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1. Introduction 

1.1. General research problem 

Every second the visual system deals with lots of various objects in a scene. Even 

though severe limitations of focused attention and working memory (Cowan, 2001; 

Luck & Vogel, 1997; Pylyshyn & Storm, 1988) prevent detailed processing of all 

objects (Wolfe et al., 2011), observers typically experience no difficulties with seeing 

them all at the same time. One possible solution to this paradox of visual perception is 

the idea that the visual system represents some general statistical information about the 

whole set of objects without representing and storing information about each individual 

object (Alvarez, 2011; Ariely, 2001). It can be accomplished via computing statistical 

moments for feature distributions of a set of visible objects (Whitney & Yamanashi 

Leib, 2018) – ensemble summary statistics. It was shown that observers can extract the 

first and the second statistical moments which correspond to the average value of a 

visual feature (Alvarez & Oliva, 2008; Ariely, 2001; Bauer, 2009; Chong & Treisman, 

2003, 2005b, 2005a) and its range/variance (Dakin & Watt, 1997; Morgan et al., 2008; 

Norman et al., 2015; Solomon et al., 2011). Also, observers can estimate the 

approximate number of objects in a scene without counting them one by one (Burr & 

Ross, 2008; Chong & Evans, 2011; Halberda, Sires, & Feigenson, 2006). 

A broad spectrum of visual dimensions can be compressed into ensemble 

summaries: orientation (Alvarez & Oliva, 2009; Dakin & Watt, 1997; Parkes, Lund, 

Angelucci, Solomon, & Morgan, 2001), color (Gardelle & Summerfield, 2011; Maule 

& Franklin, 2015), size (Ariely, 2001; Chong & Treisman, 2003, 2005b, 2005a), motion 

(Watamaniuk & Duchon, 1992), even emotional expressions of faces (Haberman & 

Whitney, 2007) and many others (Florey, Clifford, Dakin, & Mareschal, 2016; Leib, 

Kosovicheva, & Whitney, 2016; Sweeny & Whitney, 2014). This provides a solid basis 

for guiding human behavior in various situations. Ensemble summary statistics can be 

represented perceptually rather than inferred “cognitively” which is supported by the 

evidence from adaptation aftereffects (Burr & Ross, 2008; Corbett et al., 2012; Norman 
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et al., 2015; Ying & Xu, 2017). Ensemble summaries are extracted quickly (as rapidly 

as 50–200 ms, Chong & Treisman, 2003; Whiting & Oriet, 2011) and often with limited 

or absent conscious access to individual objects (Alvarez & Oliva, 2008; Ariely, 2001; 

Corbett & Oriet, 2011; Parkes et al., 2001).  

Recent studies showed that the visual system can even represent the whole 

distribution of objects’ features (Chetverikov et al., 2016, 2017a, 2017b, 2017c; Kim & 

Chong, 2020; Oriet & Hozempa, 2016). These findings suggest that simple summaries 

such as mean, variance, and numerosity are not the only things conveying ensemble 

information. Rather, it suggests that ensemble representations store quite rich 

information about the whole set of objects while mean, variance, and numerosity can be 

calculated based on these rich distributional representations (Khvostov et al., 2021).  

How does the visual system use this rich information about the whole distribution 

of features? Can it be used for parallel and independent extraction of different ensemble 

summaries? What role does the distributional information play in everyday cognitive 

tasks such as visual search or rapid categorization of multiple objects? The present work 

summarizes research that my collaborators and I have done to investigate these 

questions. 

1.2. Research goals 

1) To test whether the calculations of different ensemble statistics can be done in 

parallel. 

2) To study whether the calculations of different ensemble summaries are carried 

out by a common cognitive mechanism or independently, by several mechanisms. 

3) To investigate the role of the shape of a feature distribution in the rapid visual 

categorization and segmentation of multiple objects defined by conjunctions of two 

features. 

4) To study the role of the shape of a feature distribution in the conjunction and 

feature search tasks.  

1.3. Methodology and theoretical basis of the work  
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The current work relies on and develops the following theoretical ideas:  

1) sets of objects and scenes are represented in the compressed form of ensemble 

summary statistics (Alvarez, 2011; Ariely, 2001; Chong & Treisman, 2003; Whitney & 

Yamanashi Leib, 2018). 

2) the visual system uses the distributional characteristics of an ensemble for 

performing rapid categorization of multiple objects - the theory of rapid visual 

ensemble-based categorization and segmentation (Utochkin, 2015). 

3) the visual perception process can be conceptually divided into “deep” and 

“shallow” processing, e.g. attention and preattention (Neisser, 1967; Feature integration 

theory: Treisman & Gelade, 1980), focused and distributed attention (Treisman, 2006), 

non-selective and selective pathways of scene and object processing (Wolfe et al., 2011). 

4) the visual system uses the output from “shallow” processes (preattention) to 

efficiently guide “deep” processes (attention) – e.g., Guided Search Theory (Wolfe, 

1994, 2021). 

1.4. Hypotheses 

1) The visual system extracts different statistical summaries from a set of objects 

independently (via distinct cognitive mechanisms) and in parallel (without any cost of 

dividing attention between the statistics). 

2) The visual system uses the shape of the feature distributions as a cue for rapid 

visual categorization and segmentation of multiple objects defined by conjunctions of 

features along two sensory dimensions. The more feature dimensions have a distribution 

consisting of separate peaks (“segmentable” distribution), the more successful the 

categorization is. 

3) The shape of the feature distributions influences the visual search speed: a 

presence of separate peaks in the distribution (“segmentable” distribution) will improve 

the search performance. 

1.5. Research methods 
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All studies in this work are controlled psychophysical experiments conducted in 

laboratory settings. In various studies, different tasks and report paradigms were used: 

Study 1 used ensemble summary estimation with an adjustment method, Study 2 used a 

texture segmentation task with a two-alternative forced choice, and Study 3 used a 

visual search with speeded “yes-no” response. Statistical analysis was done in JASP 

software (JASP 0.9.0.1; JASP, Amsterdam, the Netherlands) and R. Statistical 

procedures included a series of repeated-measures ANOVA with subsequent pairwise t-

tests and Pearson correlations. 

1.6. Summary of scientific novelty 

Most previous studies in the field of ensemble statistics were focused on 

investigating questions about extracting isolated statistical summaries (mostly, mean) 

along one feature (e.g., size) from a set of objects. The current work tests and develops a 

new idea that the visual system has access to much richer information about the whole 

feature distributions of different features rather than just individual statistical summaries. 

This rich information is used to drive performance on different perceptual tasks. 

