at minimizing only the lag-zero autocovariance, that is why
the autocovariance function for ESVM-adjusted trajectory decreases much faster.

Experiment nburn ntest γ batch size
Toy example, Section 5.3.1 103 104 0.1 -
Gaussian Mixture, Section 5.3.2 104 105 0.01 10

Table 3: Experimental hyperparameters

Figure 2: Toy example from Section 5.3.1. From left to right: (1) density profile,
(2) boxplots displaing variation of 100 estimates for vanilla ULA, ULA with EVM,
and ULA with ESVM, (3) sample autocovariance functions a trajectory with and
without ESVM and EVM.

5.3.2 Gaussian mixture model

We consider posterior mean estimation for unknown parameter µ in a Bayesian
setup with normal prior µ ∼ N (0,σ2

µ), σ2
µ = 100, and sample (Xk)

K−1
k=0 , K = 100,

drawn from the Gaussian mixture model

0.5N (−µ,σ2) + 0.5N (µ,σ2) with µ = 1, σ2 = 1.

The density of the posterior distribution over µ is given in Figure 3. It has 2 modes
roughly corresponding to µ = 1 and µ = −1. To generate data from this posterior
distribution and estimate posterior mean, we use SGLD. The parametric class gφ
in (5.21) is generated by φ(x) = β0x

2 + β1x + β2. Boxplots displaing variation of
100 estimates for EVM and ESVM and respective sample autocovariance functions
are also presented in Figure 3. Note that the increase in lag-zero autocovariance
for ESVM is explained by the additional randomness in (5.21). On contrary, EVM
favors far too small coefficients to overcome this additional randomness, which leads
to poor variance reduction.

48



Figure 3: Gaussian mixture model from Section 5.3.2. From left to right: (1) den-
sity of the posterior distribution, (2) boxplots displaing variation of 100 estimates
for vanilla SGLD, SGLD with EVM, and SGLD with ESVM, (3) sample autoco-
variance functions for a trajectory with and without ESVM and EVM.

5.3.3 Bayesian logistic regression

The probability of the i-th output yi ∈ {−1, 1}, i = 1, . . . ,K, is given by
p(yi|xi, θ) = (1 + e−yi⟨θ ,xi⟩)−1, where xi is a d × 1 vector of predictors and θ
is the vector of unknown regression coefficients. We complete the Bayesian model
by considering the Zellner g-prior Nd(0, g(X

TX)−1) for θ where X = [x1, . . . ,xN ]
is an K × d design matrix, see [56, Section 2]. Normalizing the covariates, for
x̃i = (XTX)−1/2xi and θ̃ = (XTX)1/2θ, we get ⟨θ , xi⟩ = ⟨θ̃ , x̃i⟩, under the Zellner
g-prior, θ̃ ∼ Nd(0, gId).

We analyse the performance of EVM and ESVM methods on two datasets from
the UCI repository. The first dataset, EEG, contains K = 14 980 observations in
dimension d = 15, the second dataset, SUSY, has K = 500 000 observations in
dimension d = 19. The data is first split into a training set T train

N = {(yi,xi)}Ki=1

and a test set T test
K = {(y′i,x′i)}Ki=1 by randomly picking K = 100 test points

from the data. We use the SGLD-FP and SAGA-LD algorithms to approximately
sample from the posterior distribution p(θ̃|T train

N ). Given a sample (θ̃k)
n−1
k=0 , we can

estimate the predictive distribution for a fixed test point (y′,x′), that is, p(y′|x′) =∫
Rd p(y

′|x′, θ̃) p(θ̃|T train
N ) dθ̃, by computing the ergodic mean n−1

∑n−1
k=0 f(θ̃k) for

f(θ̃) = p(y′|x′, θ̃). To get rid of randomness caused by the random choice of a
test point, we estimate the average predictive distribution for the whole test set
T test
K by computing the ergodic mean for the function f(θ̃) = K−1

∑K
i=1 p(y

′
i|x′i, θ̃).

Boxplots for the estimation of average predictive distribution are shown in Figure 4.
Note that ESVM leads to a significant variance reduction for both SGLD-FP and
SAGA-LD.

Figure 4: Bayesian logistic regression for EEG and SUSY datasets from Sec-
tion 5.3.3. Boxplots displaing variation of 100 estimates of average predictive dis-
tribution for (1) left panel: vanilla SGLD-FP, SGLD-FP with EVM, and SGLD-FP
with ESVM, (2) right panel: vanilla SAGA-LD, SAGA-LD with EVM, and SAGA-
LD with ESVM.

Further, for the EEG dataset we plot in Figure 5 a part of the trajectory
f(θ̃m) = K−1

∑K
i=1 p(y

′
i|x′i, θ̃m) for 500 consecutive sample values θ̃m with and

without adding the ESVM control variate. These trajectories are accompanied by
the sample autocovariance functions for vanilla and variance-reduced samples for
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both EVM and ESVM. Again, since EVM aims at minimizing only lag-zero autoco-
variance, the decrease in autocovariance function for this method is smaller than for
ESVM. We also report in Figure 6 how autocovariance functions change with batch
sizes. Note that for small batch sizes ESVM still manages to remove correlations,
while EVM almost fails. At the same time, increasing the batch size leads to similar
results for EVM and ESVM.

