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Problem description Modern economics increasingly becomes an experimental sci-
ence. Laboratory and field experiments, natural and quasi-experiments are everywhere
in the economics literature. Experimental results have shed light on a wide range of
questions, ranging from individual rationality, heuristics and biases, to efficiency and im-
plementation of public policy programs. One of the main goals of experimental research is
to improve our understanding of the mechanisms and reasons for making particular eco-
nomic decisions. Yet progress in this direction so far has been limited. On the one hand,
human decisions result from complicated, multi-dimensional processes, most of which
remain unobservable or unidentifiable to the observer. On the other, human decision-
makers are known to be boundedly rational and have limited abilities to figure out their
best strategies even in relatively simple strategic environments, let alone to decode strate-
gic intentions of the other player(s). In the heart of all these problems lies the problem of
gradual accumulation of knowledge in the process of interactions, i.e. strategic learning.

The study of strategic learning is the main topic of this thesis. The work consists
of three interrelated chapters. In the first, we describe modeling approaches common to
theories of learning. In the second, we motivate the problem of experimental comparisons
between the theories. Finally, in the thrid chapter we prepare the ground to and introduce
a new type of strategy-based learning model in repeated games, and then we evaluate it
in comparison to the traditional ones in an example of an experimental game of Rock-
Paper-Scissors.

As we will learn from the first chapter, there is a huge pool of prospective models
that fall into several large groups. These groups possess particular features: some models
care about realized wins, some look only at the behavior of the opponent while ignoring
that the opponent may do the same. There is also a hybridization between these models,
resulting in “a model zoo”. Further, many of these models are observationally equivalent,
and can be substituted for one another without loss of descriptive power. Which models
are more useful or more theoretically sound than others, which are – these are open
scientific questions. We propose to start answering those questions by finding testable
assumptions between classes of models and their specifications. We show that it can
be done by simulations because the resulting empirical distributions reflect both finite-
sample and asymptotic properties of experimental samples.

We then discuss the common empirical problem for model comparisons – we have
no analytical and general way to compare models and to establish whether one model
explains behavior better than another or even that it is better in clearly defined conditions
(specific experimental game). Moreover, our econometric tools of comparison are lacking
power in this context – even when we can say that one model fits the data “better”, it is
hard to specify “by how much” and “how robust” is this comparison even for a different
realization of the same game, without speaking of generalizability of this conclusion to
arbitrary games.

The second chapter covers Formal Theory Approach (FTA) to the experimental prob-
lem: how can we identify and estimate the model within the laboratory bounds.

Constraints on possible designs of laboratory experiments are underappreciated by
econometric theorists (Basse and Bojinov, 2020). Experiments are naturally constrained
by the length of the experimental session and, to a lesser extent, by a number of ob-
servations of the specific player after a specific history. We cannot expect our subject
to play for an infinite time. We can, however, add more subjects or select a longer or
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shorter experimental session. Further, we usually can change the game itself, or add new
features (e.g. information, or random moves) to the design. Finally, in order to study the
motives of real players, we can put our experimental subjects to play against a robot with
known Data Generating Process (DGP). Robot player enables us to check more specific
hypotheses about our subjects by fine-tuning robot’s (DGP), an option unavailable with
a human player — and in our third chapter we do exactly this.

Thus the chapters of the dissertation cover all experimental stages, yet it is the second
chapter which does the heavy-lifting here, and constitutes the main conceptual contri-
bution of the thesis. Specifically, it sets the criterion for whether we can distinguish
different learning models, and proposes an empirical strategy to do so in the context of
a particular (Rock-Paper-Scissors) experimental game.

Finally, we run the experiment itself, and analyse its results using our criterion. We
conclude that our data provide clear evidence that our specific extension of the classical
learning models to strategic learning tracks human behavior demonstrably better than
the baseline.

