Singularity preserving maps on matrix algebras

Valentin Promyslov Artem Maksaev

$$
20-26
$$

JUNE

2021
PORTOROŽ
SLOVENIA

The talk is based on the joint work with
A. Guterman (Lomonosov Moscow State University)
A. Maksaev (Lomonosov Moscow State University)

I would like to express my gratitude to the Basis Foundation for covering the Congress registration fee.

Notation

- \mathbb{F} - an arbitrary field;
- $M_{n}(\mathbb{F})$ - the $n \times n$ matrix algebra over a field \mathbb{F};
- $G L_{n}(\mathbb{F})$ - the set of invertible matrices;
- $\Omega_{n}(\mathbb{F})$ - the set of singular matrices.

Introduction

Classical result of Frobenius

Theorem (Frobenius, 1897)

If $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is linear and preserves the determinant, i.e.,

$$
\operatorname{det}(T(A))=\operatorname{det}(A) \text { for all } A \in M_{n}(\mathbb{C}) \text {, }
$$

then T is of the form

$$
T(A)=P A Q \quad \forall A \in M_{n}(\mathbb{C}) \quad \text { or } \quad T(A)=P A^{t} Q \quad \forall A \in M_{n}(\mathbb{C}),
$$

where $P, Q \in G L_{n}(\mathbb{C})$ with $\operatorname{det}(P Q)=1$.

Introduction

Generalization for an arbitrary field

Let \mathcal{Y} be a subset of $M_{n}(\mathbb{F})$. We say that a transformation $T: \mathcal{Y} \rightarrow M_{n}(\mathbb{F})$ is of a standard form if there exist non-singular matrices P, Q such that

$$
\begin{equation*}
T(A)=P A Q \quad \forall A \in \mathcal{Y} \quad \text { or } \quad T(A)=P A^{t} Q \quad \forall A \in \mathcal{Y} . \tag{1}
\end{equation*}
$$

Theorem (Dieudonné, 1949)

Let $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be a linear bijection. If I preserves the singularity, i. e.
then T is of the standard form (1).

Introduction

Generalization for an arbitrary field

Let \mathcal{Y} be a subset of $M_{n}(\mathbb{F})$. We say that a transformation $T: \mathcal{Y} \rightarrow M_{n}(\mathbb{F})$ is of a standard form if there exist non-singular matrices P, Q such that

$$
\begin{equation*}
T(A)=P A Q \quad \forall A \in \mathcal{Y} \quad \text { or } \quad T(A)=P A^{t} Q \quad \forall A \in \mathcal{Y} . \tag{1}
\end{equation*}
$$

Theorem (Dieudonné, 1949)

Let $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be a linear bijection. If T preserves the singularity, i. e.,

$$
\operatorname{det}(A)=0 \Rightarrow \operatorname{det}(T(A))=0,
$$

then T is of the standard form (1).

Introduction

Removing the linearity

Theorem (Dolinar, Šemrl, 2002)

If $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is surjective and satisfies

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \quad \text { for all } A, B \in M_{n}(\mathbb{C}) \text { and all } \lambda \in \mathbb{C} \tag{2}
\end{equation*}
$$

then T is linear and hence is of the standard form (1) with $\operatorname{det}(P Q)=1$.

Introduction

Generalization for an arbitrary field

Let \mathbb{F} be a field such that $|\mathbb{F}|>n$.
Theorem (Tan, Wang, 2003)
Let $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be a transformation satisfying (2). Then T is of the standard form (1).

Theorem (Tan, Wang, 2003)
Let $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be a surjective transformation satisfying

$$
\operatorname{det}\left(A+\lambda_{i} B\right)=\operatorname{det}\left(T(A)+\lambda_{i} T(B)\right) \quad \text { for all } A, B \in M_{n} \quad \text { and } \quad i=1,2
$$

where $\lambda_{i} \in \mathbb{F}-\{0\}$ and $\left(\lambda_{1} / \lambda_{2}\right)^{k} \neq 1$ for $1 \leqslant k \leqslant n-2$. Then T is of the standard form (1).

