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Introduction 

Significance of the Work 

Technical advances have been indispensable to progress in biological sciences. Prior 
to the developments in mass spectrometry methods, detailed molecular compositions 
could not be quantified. In particular, these developments have pushed lipids – 
essential building blocks of all living cells and key players in energy metabolism – out 
of the obscurity they have been placed in previously. When genetics have not 
provided a comprehensive understanding of particular diseases, the study of these 
complex traits from a novel perspective, such as the lipid phenotype, has the potential 
of valuable insights. 

Mental illnesses, debilitating conditions that affect a substantial proportion of the 
population, are examples of such traits that are known to have a strong genetic 
component, for which, however, no satisfactory genetic model has been discovered. 
Indeed, while it is well accepted that mental disorders are inseparably tied to their 
physical manifestations in the brain and body of the suffering individual, many 
questions remain. We do not know what causes mental illness, or the specific 
mechanisms by which drugs can help improve symptoms. Mental illnesses are 
separated into distinct disorders, such as schizophrenia, depression, and bipolar 
disorder, but both the clear-cut separation between the disorders and the 
homogeneity within the disorders are questionable. Since mental illnesses are 
currently characterized on the basis of particular behavioral symptoms, more 
objective physical metrics of disease are required to advance mental health research. 

Lipid profiles in both the brain and blood are relevant in the context of mental 
disorders. There is a growing awareness of the important role lipids play in the brain, 
a particularly lipid-rich organ. At the same time, mental illnesses are not just 
disorders of the brain – they are intrinsically connected to physical health, 
exemplified by the high prevalence of cardiometabolic comorbidities among 
psychiatric patients. The blood plasma contains important indicators of metabolic 
health, of which blood lipids seem to be essential players. Due to the relative novelty 
of the field and associated technological complexity, studies concerned with lipids in 
the brain and blood of psychiatric patients remain scarce. In this thesis, I present 
results on lipid profiles in the blood of psychiatric patients in relation to their disease 
phenotype and medication response, as well as medication effect on the lipid 
composition of the brain of non-depressed macaques, modeling medication 
therapeutic and side effects in humans. 

While rapid progress is being made in the field of lipid research, its growth has only 
recently begun.  With developments of experimental methods, the wealth and 
complexity of the information output increases. Within different analytical 
approaches, global lipidomics analysis is associated with higher data complexity, 
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since it is aimed at quantifying the lipid compounds in biological systems in as much 
of a broad and unbiased manner as practicably achievable. The untargeted nature of 
the analysis is simultaneously its strength and the source of potential drawbacks. 
While it has the potential of being extremely informative, computational methods and 
data processing standards are lagging behind the technological advancements. 
Because corresponding data analysis methods are not yet well-established, they 
present an additional challenge to the lipidomics analysis. Accordingly, a 
considerable part of this thesis is concerned with data processing specific to global 
lipidomics. Developments of new lipidomics methods, including data processing 
tools, will facilitate lipidomics analysis and expand its application outside of its niche 
field, resulting in a better understanding of the role lipids play not only in mental 
illness, but in health and disease, in general. 

Project Objectives 

In this thesis, I have aimed to develop a pipeline for global lipidomics data analysis, 

as well as apply global lipidomics analysis methods to several specific studies of lipid 

profiles in psychiatric disorders. The particular questions addressed in this work 

were:  

o Methodological aspects of a global lipidomics data analysis pipeline 
development and optimization. 

o The investigation of lipid profiles in the blood plasma of psychiatric patients 
diagnosed with schizophrenia, depression, and bipolar disorder.  

o The analysis of association between individual changes in blood lipid profiles 
and symptom severity in individuals with schizophrenia before and after 
hospital treatment. 

o Long-term fluoxetine treatment-induced effects on the molecular composition 
of the brain of juvenile macaques, including alterations in lipid abundances, in 
the context of therapeutic and side effects of antidepressants reported in 
children and young adults. 

Main Results Summary 

As a result of the studies included in this thesis, the following propositions are put 
forward: 

o The main processing steps of a global lipidomics data processing pipeline 

were described, followed by the discussion of gaps existing in the current 

analysis protocols. The computational approaches developed for this thesis 

were essential for the results of the lipidomics studies included in this thesis. 

o Signal duplication in untargeted lipidomics experiments remains one of the 
most overlooked steps in existing untargeted lipidomics data analysis 
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pipelines. The data-driven approach proposed in this thesis for the reduction 
of signal duplication removed more than twice as many redundant features 
compared to the standard adduct filtration approach. 

o Patients with schizophrenia exhibit robust alterations in levels of individual 
lipid compounds compared to healthy controls. 

o These changes are common for other psychiatric disorders, such as bipolar and 
depressive disorders. 

o Patients with schizophrenia exhibit a highly specific lipid profile 

distinguishing them from healthy controls, as demonstrated by the high 

predictive power of the proposed classification model. 

o Poor treatment response in patients with schizophrenia is associated with 
changes in particular lipid compound levels in the blood of these individuals. 

o Lipids are altered in the brain of juvenile macaques as a result of fluoxetine 
treatment. The lipid profile is related to PUFA reduction. 