1) We investigated how the visual system deals with situations where it needs to 

extract several statistical summaries for a set of objects at the same time. We asked two 

important questions: (1) Does the visual system extract different summaries via 

independent cognitive mechanisms or a single mechanism? (2) Can the visual system 

extract several summaries in parallel (without the cost of dividing attention between 

these summaries)? We introduced a new paradigm, a version of the dual task 

implemented for the ensemble calculation which allowed us to test these two tightly 

connected questions in one task. Also, we developed a new way of data analysis for the 

dual-task trials based on within-individual correlation. It can directly test whether errors 

in reporting two statistics from the same trial are correlated which makes the analysis 

more powerful than in previous paradigms. Using these methods, we discovered new 

strong evidence that the visual system extracts several summaries independently and in 

parallel. 
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2) Previous works showed that the feature distribution along a single sensory 

dimension influences performance in cognitive tasks with multiple objects (e.g., 

Chetverikov et al., 2016; Utochkin & Yurevich, 2016; Im et al., 2021). For the first time, 

we tested how the visual system uses distributions of several features for such tasks. We 

discovered the conditions when the visual system can use several feature dimensions 

simultaneously for the rapid visual categorization of multiple objects defined by a 

conjunction of these features. Our studies revealed that the successful categorization can 

happen only when the distributions of both features have several separable peaks: e.g., 

objects are only big and small without any intermediate sizes. We proposed a new 

mechanism that explains these results and provided empirical evidence for this 

mechanism. 

3) For the first time, we studied how the feature distributions along two sensory 

dimensions affect the deployment of attention over a visual search for a conjunctively 

defined target. Our study revealed conditions where they have no effect and where they 

strongly modulate the efficiency and speed of visual search. We obtained new evidence 

that the visual system can implement efficient conjunction search even in the absence of 

separable peaks within distractor distributions, i.e., in the absence of distractor grouping. 

We discovered that the Guided Search model (Wolfe, 1994, 2021) can perfectly explain 

these results. Therefore, our work establishes a new important connection between the 

theory of rapid visual ensemble-based categorization and segmentation (Utochkin, 2015) 

and seminal theories of visual search – e.g., the Guided Search model (Wolfe, 1994, 

2021). Using the Guided search model, we predicted a very counterintuitive result: with 

certain distribution characteristics, visual search along one feature dimension can be 

much slower and more ineffective than visual search along two feature dimensions. For 

the first time, we tested and confirmed this prediction.  

1.7. Theoretical significance 

The current work contributes to the development of a set of important modern 

theories of visual perception and attention, such as the theory of ensemble summary 
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statistics (Alvarez, 2011; Whitney & Yamanashi Leib, 2018), theory of rapid visual 

categorization and segmentation (Utochkin, 2015), and Guided search model (Wolfe, 

1994, 2021). It advances our understanding of the architecture of visual representations: 

what information about a set of objects is available for the visual system and how the 

system uses it. 

1.8. Applied significance  

The results of the present work can be used for optimizing the way the 

information is visualized and displayed: e.g., how one should mark different objects to 

be sure that people easily can segment one group from another (even if the objects from 

different groups are spatially intermixed) or find a target object among others. Also, 

ensemble summary statistics is a topic tightly connected to mathematical statistics, 

therefore, the results can be used to improve teaching mathematical statistics using more 

intuitive examples from visual statistics. Some results of this work are used in 

undergraduate courses, “Cognitive Psychology” and “Psychology and Neurophysiology 

of Perception and Attention”, at the HSE University. 

1.9. Statements for the defense 

1) Several ensemble summaries can be extracted from a set of objects in parallel: 

without the cost of dividing attention between these statistics. The read-out of different 

summary statistics is accomplished via partially distinct, uncorrelated cognitive 

mechanisms which do their calculations independently. 

2) The visual system uses the shapes of feature distributions as cues for rapid 

visual categorization and segmentation of multiple objects defined by a conjunction of 

two features. The prerequisite of such categorization is the “segmentability” of both 

feature distributions (the presence of several separate peaks representing likely 

categories). A plausible mechanism for carrying out such categorization is the half-split 

strategy: to select the object group along one feature dimension and compare the 

average value along a second feature dimension. 

3) The visual system bypasses the absence of the distributional “segmentability” 
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and effectively searches for a known conjunctively defined target. However, the visual 

system cannot avoid the influence of segmentability during the visual search for one 

feature or conjunction search when one target feature is unknown: the efficiency and 

speed of search are decreased for nonsegmentable distributions within distractors. 

1.10. Data collection 

All three articles selected for the defense describe sets of psychophysical 

experiments. For the present work, we have run twelve laboratory experiments at the 

Cognitive Research Laboratory (HSE University, Moscow, Russia) and Visual 

Attention Laboratory (Brigham and Women’s Hospital and Harvard Medical School, 

Boston, USA). Overall, over 200 observers took part in these experiments. 

 1.11. Public presentations on the topic 

The results of the present work have been publicly presented in 5 talks and 6 

posters at 8 international and Russian conferences. These included: Annual Vision 

Sciences Society Meeting (2018, 2019), European Conference on Visual Perception 

(2018, 2019), Cognitive Science Arena (2020), Actual Problems of Psychological 

Science (2018), etc. Three colloquium talks have been presented in the HSE Laboratory 

for Cognitive Research (2019, 2020), Visual Attention Laboratory at Brigham and 

Women’s Hospital (2019). 

1.12. Author's contribution 

The author was involved in all research described below: discussed the ideas of 

experiments, created the stimuli, programmed and ran the experiments, analyzed and 

interpreted the data, presented the results at conferences, and wrote the manuscripts for 

publications. 
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2. Independence and parallelism in the visual processing of ensemble statistics 

Article selected for the defense: Khvostov & Utochkin (2019) 

In Introduction, we reviewed many studies showing that observers can use 

information about various features of multiple objects to extract different statistical 

summaries: the mean value of these features, their variance/range, and numerosity (e.g., 

Ariely, 2001; Burr & Ross, 2008; Chong & Treisman, 2003; Morgan et al., 2008). 

Mostly, these works have studied the abilities to extract different summaries in isolation 

which raises a question of their functional relatedness. In the current work (Khvostov & 

Utochkin, 2019), we divided this issue into two questions: (1) Independence: Are 

different ensemble statistics computed by a single cognitive system (“the general 

statistician”), or are they calculated by independent mechanisms? (2) Parallelism: How 

are several ensemble summaries coordinated in gaining access to conscious perception: 

can they be calculated in parallel and without a cost of dividing attention between them? 

Or does the calculating of two summaries lead to mutual interference? 

Both these questions have been previously addressed to some degree using two 

major approaches to studying various domains in perception and cognition (Khvostov & 

Utochkin, 2019). The question about independence was studied using the individual-

difference approach (Huang et al., 2012; Underwood, 1975; Wilmer, 2008): researchers 

estimate cross-individual correlations between scores in a set of tasks performed by a 

group of observers. The presence of correlation signifies favor of a common source of 

noise (variance) implying a common mechanism involved in both tasks. Whereas the 

absence of correlation means the opposite: different sources of noise for the tasks and 

different cognitive mechanisms. Using this approach, Yang and colleagues (2018) 

found the absence of the cross-observer correlation between performance scores of 

mean and variance calculations (both for size and orientation). They concluded that 

these two summaries were calculated by independent mechanisms. A similar approach 

was used in a study by Lee and colleagues (2016) who tested the precision of estimates 

of mean circle size, numerosity, and total area. Their results showed that mean size and 



 

12 

 

numerosity are independently calculated summaries (whereas total area can be derived 

from these two parameters). 

