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Abstract

The traditional approach to bond portfolio immunization usually assumes that the possible
future changes of the term structure of interest rates lie within a suitable parametric class of
functions. The quantities of interest are the sensitivities of the portfolio value with respect
to these parameters. Various kinds of term structure assumptions give rise to different bond
portfolio immunization models—from the classical duration to key rate and parametric dura-
tion hedging. We propose a nonparametric version of this approach by introducing a suitable
regularization—effectively imposing smoothness constraints on the term structure changes.
This allows us to derive hedging equations without recourse to any specific parametric form.
We test the proposed nonparametric immunization approach and find it performs slightly better
than a traditional approach based on a popular Nelson-Siegel term structure parametric form.
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1 Introduction and Literature Review

Using a portfolio of bonds to immunize a financial obligation is a classical financial problem.
Excellent review articles by Bierwag (2006) and Shah et al. (2020) gave detailed accounts of the
history of the question and of possible approaches to it. De La Peña et al. (2021) discussed the use
of this kind of immunization in the context of life insurance.

The literature differs in both the problem formulation and the assumptions made to arrive at a
solution. Regarding problem formulation, there are two distinct branches of literature: worst-case
immunization and sensitivity-based immunization. The worst-case branch initiated by Bierwag
and Khang (1979) and Prisman (1986) considered a set of possible future scenarios and aimed
at providing a max-min strategy to guarantee the best possible portfolio yield in the worst pos-
sible scenario. Fong and Vasicek (1984) derived a lower bound for the worst-case portfolio
yield—maximizing this lower bound provided an immunization approach known as M2 immuniza-
tion. Balbás and Ibáñez (1998) and Barber and Copper (1998) considered other sets of possible
scenarios—arriving at other bounds for the worst-case outcome. Balbás et al. (2002b), Balbás et al.
(2002a) and Balbás and Romera (2007) further advanced this stream of research.

A very different and more mainstream branch is sensitivity-based immunization in which one
considers a set of risk factors and immunizes a portfolio with respect to small changes in these
factors. Immunization in this case might amount to simple delta-hedging, i.e. forming the port-
folio so that the combined first-order sensitivities to small changes in all risk factors (also known
as partial or parametric durations) should be zero. In more complicated cases immunization might
involve second- or higher-order partial derivatives. This branch originated with Redington (1952)
who considered the (flat) interest rate as the sole risk factor. The subsequent literature explored
various risk factor specifications. Bierwag (1977) considered additive and multiplicative shocks to
the term structure of interest rates as risk factors. Cooper (1977) assumed several specific paramet-
ric forms of the term structure and took these term structure parameters as factors. Willner (1996)
used the now-classic term structure equation by Nelson and Siegel (1987). Boyle (1978), Ingersoll
et al. (1978), Cox et al. (1979), and Beekman and Shiu (1988) among many others derived the
term structure risk factors by postulating a stochastic differential equation governing the instanta-
neous short rate. Au and Thurston (1995) inferred durations as bond price sensitivities within a
one-factor Heath-Jarrow-Morton model (Heath et al., 1992).

However, the risk factors in question do not have to originate from parametric assumptions.
The duration-vector approach of Chambers et al. (1988) is equivalent to considering a Taylor ex-
pansion of an arbitrary term structure change—each term of the expansion introduces another risk
factor in the model. Reitano (1990); Ho (1992) introduced the so-called key rate durations. Their
approach is equivalent to assuming that the term structure is linearly interpolated from a set of key
interest rates which are directly observed for a fixed set of key terms to maturity. Tark (1990) pro-
posed estimating the most suitable risk factors via principal component analysis. D’ecclesia and
Zenios (1994); Barber and Copper (1996); Hill and Vaysman (1998) developed and tested the cor-
responding immunization techniques. Lapshin (2019a) supposed that the term structure of interest
rates is endogenously determined from observed prices of benchmark (government) coupon bonds
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via nonparametric least squares fitting with smoothing—thus, the observed prices of the bench-
mark bonds were the true risk factors in the model. Lapshin (2021) developed a similar model
within the parametric term structure estimation approach of Nelson and Siegel (1987).

The remainder of the paper is organized as follows. Section 2 presents the general classification
of existing immunization approaches and pinpoints the gap to be filled. Section 3 describes the
model. Section 4 describes the data and the empirical analysis. Section 5 concludes.

