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Abstract

Empirically testing a bond portfolio hedging model is usually carried out when propos-

ing a new model or to compare several existing models using real data. However, there are

many methodological choices to be made during such exercise, which are usually made either

implicitly or without sufficient discussion. We review the empirical literature and highlight

differences in testing methodology. We then carry out a massive numerical experiment to as-

sess how each of these differences influences the testing outcome thus quantifying the model

risk associated with these model features. The model risk measure values we report are easily

interpretable and offer insight on the discrepancies in the results of existing empirical studies

and ways to avoid such discrepancies in future work.

JEL: G12, E43.
Keywords: immunization, mark-to-market, mark-to-model, empirical test, bond portfolio.

1HSE University, Moscow, Russia; vlapshin@hse.ru
2Support from the Basic Research Program of the National Research University Higher School of Economics is

gratefully acknowledged.



1 Introduction

We consider the problem of hedging the interest rate risk of a portfolio of bonds in a trading book.
The source of this risk is the repricing of the bonds in the portfolio due to changes in the term
structure of interest rates. This is a case of the bond portfolio immunization problem which is
widely discussed in the literature.

The problem of immunizing a bond portfolio has traditionally been stated as follows—given
an investment horizon H and a financial obligation, find a suitable investment strategy to meet
the obligation with the least possible risk. As a rule, only the interest rate risk is considered even
though the investment might be subject to credit or other risks. The usual setting consists in hav-
ing to meet a single fixed financial obligation at time H. This problem has been the subject of
extensive research, both theoretical and empirical, over recent decades. However, this informal
problem statement can be formalized in various ways—thus numerous solutions have accumu-
lated in the literature. Testing and comparing the performance of these solutions also requires a
considerable number of modelling choices all of which could possibly impact the results. Empir-
ical papers on comparing the performance of several immunization strategies usually made these
choices implicitly—and differently—thus making the aggregation of comparison results over em-
pirical papers impossible.

Our main contribution is methodological—we review the empirical literature and highlight the
methodological steps (assumptions, goals, data, etc.) in which they implicitly differ one from
another. Then we conduct a massive numerical experiment in which we try all the possible combi-
nations of modelling choices and assess how much these modelling choices influence the resulting
immunization performance estimates, thus separating the important choices from the less impor-
tant.

2 Literature Review

The immunization problem dates back to Redington (1952) who introduced duration-based im-
munization together with a periodic rebalancing of the portfolio to maintain the duration-based
hedge. The research was mostly theoretical—with a few numerical examples but no empirical
study. There was no clearly defined mathematical objective, however, from the equations one
might deduce that the objective was to maintain a steady actuarial valuation of the business over
time, not to some predefined final reporting date.

Since then, the research has followed several separate directions. The first considered various
kinds of shocks to the term structure. Duration-based hedging was shown to be equivalent to hedg-
ing against parallel additive shifts of the term structure. Bierwag (1977) considered additive and
multiplicative shocks and their combinations. Cooper (1977) considered parametric durations—
sensitivities to small changes in the parameters defining the term structure curve. Willner (1996)
considered these parametric durations with respect to the Nelson-Siegel term structure parame-
ters. Boyle (1978); Ingersoll et al. (1978); Cox et al. (1979); Beekman and Shiu (1988) considered
stochastic processes for the instantaneous interest rate and the patterns of term structure shifts im-
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plied by various stochastic process specifications. Au and Thurston (1995) inferred durations as
bond price sensitivities within a one-factor HJM model.

At roughly the same time, another branch of research set out to avoid having to assume a spe-
cific functional form of either the term structure or the stochastic process governing the short rate.
Bierwag et al. (1983) introduced the so-called stochastic process risk (caused by the uncertainty
in determining the stochastic process governing the short rate) and tied it to the discrepancy in
cash flow times. This may be considered as a direct precursor to the M-absolute measure intro-
duced later. Fong and Vasicek (1984) considered arbitrary instantaneous forward rate changes with
bounded derivatives and showed that a lower bound for the loss in the portfolio value is propor-
tional to the M2 measure of cash flow discrepancy:

M2 =
∑

N
i=1(ti −H)2CFid(ti)

∑
N
i=1CFid(ti)

,

where CFi, i= 1..N is the size of the total portfolio cash flow expected at time ti, d(t) is the discount
factor for term t to maturity, and H is the investment horizon.

Shiu (1988) considered so-called convex shifts—such instantaneous forward rate shifts ε(t)

that the corresponding multiplicative discount factor change, f (t) = e−
∫ t

0 ε(τ)dτ , is a convex func-
tion of the term t. This branch was later refined by Uberti (2000) and Hürlimann (2002) to include a
larger set of possible forward rate shifts. Unfortunately, these results are not applicable to the bond
portfolio immunization problem as is—Uberti (2000) stated that this was a direction for further
research, which however, does not seem to have been carried out.

Bierwag et al. (1987a) considered immunizing with respect to the second-order duration mea-
sure D2 along with the traditional duration. Chambers et al. (1988) introduce the duration vector
D consisting of weighted jth powers of cash flow times:

D j =
∑

N
i=1(ti)

jCFid(ti)

∑
N
i=1CFid(ti)

.

The actual formula used in the paper was a bit different as the authors considered the expected
duration vector at the nearest rebalancing moment rather than today. Immunization was carried
out as to make the first 1 to 7 elements of the portfolio duration vector match those of the liability.
This is another example of a nonparametric approach to immunization via the Taylor expansion.

Reitano (1990) and Ho (1992) introduced the so called key rate durations—partial derivatives
with respect to a change in the rate for one single key term to maturity (linearly interpolated be-
tween key terms if necessary). That approach has since become the de facto industry standard in
hedging. Dattatreya and Fabozzi (1995) advanced this approach further by considering sensitivi-
ties to quotes of real-world financial instruments used for hedging the obligation in question—as
opposed to some theoretical interest rates of Reitano (1990) and Ho (1992).

Nawalkha and Chambers (1996, 1997) proposed first the M-absolute and then the M-vector
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immunization approaches. They aimed to reduce the cashflow discrepancy measured by

M j =
∑

N
i=1(ti −H) jCFid(ti)

∑
N
i=1CFid(ti)

.