Parallelism of various mental operations is often investigated using the pre/post-

cue paradigm (Khvostov & Utochkin, 2019). For example, a couple of targets (objects, 

sets, etc.) are shown to observers who should report one of them. In a precue condition, 

observers are informed in advance which target they should report and can deploy all 

attentional resources to process that target. By contrast, in the postcue condition, 

observers have no prior information as to which target they will be asked. They get this 

information only after the target presentation, so they should divide attention between 

two targets during the presentation. If performance is better in the precue compared to 

the postcue condition, it means that two processes interfere and compete for the limited-

capacity bottleneck at some point. If there is no such cost in performance, then we can 

conclude that two processes underlying processing both targets can be done in parallel. 

The parallelism of mean and numerosity calculations was studied by Utochkin and 

Vostrikov (2017). In an experiment where observers should calculate two summaries 

for the same set of circles, they showed no cost in performance between pre/postcue 

conditions. Therefore, the authors concluded that numerosity and mean can be 

calculated in parallel. They also probed the independence between these calculations 

using the individual-difference approach described above. Based on the absence of the 

cross-observers correlations, Utochkin and Vostrikov (2017) concluded that the mean 

and numerosity calculations are done by independent mechanisms. 

Our study aimed to test and strengthen these conclusions by probing the 

independence and parallelism of different summary statistics using a new more 

sophisticated method, the dual task. The previously described pre/postcue paradigm 

implies that observers indeed try to divide their attention between two summaries in the 

postcue condition (and do not use some alternative strategies). We developed the dual-

task paradigm which allowed us not to rely on this assumption and directly test whether 

observers can calculate two summary statistics simultaneously by forcing them to report 
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both summaries in each trial (unlike in the postcue condition where they should report 

only one randomly chosen summary in each trial). The dual-task paradigm also allows 

us to test independence not only via the indirect cross-observer correlations but also via 

the direct correlation between two responses in the same trial. If two summaries are 

calculated by different mechanisms, the accuracy of two responses from the same trial 

should not correlate with each other. In the opposite case, we expect a positive 

correlation: if a “general statistician” grasps summaries badly, it should affect both 

responses in a trial in a similar way and vice versa. One more argument in favor of 

using this correlation analysis concerns parallelism testing: it can detect a strategy of 

non-parallel allocation of resources. If observers cannot calculate both summaries 

simultaneously, they can focus on summary #1 in one trial and on summary #2 in 

another trial. If it is the case, we should obtain a strong negative correlation between 

responses in the same trial. Apart from strengthening the conclusions, we also wanted to 

broaden them. Previously, the mean-numerosity and mean-range relationship were 

investigated in different studies using different methods and stimuli. Here, we tested 

both relationships in one study using the same method. 

In Experiment 1 (N=24), we tested functional relatedness between the perception 

of mean size and numerosity. It consisted of several blocks. In a dual-task block, 

observers were shown a set of circles (from 7 to 36) for 500 ms. After a 200 ms blank 

screen, they had to report the mean size of the circles and then the number of the circles 

(or in an opposite order which was counterbalanced). For reporting the mean size, they 

had to adjust a probe circle using a mouse wheel. To report the numerosity, they had to 

adjust a probe’s numerical value. As a baseline for the performance in the dual-task 

block, observers participated in two single-task blocks. The only difference between the 

single and the dual tasks was the requirement to report only one predefined statistic in 

the former case. 

Our primary dependent variable was accuracy, i.e., the normalized absolute error, 

which we calculated as Error = |Observer’s response – Correct response|/Correct 
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response. First, we probed independence via trial-by-trial correlations between two 

responses within the same dual-task trials for each observer separately. Nineteen out of 

twenty observers showed no evidence of such correlation. We also ran this analysis for 

the signed errors (to check whether underestimating numerosity leads to overestimating 

the mean, as a formula for the average from regular statistics predicts): all twenty 

observers showed the absence of the correlation. Second, we ran a cross-correlation 

analysis of average errors in mean size and numerosity reports across observers. As we 

had three measurements of the average error for each statistic, we calculated three 

correlations: between the single-task measurements of mean size and numerosity, 

between first responses in the dual task, and between second responses in the dual task. 

All three analyses showed no evidence of correlation. Note that auto-correlations of 

each ensemble summary under different conditions (e.g., mean size in the single task 

and the dual task) were very high. It shows that it is possible to detect a correlation in 

our experiment (using our sample size, etc.) when it exists. Also, it provides evidence in 

favor of the reliability of our measurements. Thus, both macro- (across observers) and 

micro-level (across trials within each observer) analyses showed that mean size and 

numerosity are calculated by independent mechanisms. Third, to probe parallelism we 

compared the accuracy in the dual task with corresponding single-task measurements. 

This analysis revealed that the error for the first response in the dual task was no 

different from the error in the single task (both for numerosity and mean size). The 

accuracy of the second response was worse than the accuracy of the first response and 

from the single task. It is likely to be explained by memory interference at the recall 

stage. Therefore, there was no substantial cost of dividing attention between the two 

summaries which means that mean size and numerosity can be calculated in parallel. 

Experiment 2 (N=19) was dedicated to broadening the conclusion of Experiment 

1 to another pair of summary statistics: mean size and range/variance. The design and 

procedure of these two experiments were similar except that the numerosity report was 

replaced by range. Therefore, each display always contains sixteen circles but the mean 
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size and range of their sizes change from trial to trial. The range adjustment was 

performed on a set of 16 circles with a fixed mean size. Rotating a mouse wheel 

increased or decreased the diversity of the circles’ set. 

We have run the same three analyses to probe the independence and parallelism 

of mean size and range calculations. As in Experiment 1, the trial-by-trial correlations 

of two responses from dual-task trials showed the absence of correlation for all 

observers, both for absolute and signed errors. Cross-correlations between average 

errors for mean size and range judgments were low and nonsignificant, while the auto-

correlations for estimates of the same summary in different conditions were high. These 

results provide strong evidence in favor of independent calculations of mean size and 

range. Note that the obtained absence of correlation unequivocally signifies in favor of 

independent calculations while the presence of correlation could have alternative 

explanations: either these two tasks are implemented by the same mechanism, or a 

common mechanism critically affects two different mechanisms implementing these 

tasks. The parallelism analysis also revealed results similar to those from Experiment 1: 

the average error of the second response in the dual task was worse than that of the first 

response or in the single task (probably, due to memory distortion coming from the 

serial order of recall). While the average error of the first response in the dual task was 

equal to that from the single task. No cost of dividing attention between mean and range 

calculations lets us conclude that these two summaries can be calculated in parallel. 