2 The Framework

One of the two main modeling choices we consider is whether the term structure of interest rates is
assumed to be exogenous and evolving over time or endogenous and determined by other variables
which evolve and thus in turn provide for an evolving term structure estimate. Let P be the vector
of observed bond prices and r(t) be the term structure of interest rates for the term t to maturity.
Endogenous term structure models can be schematically represented as

P → r(·),

where the arrow represents that the term structure r(·) is determined from bond prices P (which
are assumed to evolve randomly).

Exogenous term structure models can be schematically represented as

r(·)→ P,

where r(·) evolves randomly and determines P.
The second choice is whether the function r(t) is assumed to be parametric or non-parametric.
With respect to these two aspects, there are four possibilities:

1. Parametric exogenous term structure. This is the classical setup of parametric duration hedg-
ing dating back to Cooper (1977).

2. Parametric endogenous term structure. This is the setup of Lapshin (2021).

3. Nonparametric endogenous term structure. This is the setup of Lapshin (2019a).

4. Nonparametric exogenous term structure. To the best of our knowledge, this combination
has not yet been implemented; this is where our paper comes in.

We now consider all four setups within the same framework and notation to ease comparison.

2.1 Parametric Exogenous Term Structure

This is the classical setup which we repeat here for the sake of completeness and to introduce the
notation. Assume a parametric equation for the term structure r(t):

r(t) = rθ (t), (1)
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where t is the term to maturity and θ is the vector of parameters. For example, a classical Nelson-
Siegel parametric model has

rθ (t) = β0 +β1
1− e−

t
τ

t/τ
+β2

(
1− e−

t
τ

t/τ
− e−

t
τ

)
(2)

with θ = (β0, β1, β2, τ). We assume that the model parameters θ evolve randomly over time and
that Eq. (1) always holds.

The bond prices Pk for k = 1..K are assumed to be determined by the market from the term
structure via discounted cash flows:

Pk =
Nk

∑
i=1

Fk,ie−r(tk,i)tk,i = PV(Fk, r), (3)

where Fk,i is the cash flow promised by the bond k at term tk,i to maturity.
In this classical setting, the only risk factors affecting the portfolio value are the parameters θ ,

thus the portfolio should be immunized by making its sensitivities to small changes in θ equal to
zero. Let wk be the amount of bond k in the immunized portfolio. The portfolio value V is thus

V (w, r) =−PV(F0, r)+wT PV(F, r), (4)

where the index k = 0 denotes the original bond-like obligation to be immunized with all other
bonds.

The sensitivities to small changes in θ are

∂V
∂θ

=−∂PV(F0, r)
∂θ

+wT ∂PV(F, r)
∂θ

= 0,

which can be written as
QBw = QB0, (5)

where Q is the matrix of term structure sensitivities determined by the nature of the parametric
term structure model used:

Qi, j =

(
∂ rθ (ti)

∂θ j

)T

with B and B0 being the matrices of instrument sensitivities determined by the nature of the finan-
cial instruments used:

Bi,k =

(
∂PV(Fi, r)

∂ r(ti)

)T

=−tiFk,ie−r(ti)ti,

where, for the sake of notation, we assumed that the cash flow times ti are common for all instru-
ments. If this is not the case, zero cash flows Fk,i = 0 can be introduced where necessary. The
quantities ∂PV (F,r)

∂θn
are known as parametric or partial durations—price sensitivities with respect to

changes in model parameters θn.
Note that even though B only depends on the current interest rates r, Q is likely to depend on
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the current estimate of model parameters θ . It is common to find them via nonlinear least squares:

N

∑
k=1

(
N

∑
i=1

Fk,ie−rθ (ti)ti −Pk

)2

→ min
θ

, (6)

where Pk are the observed bond prices. Gilli et al. (2010) showed that for the popular Nelson-Siegel
term structure Eq. (2) this problem had relatively bad numerical properties and that in practice the
solution was likely to be suboptimal.

Convexity and higher-order bond price sensitivities are also common in bond portfolio immu-
nization. However they fall completely within this framework. As discussed by Chambers et al.
(1988), bond convexity represents not only the second order sensitivity to parallel shifts but also
the first order sensitivity to linear changes in the term structure. Analogously with higher order
bond price sensitivities. Let r(t) = θ1 + θ2t + θ3t2 + · · ·+ θntn−1 be the Taylor expansion of the
term structure r(t). Then

∂PV(Fk, r)
∂θ j

=−
N

∑
i=1

t j
i Fk,ie−r(ti)ti =−PV(Fk, r)Dk, j,

where Dk, j is the j-th order duration of bond k.
Unfortunately, this only allows immunizing with n bonds, where n is the number of term struc-

ture parameters. If there are more bonds available in the market (which is usually the case), modi-
fications are in order. A common modification of Eq. (3) incorporates i.i.d. random pricing errors
ε ∼ N(0, Σε):

Pk = PV(Fk, r)+ εk. (7)

Immunization is now understood as minimizing the variance of the portfolio price V :

Var[V ] = Var[−PV(F0, r)− ε0 +wT (PV(F, r)+ ε)]→ min
w

.