Nawalkha et al. (2003) further elaborated the concept by considering the generalized M-vector:

M j =
∑

N
i=1(g(ti)−g(H)) jCFid(ti)

∑
N
i=1CFid(ti)

,

where g(t) is a strictly increasing weight function, e.g., g(t) = tα or g(t) = ln t.
Tark (1990) proposed estimating the most plausible term structure movements from empirical

data using principal component analysis. D’ecclesia and Zenios (1994); Barber and Copper (1996);
Hill and Vaysman (1998) put this approach into practice.

A different perspective was considered by Bierwag and Khang (1979); Prisman (1986). They
employed a game-theoretical approach with the investor playing against the market and inferred
portfolio immunization as the max-min strategy yielding the best possible results for the worst-case
term structure change. The M2 approach by Fong and Vasicek (1984) can also be considered a part
of this branch since they showed that minimizing M2 maximizes the worst-case portfolio yield.
Significant new results in this direction were obtained by Balbás and Ibáñez (1998) who showed
that the Ñ measure (equivalent to M-absolute) maximized the worst-case portfolio return for some
specific problem statement (no short positions and requiring a maximum guaranteed return over
a fixed time horizon). Barber and Copper (1998) used the clever trick of integrating by parts to
minimize the sensitivity to any L2 term structure shock and recovered the classical duration and
M2 immunization approaches as particular cases. Balbás et al. (2002b); Balbás and Ibáñez (2002);
Balbás and Romera (2007) provided deeper theoretical foundations for the max-min fixed income
investment approach but formulating an immunization approach based on these results did not turn
out to be straightforward—and to the best of our knowledge has not been done yet.

Some of theoretical studies cited above also provided empirical tests, others only offered
single-case illustrations or no empirical testing at all. There also were purely empirical papers
comparing several immunization approaches using various criteria.

Unfortunately, it is not easy to arrange empirical immunization studies into one or several pro-
gressing lines of methodological development. Most empirical papers aimed at comparing various
immunization methods did not discuss methodological aspects either just stating the choices made
or citing previous studies as justification. The effects this or that particular methodological choice
had on the empirical results were not discussed as a rule.

The review of empirical literature below is organized aspect-wise, not article-wise. We identify
several important aspects of an empirical test of bond portfolio immunization and describe the
various choices made by researchers over time.
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Investment Horizon

Apart from obvious data limitations, we have found no discernible pattern in the way the invest-
ment horizon was chosen in immunization studies:

• 1 or several days (Wu, 2000),

• 1 week (Litterman and Scheinkman, 1991; Ortobelli et al., 2018),

• 1 month (Guletkin and Rogalski, 1984; Elton et al., 1990; Ilmanen, 1992; Carcano and
Foresi, 1997),

• 2 months (Lacey and Nawalkha, 1993),

• 3 months (Guletkin and Rogalski, 1984; Bierwag et al., 1987b; Chambers et al., 1988; Car-
cano and Foresi, 1997),

• 6 months (Guletkin and Rogalski, 1984; Reitano, 1992),

• 1 year (Cooper, 1977; Guletkin and Rogalski, 1984; Nawalkha et al., 2003; Soto, 2004;
Agca, 2005; Carvalhal and Daumas, 2010; Bravo and Fonseca, 2012; Oliveira et al., 2014;
Zhu et al., 2018),

• 2 years (Lee and Cho, 1992; Bravo and da Silva, 2006),

• 2.5 years (Bierwag et al., 1987a),

• 3 years (Balbás et al., 2002a; Soto, 2004; Diaz et al., 2008; Dı́az et al., 2009; Bravo and
Fonseca, 2012; Oliveira et al., 2014),

• 4 years (Nawalkha and Chambers, 1996, 1997; Bravo and da Silva, 2006),

• 5 years (Fisher and Weil, 1971; Bierwag et al., 1987a; Fooladi and Roberts, 1992; Bierwag
et al., 1993; Nawalkha et al., 2003; Mato, 2005; Agca, 2005; Oliveira et al., 2014),

• 10 years (Fisher and Weil, 1971; Bierwag et al., 1981; Agca, 2005),

• 20 years (Fisher and Weil, 1971).

Rebalancing Period

Most immunization strategies require rebalancing the portfolio once in a while. There are two pop-
ular choices for the rebalancing strategy in the literature—periodic rebalancing, e.g., once a year,
or event-based rebalancing when the current market situation calls for it. Some papers assumed
no rebalancing while most papers used periodic rebalancing with various frequencies. Studies
with investment period of 1 year and shorter usually assumed no interim rebalancing while longer
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investment periods were usually accompanied by rebalancing one or several times a year. Addi-
tionally, some papers rebalanced the portfolio every time a coupon was paid on any bond in the
portfolio.3 These are the choices from the literature:

• no rebalancing (Cooper, 1977; Guletkin and Rogalski, 1984; Bierwag et al., 1987b; Cham-
bers et al., 1988; Elton et al., 1990; Litterman and Scheinkman, 1991; Ilmanen, 1992; Rei-
tano, 1992; Lee and Cho, 1992; Lacey and Nawalkha, 1993; Carcano and Foresi, 1997; Wu,
2000; Mato, 2005; Zhu et al., 2018),

• every time a coupon is paid (Balbás et al., 2002a; Soto, 2004; Diaz et al., 2008; Dı́az et al.,
2009; Oliveira et al., 2014),

• weekly (Ortobelli et al., 2018),

• monthly (Agca, 2005; Oliveira et al., 2014),

• quarterly (Lee and Cho, 1992; Soto, 2004; Theobald and Yallup, 2010),

• 2 times a year Bierwag et al. (1987a); Lee and Cho (1992); Bierwag et al. (1993); Bravo and
da Silva (2006),

• once a year Fisher and Weil (1971); Bierwag et al. (1981); Lee and Cho (1992); Nawalkha
and Chambers (1996, 1997); Nawalkha et al. (2003); Bravo and da Silva (2006); Bravo and
Fonseca (2012).

Testing Intervals

When it comes to choosing the time intervals for testing, the two possible choices are overlapping
and non-overlapping intervals. Overlapping intervals allow for more data points but at the cost
of the observations becoming dependent thus rendering statistical comparisons more complicated.
With longer investment horizons one usually does not have a choice other than to use overlapping
intervals.

• Overlapping intervals were used by: Fisher and Weil (1971); Bierwag et al. (1981, 1987a);
Fooladi and Roberts (1992); Bierwag et al. (1993); Nawalkha and Chambers (1996, 1997);
Balbás et al. (2002a); Nawalkha et al. (2003); Soto (2004); Mato (2005); Bravo and da Silva
(2006); Diaz et al. (2008); Dı́az et al. (2009); Bravo and Fonseca (2012); Oliveira et al.
(2014).