Scientific Novelty 

o Evidence-based methods for accounting for signal duplication and unexpected 
adduct formation in global lipidomics, such as described in this thesis, have not 
been proposed before.   

o The investigation of lipid profiles in blood plasma of psychiatric patients was 
the most comprehensive, to date, in terms of cohort and sample sizes, 
lipidomics coverage, and transdiagnostic comparison. 

o Reported markers of treatment response in schizophrenia are scarce, and the 
triglyceride lipid profile described in this thesis was not reported in relation to 
treatment response in schizophrenia. 

o The investigation of effects of fluoxetine on lipid profiles in juvenile macaque 
brains was the first study of the effect of long-term fluoxetine treatment on the 
molecular composition of primate brains.  

Practical Implications 

The practical implications of the obtained results is related to the need of more 
objective physical metrics of disease for the advancement of mental health research. 

The reported lipid-based diagnostic model for schizophrenia has been validated in 
several independent test datasets, demonstrating its potential applicability in 
practice. While such a diagnostic model for the diagnosis of schizophrenia has limited 
practical use as-is, it might possibly be expanded to more nuanced conditions, such 
as less severe mental illnesses or the prediction of future disease development.  

The investigation of responses to psychopharmacology is a highly relevant issue due 
to currently unpredictable treatment outcomes. By investigating associations 
between changes in individual lipid profiles and symptom improvement after 
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treatment, a particular lipid profile associated with poor medication response has 
been described. Further study of treatment response markers can potentially 
improve not only the understanding of medication effects, but enable more 
personalized therapy selection in the future. 

The analysis of the effect of the antidepressant fluoxetine on juvenile macaque brains 
was related to a lipid signature of reduced polyunsaturated fatty acids (PUFAs). These 
lipid components are presumed to be important both for mental health and proper 
brain development in children. While the results based on model organisms cannot 
be directly generalized to humans, they call attention to the importance of lipids and 
PUFAs in depression research. 

Finally, the global lipidomics data analysis is a challenge in itself due to limited 
literature resources. This can be explained by the novelty of the field, and its 
interdisciplinary nature at the intersection of analytical chemistry and data analysis. 
The chapter on data processing for global lipidomics presented in this thesis can be a 
useful practical guide, as well as a pointer for further investigations and 
developments. 

Personal Contributions 

All of the statistical analysis based on lipid data was performed by the author. All of 
the lipidomics data processing, excluding some particular software steps, were 
performed by the author.  

Publications Related to this Thesis 

1. Tkachev A., Stekolshchikova E., Anikanov N., et al. Shorter Chain Triglycerides Are 
Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules. 
2021;11(5):720. Published 2021 May 11. doi:10.3390/biom11050720 

2. Tkachev A., Stekolshchikova E., Bobrovskiy D.M., et al. Long-Term Fluoxetine 
Administration Causes Substantial Lipidome Alteration of the Juvenile Macaque 
Brain. Int J Mol Sci. 2021;22(15):8089. Published 2021 Jul 28. 
doi:10.3390/ijms22158089 

Other Publications by the Author 

Publications by the author that are not included in this thesis: 

3. Tkachev A, Stepanova V, Zhang L, et al. Differences in lipidome and metabolome 
organization of prefrontal cortex among human populations. Sci Rep. 
2019;9(1):18348. Published 2019 Dec 4. doi:10.1038/s41598-019-53762-6 
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4. Kurochkin I, Khrameeva E, Tkachev A, et al. Metabolome signature of autism in the 
human prefrontal cortex. Commun Biol. 2019;2:234. Published 2019 Jun 21. 
doi:10.1038/s42003-019-0485-4 

5. Khrameeva E, Kurochkin I, Han D, et al. Single-cell-resolution transcriptome map 
of human, chimpanzee, bonobo, and macaque brains. Genome Res. 2020;30(5):776-
789. doi:10.1101/gr.256958.119 

6. Stepanova V, Moczulska KE, Vacano GN, et al. Reduced purine biosynthesis in 
humans after their divergence from Neandertals. Elife. 2021;10:e58741. Published 
2021 May 4. doi:10.7554/eLife.58741 

Thesis Structure 

The first chapter of the thesis introduces the context of the work, and postulates the 
project objectives. 

Chapter 2 contains background information and is divided into three main sections. 
Section 2.1 provides general information concerning psychiatric disorders. It 
provides an overview of three psychiatric disorders, schizophrenia, bipolar 
disorders, and major depressive disorders. It discusses current approaches to 
diagnosis, available biomarkers, similarities and differences between disorders, as 
well as somatic comorbidities. A brief overview of psychopharmacology is also 
presented. Section 2.2 introduces the topic of lipids and lipidomics. A short but 
comprehensive introduction to lipid nomenclature is provided. Evidence from 
lipidomics studies in different mammalian tissues is discussed and a general 
overview of lipid metabolism is provided, with the goal of facilitating the 
understanding of lipid research implications for readers not familiar with the topic. 
An overview of lipidomics studies in the context of psychiatric disorders is provided, 
as well, for blood plasma and brain, in particular. Section 2.3 provides general 
information on experimental techniques for lipidomics, in particular, liquid 
chromatography mass spectrometry (LC-MS). It includes a critical review of the 
available literature concerning data processing of LC-MS-based lipidomics. 

Chapters 3, 4 and 5 contain the main results for the studies of lipid profiles related 
to psychiatric disorders. Each chapter contains a discussion of the presented results, 
as well as a methods section describing the experimental details and statistical 
analysis. 

Chapter 6 is concerned with data processing for untargeted LC-MS-based lipidomics. 
In section 6.1, I describe the main processing steps in global lipidomics data 
processing pipeline, including gaps existing in the current analysis protocols. In 
particular, I discuss removing features with poor biological signal, high technical 
variability, correction for the influence of experimental confounding factors, and 
alignment of different datasets for the comparison of results from different 
experiment. In section 6.2, I propose a data-driven approach for dealing with a 
particular issue that remains poorly resolved in typical untargeted lipidomics data 
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analysis workflow: the removal of extensive signal duplications in untargeted LC-MS 
lipidomics. 