Overall, we confirmed the results of the previous work and provided stronger 

evidence in favor of independent and parallel calculations of several ensemble statistics 

(Lee et al., 2016; Utochkin & Vostrikov, 2017; Yang et al., 2018). The independence of 

calculations gives two important insights into ensemble perception. First, different 

sources of noise in calculations of different ensemble statistics can be taken as evidence 

that mean size, numerosity, and variance can be calculated by the different cognitive 

mechanisms which can refer to distinct (or at least partially non-overlapping) neural 

networks. For example, the independency between the mechanisms for numerosity and 
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other statistical calculations can be illustrated by studies showing that numerical 

functions, including numerosity estimation, are associated with activity in the parietal 

cortex (especially the intraparietal sulcus (Dehaene et al., 2003; Nieder & Dehaene, 

2009)) and the prefrontal cortex (Nieder & Dehaene, 2009) while the processing of 

shape statistics (not related to numerosity) is associated with activity in the 

parahippocampal place area and lateral occipital area (Cant & Xu, 2012). Note that the 

statement about different neural networks is speculation now and should be verified 

directly in a separate neurophysiological study. Second, independence also means that 

the mechanisms doing these calculations are blind to each other and do not use the 

results of each other work for their calculations. It can be counter-intuitive because 

regular statistics teach the opposite thing. For example, to compute the mean you need 

to sum up all the elements and divide them by their number, i.e., computation of the 

mean uses the results of numerosity calculation by definition (similar things can be said 

about variance computation). Our study shows that this is not the case for the 

computation of visual statistics: somehow, the visual system calculates mean size 

without the knowledge of numerosity.  

Parallelism of different summaries computations is consistent with this view: if 

different summaries are calculated using non-overlapping neural mechanisms, it is 

easier to do several calculations simultaneously without interference between them. Our 

results are consistent with the view that, while dealing with many objects, the visual 

system builds quite a rich summary representation roughly representing the distribution 

of their features (Chetverikov et al., 2016, 2017a, 2017b, 2017c; Kim & Chong, 2020; 

Oriet & Hozempa, 2016). This rich representation can be used for the extraction of 

different pieces of statistical information about the set of objects: mean, numerosity, and 

variance. How else can this representation be used? The next studies will explore the 

question of how the visual system uses the information about the distribution of features 

for visual tasks such as rapid visual categorization and visual search. 
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3.  Ensemble-based segmentation of multiple feature conjunctions 

Article selected for the defense: Utochkin, Khvostov, & Stakina (2018) 

If the visual system can represent the whole distribution of objects’ features 

(Chetverikov et al., 2016, 2017a, 2017b, 2017c; Kim & Chong, 2020; Oriet & Hozempa, 

2016), this distributional representation can be used not only as a basis for explicit 

estimation of statistical summaries but also for performing everyday cognitive tasks. 

One idea is that the visual system uses the information about a feature distribution as a 

cue for rapid visual categorization of groups of objects (Utochkin, 2015; Utochkin & 

Tiurina, 2014). This process can be explained using the following example. When you 

watch a soccer match, you can instantly see that there are two visually different groups 

of players: e.g., one team is in green, and another team is in red. The visual system can 

easily do this rapid visual categorization because it has access to the color distribution 

of objects in a field. This distribution has two clear peaks (red and green), each 

corresponding to players from one team. This type of distribution is called segmentable. 

According to the theory of rapid segmentation and categorization (Utochkin, 2015), this 

kind of distribution leads to the successful categorization and segmentation of multiple 

objects into several subsets. Another type of distribution (called nonsegmentable) 

contains one wide peak or is uniform which favors all items being perceived as a single 

set rather than categorical subsets. If we return to our soccer example, nonsegmentable 

distribution can be illustrated by many players in differently colored t-shirts: red, yellow, 

orange, green and their shades. In this case, we cannot see any segmented subsets – it is 

just one bitty group of players. 

The theory of rapid segmentation and categorization was tested in a visual search 

study where observers searched for an odd-one-out target among distractors that had 

different feature distributions. When the distractors had a segmentable distribution (e.g., 

0°, 22.5°, and 45°), the target (e.g., -45°) was found slower than in the case of a 

nonsegmentable distribution (0°, 5°, 10°, …, 45°). This result was explained by the fact 

that in the segmentable case, distractors are grouped into several subsets which 
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observers should inspect serially to reject them as non-targets. In the case of a 

nonsegmentable distribution, all distractors belonged to one group and could be rejected 

all at once. The importance of the distribution shape for explicit rapid categorization 

was also shown using various versions of ensemble tasks requiring summary statistical 

judgments for subsets (Im et al., 2021).  

All the aforementioned studies investigated the role of feature distribution in 

rapid categorization and segmentation along a single feature dimension. In real-world 

perception, however, multiple objects rarely show variation, grouping, or segmentation 

along a single dimension. Often, objects vary along many different dimensions, forming 

individual feature conjunctions. In the current study, we wanted to test whether the 

shape of distribution plays an important role in the process of segmentation and 

categorization of multiple objects defined by a combination of several feature 

dimensions (i.e., feature conjunctions). 

We used a texture discrimination task where observers were presented with an 

8×8 array consisting of white lines (64, in total) with different lengths and orientations. 

We manipulated the distribution of these two dimensions. It could be either segmentable 

when the distribution consisted of only two extreme feature values (example for 

orientations: lines tilted only by 11° or 86°), or nonsegmentable when the distribution 

consisted of two extremes and many intermediate values between them (lines with 

orientations varied between 11° and 86° with a step of 5°). The 64-cell field was divided 

in half by an imaginary meridian that could be either horizontal or vertical. Each half 

contained lines with the same distributions of lengths and orientations as separate 

dimensions while the conjunctions of these features were distributed differently, 

providing various length-orientation correlations. In one half of the texture, orientation 

and length were correlated positively: longer lines were also flatter (and vice versa) – in 

the other half, they were correlated negatively: longer lines were also steeper. We 

presented these lines for 200 ms which was followed by a mask (a noisy set of 

overlapping white lines of different orientations and lengths) for 200 ms. Then observer 



 

19 

 

had to respond whether the boundary between two differently correlated groups of lines 

was horizontal (upper and lower halves were different) or vertical (left and right halves 

were different). Therefore, we tested whether observers could rapidly perceive lines 

with different correlational signs as of different types of objects, i.e., to categorize them. 

In Experiment 1 (N=5, experienced observers), we compared performance in two 

conditions: segmentable (both orientation and length distributions were segmentable) 

and nonsegmentable (both distributions were nonsegmentable). Also, we manipulated 

the length-orientation correlation coefficient in the textures – it was ranging from −1.00 

to 1.00 with steps of 0.25. It was done by changing the proportion of each feature 

conjunctions. For example, the correlation approximated by −0.25 was provided by 5/8 

of the long lines being steeper and 3/8 of the long lines being flatter. We built the 

psychometric functions (x-axis – correlation coefficient, y-axis – the proportion of 

correct responses) for each observer separately for segmentable and nonsegmentable 

conditions. We fit normal cumulative density functions and analyzed their σ2 - the 

variance of the normal distribution which characterized the discriminability of the 

stimulus. The main result of the experiment was that all five observers showed much 

smaller σ2 (better discrimination) in the segmentable condition compared to the 

nonsegmentable one. It means that the presence of the distinct peaks in the distributions 

of orientation and length indeed provides better categorization. Observers can clearer 

see the boundary between two regions with different types of objects. 