• Non-overlapping intervals were used by: Cooper (1977); Bierwag et al. (1987b); Chambers
et al. (1988); Elton et al. (1990); Litterman and Scheinkman (1991); Ilmanen (1992); Lacey
and Nawalkha (1993); Carcano and Foresi (1997); Wu (2000); Ortobelli et al. (2018); Zhu
et al. (2018).

3The portfolios in these papers usually consisted of a very small number of bonds—two or three, thus coupon
payments did not occur very often.
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Nature of the Data

When it comes to the data, a very important distinction should be made. While some papers
use real market bond prices, other empirical works use term structure data as an input with bond
prices determined via discounting the promised cash flows. The bonds in question may be real or
hypothetical—with any desired characteristics. This is easier as term structure data is more readily
available. It also removes the necessity to deal with various issues like low liquidity, missing
quotes, etc. This term structure can be either real or simulated via a dynamic term structure model
fitted to real data.

• Real term structure data was used by: Fisher and Weil (1971); Cooper (1977); Bierwag et al.
(1981, 1987a,b); Elton et al. (1990); Fooladi and Roberts (1992); Nawalkha and Chambers
(1996, 1997); Carcano and Foresi (1997); Balbás et al. (2002a); Nawalkha et al. (2003); Soto
(2004); Bravo and Fonseca (2012).

• Simulated term structure data was used by: Lee and Cho (1992); Agca (2005).

• Real bond prices / quotes were used by: Guletkin and Rogalski (1984); Chambers et al.
(1988); Litterman and Scheinkman (1991); Ilmanen (1992); Lacey and Nawalkha (1993);
Wu (2000); Mato (2005); Bravo and da Silva (2006); Diaz et al. (2008); Dı́az et al. (2009);
Carvalhal and Daumas (2010); Theobald and Yallup (2010); Oliveira et al. (2014); Ortobelli
et al. (2018); Zhu et al. (2018).

Newer works seem to prefer working directly with bond price data and not with term struc-
tures. However, term structure pricing or using real bond data could be preferred in appropriate
circumstances as discussed by Lapshin (2021).

Transactional Costs

Most papers assume no transactional costs in restructuring portfolios. When working with bid/ask
quote data, transactional costs can be easily incorporated by modeling sales at bid prices and
purchases at ask prices (Oliveira et al., 2014). For other types of data, transactional costs have
to be specifically imposed via some sort of assumption e.g., fixed proportional costs (Fisher and
Weil, 1971; Lee and Cho, 1992; Ortobelli et al., 2018) or a fixed term structure of bid-ask spreads
(Agca, 2005). All the other papers assumed no transactional costs.

Strategies Tested

Most empirical papers tested one or several ‘traditional’ immunization strategies and possibly one
or two specific strategies introduced by the authors. Widely tested traditional strategies are:

• naı̈ve strategy: just invest in some long bonds and possibly roll over the portfolio;

• maturity strategy: invest in the shortest bond maturing after the investment horizon;
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• duration strategy: invest in two (often) or more (rarely) bonds so that the combined duration
of the immunizing portfolio be equal to the duration of the obligation being hedged. Most
popular subtypes are bullet—the two bonds are chosen to have maturities closest to the
investment horizon—and barbell—the two bonds are chosen to be the furthest apart in terms
of maturity.

Other strategies which were tested more than occasionally and not entirely by their respective
authors:

• higher order duration hedging (convexity and sometimes higher order): Chambers et al.
(1988); Lacey and Nawalkha (1993); Carcano and Foresi (1997); Soto (2004); Agca (2005);
Ortobelli et al. (2018),

• immunization based on the M-absolute measure (or Ñ): Nawalkha and Chambers (1996);
Soto (2004); Mato (2005); Diaz et al. (2008); Carvalhal and Daumas (2010),

• immunization based on the M-squared measure: Bierwag et al. (1993); Mato (2005); Car-
valhal and Daumas (2010),

• other M-family measures: Nawalkha and Chambers (1997); Balbás et al. (2002a); Nawalkha
et al. (2003); Bravo and da Silva (2006),

• partial (parametric) duration hedging: Cooper (1977); Ilmanen (1992); Soto (2004); Bravo
and Fonseca (2012); Zhu et al. (2018),

• external factor hedging (e.g., PCA-based): Litterman and Scheinkman (1991); Ilmanen
(1992); Soto (2004).

The majority of other hedging strategies were only tested by their respective authors and/or
with significant methodological drawbacks (e.g., with sample sizes of several data points)—this
particularly applies to empirical appendices to mainly theoretical papers.

Comparison criteria

Surprisingly enough, there is no consensus on the objective function for the immunization problem.
Moreover, even on the conceptual level some researchers focus on various measures of expected
return from the strategy (average realized return or the fraction of scenarios in which the strategy
produced not enough funds to meet the immunized obligation) while others compared various
risk measures (RMSE of realized returns, Value-at-Risk, etc.). Many papers employed unique
comparison criteria based on the objective on the paper. Almost all papers calculated all measures
relative to the promised return, i.e., the expected return calculated via the term structure of interest
rates observed at the time of forming the immunizing portfolio. The most common comparison
criteria are:
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• mean absolute deviation of the realized return from the promised return (Fisher and Weil,
1971; Bierwag et al., 1987a; Chambers et al., 1988; Fooladi and Roberts, 1992; Nawalkha
and Chambers, 1996, 1997; Nawalkha et al., 2003; Diaz et al., 2008; Bravo and Fonseca,
2012; Oliveira et al., 2014),

• standard deviation of the realized return from the promised return (Fisher and Weil, 1971;
Guletkin and Rogalski, 1984; Bierwag et al., 1987a; Chambers et al., 1988; Lee and Cho,
1992; Lacey and Nawalkha, 1993; Bierwag et al., 1993; Carcano and Foresi, 1997; Wu,
2000; Soto, 2004; Bravo and da Silva, 2006; Diaz et al., 2008; Bravo and Fonseca, 2012;
Oliveira et al., 2014; Ortobelli et al., 2018),

• mean absolute deviation or root mean squared deviation computed only from negative deviations—
measures of average immunization shortfall (Fooladi and Roberts, 1992; Nawalkha and
Chambers, 1996, 1997; Bravo and Fonseca, 2012),