Chapter 7 comprises thesis conclusions. 

Main results 

Cross-cohort lipidomics analyses in individuals with severe mental 
disorders 

Summary 

There is fragmentary evidence that common psychiatric disorders, schizophrenia 
(SCZ), bipolar disorder (BPD), and major depressive disorder (MDD), substantially 
alter brain lipidome composition, as well as the lipid composition of blood plasma. 
Here, an extensive analysis of blood plasma lipid alterations in these three disorders 
is presented, involving 1,361 lipid features measured in 1,354 blood plasma samples 
collected from unique individuals as separate cohorts in China, Western Europe 
(Germany and Austria), and Russia. A signature of 77 lipid intensity alterations 
shared by all three cohorts was identified (SCZ-associated lipids). This signature was 
also present in BPD and MDD patients, aligning with the reported symptomatic and 
genetic overlap among the three disorders. Moreover, a predictive model based on 
lipid intensities was proposed, separating SCZ patients from controls (CTL) with high 
diagnostic ability (Area under the Receiver Operating Characteristic Curve, ROC 
AUC=0.86-0.95), and further validated on two different independent datasets.  

Study setup 

To assess whether blood lipidome composition is altered in common psychiatric 
disorders, schizophrenia (SCZ), major depressive disorder (MDD), and bipolar 
disorder (BPD), in a robust and reproducible manner, we conducted a study involving 
876 patients and 478 control (CTL) individuals from three cohorts sampled at 
different geographic locations: Chongqing, China (CN), several locations in Germany 
and Austria (DE-AT), and Moscow, Russia (RU) (CN: n = 170, 222, 153 for SCZ, MDD, 
and CTL, respectively; DE-AT: n = 184, 148, 187 for SCZ, BPD, and CTL, respectively; 
RU: n = 82, 36, 34, 138 for SCZ, BPD, MDD, and CTL, respectively). Additionally, we 
collected a sample group consisting of 104 first psychotic episode patients (FEP) at a 
single location (fepRU dataset). In total, we assessed lipid abundances in 1,552 
plasma samples. 

To obtain systematic coverage of the blood plasma lipidome, we measured all 
samples using liquid chromatography coupled with untargeted mass spectrometry 
(LC-MS) in both negative and positive ionization modes. This approach yielded 1,361 
reproducibly detected lipid features. Of them, we annotated 395 lipid compounds 
based on their retention time and mass-to-charge properties, including, for a subset 
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of the compounds, an examination of LC-MS2 fragmentation patterns. Annotated 
lipids covered 16 lipid classes, aligning well with previously reported blood plasma 
lipidome components (Figure 1). 

 
Figure 1: Detected features and annotated compounds. Left: The retention time and mass-to-charge 
values for all reproducibly quantified 1,361 lipid features in positive (black, “plus” markers) and negative 
(grey, “x” markers) ionization modes. Right: same for computationally annotated lipids. Empty circles 
indicate lipids discarded from downstream analysis as food-intake related. Colors correspond to lipid 
classes, denoted on the right. 

Blood lipidome alterations associated with schizophrenia 

Comparison of lipid intensities between a total of 436 SCZ and 478 CTL samples, after 
exclusion of effects potentially attributable to confounding variables such as age, sex, 
fasting period prior to blood donation, body mass index (BMI), co-recorded with 
sample information, revealed significant differences for 38-61% of detected features 
for each of the three cohorts (permutation p < 0.001, Wilcoxon rank-sum test 
Benjamini-Hochberg corrected FDR = 10%). Among them, 213 features showed 
significant intensity differences independently in all three sample cohorts – CN, DE-
AT, and RU (SCZ-associated features; permutation test, p < 0.00001; Figure 2A). 
Further, the direction of the intensity changes in SCZ correlated positively and 
significantly between all three cohort pairs (Pearson correlation, r ≥ 0.75, p ≤ 
0.00001; Figure 2B).  
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Figure 2: SCZ-associated lipidome alterations. (A) Number of lipid features showing statistical differences 
in each of the sample cohorts – CN, DE-AT, and RU – and their intersection (SCZ-associated lipid features). 
(B) Pairwise comparisons of the lipid intensity differences between schizophrenia (SCZ) and control 
(CTL) samples between the cohorts. The intensity differences are displayed as the base two log-
transformed fold change (log2 fold-change). Circles represent the 213 SCZ-associated lipid features. 
Pearson correlation coefficients and corresponding p-values are marked in the top left corner. The 
horizontal and vertical dashed lines indicate log2 fold-change = 0, the diagonal dashed line indicates the 
y-axis = x-axis line. (C) The numbers of all analyzed confounder free lipid features (left), SCZ-associated 
lipid features (right, hashed), and annotated SCZ-associated compounds (right, colored). The colors 
correspond to the compound classes displayed in panel D. (D) Intensity differences between SCZ and CTL 
individuals of the 77 SCZ-associated compounds sorted according to their lipid classes (marked by color 
and lipid class labels at the bottom) and shown separately for each cohort (marked by symbol shapes). 
Stars on the top denote lipid class level significance of the difference, described in subsection 3.1.2 of the 
thesis. 