Objectives of the research. Learning the opponent’s strategy in repeated games and
optimally reacting to it requires time and more complex strategies require more time
to learn. Thus, proper understanding and modeling of this process (both theoretical
and empirical) are of utmost importance for game theory and economics in general.
This learning may take too long while the player is losing most of the time. To insure
learning models from such a potential loss, many of them only learn ”the latest empirical
frequencies of actions”, and quickly adapt to them. This has two consequences: a) they
can prevent rough manipulation by an opponent and win at least as much as if they
know opponent action frequencies in advance (see (Hannan et al., 1957) for details) b)
they can’t learn complex strategies and therefore can’t react optimally to them. It allows
the models to be flexible and to play ”without losing too much” against any type of
opponent. At the same time, it remains unclear whether they can learn the optimal
response to even a simple pattern that human subjects easily detect.

As a consequence, we formulate our main research question as follows: ”In a laboratory
experiment with a repeated game how to check that the subjects can recognize patterns?”
Can we distinguish between strategy learning, when a human player tries to recognize
the contingent action plan of her opponent, and action-based learning that may produce
complex behavior out of just simple actions history?

Thus the main aim of the research is to conduct an experimental and structural
econometric assessment of the participants’ adaptive response to a strategy with a fixed
complexity in a repeated game. This problem was divided into the following tasks.

• Analyze the existing theoretical and empirical approaches to the classification of
learning models

• Construct game-theoretic learning models that are able to process existing simple
regularities in opponent played sequence of action and react to them considering
consequences of current play for opponent’s future action.

• Analyze whether popular learning models can be distinguished in an experiment.
For that purpose:
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– Create a synthetic dataset to test the performance of the maximum likelihood
estimator under various conditions

– Formulate the criteria and the procedure for testing models through simula-
tions

– Test the procedure on popular learning models

• Based on the conducted analysis, formulate the criteria applicable to the experi-
mental design, allowing to correctly identify the models on the data

• Develop a laboratory experiment design that meets the above criteria, and that
allows to identify the subjects’ type of learning

• Conduct simulations according to the previously developed procedure and check
that the criteria are met

• Run the developed experiment and obtain structural econometric estimates of the
developed learning models

• Determine with the structural assessments which particular class of learners the
participants belong to

• Find which model type predicts the subjects’ behavior better

Methodology The subject of this dissertation is learning in experimental games from
both theoretical and empirical perspectives. We argue that the existing approaches to
model learning are restrictive, and in particular, they fail to recognize different degrees of
the players’ congition abilities in games with more than two strategies. To capture these
differences, we develop a generalized concept of strategy-based learning and to test its
application, including empirical identification, in a class of simple experimental games.
We set up and run an experiment whose results supports the viability of this methodolog-
ical approach: learning models based on our concept shows superior explanatory power
in comparison with the classical models.

The first chapter analyzes the central ideas and the current state of the economic
theory of learning in games. Within the framework of game theory, learning can be seen
as both an alternative to equilibrium analysis, and as a way to investigate the nature
of equilibrium concept(s). Outside of this framework, learning in games (starting from
the classical Cournot dynamics) sheds new light on economic interactions, sets interest-
ing theoretical and non-trivial econometric problems, and can be studied experimentally.
Learning in games connects economics with other (sometimes unexpected) scientific dis-
ciplines: biology, philosophy of rationality, and computer science. The first chapter
examines in detail why there are so many learning models, what properties in a dynamic
context are crucial, and what are the criteria for the ”goodness” of these models. At the
end of the chapter, a classification of models of learners based on their crucial properties
is presented.

The second chapter is devoted to the question of why it is so hard to study learning
even in the laboratory setting, outlining several theoretical and practical concerns (like
the limited length of an experimental session). In particular, simulations by (Salmon,
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2001) show, in a cross-model (or “blind”) testing of several models, the data generated
by those models does not correspond to the estimated parameters. Thus, even when the
real data generation process is known we cannot distinguish correct models from incorrect
ones by looking at the estimates. However, we demonstrate that part of these problems
could be resolved through simulations and experimental design. We also present the
simulation-based toolbox for testing weak identification for any particular experimental
sample.