• unexpected earnings (realized return minus the promised return) (Fisher and Weil, 1971;
Guletkin and Rogalski, 1984; Reitano, 1992; Lacey and Nawalkha, 1993; Ortobelli et al.,
2018; Zhu et al., 2018),

• R2 from regressing the returns on factors (Cooper, 1977; Litterman and Scheinkman, 1991;
Ilmanen, 1992),

• percentage of times when the strategy in question produced the highest return compared to
either competitors or the promised return (Bierwag et al., 1981, 1993; Ortobelli et al., 2018),

• percentage of times when the strategy in question produced the return closest to that promised
(Fooladi and Roberts, 1992; Balbás et al., 2002b; Nawalkha et al., 2003; Bravo and da Silva,
2006; Diaz et al., 2008),

• percentage of times when the strategy produced the return within a fixed tolerance around
the promised return (Bierwag et al., 1981; Agca, 2005),

• Value-at-Risk and / or Conditional VaR, i.e., some lower quantile of the strategy result or
the average of the worst x% of the outcomes (Mato, 2005; Carvalhal and Daumas, 2010;
Ortobelli et al., 2018).

Other optimality measures were used occasionally.

3 Methodology

In this section we outline our methodological framework for testing and comparing immunizing
approaches and briefly discuss the rationale behind some choices. As noted in the introduction,
our main interest lies with the problem of hedging the interest rate risk of a bond portfolio in the
trading book.
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We consider a company having an obligation on its balance sheet. The company is not worried
about having to meet this obligation in future—that is, we assume its business strategy is sound.
The company is however worried about the excess volatility that this obligation introduces into its
financial or internal reporting—and therefore chooses to hedge (immunize) it. Thus, we adopt the
view of a risk management unit, not a business unit. Note that this is different from the classical
bond portfolio immunization problem as we are mainly interested in reducing the interest rate risk
of the portfolio and not in maximizing the financial outcome. This setup motivates most of the
choices listed below.

Immunization horizon. Various kinds of reporting occur with different frequencies from 1 day to
1 year. To study the effects of this choice, we test the horizons of 1 day, 1 and 2 weeks, 1, 3, 6,
and 12 months. Longer horizons do not make sense within our setting as most financial and
management reporting is done at least annually. Since we use relatively short horizons, non-
overlapping intervals is a valid choice which we adopt for the sake of improved statistical
properties.

Portfolio composition. We use a variant of leave-out-one cross-validation. We choose each bond
traded on a given business day as the original obligation—except for the longest and the
shortest bond. Having the obligation outside the maturity range of the hedging instruments
would introduce yet another degree of complexity—term structure extrapolation—which we
would like to avoid at this stage. For each immunization method we form an immunizing
portfolio and assess its performance at the end of the immunization period. Since the orig-
inal obligation is modeled by a traded bond, we are able to use its market price if needed.
If this market price is not available for the end of the immunization horizon we drop this
observation.

Risk measures. We report the three most popular risk measures in assessing immunization per-
formance, namely mean absolute deviation, root mean squared deviation and 95% Value-at-
Risk of the financial result Rt . The financial result Rt is defined as the difference between the
actual future portfolio value Vt+H and the expected portfolio value Ṽt+H , where t is the calen-
dar time and H is the immunization horizon. The expected portfolio value is obtained from
the initial portfolio value Vt via the initial risk-free rate rt(H) for the term corresponding to
the immunization horizon:

Rt =Vt+H −Ṽt+H =Vt+H − ert(H)HVt .

Note that we report the returns per dollar of the original obligation, not per dollar of the
immunizing portfolio as the immunizing portfolio is not required to be self-financing.

Portfolio rebalancing. We do not consider interim rebalancing. Instead we introduce short hori-
zons into the consideration as this offers more flexibility in setting up the computational
experiment. An immunization problem with a long horizon and several rebalancing mo-
ments is actually equivalent to several successive one-step immunization problems with no
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interim rebalancing—with their outcomes aggregated in a special way. Since all the risk
measures already imply a kind of aggregation across calendar time, we believe that a two-
stage aggregation (first within a single multi-step immunization problem and then across
several immunization problems) is redundant. Therefore, we limit ourselves to testing only
one-step immunizations with no interim rebalancing over a broad spectrum of horizons.

We do not rebalance the portfolio when the bonds in the portfolio pay coupons because some
of our immunization portfolios consist of all the bonds available in the market—this would
defeat the idea of testing long rebalancing periods as coupon payments are bound to happen
very often in this case. Instead, we assume that all proceedings are kept in cash until the
end of the period subject to a risk-free interest rate. We tested various reinvesting setups,
however the details turned out to be insignificant in terms of the contribution to the resulting
volatility.

Portfolio valuation. International and most national financial reporting standards allow for two
distinct modes of reporting the value of a financial instrument—mark-to-market and mark-
to-model. The exact details are not important at this stage. However, the distinction itself is
very important. We consider the following three combinations:

• both the obligation and the immunizing portfolio are marked to a model, i.e., priced as
the sum of the discounted cash flows via an estimate of the term structure of interest
rates:

Vt =−
N0

∑
i=1

CF0,ie−rt(t0,i)t0,i +
K

∑
k=1

wk

(
Nk

∑
i=1

CFk,ie−rt(tk,i)tk,i

)
,

where CF0,i are the cash flows of the original obligation expected at terms t0,i, CFk,i are
the cash flows of the hedging instruments expected at terms tk,i, weights wk define the
immunization portfolio composition. rt(·) is the term structure estimate at the calendar
time t to be discussed later;

• the obligation is marked to a model, but the immunizing portfolio is marked to the
market—this routinely happens when hedging an illiquid or bespoke obligation with
liquid market instruments:

Vt =−
N0

∑
i=1

CF0,ie−rt(t0,i)t0,i +
K

∑
k=1

wkPt,k,

where Pt,k is the observed market price of the hedging instrument k for the calendar
time t;

• both the obligation and the immunizing portfolio are marked to the market—this sce-
nario can also serve as an approximation to unanticipated transactional costs. The
additional volatility introduced by the market prices can be viewed as a substitute for
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the uncertainty caused by unanticipated costs.

Vt =−Pt,0 +
K

∑
k=1

wkPt,k,

where Pt,0 is the market price of the original obligation, which is observable by the
choice of the latter.