Experiment nburn ntrain ntest γ batch size
Logistic regression, EEG dataset 104 104 105 0.1 15
Logistic regression, SUSY dataset 105 105 106 0.1 50

Table 4: Experimental hyperparameters
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Figure 5: Bayesian logistic regression for the EEG dataset from Section 5.3.3.
From left to right: (1) part of a trajectory without ESVM, (2) part of a trajectory
with ESVM, (3) sample autocovariance functions for a trajectory with andwithout
ESVM and EVM.
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Figure 6: Bayesian logistic regression for the EEG dataset from Section 5.3.3.
Comparison of sample autocovariance for different batch sizes. From left to right:
batch size 5, 15, 150 respectively.

5.3.4 Bayesian Probabilistic Matrix Factorization

A typical problem in Recommendation Systems is to predict user’s rating for a
particular item given other user’s ratings of this item and how a given user evaluated
other items. A common approach to this problem is Probabilistic Matrix Factor-
ization via Bayesian inference, see [97]. Namely, we are interested in approximating
matrix R ∈ RM×N , whereM is a number of users, N is a number of rated items, and
Ri,j stands for rating assigned by i-th user to j-th item. Due to natural limitations
(user is unlikely to rate all possible items), we observe only a some small subset
of elements of R and want to predict ratings of the hidden part. In Probabilistic
Matrix Factorization, we aim at representing R as a product R = UTV +C, where
U ∈ RD×M , V ∈ RD×N , and C ∈ RM×N being a matrix of biases with elements
Ci,j = ai + bj , a ∈ RM , b ∈ RN . In the subsequent experiments we assume that
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rank parameter D = 10 is fixed. The naive solution would be to find

U ,V , a, b = argminU ,V ,a,b

∑
(i,j)∈Itrain

(
Ri,j − ⟨Ui , Vj⟩ − ai − bj

)2
,

where Itrain is a train subset of ratings. Unfortunately, optimizing this criteria leads
to significantly overfitted model. One possible approach to overcome overfitting is
to consider penalised model

U ,V , a, b = argminU ,V ,a,b

∑
(i,j)∈Itrain

(
Ri,j − ⟨Ui , Vj⟩ − ai − bj

)2
+ λU∥U∥2 + λV ∥V ∥2 + λa∥a∥2 + λb∥b∥2,

but it requires careful tuning of penalisation coefficients λU ,λV ,λa,λb. We thus
would benefit a lot from Bayesian approach for tuning weights; this was pointed
out in [97]. We follow a slightly simplified formulation proposed by [28], that is, we
consider

λU ,λV ,λa,λb ∼ Γ(1, 1), Uk,i ∼ N
(
0,λ−1U

)
, Vk,j ∼ N

(
0,λ−1V

)
,

ai ∼ N
(
0,λ−1a

)
, bi ∼ N

(
0,λ−1b

)
, Ri,j |U ,V ∼ N

(
⟨Ui , Vj⟩+ ai + bj , τ

−1).
In order to sample from the posterior distribution which we denote by p(Θ|R),
where Θ = {U ,V , a, b,λU ,λV ,λa,λb}, we use the following two-steps procedure:

1. Sample from p(U ,V , a, b|R,λU ,λV ,λa,λb) using SGLD or SGLD-FP with a
minibatch size of 5000 observations with a step size γ = 10−4. Sample for
1000 steps before updating the weights λU ,λV ,λa,λb;

2. Sample new λ from p(λU ,λV ,λa,λb|U ,V , a, b) using the Gibbs sampler.

The experiments are performed on the Movielens datasetml−100k (link to dataset).
We apply our control variates procedure as a postprocessing step following [2].
The functional of interest is the mean squared error over the test subsample,
f(U ,V , a, b) =

∑
(i,j)∈Itest(Ri,j−⟨Ui , Vj⟩−ai−bj)2. Since the dimension of param-

eter space is very high, first-order control variates are the only option among Stein’s
control variates. Parts of SGLD- and SGLD-FP-based trajectories before and after
using control variates, and confidence intervals for estimation of f are presented in
Figure 7.

Figure 7: Bayesian Probabilistic Matrix Factorization from Section 5.3.4. Left
Panel: test MSE trajectory for SGLD (left) and SGLD-FP (right) with and without
ESVM. Right Panel: confidence intervals for test MSE trajectory for SGLD (left)
and SGLD-FP (right).
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6 Conclusion
This thesis is based on published papers [48, 81, 83, 82, 8, 11, 64, 42, 41, 49].
Let us list the main results that are obtained in this thesis and submitted for

defense.

1. Tight non-asymptotic bounds for the Kolmogorov distance between the prob-
abilities of two Gaussian elements to hit a ball in a Hilbert space.

2. Anti-concentration bound for the squared norm of a non-centered Gaussian
element in a Hilbert space.

3. Bootstrap procedure for building sharp confidence sets for the true spectral
projector of covariance matrix from the given data.

4. Exponential stability of random matrix products driven by i.i.d. sequence or
a general (possibly unbounded) state space Markov chain.

5. Finite-time p-th moment bounds for constant and decreasing stepsize linear
stochastic approximation schemes with i.i.d. or Markovian noise on general
state space.

6. Novel and practical variance reduction approach for additive functionals of
dependent sequences.
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