The 213 SCZ-associated lipid features included 77 unique lipids validated by their LC-
MS2 fragmentation patterns covering 14 large lipid classes (SCZ-associated lipids; 
Figure 2C; Table 1). Analysis of these 77 lipids revealed a systemic effect of SCZ, 
leading to a coordinated shift of the lipids within a class towards either lower or 
greater intensity in all three cohorts (Figure 2C).  
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Table 1: The 77 SCZ-associated lipids, including fatty acid composition, when available. 

Predictive classification and inter-cohort reproducibility assessment 

While most of the lipid intensity differences between SCZ and CTL had moderate 
amplitudes, they were sufficient to separate SCZ individuals from controls with 
reasonable accuracy using a predictive model. Specifically, a logistic regression model 
trained on the three merged cohorts and 395 putatively annotated lipids separated 
SCZ from CTL with good diagnostic ability (Area under the Receiver Operating 
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Characteristic Curve (ROC AUC) = 0.95 + 0.02 for RU test cohort, 0.88 + 0.03 for DE-
AT test cohort, and 0.86 + 0.03 for CN test cohort). Further, the model performed just 
as well in classifying FEP and CTL samples from the fepRU dataset (ROC AUC = 0.89 + 
0.025).  Subsection 3.1.3 of the thesis further includes analysis of cross-cohort 
reproducibility of lipid alterations in SCZ at the individual lipid level, as well as the 
level of predictive modeling. 

Lipid alterations in SCZ correlate with other psychiatric disorders  

We next examined lipid intensity alterations associated with MDD and BPD, each 
represented by two independent cohorts (CN: n = 222 for MDD; DE-AT: n = 148 for 
BPD; RU: n = 36, 34 for BPD, MDD, respectively). We identified 97 lipid features 
showing significant intensity differences in both MDD cohorts (MDD-associated 
lipids; Wilcoxon test, BH-corrected FDR = 10%), and 47 lipids altered in both BPD 
cohorts (BPD-associated lipids; Wilcoxon test, BH-corrected FDR = 10%).  

Comparison of disease-associated lipids in section 3.1.4 indicated that while lipids 
identified as significantly associated with particular psychiatric disorders were 
different, the shifts in lipid abundances between disease and control were highly 
correlated for the three disorders (Pearson correlation, r = 0.94 and r = 0.88, p < 
0.00001 for MDD-SCZ comparison in CN and RU cohorts, respectively; Pearson 
correlation,  r = 0.66 and r = 0.93, p < 0.00001 for BPD-SCZ comparison in DE-AT and 
RU cohorts, respectively), indicating a shared lipid profile. Additional analysis of 
reproducibility of SCZ effect between cohorts (described in subsection 3.1.3 of the 
thesis) suggested that we could not confidently report lipid abundance differences 
specific to just one of the disorders. Comparison to the available literature further 
supported common alterations for the three disorders. Subsection 3.1.5 of the thesis 
included an analysis of the relationship between disease-associated genes and genes 
related to lipid metabolism, based on published data. The results indicated that genes 
associated with the blood plasma lipidome variation overlapped strongly with the 
genetic markers shared by the three disorders, suggesting a link between the well-
described shared genetic component of the psychiatric disorders and shared 
lipidome alterations reported here. 

Relationship between SCZ-associated lipidome alterations and medication. 

Most of the SCZ patients assessed in our study received long-term antipsychotic 
medication treatments, shown to have effects on blood plasma lipids. To assess the 
extent of medication effect on our results, additional analysis was included in section 
3.1.6 focusing on first psychotic episode patients and SCZ that have not received 
antipsychotic medication during at least six months prior to blood sampling. 

Model validation follow-up study 

In the results above, a lipid-based diagnostic model was defined that could distinguish 
SCZ from CTL with an AUC of up to 0.95. While the performance of the model was 
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robust across the different datasets, the applicability of a lipid-based biomarker panel 
in practice remains to be studied further. As the first step of addressing this question, 
we performed a follow-up study. A total of 119 blood plasma samples from 
psychiatric patients and healthy controls were collected and analyzed using the same 
lipidomics methods as in the original study. The sample labels, however, were 
concealed during the entirety of the statistical analysis to exclude model 
hyperparameter optimization and emulate real-world generalization capabilities of 
the model. 

The performance of the model in the original study could be translated to an expected 
0.77 sensitivity and 0.86 specificity. Accordingly, using the model trained on the lipid 
abundance of the 914 SCZ and CTL samples from the original studies, we predicted 
the disease status of the validation samples. A 0.5 threshold for the model probability 
was used to define SCZ and CTL prediction labels (Figure 3A). 

 
Figure 3: Prediction probabilities of SCZ for validation samples. (A) Distribution of prediction 
probabilities of SCZ for the 119 samples. Dashed black line corresponds to the defined threshold for label 
predictions. (B) Distribution of prediction probabilities of SCZ separately for SCZ, FEP, SCZtyp, and CTL 
samples. The four darker points correspond to median values, and whiskers extend to the inter-quartile 
ranges. 

Of the 119 validation samples, 28 corresponded to SCZ individuals, 19 to FEP 
individuals, 55 to healthy CTLs, and 12 to schizotypical (SCZtyp) individuals – a 
personality disorder with certain similarities to SCZ, but without pronounced 
psychiatric symptoms. For five samples, diseases labels could not be recovered. The 
proportion of correctly identified SCZ and FEP patients (sensitivity) was 0.82 and 
0.84, respectively, while the specificity was found to be 0.95 – higher than the 
performance expected from the original study (Figure 3B). Interestingly, SCZtyp 
individuals showed a high variability in prediction labels, as the distribution of 
predicted probabilities for these samples was quite different than the distributions 
for both SCZ/FEP and CTL (proportion of SCZtyp individuals predicted as SCZ: 0.58; 
Figure 3B). These results are in line with the classification of SCZtyp disorder as an 
intermediate schizophrenia-spectrum phenotype. 
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Shorter chain triglycerides are negatively associated with symptom 
improvement in schizophrenia.  