Data issues. Market prices of some bonds were not observed at some points. For model-based
pricing this is less of a problem; however we cannot use market prices which are unavailable.
We consider two approaches to deal with this issue:

• look-ahead—at the time of forming the immunizing portfolio we restrict our attention
only to the bonds for which the prices are available at the end of the immunization
horizon;

• fill in the missing data—if at the end of the immunization period the prices of some
bonds in the portfolio are not observed, we use their model prices instead.

Another closely related question is whether to include newly issued bonds—if at the end of
the immunization period we observe a new bond which was not available in the beginning of
the period, should we use this information to infer the term structure at the terminal moment?

• Keep new bonds—use all available information at the end of the immunization period
even if the bonds in question were not available in the beginning. Including new bonds
might significantly change the term structure estimate especially if the new bond is
shorter or longer than all other bonds in the dataset.

• Drop new bonds—only use the bonds which were there at the time of forming the
immunization portfolio. This reduces the term structure volatility by reducing one of
its sources—the variability of the instrument set.

We expect these choices to influence the performance of all immunization strategies with
mark-to-model valuation as the sudden appearance or disappearance of bonds is an addi-
tional source of term structure volatility which might or might not be considered by an
immunization model.

Immunization strategies. We test several popular immunization models as well as several less
popular. These strategies are individually described below.

Term structure estimation. For mark-to-model pricing we consider the following popular meth-
ods of estimating the term structure of interest rates from bond prices:

• a Nelson-Siegel model fitted to bond prices via nonlinear least squares—given prices
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Pk for bonds promising CFk,i at times ti, fit the parameters θ = (β0, β1, β2, τ) as

K

∑
k=1

(
Pk −

N

∑
i=1

CFk,ie−rθ (ti)ti

)2

→ min
θ

, (1)

for

rθ (t) = β0 +β1
1− e−

t
τ

t/τ
+β2

(
1− e−

t
τ

t/τ
− e−

t
τ

)
; (2)

• a smoothing spline with a penalty on the first derivative (piecewise linear) :

K

∑
k=1

(
Pk −

Nk

∑
i=1

CFk,ie−r(tk,i)tk,i

)2

+ γ

∫ T

0
[r′(x)]2 dx → min

r(·)
; (3)

• a smoothing spline with a penalty on the second derivative (piecewise cubic) :

K

∑
k=1

(
Pk −

Nk

∑
i=1

CFk,ie−r(tk,i)tk,i

)2

+ γ

∫ T

0
[r′′(x)]2 dx → min

r(·)
. (4)

Three separate term structures are estimated for each day and for each bond playing the part
of the original obligation—because the obligation is excluded from the estimation dataset.
Here and in what follows we suppress the dependence on the calendar time t to avoid clutter-
ing. These models are used for pricing and for immunization strategies where appropriate.
Even if an immunization method assumes a specific term structure model, we test it against
all term structure estimation models to assess the model risk arising from term structure
model misspecification.

Portfolio composition. Almost all immunization strategies impose only a few linear restrictions
on the portfolio composition leaving a considerable number of degrees of freedom (e.g.,
duration-based immunization imposes only one linear constraint). The usual approach is to
minimize the sum of squares of individual instrument weights in the portfolio: ∑

K
k=1 w2

k →
min. This is supposed to minimize the overall portfolio variance. Motivated by preliminary
results, we also test another approach based on the work of Barber and Copper (1998).
Their immunization approach is formulated as a quadratic programming problem and is thus
directly applicable as a substitute to minimizing the sum of squares of the individual weights.

We test these two functionals in two formulations—minimizing the quadratic functional
of choice, subject to all other constraints imposed by the chosen immunization strategy or
adding it as a regularizer. The first (conditional) approach uses the regularization functional
only to select one of the infinitely many portfolios satisfying the immunization conditions.
The immunization conditions are always satisfied exactly; and if only one portfolio satisfies
these conditions, then no regularization is performed. On the contrary, the second approach
regularizes the immunization problem itself—the immunization conditions are now satisfied
only approximately but with smaller immunizing portfolio weights. This might prevent some
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immunization methods from financing immunization via incredibly large short positions in
the presence of a budget constraint. The equations are as follows:

• for the least-squares conditional: 1
2wT w → min;

Aw = b;

• for the least-squares regularized:

1
2

wT (αI +AT A)w− (AT b)T w → min;

• for Barber and Copper (1998) conditional:1
2wT LT T Lw− (LT T L0)

T w → min;

Aw = b;

• for Barber and Copper (1998) regularized:

1
2

wT (αLT T L+AT A)w− (AT b+αLT T L0)
T w → min .

Here w is the vector of portfolio weights, Aw = b is the system of linear equality constraints
imposed by the selected immunization strategy, I is the identity matrix, Ti, j = min(ti, t j),
Lk,i =CFk,ie−r(tk,i)tk,i for k = 0..K, and α is the regularization parameter. We test two values
of the regularization parameter: 10−7 as an example of a subtle regularization which should
not influence the portfolio composition and 10−3 as an example of more aggressive regular-
ization capable of reducing the portfolio weights closer to 0. Note that this is not the final
problem formulation as portfolio constraints can introduce further modifications.

Portfolio constraints. Some empirical papers assumed no short positions; other allowed them.
We found no clear tendency in this matter, so we test both approaches. Additionally, we
consider a budget constraint—the immunizing portfolio should cost no more than the present
value of the obligation. This makes sense if the proceeds from the sale of the obligation are
to be invested in the immunization portfolio. The additional constraints are formulated as
follows:

• no additional constraints,

• w ≥ 0—no short positions,

• PT w ≤ P0—budget constraint; here P is the vector of current bond prices and P0 is the
current obligation price,

• w ≥ 0 and PT w ≤ P0—both budget constraints and no short positions.
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For some immunization strategies linear constraints are infeasible with some types of port-
folio constraints. This only happens in the conditional problem formulation—in the regular-
ized problem we just do our best to satisfy the hedging equations given the constraints.

Transactional costs can be classified as anticipated or unanticipated. Anticipated transactional
costs are determined at the time of choosing the immunizing portfolio and are a function of
its composition—current bid-ask spreads are a good example of anticipated costs. One can
easily include this kind of cost in the optimization functional when forming the immunizing
portfolio. Note that both current and future bid-ask spreads can be considered anticipated
costs—current spreads are deterministic and will be included in the ‘expected return’ part
of the optimization functional while future spreads are random and can be included in the
‘volatility’ part of the functional—assuming we have a decent estimate of future spread
volatility. Unanticipated costs are by definition those which are not included in the func-
tional.