In Experiment 2 (N=21) we wanted to more closely study this segmentability 

effect on rapid visual categorization. First, we tested several stimulus presentation 

durations (from 100 to 500 ms) to reveal what kind of processes are behind this texture 

discrimination: slow local focused attention (Myczek & Simons, 2008) or fast global 

distributed attention (Chong & Treisman, 2003). Secondly, we wanted to know how this 

segmentation effect originates from the more basic segmentability properties of separate 

feature distributions. Is it enough if only one feature is segmentable or this effect is 

produced only if both distributions are segmentable? Therefore, instead of two 
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segmentability conditions, we orthogonally manipulated segmentability and had four 

conditions: “both” (both orientation and length distributions were segmentable), 

“orientation” (orientation was segmentable, length was nonsegmentable), “length” 

(length was segmentable, orientation was nonsegmentable), “none” (both distributions 

was nonsegmentable). In this experiment, we used only two, extremely opposite 

correlations of 1.0 and -1.0 and calculated the measure of sensitivity to orientation of 

texture boundary (d’ as in the signal detection theory). The results showed that the 

segmentability effect on the d’ occurs quite early (at 200 ms) and does not change 

during longer presentations. It suggests that the process of slow focused attentional 

sampling plays a small to nothing role in this effect. This result is more consistent with 

fast processes of distributed attention which is in line with most views on ensemble 

statistics (e.g., Chong & Treisman, 2005a). The second important result is that only the 

condition where both length and orientation distributions were segmentable provided 

rather good performance (d’ around 0.8-0.9), whereas performance in the rest of the 

conditions was much poorer (d’ below 0.3) suggesting that the segmentability of only 

one dimension is not enough to provide a good basis for categorization of multiple 

conjunctions. We will address this result in Experiment 4. 

Experiment 3 (N=23) was dedicated to more direct testing whether the 

segmentability effect reflects the work of global ensemble processes or local focused 

attentional processes. Instead of analyzing all presented objects, there is a possibility 

that observers do the task using a strategy based solely on focused attention (though it 

contradicts the results of Experiment 2 with segmentability effect raising at 200 ms). 

They could just compare two near elements from different halves along one of the 

boundaries (e.g., horizontal) – if they are “in agreement” (e.g., two long vertical lines or 

one long vertical and one short horizontal lines), an observer should respond that the 

boundary is opposite (i.e., vertical), if they are not in agreement – the boundary is 

horizontal. To test it, we compared the performance in the full-texture condition (the 

same as in the previous experiment) and near-boundary condition (where we presented 
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only lines along horizontal and vertical meridians of the array). If observers use focused 

attention to perform the task, their performance should not decrease under the near-

boundary condition since they should use only two elements near one of the boundaries. 

But if the global processes are involved, the performance in the full-texture condition 

should be higher since we provide more statistical information. The results showed the 

advantage of full-texture over the near-boundary condition in all segmentability 

conditions providing another argument in favor of explaining the segmentability effect 

by the global process of distributed attention rather than the local process of focused 

attention. 

If focused attention does not play a significant role in the rapid categorization of 

multiple conjunctions, how do observers perform the task? We think that observers use 

global mechanisms of distributed attention to implement a strategy that we call half-

split. We suppose that observers try to select all objects from one half of a first feature 

distribution and then compare the groups of selected objects along a second feature 

dimension to find any average difference. For example, an observer can select a subset 

of long lines and check where there is a difference between average orientations. This 

global ensemble strategy might be quite fast and give the impression of differences 

between patches without computing the full correlations. Feature segmentability can 

facilitate this process in two ways. First, by simplifying the selection process: it is much 

easier to select all long lines if they are the same length, and all not-to-be-selected lines 

are short. Second, this is accomplished by increasing the average difference and 

decreasing variability within the groups along the second feature dimension. In the 

segmentable case, the average difference in orientation between two patches is 75° (the 

variance is 0 because all lines are of the same orientation), in the nonsegmentable case, 

the mean difference is 40° (the variance is 12°). These facts can be used to explain the 

result from Experiment 2 that the segmentability of only one feature is not enough to 

substantially increase the performance in a rapid categorization task. 

Experiment 4 (N=16) was dedicated to testing the half-split hypothesis. We 
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artificially simulated the perfect half-split selection and presented half-textures from 

Experiment 2 removing from original stimuli half of the items with features drawn from 

one half of either orientation or a length distribution. Texture discrimination then turns 

into patch comparison along a single dimension. Will the performance be better without 

the need for a half-split and selection along the first dimension? And will the 

segmentability of the second dimension improve performance in this case? The results 

showed that performance was much better than in all previous experiments (d' = 1.12 in 

Experiment 4 vs 0.345 in Experiment 2, at 200 ms presentation duration). Also, we 

found the segmentability effect for the second dimension which was the following: if 

the half-split was made based on length (only longer lines were presented), the 

segmentability of orientation improved the performance drastically (and vice versa). 

Therefore, this experiment showed support for the half-split hypothesis. Two theoretical 

difficulties predicted by this strategy were empirically tested. First, observers indeed 

have problems with the correct selection of objects from one half of the first dimension 

(when this selection was made artificially or when this dimension is segmentable, 

performance becomes much better). Second, comparison of average values along the 

second dimension can also be a problem, since segmentability of this dimension 

increases the performance. 

Overall, four experiments showed that the visual system can use the shape of the 

distribution for performing rapid visual categorization of multiple objects. It can be 

done even when groups of objects are defined as conjunctions of several features. Ob-

servers likely use the half-split strategy to select a group of objects from one half of a 

first dimension and compare these selected objects along a second dimension. Such dis-

tributional property as segmentability (the presence of several peaks with a large gap 

between them) makes this hard process possible because it facilitates the selection of 

objects along the first dimension and increases the average difference (and decreases 

within-group variance) along the second dimension. 
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4. The role of the distributional shape in conjunction visual search 

Article selected for the defense: Utochkin, Khvostov, & Wolfe (2020). 

This study is a logical continuation of the previous research. Here, we aimed to 

test whether the distributional segmentability of two feature dimensions works similarly 

for another important everyday cognitive task – visual search. Like texture 

segmentation, visual search requires processing multiple objects at the same time to 

respond whether a target (an object with predefined features or the odd one out) is 

present among distractors. 

In Experiment 1 (N=12), we presented observers with many lines with different 

orientations (from very shallow to very steep) and colors (from red to blue). Their task 

was to find a predefined conjunction target (e.g., red shallow line) among distractors 

(e.g., red steep and blue shallow lines) as fast as possible. As in the previous study, our 

main manipulation concerned the shape of the distribution. It could be either 

nonsegmentable (orientation ranging between 10° and 80° with a step of 10° and colors 

from the CIE Lab color wheel from 270° (blue) to 360° (red) with a step of 12-13°) or 

segmentable (orientation: only 10° and 80°, colors: only 270° and 360°). We 

manipulated segmentability orthogonally and had four conditions: “both” (both features 

are segmentable), “orientation” (orientation was segmentable, color was 

nonsegmentable), “color” (orientation was nonsegmentable, color was segmentable), 

and “none” (both features was nonsegmentable). As in any classical visual search study, 

we also varied the number of objects (i.e., set size: 9 vs. 17) and the presence of a target 

on the screen (present vs. absent). We plotted a set size × RT function, its slope tells us 

how efficient the deployment of attention was (how many ms observer spends to 

process each additional item). Slopes can differ from around 0 values (meaning the 

search was close to parallel: attention goes straight to a target location regarding the 

number of distractors) to very high values (meaning that the search was completely 

serial: observers should inspect item by item sequentially unless he/she find the target). 