The third chapter studies learning in a strategic environment using experimental data
from the Rock-Paper-Scissors game. In a repeated game framework, we explore the
response of human subjects to the behavior of a strategically sophisticated opponent.
We model this opponent as a robot that plays a stationary strategy with superimposed
noise varying across four experimental treatments. Using experimental data from 85
subjects playing against such a stationary robot for 100 periods, we show that humans
can decode its strategies, on average outperforming the random response to such a robot
by 17%. Further, we show that the human ability to recognize such strategies decreases
with exogenous noise in the behavior of the robot. Further, we fit learning data to
classical Reinforcement Learning (RL) and Fictitious Play (FP) models and show that
the classic action-based approach to learning is inferior to the strategy-based one. We
adapt the criteria from the second chapter and provide specific algorithms for the strategy-
based class of learning from the first chapter into a 3x3 game. We also show, using a
combination of experimental and post-experimental survey data, that human participants
are better at learning separate components of the opponent’s strategy than in recognizing
this strategy as a whole. This decomposition offers a shorter and more intuitive way to
figure out their own best response. We build a strategic extension of the classical learning
models accounting for this behavioural fact and calibrate its practical application to our
experimental data.

Brief literature review The theory of learning in games originated in the Cournot
model and nowadays is a well-developed theory ((Young, 2004); 585. However, its devel-
opment is hindered by a lack of development of methods at the intersection of experimen-
tal inference methods and microeconometrics. While separately they are quite developed
and sophisticated, their intersection requires special conditions: advanced experimental
designs and taking into account finite samples.

The complexity of this problem is illustrated by several relatively recent works on
model selection and testing in learning. First popular learning models on 2x2 games were
tested in (McKelvey and Palfrey, 2001) who found that the models fit experimental data
extremely poorly when played on some types of games, such as coordination games. A
series of tournaments (starting with (Arifovic et al., 2006)) tested the potential difference
between data generated by the model and human subjects. Time after time the models
did not follow the dynamics similar to humans. Later, literature turned to rethink simple
goodness of fit measure as a criterion and researchers began to experiment not only with
the composition of models pool but also with the criteria. In ((Erev et al., 2007); (Erev
et al., 2010)) tournament, authors started experimenting with out-of-sample predictions
and comparing different samples by using aggregated choices in one sample as a predictor
to another. A bit different approach was demonstrated by (Mathevet and Romero, 2012),
namely the theory of predictive metrics in a game based on average payoffs (started by
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(Selten, 1998) but not developed until (Mathevet and Romero, 2012)). All these papers
test a pool of models on multiple datasets, but instead of balancing between context
and accuracy they prioritize only one of these. Simple model can be generalized to
most, but not all contexts and in the remaining contexts they perform abysmally bad.
Complex models may fit well in all contexts separately, one by one, but do not generalise
across them. The consensus we know today is to move towards the accumulation of large
datasets and the development of specific criteria ((Fudenberg et al., 2020); (Fudenberg
et al., 2019)).

In our view, however, the accumulation of data may not be sufficient. For example,
(Salmon, 2001) shows on 500 synthetic datasets that the common methods do not provide
a correct statistical inference. This problem has long been discussed in the econometric
literature as ”weak identification” (Lewbel, 2019) and is aptly described by ((Morton
and Williams, 2010) p. 202) as: ”Inspired-By Evaluations of Formal Theory Predictions:
When a researcher evaluates a formal theory prediction using a Rubin Causality Model-
based approach and assumes consistency with all model imposed assumptions but does
not explicitly investigate whether it holds or not.” We are aware of only one recent work
that tries to find an analytical solution for this problem in the case of a linear dynamic
model (Bojinov et al., 2020). We take the-similar approach, namely to find a simulation-
based solution to provide an experiment planning tool.

Main findings We present a class of learning models that avoids losing too much
against an arbitrary opponent, and at the same time can learn simple conditional strate-
gies of the ”win-stay-lose-shift” type (i.e. the strategy that prescribes keeping the same
action once it has been successful in the past, and shifting to another action once the
current one has been unsuccessful). We have developed such models in the context of
Rock-Papers-Scissors game, but it can be without loss of generality extended to any
repeated game with interval action space (e.g. setting a price in an oligopoly).