In our one-step setting, bid-ask spreads and fixed transactional costs are anticipated and can
be regarded as a kind of regularization. Since we test quite a few types of regularization
variants, we refrain from treating this kind of transactional cost separately. Also note that
since we aim to measure the residual risk as opposed to the investment profit, anticipated
costs should not be considered. Unfortunately, there is no easy and universal way to model
unanticipated costs. For the mark-to-market valuation approaches, the (random) market price
can be considered as a kind of a proxy for unanticipated costs.

Numerical issues. Some immunization strategies could yield prohibitively poorly conditioned op-
timization problems. For the formulation of the conditional problem we use the 10−7 singu-
lar value threshold for removing the approximately dependent constraints. On the contrary,
in the regularized case we just scale Aw = b to make its largest singular value 1 and then let
the regularization do the job of forcing singular values that are too small out of play.

3.1 Immunization strategies

For ease of notation we assume that the original obligation and all hedging instruments have a
common set of cash flow times ti. If this is not the case, zero cash flows CFk,i can be introduced
when necessary.

3.1.1 No hedging

This is the reference strategy with all immunization weights equal to 0. Note that it produces
different outcomes depending on whether we value the obligation at its market price or at its
model price. The relative performance indicators we report are normalized by the performance of
this strategy.
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3.1.2 Duration-vector hedging

Implemented after Chambers et al. (1988). For a bond k with the cash flow vector CFk,i and cash
flow times ti, its j-th duration D j,k is given by

D j,k =
∑

N
i=1(ti)

jCFk,ie−r(ti)ti

∑
N
i=1CFk,ie−r(ti)ti

,

where r(t) is the current term structure estimate. Since the duration vector is linear in portfolio
weights w, the optimization constraints Aw = b can be written as

Dw = D0,

where D0 is the duration vector of the obligation calculated similarly. The length of the duration
vector is arbitrary. We test duration-vector strategies for dimensions 1 (ordinary duration hedging)
to 7. However, for dimensions larger than 5, the system becomes ill-conditioned. One would prob-
ably be better off reformulating these immunization problems in terms of Chebyshev polynomials
to avoid numerical instability.

3.1.3 M-vector hedging including M-absolute

Implemented after Nawalkha and Chambers (1996, 1997). This is identical to the duration-vector
hedging except that instead of the duration matrix D we use the M-matrix M defined by

M j,k =
∑

N
i=1(ti −H) jCFk,ie−r(ti)ti

∑
N
i=1CFk,ie−r(ti)ti

.

The optimization constraint is Mw = M0, where M0 is the M-vector of the obligation. We test
M-vector hedging strategies for dimensions 2 to 7, Instead of 1-dimensional M-vector, we use the
M-absolute measure:

Mabs,k =
∑

N
i=1 |ti −H|CFk,ie−r(ti)ti

∑
N
i=1CFk,ie−r(ti)ti

.

3.1.4 Generalized M-vector hedging

Implemented after Nawalkha et al. (2003). Here the generalized M-matrix is formed as

Mgen
j,k =

∑
N
i=1(g(ti)−g(H)) jCFk,ie−r(ti)ti

∑
N
i=1CFk,ie−r(ti)ti

for a monotonically increasing function g(x). We choose g(x) = lnx motivated by the results of
Nawalkha et al. (2003). We test generalized M-vector hedging for dimensions 2 to 7. As before,
we use the absolute value instead of 1-dimensional hedging.
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3.1.5 Nelson-Siegel parametric hedging

Implemented after Willner (1996). We assume that the bonds are valued at their model prices PVk

which are calculated as

PVk =
N

∑
i=1

CFi,ke−rθ (ti)ti,

where rθ (t) is given by Eq. (2) and θ = (β0, β1, β2, τ) is the vector of parameters changing
from day to day. For each bond we calculate the vector of its parametric durations ∂PVk

∂θ
=(

∂PVk
∂β0

, ∂PVk
∂β1

, ∂PVk
∂β2

, ∂PVk
∂τ

)
and since the parametric durations are linear in portfolio weights, the

optimization constraint is easily written as(
∂PV
∂θ

)T

w =

(
∂PV0

∂θ

)T

,

where PV0 is the sum of discounted cash flows for the obligation.

3.1.6 Spline parametric hedging

Implemented after Lapshin (2019). We assume that the value PVk of bond k is calculated as

PVk =
N

∑
i=1

CFi,ke−r(ti)ti,

where the term structure estimate r(·) is found from the current observed bond prices Pk by solving
Eq. (3) or Eq. (4). Here we treat Pk as parameters and basically calculate the parametric duration

matrix
(

∂PV
∂P

)T
. Since the parametric duration is linear in portfolio weights, the optimization

constraints can be written as (
∂PV
∂P

)T

w =

(
∂PV0

∂P

)T

.

The solution of this system is

w =
(
BT

Ω
−1B

)−1
BT

Ω
−1B0,

where Ω = BBT +∑
K
k=1(PVk −Pk)

∂ 2PVk
∂ r2 +αJT J with JT J defined by

rT JT Jr = inf
f (·) | f (ti)=ri

∫ T

0
f ′′(x)2 dx

or a similar expression with the first derivative.
Note that even though we observe the market bond price Pk, here we assume that for the purpose

of portfolio valuation we use our term structure model to discount the cash flows (mark-to-model).
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3.1.7 Mixed mark-to-market and mark-to-model immunization

Implemented after Lapshin (2021). Assuming that the original obligation is marked-to-model
while the hedging instruments are marked-to-market immediately yields the following formulas
for the immunization weights:

wk =
∂PV0

∂Pk
=

(
∂PV0

∂ r

)(
∂ r
∂Pk

)
,

where we have split the obligation model price sensitivity ∂PV0
∂Pk

into the sensitivity of the model

price to changes in the term structure ∂PV0
∂ r and the sensitivity of the term structure estimate to

changes in the observed bond prices ∂ r
∂Pk

. The first is determined by the choice of the obligation
while the second by the chosen term structure estimation model.

For the Nelson-Siegel parametric term structure Eq. (2) we get

w =

(
∂PV0

∂P

)T

= BT QT (QBBT QT +Aθ )
−1QB0,

where B =
(

∂PV
∂ r

)T
is the matrix of bond price sensitivities to the term structure changes, B0 is the

same for the original obligation, Q =
(

∂ r
∂θ

)
is the matrix of term structure sensitivities with respect

to its parameter vector θ , Aθ = ∑
K
k=1(PVk −Pk)

∂ 2PVk
∂θ 2 .