This chapter follows the results published in [1]. Some passages have been quoted 
verbatim from [1], and figures were reproduced or modified with permission from 
[1]. 

Summary 

Schizophrenia is a serious mental disorder requiring lifelong treatment. While 
medications are available that are effective in treating some patients, individual 
treatment response can vary, with some patients exhibiting resistance to one or 
multiple drugs. Currently, little is known about the causes for the difference in 
treatment response observed among individuals with schizophrenia, and satisfactory 
markers of poor response are not available for clinical practice. Here, I studied the 
changes in the levels of 322 blood plasma lipids between two time points assessed in 
92 individuals diagnosed with schizophrenia during their inpatient treatment and its 
association with the extent of symptom improvement. Twenty (20) triglyceride 
species were found to be increased in individuals with least improvement in Positive 
and Negative Syndrome Scale (PANSS) scores, but not in those with largest reduction 
in PANSS scores. These triglyceride species were distinct from the rest of triglyceride 
species present in blood plasma. They contained a relatively low number of carbons 
in their fatty acid residues and were relatively low in abundance compared to the 
principal triglyceride species of blood plasma.  

Study setup 

We assessed the abundance of 322 lipid species in the blood plasma of 92 individuals 
diagnosed with schizophrenia collected at two time points: at the beginning and end 
of their hospitalization at a psychiatric clinic (average ± standard normal deviation: 
37  ± 19 days). Samples were represented by female and male individuals (58 % 
female) of age ranges 17 – 43 years, and information on medication regimen was 
collected. Symptom severity was assessed by Positive and Negative Syndrome Scale 
(PANSS) score at the two time points. Lipidomics measurements were produced 
using mass spectrometry coupled with liquid chromatography in negative and 
positive ionization modes. From the reproducibly quantified lipid features, a set of 
322 unique lipid compounds was annotated based on their mass-to-charge, retention 
time values, as well as fragmentation patterns. Assessed lipid species covered 14 lipid 
classes and aligned well with expected blood plasma lipidome composition. 

Association between changes in lipid abundances and symptom improvement 

All but one patient displayed symptom improvement from the first to the second time 
point, demonstrated by the reduction in PANSS scores (Figure 4A). However, the 
improvement in PANSS varied considerably, with top 25% best responders 
displaying PANSS scores improvement from -102 to -39 point differences (n = 23) and 
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bottom 25% worst responders displaying PANSS score improvement -14 to 0 point 
differences(n = 24) (Figure 4A). The extent of changes in lipid abundances differed 
depending on PANSS score improvement. While for worst responders, 22 lipids 
showed significant changes from first to the second time point (worst-response-
associated lipids; Wilcoxon signed-rank test, Benjamini-Hochberg correction FDR 
5%; Figure 4B), the effect in best responders was lower (Wilcoxon signed-rank test, 
no significant lipids at Benjamini-Hochberg FDR 5% threshold; Figure 4B). 
Accordingly, although the levels of worst-response-associated lipids at baseline were 
similar for best and worst responders, best responders did not display a statistically 
significant increase from first to the second point (respectively: Mann–Whitney U 
test, 1 of 22 p < 0.05; Wilcoxon signed-rank test, all 22 p > 0.05; Figure 4C-D). Among 
the 22 worst-response-associated lipids, 20 were triglycerides, 30% of the total 
number of triglycerides (Figure 4E). Triglycerides with lower carbon number (40-48 
carbons in fatty acid residues) were most affected (Figure 4F).  

 
Figure 4: Significant changes in worst responders. (A) PANSS scores at first and second time points for 
the 92 individuals. Individuals with least improvement in PANSS score (worst responders, n = 24) and 
most improvement in PANSS score (best responders, n = 23) are marked in orange and green, respectively. 
Orange and green dashed lines demarcate the upper and lower quartile of PANSS differences, dashed grey 
line corresponds to identical PANSS values at the two points. (B) P-values of the Wilcoxon signed-rank 
test plotted against the median base two log-transformed fold change (log2 fold-change) between the two 
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time points for individuals with most improvement (left) and least improvement (right). The 22 worst-
response-associated lipids are marked in color according to lipid class, TAG (purple), PC (dusty pink), Cer 
(dark blue). Dashed lines demarcate log2FC = 0 and nominal p = 0.05. (C) Log2 abundances for best and 
worst responders at first and second time point. Three worst-response associated lipids with strongest 
statistical effect (p < 0.0005 for Wilcoxon signed-tank test for changes in worst responders) are plotted: 
TAG 42:0, TAG 44:0, TAG 44:1. Noted p-values correspond to Wilcoxon signed-rank and Mann-Whitney U 
test p-values for comparisons between groups. Boxplot whiskers and fliers correspond to standard 
boxplot definition. (D) The median values of the normalized log2 abundances for best and worst 
responders at first and second time points, for all 22 worst-response associated lipids. For each lipid, the 
log2 abundances were normalized by the lipid mean value for all patients at the first time point. (E) Left: 
the 322 annotated lipids, grouped by lipid class. Right: the 22 worst-response-associated lipids, grouped 
by lipid class. The number of respective triglyceride species are indicated on the plot. (F) The number of 
carbons in the fatty acid residues (chain length) and number of double bonds for the annotated 
triglycerides. Worst-response-associated lipids are colored in purple. Larger and smaller circle sizes 
correspond to even and odd chain triglycerides, respectively. 