Based on (Salmon, 2001), direct identification testing of the learning model was car-
ried out on the example of the most general class of learning models, known as hybrid
Experience Weighted Attraction (EWA) (Camerer and Ho, 1999). This is a generic multi-
parameter model which embeds two of the most popular approaches, belief-based (Fic-
titions Play, FP) and action-based (Reinforcement Learning, RL) as particular cases.
Salmon’s previous results are reproduced and extended. We confirm and elaborate
Salmon’s result that point identification in a realistic experimental setting is problematic
for EWA, and construct indices to assess identifiability of the learning model. It is shown
that if we consider only the basic representatives included in the model (individual points
of the hybrid model), then we can point identify them. However, we also show that this
approach is not sufficiently rich to distinguish different kinds of learning sophistication
even in relatively simple strategic environment of games of complete information with
more than two actions. To capture this generalised learning, we draw a distinction be-
tween action-based and strategy-based learners, and develop empirically-based criteria
to test whether participants can be classified as action-based or strategy-based learners.
While the concept of strategy-based learning is not new itself ((Hanaki, 2004); (Ioannou
and Romero, 2014)), we are apparently the first to provide formal criteria for identifica-
tion of such models, and extend it to the space of the games with more than 2 actions.
We establish the experimental conditions that satisfy such criteria. To test our approach,
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we propose the specific experiment design involving a controlled opponent (robot) who is
pre-programmed to play a particular strategy unbeknown to the opponent human player.
Specific algorithms for a strategy-based class are proposed and formalized as well. A
pool of models has been selected for comparison, including representatives of belief-based
learning, reinforcement learning, action-based learning, and strategy-based learning. We
set up an conduct an experiment satisfying these properties, and run it in several treat-
ments characterised by different levels of noise (probability of random move rather than
pre-programmed strategy on the part of the robot). Our experiment involved 85 subjects
who made individual decisions: they all played agains a robot over 100 rounds, with the
goal to recognize it strategy and ‘beat’ it under various levels of noise. oTree programme
software has been used (Chen e.a., 2015).

Experimental evidence confirms that: (a) many people are capable to defeat our
preprogrammed artificial opponent; (b) usually it happens in the span of 30-60 rounds,
depending on the noise level; (c) often when subject’s behavior shows learning, they can
explain what they have learned, typically in belief-based terms; (d) among the three sub-
parts of the best response strategy of the win-stay-lose-shift type, the lose-shift part is
more easily recognized.

These observations are not very surprising, but more importantly, we show that
the empirical learning patterns in this context are at odds with action-based learning.
Strategy-based learning model, by contrast, explains it much better, as confirmed by
subject reported strategies, and simulations that allow us to compare how well different
models would perform in this experimental design against our robot. In our simula-
tions, we have compared the standard action-based models (namely, Fictitious Play and
Reinforcement learning) with strategy-based approach.

Simulation results show that: (a) pre-experimental check strongly suggests that free-
parameters models are distinguishable in simulation against robot, (b) action-based mod-
els are unable to adapt to simple patterns in actions of the opponent, (c) strategy-based
models do adapt to exploit preprogrammed simple pattern strategy, (d) strategic belief-
based model recognizes such strategy faster than the strategic reinforcement one.

One more interesting result requires a synthesis of or experimental and simulation
results: the speed of human learning is the closest to the strategic reinforcement-based
model, action-based models don’t learn at all and our strategic belief-based model learns
too fast.

As a by-product of this analysis, we conclude that pre-experimental simulations are
a sound addition to asymptotic criteria, a sanity check for their applicability. Although
they require computational power, they allow any particular design to be verified before
the actual costs of the experiment are incurred, which will certainly be a useful tool for
any experimental economist and might be indispensable for experiments on learning in
games.

Contribution The contribution of this dissertation begins with a survey chapter that
reviews and reevaluates the existing learning model classifications and properties of mod-
els that follow from them. In addition to writing down approaches specific to this litera-
ture or the convergence analysis traditional for the reviews1, this section deals with the

1We should mention the works (Marimon, 1996, Fudenberg and Levine, 1998, 2009, 2016). Erev and
Haruvy (2016) outlines a view of this theory that is close to experimental and behavioral economics. Not
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cognitive aspects of learning and its representation in models, as well as the connection
between the theoretical conceptualization of different properties of learning models and
the issues of their empirical testing and comparison of models. Latest is discussed in
more detail at the beginning of the second chapter.