For the nonparametric term structure Eq. (3) or Eq. (4) we get

w = BT (BBT +A+αJT J)−1B0

using the notation above.

3.1.8 Classical key rate duration hedging

Implemented after Ho (1992). We choose the usual set of key rates t∗s = {1, 3, 5, 7, 10, 15} years
and consider the sensitivity of the bond price PVk to piecewise linear changes in the term structure
ci(t) described by

ci(t) =



1, t = t∗i ;

0, t = t∗j ̸=i;

ci(t∗a)
t−t∗a
t∗b−t∗a

+ ci(t∗b)
t∗b−t
t∗b−t∗a

, t∗a < t < t∗b ;

ci(t∗1), t < t∗1 = 1;

ci(t∗6), t > t∗6 = 15.

The i-th key rate duration KRDi,k of bond k is given by the directional derivative

KRDi,k =
∂PVk(r+ x · ci)

∂x

∣∣∣∣
x=0

,
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where with a slight abuse of notation PVk(r) is the price of bond k with the function r(·) playing
the part of the term structure. The optimization constraints are then written as

KRD ·w = KRD0,

where KRD0 is the key rate duration vector of the obligation.
Note that due to the peculiarities of the dataset, for some days the key rate duration matrix

KRD becomes singular (e.g., if there are no bonds over 10 years to maturity). In these cases we
drop the zero or dependent rows of the key rate duration matrix and continue with the reduced set
of key rates.

3.1.9 Adapted key rate duration hedging

As discussed by Lapshin (2019), classical key rate duration hedging can be viewed as parametric
hedging when the term structure linearly interpolates the observed zero-coupon yields for fixed set
of key terms to maturity. Therefore, it is natural to suggest that for a practical situation we choose
the key terms to coincide with the observed bonds’ terms to maturity rather than the standard set of
1, 3, 5, 7, 10, 15 years. We choose the key terms to maturity to be the maturities of all bonds in the
dataset. Presumably this approach will provide better hedging than the standard key rate duration
hedging due to being tailored to the data specifics.

3.1.10 Worst-case L2 immunization

Barber and Copper (1998) derive an upper bound for the sensitivity of a bond portfolio defined by
its cash flows to any change in the term structure with

∫
(∆r(x))2 dx = 1. Minimizing this upper

bound in a kind of worst-case immunization results in solving the following quadratic program:

(Lw−L0)
T T (Lw−L0)→ min

w
,

where L is the matrix of discounted cash flows Li,k =CFk,ie−r(ti)ti , L0 is the same for the obligation,
and Ti, j = min(ti, t j). The immunization conditions can be restated in the form of equality con-
straints, however there is no practical need in this as the constraints identify all portfolio weights
thus making the conditional regularization redundant. Instead, since this approach is formulated
in terms of minimizing a quadratic functional, we use it instead of the least squares to regularize
other methods.

3.2 Data description

We use a dataset of Spanish government bonds prices from 1996 to 2019 obtained from Bloomberg.
We use only bonds with known coupon payments and no embedded options. Daily observations
ranged from 11 to 46 bonds. On 1 Aug 2014, the ex-dividend date for the bonds changed from 3
business days before the coupon to 2 business days before the coupon.
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We removed the bonds having less than 1 month to maturity from consideration. That is, if a
bond has less than 1 month to maturity at the beginning of the immunization period, we do not
consider it at all. If it has less than 1 month to maturity at the end of the period, we consider it
unobserved at that time—and either drop it or mark it to the model.

We also remove bonds with coinciding cash flow times. Some bonds in the dataset have coin-
ciding coupon payment and maturity dates. Even with slightly different coupon rates such bonds
disrupt many of the hedging methods discussed, so in such cases we use only one.4

4 Empirical results

There are 10 dimensions to our numerical experiment—we performed 10,000 simulations for ev-
ery combination of: risk measure, portfolio constraints, term structure fitting model, immunization
horizon, immunization method, rule for including newly issued bonds, rule for dealing with miss-
ing bonds, portfolio valuation approach, regularization functional, and regularization parameter.
Of these, we call ‘features’ everything except the immunization method.

We assume that an analyst has one of the two motives below.

1. Comparing various immunization methods by their performance in reducing the risk, pos-
sibly to choose one for implementation or to assess whether a change of immunization al-
gorithm is in order. The quantity of interest in this case is the relative ranking of various
strategies in terms of their performance.

2. Assessing whether immunization can deliver a necessary risk reduction compared to no
hedging. The quantity of interest in this case is the performance of a chosen immuniza-
tion method.

To estimate the magnitude of the influence of modelling choices on these quantities of interest,
we calculate several measures of model risk implied by different model features as follows.

General model risk of a feature i is calculated as

Riski = Std f ,o,m
[
Res f ,o,m −Mean f

(
Res f ,o,m

)]
,

where f is the value of feature i, o is a 8-dimensional value vector for all other features
except i, and m denotes the immunization method, so Res f ,o,m is the quantity of interest for
method m with feature i set to f and all other features set to the corresponding entries in o.
With a slight abuse of notation, the subscript in Std f ,o,m and Mean f denotes the variable(s)
across which the standard deviation or average is to be taken.

As discussed above, we use two quantities of interest: the relative ranking of a given immu-
nization method among its competitors Res f ,o,m =Rankm[Pf ,o,m], where Pf ,o,m is the hedging

4In such cases, we leave the bond with the smallest ID number, which is usually the one issued the earliest.
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performance measured as the relative change in the chosen performance measure:

Pf ,o,m =
Risk Measure with Hedging f ,o,m

Risk Measure without Hedging f ,o,m
,

and Rankm denotes the rank of Pf ,o,m across the index m, i. e., among all values Pf ,o,·, which
gives us the rank-based general model risk Ri:

Ri = Std f ,o,m
[
Rankm[Pf ,o,m]−Mean f

(
Rankm[Pf ,o,m]

)]
.

The other possible quantity of interest is the relative performance of a given immunization
method in reducing the risk Res f ,o,m = ln(Pf ,o,m), which gives the log-based general model
risk Li:

Li = exp
{

Std f ,o,m
[

lnPf ,o,m −Mean f
(
lnPf ,o,m

)]}
−1.