Introduction

Only one value of scalar

Theorem (Costara, 2019)

Suppose $|\mathbb{F}| \geqslant n^{2}+1$. Let $T_{1}, T_{2}: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be maps, one of them being surjective, such that

$$
\operatorname{det}\left(T_{1}(A)+T_{2}(B)\right)=\operatorname{det}(A+B) \quad\left(A, B \in M_{n}(\mathbb{F})\right)
$$

Then there exist $A_{0} \in M_{n}(\mathbb{F})$ and $P, Q \in M_{n}(\mathbb{F})$ satisfying $\operatorname{det}(P Q)=1$ such that either

$$
T_{1}(A)=P\left(A+A_{0}\right) Q \quad \text { and } \quad T_{2}(A)=P\left(A-A_{0}\right) Q \quad \forall A \in M_{n}(\mathbb{F})
$$

or

$$
T_{1}(A)=P\left(A+A_{0}\right)^{t} Q \quad \text { and } \quad T_{2}(A)=P\left(A-A_{0}\right)^{t} Q \quad \forall A \in M_{n}(\mathbb{F})
$$

Introduction

Only one value of scalar

Theorem (Costara, 2019)

Let \mathbb{F} be a field with $|\mathbb{F}| \geqslant n^{2}+1$, and fix some nonzero element $\lambda_{0} \in \mathbb{F}$. Let $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ be a surjective map such that

$$
\operatorname{det}\left(T(A)+\lambda_{0} T(B)\right)=\operatorname{det}\left(A+\lambda_{0} B\right) \quad\left(A, B \in M_{n}(\mathbb{F})\right)
$$

If $\lambda_{0}=-1$, there exist $A_{0} \in M_{n}(\mathbb{F})$ and $P, Q \in M_{n}(\mathbb{F})$ satisfying $\operatorname{det}(P Q)=1$ such that

$$
T(A)=P\left(A+A_{0}\right) Q \quad\left(A \in M_{n}(\mathbb{F})\right) \quad \text { or } \quad T(A)=P\left(A+A_{0}\right)^{t} Q \quad\left(A \in M_{n}(\mathbb{F})\right)
$$

If $\lambda_{0} \neq-1$, then T is of the standard form (1).

Main results

Let \mathbb{F} be an algebraically closed field.
Theorem (Guterman, Maksaev, Promyslov, 2021+)
Suppose $\mathcal{Y}=G L_{n}(\mathbb{F})$ or $\mathcal{Y}=M_{n}(\mathbb{F}), T: \mathcal{Y} \rightarrow M_{n}(\mathbb{F})$ is a map satisfying the following conditions:

- for all $A, B \in \mathcal{Y}$ and $\lambda \in \mathbb{F}$

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{equation*}
$$

- the image of T contains at least one non-singular matrix.

Then T is of the standard form (1).

Main results

Let \mathbb{F} be an algebraically closed field.
Theorem (Guterman, Maksaev, Promyslov, 2021+)
Suppose $\mathcal{Y}=G L_{n}(\mathbb{F})$ or $\mathcal{Y}=M_{n}(\mathbb{F}), T: \mathcal{Y} \rightarrow M_{n}(\mathbb{F})$ is a map satisfying the following conditions:

- for all $A, B \in \mathcal{Y}$ and $\lambda \in \mathbb{F}$

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{equation*}
$$

- the image of T contains at least one non-singular matrix.

Then T is of the standard form (1).
Note that in the theorem above $\operatorname{det}(P Q)$ possibly differs from 1.

Sketch of proof

Identity matrix preservation

- It is enough to consider only such maps T, that $T(I)=I$.
- Indeed, if T satisfies $(*)$, then for every $R, S \in G L_{n}(\mathbb{F})$ map T^{\prime} such that $T^{\prime}(A)=R \cdot T(A) \cdot S$ also satisfies $(*)$.