Assuming the vector of parameter changes ∆θ ∼ N(0, Σθ ) is small and using the first order ap-
proximation, we get

Var[V ] = (Bw−B0)
T QT

Σθ Q(Bw−B0)+wT
Σεw+Σε ,

which is a quadratic form in w minimized for

w = (BT QT
Σθ QB+Σε)

−1BT QT
Σθ QB0.

Assuming i.i.d. parameter changes Σθ = I and negligibly small price errors Σε = αI for α → 0,
with a bit of matrix algebra one can get that

w = BT QT (QBBT QT )−1QB0, (8)

which is exactly the least squares solution to Eq. (5), commonly used in practice when the number

5



of bonds K is greater than the number of term structure parameters n. Nonzero choices for α will
lead to regularized solutions satisfying Eq. (5) only approximately in order to achieve robustness.

However, there are other possible model setups.

2.2 Parametric Endogenous Term Structure

Here the logic is reversed—bond prices P are randomly evolving while the term structure r(t) is
determined by fitting the term structure parameters θ to observed bond prices P via least squares:

N

∑
k=1

(
N

∑
i=1

Fk,ie−rθ (ti)ti −Pk

)2

→ min
θ

.

The obtained term structure rθ(P)(t) can then be used to price either the entire portfolio:

V (w, P) =−PV(F0, rθ(P))+wT PV(F, rθ(P))

or the original obligation only:

V (w, P) =−PV(F0, rθ(P))+wT P.

In both cases the risk factors are the observed bond prices P, so the immunization condition is

∂V (w, P)
∂P

= 0,

which was shown by Lapshin (2021) to hold for

w = (BT QT (QBBT QT +Aθ )
−1QB)−1BT QT (QBBT QT +Aθ )

−1QB0

if the entire portfolio is priced via the estimated term structure or

w = BT QT (QBBT QT +Aθ )
−1QB0 (9)

if only the original obligation is priced with the model. Here

Aθ =
K

∑
k=1

(PV(Fk, rθ(P))−Pk)
∂ 2 PV(Fk, rθ )

∂θ 2 .

The formulas are a bit more complicated (although these are still closed form solutions). Lap-
shin (2021) examined this immunization setup and demonstrated it to be roughly equivalent to the
classical immunization with exogenous term structure in both hedging portfolio composition and
risk reduction—but only if the number of bonds in the market is large enough.
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2.3 Nonparametric Endogenous Term Structure

In this setup bond prices are still the primary risk factors but the term structure is now estimated in
a nonparametric fashion—via minimizing some sort of smoothness functional, e.g.

K

∑
k=1

(
Pk −

N

∑
i=1

Fk,ie−r(ti)ti

)2

+ γ

∫ T

0
[r(s)(x)]2 dx → min

r(·)
, (10)

where r(s) stands for the s-th derivative of the function r(·), γ is the regularization parameter
and the term structure r(·) is sought within a suitable class of functions over [0, T ].

The hedging coefficients can still be derived from requiring sensitivities to the observed bond
priced Pk to be zero (Lapshin, 2019a):

w = (BT (BBT +Aθ + γJT J)−1B)−1BT (BBT +Aθ + γJT J)−1B0, (11)

where JT J is a nonnegative definite symmetrical matrix uniquely defined by the structure of the
regularization functional and the set of bond cash flow terms ti.

Lapshin (2019a) showed that these hedging weights naturally correspond to the classical hedg-
ing based on duration, duration and convexity, or higher-order sensitivities when the degree of
smoothness γ → +∞. He also recovered the classical approach based on key rate durations as
another particular case in a more restrictive theoretical setup.

Analogously, if the hedging instruments are assumed to be valued at their observed market
prices Pk, the optimal hedging coefficients are given by a similar formula:

w = BT (BBT +Aθ + γJT J)−1B0.

Note that even though the term structure is nonparametric (and thus infinite-dimensional), the
number of risk factors is equal to the number of hedging instruments by construction—therefore
the immunization problem always has a unique solution.