The transformation ex −1 is added merely for ease of interpretation to undo the effect of the
log and revert to the original scale.

Note that the choice of the risk measure is determined by one of the features—it can be the
standard deviation of the financial result, its mean absolute deviation or 95% Value-at-Risk
depending on the feature ‘Risk Measure’.

For example, if the rank-based general model risk for feature i, Ri = 2, we can say that
variations in feature i can typically shuffle the immunization methods leaderboard by ± 2
places for given values of the other features. On the other hand, if the log-based general
model risk for feature i, Li = 0.15, we can say that variations in feature i can affect the
performance of an immunization method in reducing the chosen risk measure by ±15% in a
given setting.

For the log-based model risk we take one further step to split it into systemic and individual
components as follows.

Systemic log-based model risk Lsys
i of feature i is calculated as

Lsys
i = Std f

[
Meano,m

(
Res f ,o,m

)]
.

Systemic model risk measures whether any single value of feature i on average improves
(or reduces) the performance of all random immunization methods for all other feature val-
ues. Near-zero values of systemic model risk for some feature i mean that a change in this
feature is just as likely to increase the performance of a random method with random other
feature values as to decrease it. On the contrary, positive values indicate that some values of
feature i are generally better than alternatives regardless of the chosen method and the other
parameters.

Lsys
i = 0.15 can be interpreted as follows: by tuning the feature i one could achieve an

average gain of about 15% in reducing the chosen risk measure regardless of the chosen
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Feature i Ri, places Pi, points Li, % Lsys
i , % Lind

i , %

Constraints 4.1 1.6 69 21 63
Term Structure 1.8 1 49 16 45
Valuation 2.4 1.3 77 32 64
Horizon 2.6 1.1 56 29 44
Risk Measure 2.3 1 69 43 46
Regularization Functional 3.7 1.3 91 44 70
Regularization Parameter 4.1 1.4 78 29 69
New Bonds 0.3 0.2 3.9 0.8 3.8
Missing Data 1.4 0.6 25 2.1 25

Table 1: Measures of model risk associated with various model features.

immunization method and the other parameters. Note that it is not sensible to calculate
the systemic component of rank-based model risk since the average rank is not supposed to
change.

Individual log-based model risk Lind
i of feature i is calculated as

Lind
i = Std f ,o,m

[
Res f ,o,m −Mean f

(
Res f ,o,m

)
−Meano,m

(
Res f ,o,m

)]
.

This measures the unpredicted effect of changing setting i, which depends on the choice of
the immunization method and of other parameters. Lind

i = 0.15 could mean that changes in
feature i affect the immunization performance by ±15% on average, however this effect is
positive for some methods and some parameters and negative for other methods and/or other
parameters.

Points-based model risk Pi is calculated as a kind of robustness check—we acknowledge that
for rank-based model risk estimates, perturbations at the top of the leaderboard are usually
much more important than those at the bottom. Therefore, instead of calculating the average
change in places, we assign points according to the following scheme: the first place is worth
10 points, the second place 7 points. The 3rd to the 7th places earn 5, 4, 3, 2, and 1 point
respectively. All other places earn no points (the maximum rank is 25 as there are 25 hedging
methods tested including no hedging).

Table 1 reports these measures. We now examine a few two-dimensional slices of this table in
more detail. Figure 1 shows the model risk estimates in two dimensions. We can summarize the
model risk of our 9 features as follows.

• The rule for including the newly issued bonds virtually does not matter for the purposes of
estimating the immunization performance of a single method and comparing various im-
munization methods. This is probably due to the fact that new bonds are issued relatively
rarely.

• The rule for dealing with missing data is a little bit more important but not much. We expect
this to change with the overall liquidity of the market in question.
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• The choice of the term structure fitting model is not very important in general—although
in certain circumstances it might significantly favor methods which are designed with this
particular term structure model in mind.

• The immunization horizon not only changes the performance of the methods, but also shuf-
fles their relative positions by ± 2–3 places on average. This suggests that the choice of the
best immunization method should be tied to a specific immunization horizon.

• The choice of the performance measure (Value-at-Risk, mean absolute deviation, standard
deviation) and the portfolio valuation approach (mark-to-market or mark-to-model) cause
significant performance discrepancy but moderate leaderboard changes. This can happen if
the performances of various methods are affected similarly. Note that since we deal with rel-
ative performance change, the fact that Value-at-Risk is normally greater than the deviation
does not influence the results as all changes are thus considered relative to the corresponding
hedge-free risk measure.

• Portfolio constraints greatly impact the leaderboard with moderate changes to the perfor-
mance. This implies that, for example, top performing methods with no portfolio constraints
might well exhibit quite modest performance in the presence of trading or budget constraints.

• Finally, both the regularization method and the regularization parameter produce the highest
model risk in terms of both performance and ranking. This suggests that immunization
studies employing regularization techniques should devote more attention to the technical
issues, i.e., to choosing the regularization functional and the regularization parameter.
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Figure 1: Relation between rank-based model risk R and log-based model risk L.

Our robustness check is visualized in Fig. 2. We can see that the relationship between the
rank-based model risk R and the points-based model risk P is almost linear. We might say that the
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choices of the valuation principle and of the term structure impact the best-performing methods
a little bit more than average while the choices of portfolio constraints and regularization tend to
affect the best-performing methods a little bit less than average.
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Figure 2: Robustness check: rank-based model risk R vs. points-based model risk P.

5 Conclusion

The design of the empirical bond portfolio hedging exercise means making a lot of choices. Some
of these choices, e.g., immunization horizon, could be informed by the financial problem being
solved while some others, e.g., choosing the regularization parameter or functional, are usually
chosen arbitrarily.

We have considered two model problems—assessing the performance of a single hedging strat-
egy and comparing several strategies. For each of these modeling choices (features), we have
assessed the extent to which the answer depends on this choice thus estimating the model risk.

Some of the features turned out to be insignificant while some others give rise to significant
model risk. Moreover, these significant features cannot be inferred from the model formulation in
an obvious way and hence admit a great deal of voluntarism in their choice. There are two direct
consequences of this result. First, future empirical immunization studies are advised to take greater
care in designing the experiment. Second, existing empirical studies are most likely not directly
comparable due to significant methodological differences—this applies to the studies proposing
a new immunization method while comparing it to the existing best practice approach and to the
studies comparing several existing immunization methods.
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