Lemma

If $T(I)=I$ then T preserves determinant, i.e. $\operatorname{det} A=\operatorname{det}(T(A)) \quad \forall A \in G L_{n}(\mathbb{F})$

Sketch of proof

- It is enough to consider only such maps T, that $T(I)=I$.
- Indeed, if T satisfies $(*)$, then for every $R, S \in G L_{n}(\mathbb{F})$ map T^{\prime} such that $T^{\prime}(A)=R \cdot T(A) \cdot S$ also satisfies $(*)$.

Lemma

If $T(I)=I$ then T preserves determinant, i.e.

Sketch of proof

- It is enough to consider only such maps T, that $T(I)=I$.
- Indeed, if T satisfies $(*)$, then for every $R, S \in G L_{n}(\mathbb{F})$ map T^{\prime} such that $T^{\prime}(A)=R \cdot T(A) \cdot S$ also satisfies $(*)$.

Lemma

If $T(I)=I$ then T preserves determinant, i.e. $\operatorname{det} A=\operatorname{det}(T(A)) \quad \forall A \in G L_{n}(\mathbb{F})$.

Sketch of proof

$T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$

- The aim is to prove that:
- $T(A+B)=T(A)+T(B) \quad \forall A, B \in G L_{n}(\mathbb{F})$ such that $A+B$ is non-singular; - $T(\alpha A)=\alpha T(A) \quad \forall A \in G L_{n}(\mathbb{F}), \alpha \in \mathbb{F}^{*}$.
- Then $T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ can be extended by linearity on $M_{n}(\mathbb{F})$ in such way that still preserves determinant.
- After that the desired result follows from the Frobenius theorem.

Sketch of proof

$T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$

- The aim is to prove that:
- $T(A+B)=T(A)+T(B) \quad \forall A, B \in G L_{n}(\mathbb{F})$ such that $A+B$ is non-singular;
- $T(\alpha A)=\alpha T(A) \quad \forall A \in G L_{n}(\mathbb{F}), \alpha \in \mathbb{F}^{*}$.
- Then $T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ can be extended by linearity on $M_{n}(\mathbb{F})$ in such way that $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ still preserves determinant.
- After that the desired result follows from the Frobenius theorem

Sketch of proof

$T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$

- The aim is to prove that:
- $T(A+B)=T(A)+T(B) \quad \forall A, B \in G L_{n}(\mathbb{F})$ such that $A+B$ is non-singular;
- $T(\alpha A)=\alpha T(A) \quad \forall A \in G L_{n}(\mathbb{F}), \alpha \in \mathbb{F}^{*}$.
- Then $T: G L_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ can be extended by linearity on $M_{n}(\mathbb{F})$ in such way that $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ still preserves determinant.
- After that the desired result follows from the Frobenius theorem.

Sketch of proof

Considering matrices as vectors

- To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_{n}(\mathbb{F})$ can be considered as vectors $\nu_{A} \in \mathbb{F}^{n^{2}}$. Then to prove linearity it is enough to show that

$$
\nu_{T(A)}=X \cdot \nu_{A} \quad \text { for some matrix } X \in M_{n^{2}}(\mathbb{F})
$$

- But in our case instead of condition
we have
- Therefore we need to modify the technique of Tan and Wang

Sketch of proof

Considering matrices as vectors

- To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_{n}(\mathbb{F})$ can be considered as vectors $\nu_{A} \in \mathbb{F}^{n^{2}}$. Then to prove linearity it is enough to show that

$$
\nu_{T(A)}=X \cdot \nu_{A} \quad \text { for some matrix } X \in M_{n^{2}}(\mathbb{F})
$$

- But in our case instead of condition

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \quad \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{equation*}
$$

- Therefore we need to modify the technique of Tan and Wang.

Sketch of proof

Considering matrices as vectors

- To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_{n}(\mathbb{F})$ can be considered as vectors $\nu_{A} \in \mathbb{F}^{n^{2}}$. Then to prove linearity it is enough to show that

$$
\nu_{T(A)}=X \cdot \nu_{A} \quad \text { for some matrix } X \in M_{n^{2}}(\mathbb{F})
$$

- But in our case instead of condition

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \quad \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{equation*}
$$

- Therefore we need to modify the technique of Tan and Wang.