The results revealed the absence of the segmentability effect. In all segmentability 
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conditions, observers showed quite an efficient search: slopes were 9-14 ms/item which 

is close to parallel. 

Experiment 2 (N=15) aimed to replicate this result using another pair of features 

from the previous study: length and orientation. We used the same experimental design 

as in Experiment 1 and obtained similar results: no effect of feature segmentability and 

very efficient search in all conditions (slopes: 0-5 ms/item). 

Given our previous finding of a considerable segmentability effect on texture 

discrimination (Study 2), this result looks surprising. But the lack of segmentability 

effect on conjunction search can be explained using the Guided Search model of visual 

search (Wolfe, 1994, 2021). This theory proposes that the visual system has access to 

various retinotopic feature maps (for color, orientation, size, etc.). Each place on such a 

feature map has activation proportional to the similarity of the feature of an object in 

this place to the target feature. Summing the activations from many feature maps, the 

visual system builds the attention priority map which is used for guidance of attentional 

deployment during visual search – the selective attention first “goes” to a place with the 

highest activation. Thus, the Guided search model can explain the efficiency of our 

searches from the first two experiments by saying that attention is guided 

simultaneously toward red and toward steep in a search for a red steep item. As all 

elements in a display are either steep or red, only the target is both steep and red. This 

double dose of guidance attracts attention to the target location in a similar fashion both 

in the segmentable and nonsegmentable conditions. In the latter case, the target gets a 

double dose of guidance, while distractors get less because as one guiding feature (e.g., 

steepness) gets stronger, the other (redness) gets weaker (due to opposite directions of 

correlation between color and orientation for target and distractors). This model can 

explain why stimuli that create the strong effect of segmentability in the case of texture 

segmentation do not do the same for conjunction search. Also, this model predicts that 

segmentability will play an important role in conjunction search when observers do not 

know all the target features. 
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In Experiment 3 (N=13), observers performed the so-called subset search task in 

displays like in Experiment 1. The only difference was that there was no predefined 

target so observers searched for an odd-one-out orientation in a subset of items with a 

known color (e.g., a unique orientation within a red subset). It means that the target (as 

well as the distribution of distractors) was changed from trial to trial: in one half of 

trials, a target could be a red steep line (distractors were red shallow and blue steep 

lines), in the other half, a target could be a red shallow line (distractors were red steep 

and blue shallow lines). As in previous experiments, we had four segmentability 

conditions (“both”, “orientation”, “color”, “none”) and one more condition for 

comparison, standard conjunction search (“both” condition from Experiment 1). The 

results again showed that searches in all conditions were quite efficient (slopes are 5-14 

ms/item). But unlike previous experiments, the segmentability had a considerable effect 

on average RT: observers were much slower (∼200-300 ms) in those conditions where 

one or both feature distributions were nonsegmentable (“color”, “orientation”, and 

“none”). Note, that this effect mirrored the effect from Study 2 (Experiment 2) where 

the only condition with both segmentable features produced good performance while all 

others were not. Our explanation of this effect is that observers spend the additional 

time to figure out what the target orientation in this probe is: it is much harder to do if at 

least one feature is nonsegmentable. If color is nonsegmentable, it is harder to select the 

color group to search for the odd-one-out orientation among them. If orientation is 

nonsegmentable, the odd-one-out element is more similar to distractors from a color 

subset. But once an observer figures out the target orientation, the task becomes a 

typical conjunction search, where observers can deploy attention with similar efficiency 

in segmentable and non-segmentable conditions. Hence, we observed no change in the 

slopes of the RT x set size functions, but the significant effect of segmentability on the 

average RTs. Therefore, we could detect the effect of segmentability in a search task 

where the role of preliminary categorization is increased. 
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Experiment 4 (N=14) tested another prediction from the Guided search model 

regarding segmentability. The absence of the segmentability effect in Experiments 1-2 

was explained by the fact that the Attention priority map sums activation patterns of two 

feature maps and got a similar result for segmentable and nonsegmentable cases. But 

this similar pattern comes from very different activation on Feature maps. In the 

segmentable conditions, all places on feature maps are either highly activated (objects 

have the same feature as the target) or weakly activated (objects have completely 

different from the target feature value). In contrast, in the nonsegmentable conditions, 

both feature maps show a gradient of activations from high to low. Thus, the Guided 

search model can predict a rather counterintuitive result: feature search in the 

nonsegmentable condition (when the target is defined either by a unique color or by a 

unique orientation only) can be slower and less efficient than conjunction search for the 

same stimuli. This prediction provides a good test for our explanations because it goes 

against the classical result by Treisman and Gelade (1980) that feature search is faster 

than corresponding conjunction search. We had slightly different stimuli but a similar 

procedure and experimental design to Experiment 1. Out of four segmentability 

conditions from conjunction searches of Experiment 1, we took only “both” and “none” 

and compared them with two component feature searches (orientation and color) both 

performed on non-segmentable stimuli. In all conditions, observers showed a search for 

the same target (e.g., a white vertical line). In orientation search, observers had to search 

among differently oriented white lines (nonsegmentable distribution): in color search, 

the observers had to search among differently colored vertical lines (from white to red, 

nonsegmentable distribution); in segmentable conjunction search, they had to search 

among red vertical and white horizontal lines (segmentable distribution); in 

nonsegmentable conjunction search, they had to search among differently oriented and 

differently colored lines (nonsegmentable distribution). The results showed that both 

segmentable and nonsegmentable conjunction searches were much faster and more 
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efficient than both feature searches (especially, orientation) which are strong empirical 

evidence in favor of our explanation of the whole set of experiments. 

Experiment 5 (N=26) was dedicated to replicating the main results of this series 

of experiments with a larger sample of observers (to show that the absence of 

segmentability effect was not due to lack of power) and broaden the conclusions to 

denser, texture-like displays with a larger number of objects. We used the same 

experimental design as in Experiment 1 except that we added two additional set size 

conditions (4 set sizes in total: 9, 17, 33, 65). The results of this experiment strongly 

replicated our results from the previous experiments. When observers know both target 

features, all segmentability conditions provided very efficient searches (7-10 ms/item) 

without any big difference between conditions.  

Overall, this set of experiments showed how the visual system uses the 

information about the shape of the feature distributions to perform a visual search for a 

target defined by two features. When both target features are known by observers, the 

visual system can bypass the absence of clear categorical groups among distractors and 

efficiently find a target using parallel guidance by the sum of two feature maps. But if 

observers do not know at least one of the target features, the absence of segmentability 

decrease the speed of the search significantly. In other situations where the visual 

system cannot use guidance by several features (e.g., in feature searches) segmentability 

of feature distribution was shown to be a very important prerequisite for fast efficient 

search. 
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5. Conclusion 

The main question of this dissertation was how the visual system can use the rich 

ensemble representation of feature distributions. As a result of our research, we came to 

the following conclusions.  