Influence of medication and sex 

Because the association between changes in lipid abundance levels and symptom 
severity could be confounded by medication regimens, subsection 4.1.3 contains 
analysis aimed to exclude the influence of medication regimen variation on reported 
results. Similarly, subsection 4.1.4 contains analysis aimed to exclude the effect of 
possible sex imbalance on reported results.   

The subsection 4.1.5 of the thesis further includes the analysis of lipid profiles at first 
time point as predictive markers of symptom improvement after treatment, with no 
reported statistically significant results. 

Long-Term Fluoxetine Administration Causes Substantial Lipidome 
Alteration of the Juvenile Macaque Brain 

This chapter follows the results published in [2]. Some passages have been quoted 
verbatim from [2], and figures were reproduced or modified with permission from 
[2]. 

Summary 

Fluoxetine is an antidepressant commonly prescribed not only to adults, but also to 
children for the treatment of depression, obsessive-compulsive disorder, and 
neurodevelopmental disorders. The adverse effects of the long-term treatment 
reported in some patients, especially in younger individuals, call for a detailed 
investigation of molecular alterations induced by fluoxetine treatment. In the 
presented study, we assessed residual effects of a two-year fluoxetine administration 
on the expression of genes, abundances of lipids and polar metabolites in the 
prelimbic cortex of 10 treated and 11 control macaques. Analysis of 8871 mRNA 
transcripts, 3608 lipids, and 1829 polar metabolites revealed substantial alterations 
of the brain lipid content, including significant abundance changes of 106 lipid 
features, accompanied by subtle changes in gene expression. Lipid alterations in the 
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drug-treated animals were most evident for polyunsaturated fatty acids (PUFAs). A 
decrease in PUFAs levels was observed in all quantified lipid classes excluding 
sphingolipids, which do not usually contain PUFAs, suggesting systemic changes in 
fatty acid metabolism.  

Study setup 

In this study, we assessed alterations of gene expression, polar metabolite, and lipid 
abundance in the prelimbic cortex (PLC; a part of the medial prefrontal cortex) of 
macaques treated with fluoxetine using RNA-sequencing (RNA-seq), Fourier-
transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and high 
precision mass spectrometry coupled with liquid chromatography (LC-MS), 
respectively (Figure 5A). The fluoxetine and vehicle administration began at one year 
of age, which is equivalent to 4–6 years of age in humans, and continued 
uninterrupted for two years, followed by a one year post-dosing period that ended at 
four years of age, just before puberty. Our analysis included 10 monkeys treated with 
fluoxetine and 11 control monkeys administered with a vehicle.  

 
Figure 5: Experimental design and quantified molecular phenotypes. (A) Schema of experimental design. 
(B) Number of quantified genes, polar metabolites, and lipids. (C) Multi-dimensional scaling plots 
visualizing variation among samples calculated based on abundance levels of 8871 genes, 1829 polar 
metabolites, and 3608 lipids. Colors correspond to treatment status, shapes to the MAOA genotype. (D) 
Distribution of t-test FDR-adjusted p-values calculated for 8871 genes, 1829 polar metabolites, and 3608 
lipids in the comparison between treated and control animals. Dashed line corresponds to FDR cutoff of 
10%. The number of lipids passing this FDR cutoff (red) is marked on the right.  

RNA-seq yielded quantitative gene expression measurements for 8871 protein-
coding genes annotated in the macaque genome. Mass spectrometry analyses 
generated abundances for 1829 polar metabolite and 3608 lipid features, with 514 
polar metabolite features and 373 lipid features putatively annotated (Figure 5B). 
Visualization of variation among samples based on these three data indicated the 
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separation of treated and control macaques at the lipid abundance level, but not at 
the gene and polar metabolite levels (Figure 5C). 