Further in chapter 2, we present common approaches to evaluate those models, discuss
the weaknesses of those approaches and propose a new way to avoid the largest pitfalls
of the existing studies (namely the horse-race approach). In particular, we scrupulously
discuss the issue of“weak identification” (Lewbel, 2019) for learning models in conditions
having the same sample constraints as (Bojinov et al., 2020). From the general criteria
provided by (Matzkin, 2005, 2007) we induce the numerical criterion called ”simulation
ratio” (SM) specifically for simulations with learning models and test its work in the
(Salmon, 2001) setting. Salmon (2001) starts from the fact that the EWA learning model
is not correctly identified through the statistical criteria and routines used in the original
papers. We go further and show that for a given sample size the EWA learning model
cannot be identified at all by any test through information derived from the likelihood
function. The proposed procedure and numerical SM indicator are thus available to
evaluate any arbitrary set of learning models (both nested models like EWA family and
different models) and are used by us to evaluate the identifiability of strategic learning
models in Chapter 3.

The work also develops the approach of repeated strategies in learning. Although the
approach proposed by (Hanaki, 2004) has already been tested by (Ioannou and Romero,
2014) in 2-by-2 games, its implementation has been limited for using in games with
larger action space both in terms of necessity for “model training” 2, as in terms of com-
putational limitations of the subjects’ resources. In previous studies (e.g. in Axelrod’s
tournament) implementation of repeated strategies has been looked at through the prism
of evolutionary theory and such strategies are understood as an exhaustive indivisible
prescription in different situations. For example, the Tit-for-tat strategy for the pris-
oner’s dilemma can be taken as an instruction how to act in 2 different situations: if the
player-opponent cooperates or not. This is why (Ioannou and Romero, 2014) learning
models use repeated strategies as the basis and work with strategies in their entirety. We
show however that dividing repeated strategies into small component parts (we called it
“elementary strategies”) has a number of comparative advantages in terms of modeling.

Firstly, conceptually, it allows the learner to construct a complex pattern “on the fly”
during the learning process, which sufficiently simplifies the computation and even, as we
will show at the end of the first chapter, can be implemented in games with continuous
action space.

Secondly, the model comparison may not be trivial, and the simpler conceptualization
of repeated strategies is easier to test empirically. For example, let us present two specially
simplified models for the Battle of the sexes game: strategic and action-based models. The
strategic model knows how to choose between alternating on even periods and alternating
on odd periods. A model on action repeats an opponent’s action if it was successful
(imitation) and if it wasn’t, it randomizes. If the actual subjects after some time since
the beginning of the repeated Battle of the sexes game cooperate in practice, then for us

to mention the article (Nachbar, 2020), which the most succinctly describes the main results in the field.
2i.e. there is no element of online learning, the model has to play with itself before it can predict

people

8



these two models as an explanation would be observationally equivalent.
Exploring this problem in general, in chapter 2 we show how empirically the concep-

tualization of repeated strategies through “elementary strategies” can be separated from
the action-based class of algorithms through experimental intervention. It’s possible if
experimenter “freezes” the behavior of one of the players in the pair and equips it with a
strategy with a fixed complexity. In the conditions of the laboratory experiment in Chap-
ter 3, we achieve this through the use of a robot opponent (which, however, does not imply
that the robot is needed in practice, because through the experiment we investigate the
properties of the Lerner-human, and they are identical in the laboratory and outside). We
use noise in the actions of the robot in order to break the cycle of winnings in which the
player could get “occasionally” in some rounds. We observe an increase in the frequency
of successful “elementary strategies” at different periods of the game (from early to late),
as well as the verbalization of these strategies in the post-experimental questionnaire.
The behavior of the participants demonstrates a correct adaptive response, however, the
results of the experiment can be interpreted wider, that “elementary strategies ” are kept
by the memory of the participants as separate irreducible elements.

Finally, registered data on learning dynamics which were obtained in this work,
methodological analysis of the human reaction to the robot opponent, and a concep-
tual revision of how players behave in the Rock-Paper-Scissors game (Wang et al., 2014)
are valuable in their own right.
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