First, the visual system can effectively extract different statistical summaries out 

of this rich representation. We obtained solid evidence that it can be done in parallel, 

i.e., without any interference between calculations of two different summaries. 

Consistently with this, different ensemble summaries are read out from the general 

representation by independent cognitive (and likely, neural) mechanisms which means 

that calculations of each ensemble summary are done independently from the others. 

Second, the shape of the feature distribution can be used as a cue for rapid visual 

categorization and segmentation, even in such a complicated case when different 

subsets are defined by multiple conjunctions of several features. Observers likely use 

the half-split strategy: they select a group of objects from one half of the first dimension 

and compare these selected objects along the second dimension. The segmentability of 

both feature distributions is a prerequisite for successful performance in such a task 

because it facilitates the selection of objects along the first dimension and increases the 

average contrast along the second dimension. This segmentability effect reflects the 

work of a globally distributed attentional process as it occurs rather early and the 

performance benefits from the presence of full-texture stimuli compared to only local 

elements near the boundary. 

Third, the conjunction search task turns out to be in a more complicated 

relationship with segmentability. When observers know both target features, the visual 

system can bypass the absence of distributional segmentability among distractors and 

efficiently find a target using parallel guidance by the sum of two feature maps. But if at 

least one feature is not known, the nonsegmentability of the distribution drastically 

decreases the search speed. In other situations where the visual system cannot use 
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guidance by several features (e.g., in feature searches) segmentability of feature 

distribution was shown to be a very important prerequisite for fast efficient search. 

It should be noted that the conclusions about the usage of the rich ensemble 

representation of feature distributions can be generalized to many different feature 

dimensions. We did not blindly assume that ensemble perception works similarly for all 

features but tested it on size, color, and orientation. Moreover, each study had at least 

one experiment with size-orientation pair of features (only size in Study 1) so the 

different results between studies cannot be explained by the choice of different features. 

Therefore, our conclusions can be considered as solid, replicable, and generalizable on a 

range of visual features. 

  



 

30 

 

References 

Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual 

cognition. Trends in Cognitive Sciences, 15(3), 122–131. 

https://doi.org/10.1016/j.tics.2011.01.003 

Alvarez, G. A., & Oliva, A. (2008). The Representation of Simple Ensemble Visual 

Features Outside the Focus of Attention. Psychological Science, 19(4), 392–398. 

https://doi.org/10.1111/j.1467-9280.2008.02098.x 

Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that 

can be represented with reduced attention. Proceedings of the National Academy 

of Sciences, 106(18), 7345–7350. https://doi.org/10.1073/pnas.0808981106 

Ariely, D. (2001). Seeing Sets: Representation by Statistical Properties. Psychological 

Science, 12(2), 157–162. 

Bauer, B. (2009). Does Stevens’s Power Law for Brightness Extend to Perceptual 

Brightness Averaging? The Psychological Record, 59(2), 171–185. 

https://doi.org/10.1007/BF03395657 

Burr, D., & Ross, J. (2008). A Visual Sense of Number. Current Biology, 18(6), 425–

428. https://doi.org/10.1016/j.cub.2008.02.052 

Cant, J. S., & Xu, Y. (2012). Object Ensemble Processing in Human Anterior-Medial 

Ventral Visual Cortex. Journal of Neuroscience, 32(22), 7685–7700. 

https://doi.org/10.1523/JNEUROSCI.3325-11.2012 

Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble represen-

tations: How the shape of preceding distractor distributions affects visual search. 

Cognition, 153, 196–210. https://doi.org/10.1016/j.cognition.2016.04.018 

Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Chapter 5 - Learning fea-

tures in a complex and changing environment: A distribution-based framework 

for visual attention and vision in general. In C. J. Howard (Ed.), Progress in 

Brain Research (Vol. 236, pp. 97–120). Elsevier. 

https://doi.org/10.1016/bs.pbr.2017.07.001 



 

31 

 

Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Representing Color Ensem-

bles. Psychological Science, 28(10), 1510–1517. 

https://doi.org/10.1177/0956797617713787 

Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017c). Set size manipulations re-

veal the boundary conditions of perceptual ensemble learning. Vision Research, 

140, 144–156. https://doi.org/10.1016/j.visres.2017.08.003 

Chong, S. C., & Evans, K. K. (2011). Distributed versus focused attention (count vs es-

timate): Distributed versus focused attention. Wiley Interdisciplinary Reviews: 

Cognitive Science, 2(6), 634–638. https://doi.org/10.1002/wcs.136 

Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision 

Research, 12. 

Chong, S. C., & Treisman, A. (2005a). Attentional spread in the statistical processing of 

visual displays. Perception & Psychophysics, 67(1), 1–13. 

https://doi.org/10.3758/BF03195009 

Chong, S. C., & Treisman, A. (2005b). Statistical processing: Computing the average 

size in perceptual groups. Vision Research, 45(7), 891–900. 

https://doi.org/10.1016/j.visres.2004.10.004 

Corbett, J. E., & Oriet, C. (2011). The whole is indeed more than the sum of its parts: 

Perceptual averaging in the absence of individual item representation. Acta Psy-

chologica, 138(2), 289–301. https://doi.org/10.1016/j.actpsy.2011.08.002 

Corbett, J. E., Wurnitsch, N., Schwartz, A., & Whitney, D. (2012). An aftereffect of ad-

aptation to mean size. Visual Cognition, 20(2), 211–231. 

https://doi.org/10.1080/13506285.2012.657261 

Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solu-

tion to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psy-

chology, 1(1), 42–45. https://doi.org/10.20982/tqmp.01.1.p042 



 

32 

 

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of 

mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. 

https://doi.org/10.1017/S0140525X01003922 

Dakin, S. C., & Watt, R. J. (1997). The computation of orientation statistics from visual 

texture. Vision Research, 37(22), 3181–3192. https://doi.org/10.1016/S0042-

6989(97)00133-8 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). THREE PARIETAL CIR-

CUITS FOR NUMBER PROCESSING. Cognitive Neuropsychology, 20(3–6), 

487–506. https://doi.org/10.1080/02643290244000239 

Florey, J., Clifford, C. W. G., Dakin, S., & Mareschal, I. (2016). Spatial limitations in 

averaging social cues. Scientific Reports, 6(1). https://doi.org/10.1038/srep32210 

Gardelle, V. de, & Summerfield, C. (2011). Robust averaging during perceptual judg-

ment. Proceedings of the National Academy of Sciences of the United States of 

America, 108(32), 13341–13346. 

Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender 

from sets of faces. Current Biology, 17(17), R751–R753. 

https://doi.org/10.1016/j.cub.2007.06.039 

Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple Spatially Overlapping Sets 

Can Be Enumerated in Parallel. Psychological Science, 17(7), 572–576. 

https://doi.org/10.1111/j.1467-9280.2006.01746.x 

Huang, L., Mo, L., & Li, Y. (2012). Measuring the interrelations among multiple para-

digms of visual attention: An individual differences approach. Journal of Experi-

mental Psychology: Human Perception and Performance, 38(2), 414–428. 

https://doi.org/10.1037/a0026314 

Im, H. Y., Tiurina, N. A., & Utochkin, I. S. (2021). An explicit investigation of the roles 

that feature distributions play in rapid visual categorization. Attention, Percep-

tion, & Psychophysics, 83(3), 1050–1069. https://doi.org/10.3758/s13414-020-

02046-7  



 

33 

 

Khvostov V., Lukashevich A., Utochkin I. S. (2021). Spatially intermixed objects of 

different categories are parsed automatically. Scientific Reports, 11, 377, 1-8. 

https://doi.org/10.1038/s41598-020-79828-4. 

 

Khvostov, V. A., & Utochkin, I. S. (2019). Independent and parallel visual processing 

of ensemble statistics: Evidence from dual tasks. Journal of Vision, 19(9), 3. 

https://doi.org/10.1167/19.9.3 

Kim, M., & Chong, S. C. (2020). The visual system does not compute a single mean but 

summarizes a distribution. Journal of Experimental Psychology: Human Percep-

tion and Performance, 46(9), 1013–1028. https://doi.org/10.1037/xhp0000804 

Lee, H., Baek, J., & Chong, S. C. (2016). Perceived magnitude of visual displays: Area, 

numerosity, and mean size. Journal of Vision, 16(3), 12. 

https://doi.org/10.1167/16.3.12 

Leib, A. Y., Kosovicheva, A., & Whitney, D. (2016). Fast ensemble representations for 

abstract visual impressions. Nature Communications, 7(1). 

https://doi.org/10.1038/ncomms13186 

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features 

and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846 

Maule, J., & Franklin, A. (2015). Effects of ensemble complexity and perceptual simi-

larity on rapid averaging of hue. Journal of Vision, 15(4), 6. 

https://doi.org/10.1167/15.4.6 

Morgan, M., Chubb, C., & Solomon, J. A. (2008). A “dipper” function for texture dis-

crimination based on orientation variance. Journal of Vision, 8(11), 9–9. 

https://doi.org/10.1167/8.11.9 

Myczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical 

summary representations for rapid judgments of average size. Perception & Psy-

chophysics, 70(5), 772–788. https://doi.org/10.3758/PP.70.5.772 

Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts. 



 

34 

 

Nieder, A., & Dehaene, S. (2009). Representation of Number in the Brain. Annual Re-

view of Neuroscience, 32(1), 185–208. 

https://doi.org/10.1146/annurev.neuro.051508.135550 

Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2015). Direct encoding of orienta-

tion variance in the visual system. Journal of Vision, 15(4), 3. 

https://doi.org/10.1167/15.4.3 

Oriet, C., & Hozempa, K. (2016). Incidental statistical summary representation over 

time. Journal of Vision, 16(3), 3–3. https://doi.org/10.1167/16.3.3 

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory 

averaging of crowded orientation signals in human vision. Nature Neuroscience, 

4(7), 739–744. https://doi.org/10.1038/89532 

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evi-

dence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197. 

https://doi.org/10.1163/156856888x00122 

Solomon, J. A., Morgan, M., & Chubb, C. (2011). Efficiencies for the statistics of size 

discrimination. Journal of Vision, 11(12), 13–13. https://doi.org/10.1167/11.12.13 

Sweeny, T. D., & Whitney, D. (2014). Perceiving Crowd Attention: Ensemble Percep-

tion of a Crowd’s Gaze. Psychological Science, 25(10), 1903–1913. 

https://doi.org/10.1177/0956797614544510 

Treisman, A. (2006). How the deployment of attention determines what we see. Visual 

Cognition, 14(4–8), 411–443. https://doi.org/10.1080/13506280500195250 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogni-

tive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5 

Underwood, B. J. (1975). Individual differences as a crucible in theory construction. 

American Psychologist, 30(2), 128–134. https://doi.org/10.1037/h0076759 

Utochkin, I. S. (2015). Ensemble summary statistics as a basis for rapid visual categori-

zation. Journal of Vision, 15(4), 8. https://doi.org/10.1167/15.4.8 



 

35 

 

Utochkin, I. S., Khvostov, V. A., & Stakina, Y. M. (2018). Continuous to discrete: En-

semble-based segmentation in the perception of multiple feature conjunctions. 

Cognition, 179, 178–191. https://doi.org/10.1016/j.cognition.2018.06.016 

Utochkin, I. S., Khvostov, V. A., & Wolfe, J. M. (2020). Categorical grouping is not re-

quired for guided conjunction search. Journal of Vision, 20(8), 30. 

https://doi.org/10.1167/jov.20.8.30 

Utochkin, I. S., & Tiurina, N. A. (2014). Parallel averaging of size is possible but range-

limited: A reply to Marchant, Simons, and De Fockert. Acta Psychologica, 146, 

7–18. https://doi.org/10.1016/j.actpsy.2013.11.012 

Utochkin, I. S., & Vostrikov, K. O. (2017). The numerosity and mean size of multiple 

objects are perceived independently and in parallel. PLOS ONE, 12(9), e0185452. 

https://doi.org/10.1371/journal.pone.0185452 

Utochkin, I. S., & Yurevich, M. A. (2016). Similarity and heterogeneity effects in visual 

search are mediated by “segmentability”. Journal of Experimental Psychology: 

Human Perception and Performance, 42(7), 995–1007. 

https://doi.org/10.1037/xhp0000203 

Watamaniuk, S. N. J., & Duchon, A. (1992). The human visual system averages speed 

information. Vision Research, 32(5), 931–941. https://doi.org/10.1016/0042-

6989(92)90036-I 

Whiting, B. F., & Oriet, C. (2011). Rapid averaging? Not so fast! Psychonomic Bulletin 

& Review, 18(3), 484–489. https://doi.org/10.3758/s13423-011-0071-3 

Whitney, D., & Yamanashi Leib, A. (2018). Ensemble Perception. Annual Review of 

Psychology, 69(1), 105–129. https://doi.org/10.1146/annurev-psych-010416-

044232 

Wilmer, J. (2008). How to use individual differences to isolate functional organization, 

biology, and utility of visual functions; with illustrative proposals for stereopsis. 

Spatial Vision, 21(6), 561–579. https://doi.org/10.1163/156856808786451408 



 

36 

 

Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic 

Bulletin & Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774 

Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psycho-

nomic Bulletin & Review, 28(4), 1060–1092. https://doi.org/10.3758/s13423-020-

01859-9 

Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in 

scenes involves selective and nonselective pathways. Trends in Cognitive Scienc-

es, 15(2), 77–84. https://doi.org/10.1016/j.tics.2010.12.001 

Yang, Y., Tokita, M., & Ishiguchi, A. (2018). Is There a Common Summary Statistical 

Process for Representing the Mean and Variance? A Study Using Illustrations of 

Familiar Items. I-Perception, 9(1), 204166951774729. 

https://doi.org/10.1177/2041669517747297 

Ying, H., & Xu, H. (2017). Adaptation reveals that facial expression averaging occurs 

during rapid serial presentation. Journal of Vision, 17(1), 15–15. 

https://doi.org/10.1167/17.1.15 

 