Effect of fluoxetine on lipids 

Statistical analysis revealed 106 lipid features (treatment-associated lipids) showing 
significant abundance differences between fluoxetine-treated and control monkeys 
(permutations, p = 0.008; Benjamini-Hochberg adjusted FDR = 10%). By contrast, the 
treatment effect was substantially weaker at the gene expression and polar 
metabolite abundance levels, and statistical effects were considered too low to define 
any reasonable false-discovery rate (FDR) threshold for treatment-associated genes 
or metabolites (Figure 7D; minimal observed q-value = 0.9986 and 0.68740 for gene 
expression and polar metabolite levels, respectively). We further conducted group-
based analysis assessing the significance of the treatment effect at the level of lipid 
classes. This approach revealed significant abundance differences for five lipid 
classes: free fatty acids (FFA), phosphatidylethanolamines (PE), 
lysophosphatidylethanolamines (LPE), and hexosylceramides (HexCer;O2 and 
HexCer;O3) (Figures 6A; Gene Set Enrichment Analysis, adjusted p < 0.05). 
Accordingly, lipids within these classes showed coordinated treatment response, 
exhibited by the abundance of HexCer;O2 and HexCer;O3 lipids increasing in the PLC 
of the treated monkeys, and FFA, LPE, and PE lipids decreasing as a result of the 
treatment. 
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Figure 6: Effect of fluoxetine on brain lipids. (A) Lipid class enrichment analysis results based on the 
comparison between treated and control animals. Left: normalized enrichment scores (NES). Positive NES 
corresponds to an increase in the lipid abundances in treated animals, and negative NES corresponds to 
decrease. Colors mark lipid classes demonstrating significant enrichment in the treatment-control 
differences. Right: adjusted enrichment p-values. The dashed line corresponds to the adjusted p-value 
cutoff of 0.05. (B) Base two log-transformed fold change (log2 FC) values calculated between treated and 
control animals for lipids in free fatty acid (FFA) class. X-axis labels indicate fatty acid chain length and 
number of double bonds. FFAs are ordered by increasing unsaturation. Blue symbols mark compounds 
with nominal t-test p < 0.05. Asterisks mark statistically significant compounds (t-test; FDR = 10%). The 
dashed line indicates log2 FC = 0. (C) Log2 FC values calculated between treated and control animals, 
averaged for all the lipids with the same level of unsaturation (number of double bonds). Lipids were first 
separated into groups based on the number of fatty acid residues, one (dark blue), two (green), or three 
(light blue), and sphingolipids were excluded. The black dashed line indicates log2 FC = 0. Colored dashed 
lines indicate linear regression lines fitted to each group (p = 0.0054, 0.54 × 10−5 and 0.00022 for lipid 
classes containing one, two and three fatty acid residues, respectively). (D) Abundance levels of 
docosahexaenoic acid (DHA) and arachidonic acid (AA) in treated and control animals. Symbols represent 
individual samples. Colors correspond to treatment status, shapes to the MAOA genotype. Asterisks mark 
statistically significant differences between treatment and control (t-test; FDR = 10%). (E) The cumulative 
abundances of lipids contained in FFA, LPE, PE, HexCer;O2, and HexCer;O3 lipid classes (colors as in panel 
A) for each level of unsaturation (number of double bonds per compound). Cumulative abundances were 
normalized between the lipid classes. 

The effect of fluoxetine was not uniform within a lipid class, but depended strongly 
on its fatty acid residue composition. Specifically, lipids containing fatty acids with 
multiple double bonds, or polyunsaturated fatty acids (PUFAs), were affected by the 
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treatment to a greater extent. This effect was most obvious for free fatty acids (Figure 
6B), but also evident for the other detected glycerophospho- and glycero- lipid classes 
(F-test for linear regression, p = 0.0054, 0.00004, and 0.00022 for lipid classes 
containing one, two, and three fatty acid residues, respectively; Figure 6C). Notably, 
the two PUFAs constituting up to 25% of all fatty acid content in the brain, 
docosahexaenoic acid (DHA, FFA 22:6) and arachidonic acid (AA, FFA 20:4) differed 
significantly between treated and control animals at the individual compound level 
(Benjamini-Hochberg adjusted FDR = 10%; Figure 8D). In contrast to 
glycerophospholipids and glycerolipids, which contain substantial amounts of PUFA 
residues, lipid classes depleted in PUFAs, HexCer;O2 and HexCer;O3, increased 
significantly as a result of the treatment (Figure 8A,E; Gene Set Enrichment Analysis, 
adjusted p < 0.05). Subsection 5.1.3 of the thesis further includes an analysis of 
interaction effects between MAOA genotype and fluoxetine treatment on the levels of 
lipid abundances in the brains of the study animals. 

Group based analysis for metabolite and gene expression data 

While we did not detect significant gene expression and polar metabolite abundance 
differences in the PLC of fluoxetine-treated macaques, below-the-threshold effects 
might still be informative. Using group-based analysis designed to reveal sub-
threshold effects, we identified significant treatment effects at the gene expression 
level, but none for polar metabolites. Specifically, 87 gene groups defined using Gene 
Ontology (GO) biological process terms differed in fluoxetine-treated macaques 
(Gene Set Enrichment Analysis, adjusted p < 0.05), discussed in subsection of the 
thesis 5.1.4.  

Lipidomics Data Analysis 

Section 6.1 of the thesis describes the proposed workflow for global lipidomics data 
analysis.  

A shortened version of section 6.2 of the thesis, “Extensive Signal Duplications in LC-
MS-based Lipidomics”, is presented below. 

Summary 

In untargeted LC-MS-based lipidomics, the same lipid compound can be represented 
multiple times in the data. The source of this signal duplication are the different 
adducts and other types of compound modifications that can be formed during 
electrospray ionization (ESI). Common adducts are expected, such as [M + H]+, [M + 
NH4]+, [M + Na]+, [M + K]+ in positive ionization mode or [M-H]-, [M-H+HCOO]-, [M-
H+CH3COOH]-, [M-Cl]- in negative ionization mode, but these adducts account for 
only a small fraction of the observed signal duplications. The difficulty in defining 
possible adducts and compound modifications lies in their dependence on 
experimental conditions. Here, I present a data-driven approach for their estimation. 
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Specifically, a set of 29 chemically diverse internal standards was used to determine 
signals in the data associated with their addition to the sample. A filtration procedure 
was proposed that resulted in a substantial reduction in the number of features in 
negative and positive ionization modes, while retaining most of the putatively 
annotated features. 

Results 

A set of diverse internal standards (n = 29; detailed list can be found in subsection 
6.2.1 of the thesis) was used to assess the possible adduct formation (or other signal 
duplications) in the untargeted LC-MS method. Five replicate plasma samples were 
spiked with these standards and compared to five replicates without the additions.  