Sketch of proof

Considering matrices as vectors

$$
\begin{gather*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}\\
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{gather*}
$$

- Note that if the polynomial has n distinct roots and $\operatorname{det}(A)=\operatorname{det}(T(A))$, then $(*)$ implies $\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B))$.
- Indeed, $\operatorname{det}(A+\lambda B)$ and $\operatorname{det}(T(A)+\lambda T(B))$ have the n common roots and coefficients of the term
- Thus it is enough to find for fixed A a matrix B such that $\operatorname{det}(A+\lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

Sketch of proof

Considering matrices as vectors

$$
\begin{gather*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}\\
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{gather*}
$$

- Note that if the polynomial has n distinct roots and $\operatorname{det}(A)=\operatorname{det}(T(A))$, then $(*)$ implies $\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B))$.
- Indeed, $\operatorname{det}(A+\lambda B)$ and $\operatorname{det}(T(A)+\lambda T(B))$ have the n common roots and coefficients of the term λ^{0} are $\operatorname{det}(A)=\operatorname{det}(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\operatorname{det}(A+\lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

Sketch of proof

$$
\begin{gather*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}\\
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{gather*}
$$

- Note that if the polynomial has n distinct roots and $\operatorname{det}(A)=\operatorname{det}(T(A))$, then $(*)$ implies $\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B))$.
- Indeed, $\operatorname{det}(A+\lambda B)$ and $\operatorname{det}(T(A)+\lambda T(B))$ have the n common roots and coefficients of the term λ^{0} are $\operatorname{det}(A)=\operatorname{det}(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\operatorname{det}(A+\lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

Sketch of proof

$$
\begin{gather*}
\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B)) \text { for all } A, B \in M_{n}(\mathbb{F}) \text { and all } \lambda \in \mathbb{F} \tag{3}\\
\operatorname{det}(A+\lambda B)=0 \Rightarrow \operatorname{det}(T(A)+\lambda T(B))=0 \tag{*}
\end{gather*}
$$

- Note that if the polynomial has n distinct roots and $\operatorname{det}(A)=\operatorname{det}(T(A))$, then $(*)$ implies $\operatorname{det}(A+\lambda B)=\operatorname{det}(T(A)+\lambda T(B))$.
- Indeed, $\operatorname{det}(A+\lambda B)$ and $\operatorname{det}(T(A)+\lambda T(B))$ have the n common roots and coefficients of the term λ^{0} are $\operatorname{det}(A)=\operatorname{det}(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\operatorname{det}(A+\lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

Sketch of proof

$T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$

For $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ the theorem follows from the following lemma, which can be interesting by itself:

Lemma

Let \mathbb{F} be a field $|\mathbb{F}|>n>1$ and $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ denotes the map satisfying the following conditions:

1) for any matrices A, B the singularity of the matrix $A+B$ implies singularity of $T(A)+T(B)$;
2) $\left.T\right|_{G L_{n}(\mathbb{F})}=\left.\mathrm{id}\right|_{G L_{n}(\mathbb{F})}$.

Then $T=\mathrm{id}$.

Thank you for your attention!

Bibliography

© G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. (1897), pp. 994-1015.
D. J. Dieudonné, Sur une généralisation du groupe orthogonal á quatre variables, Arch. Math. 1 (1949), pp. 282-287.
(in . Dolinar, P. Šemrl, Determinant preserving maps on matrix algebras, Linear Algebra Appl. 348 (2002), pp. 189-192.

击 V. Tan, F. Wang, On determinant preserver problems, Linear Algebra Appl., 369 (2003), pp. 311-317.
(C. Costara, Nonlinear determinant preserving maps on matrix algebras, Linear Algebra Appl., 583 (2019), pp. 165-170.
C. de Seguins Pazzis, The singular linear preservers of non-singular matrices, Linear Algebra Appl., 433 (2010), pp. 483-490.