First, Student’s t-test was used to compare the lipid abundances in the samples with 
added standards (spiked samples) and those without additions (non-spiked 
samples). Features that had lower average abundances in spiked samples compared 
to non-spiked samples and p-values passing the 1% false-discover-rate (FDR) were 
defined as spike-derived features  (n = 4790 and 1561 for positive and negative 
modes, respectively; Students’ t-test, Benjamini-Hochberg correction).  

Next, the spiked-derived features were used to define the m/z differences for 
subsequent adduct filtration. For each standard, the m/z differences between its main 
adduct (as described in subsection 6.2.1 of the thesis) and co-eluting spiked-derived 
features (in a 0.02 minute interval) were calculated. The union of all the m/z 
differences for all the spiked standards was used to define common differences using 
a sliding-window histogram along the m/z values and peak detection function, 
discussed in detail in subsection 6.2.2 of the thesis. The m/z differences present for 
at least 3 different standards were retained for subsequent filtration (n = 69 and 23 
for positive and negative modes, respectively; Table 2). While some masses were 
expected, others were data-derived and could not be characterized from the 
literature.  

 

NEGATIVE ionization mode POSITIVE ionization mode 

m/z difference 

number 
of 
standards m/z difference 

number of 
standards 

82.00199997 13 21.98199998 19 

164.006 11 58.05199997 14 

67.98699997 10 83.95199997 11 

246.009 9 106.959 9 

149.99 8 157.957 8 

-24.04400002 8 111.949 8 
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-14.01500002 8 89.96899997 7 

157.989 8 219.926 7 

84.97799997 8 79.93999997 7 

-74.03700002 7 179.936 7 

231.994 7 43.96299998 7 

239.993 7 233.943 7 

 
 225.944 7 

 
 128.941 7 

Table 2:  The top m/z differences defined using spiked-derived features. 

Removal of unwanted adducts from the whole set of features detected in plasma 
samples was performed by searching for co-eluting compounds (in a 0.02 minute 
interval) with these defined m/z differences. Because the m/z differences were 
calculated based on one main adduct and one redundant feature, the choice of which 
feature should be retained, and which should be discarded, was straightforward. 
After performing standard data filtration procedures, including blank filtration, QC 
filtration, and 13C isotope removal, 3672 and 2039 features remained in positive and 
negative modes, respectively (Figure 7). The described signal duplication siltration 
discarded an additional 1414 and 1060 features in positive and negative modes, 
respectively (Figure 7). Importantly, the standard adduct removal, when only well-
described common adducts were considered, performed poorly (Figure 7). Only 35 
and 45 % of features removed by the above-described method would have been found 
by common adduct filtration in the two modes, respectively. 
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Figure 7: The number of features remaining in non-spiked plasma samples after different filtration 
procedures. Left: no filtering and filtering by blank samples (removing of contaminants/false-detects). 
Right: Filtration by blanks, technical replicates (QCs, removing features with technical variability), 
filtration of isotopes, and filtration of adducts/signal duplications. The dashed bar indicates the number 
of features remaining after filtration by common adducts alone, described in detail in subsection 6.2.1 of 
the thesis. 

To assess the performance of the adduct filtration procedure, a set of putatively 
annotated compounds was considered. Of the 258 and 223 annotated lipids in 
positive and negative mode, 15 and 3 were removed as redundant adducts (Figure 8).  

 
Figure 8: The m/z and RT values of the quantified features in positive and negative ionization modes. 
From left to right: 1) the features remaining after standard data cleaning and signal duplication filtration, 
non-annotated (grey points) and the annotated (blue points) features; 2) the features remaining after 
standard data cleaning before signal duplication filtration, non-annotated (grey points), and annotated 
(blue points) features; 3) the features deleted by signal duplication filtration, red points. The number of 
features are indicated below the plots. 

As an alternative to the signal duplication filtration proposed here, common m/z 
differences can be defined from the whole set of quantified features [3]. Subsection 
6.2.2 further contains discussion on the advantages of the method proposed here 
compared to the existing alternatives. 

Conclusions 

The main results of the thesis are summarized below: 
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o A workflow for global lipidomics data analysis was proposed, with key 
processing steps outlined and critically assessed, providing a practical guide 
for global lipidomics data analysis. 

o A data-driven approach was proposed for the reduction of signal duplications 
in untargeted lipidomics experiments, which removed more than twice as 
many redundant features than the standard approach of adduct filtration, 
while retaining most of the annotated features. 

o A profile of lipid alterations in the blood plasma of individuals with 
schizophrenia was discovered, robustly reproduced across several 
independent sample cohorts 

o The described lipid profile was shown to be consistent for other psychiatric 
disorders: major depressive and bipolar disorders. 

o A lipid-based predictive model was proposed, separating individuals with 
schizophrenia from controls with high diagnostic ability (Area under the 
Receiver Operating Characteristic Curve, ROC AUC=0.86-0.95) and validated 
on two separate test datasets. 

o A particular lipid profile associated with poor medication response in 
schizophrenia was described, namely, an increase in shorter-chained 
triglyceride lipid species was shown to be associated with poor symptom 
improvement after treatment. 

o Lipids were shown to be altered as a results of fluoxetine administration in 
juvenile macaque brains, while other data modalities, gene expression and 
polar metabolite, did not show significant alterations. Among lipids, 
polyunsaturated fatty acids (PUFAs) were shown to be decreased in the brain 
of macaques that have undergone fluoxetine treatment, with free fatty acids 
showing strongest effects, but other PUFA-containing lipids exhibiting 
decreased levels, as well. 
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