2.4 Nonparametric Exogenous Term Structure

To the best of our knowledge, this setup has not yet been studied in the literature. A nonparamet-
ric term structure function is an infinite-dimensional object—but sensitivity-based immunization
requires all of its dimensions to be independent risk factors. One generally cannot hedge infinite
number of risk factors with a finite number of instruments. Therefore, a suitable regularization is
key to building a successful and useful model. This is the subject of the rest of this paper.

3 The Model

We assume that the term structure r(·), or rather its change ∆r(·), is an infinite-dimensional risk
factor randomly sampled from the space of sufficiently smooth functions. We adopt Gaussian
process formalism to build a model. Let ∆r(t) be Gaussian with a known correlation function
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(kernel)
corr[∆r(t), ∆r(t ′)] = k(t, t ′)

subject to the usual positive semi-definiteness constraint

∫ T

0

∫ T

0
k(t, t ′) f (t) f (t ′)dt dt ′ ≥ 0

for all f ∈ L2[0, T ].
The choice of the kernel function k is tied to our assumptions about the smoothness of r(·) and

∆r(·)—whether we assume them to be continuous, differentiable, etc. The exact nature of these
smoothness assumptions is not important now and will be discussed when choosing the kernel k in
the next section. In what follows, we consider radial kernels, i.e. with the correlation depending
only on the distance between the two points: k(t, t ′) = k(|t − t ′|). We do so mainly for simplicity,
however nothing prevents one from using a more general kernel.

We now derive the optimal immunization weights from this assumption. The portfolio value V

given the immunization weights w and the term structure r is

V (w, r) =−PV(F0, r)+wT PV(F, r),

which only depends on the values of r(ti) which are jointly normal:

r(ti)∼ N(r∗, Σr),

where r∗i is the current (unobserved) interest rate for the term ti and (Σr)i, j = σiσ jk(ti, t j) is the
covariance matrix implied by kernel k(·, ·). Its variance is therefore given by

Var[V ] = (Bw−B0)
T

Σr(Bw−B0)+wT
Σεw+Σε , (12)

which is minimized by
w = (BT

ΣrB+Σε)
−1BT

ΣrB0,

or, assuming i.i.d. εk and equal σi,

w = (BT KB+αI)−1BT KB0, (13)

where K is the correlation matrix derived from the kernel function k(ti, t j) and α incorporates the
ratio of variances of ∆r and ε .

To finish the setup, we have to specify the kernel k(t, t ′) and the signal-to-noise ratio α .

3.1 Choosing the Kernel

As discussed by Stein (1999), guessing a kernel based on scarce and noisy data is not a good idea.
Therefore, we assume a Matérn kernel, which is widely used due to the presence of the parameter
ν governing the degree of smoothness of random samples—from almost surely not differentiable
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to infinitely differentiable.3 Due to the analytical simplicity, the following kernels are the most
popular:

k1/2(t, t ′) = e−
|t−t′|

h ,

k3/2(t, t ′) =

(
1+

√
3|t − t ′|

h

)
e−

√
3|t−t′|

h ,

k5/2(t, t ′) =

(
1+

√
5|t − t ′|

h
+

5|t − t ′|2

3h2

)
e−

√
5|t−t′|

h ,

k∞(t, t ′) = e−
|t−t′|2

2h2 ,

where h is the parameter governing the characteristic length of the changes which we expect to be
of more practical importance than the choice of the kernel. For each of the four kernels we try h

on a reasonable grid of values from 0.01 to 100 years and choose the best model.

3.2 Choosing the Signal-to-Noise Ratio

In contrast to the kernel, the signal-to-noise ratio α is close to observable, as we describe below, al-
though we need to use either a holdout sample or a small, randomized subsample for the estimation
of α to avoid overfitting.

As discussed by Rasmussen and Williams (2006), any chosen kernel can be viewed as im-
posing a certain prior probability distribution over the space of term structures r(·). Given this
prior distribution, the observation model (7), and the observed values P, we can form the poste-
rior distribution for both r(·) and Σε via infinite-dimensional Bayesian inference as described by
Lapshin (2019b). However, this approach is computationally intensive, therefore we propose an
approximation as described below.

Instead of the Bayesian estimate of rP(·) and Σε , we can first find the maximum a posteriori

(the Bayesian counterpart to the maximum likelihood) estimate of rP(·) via a variant of (10):

K

∑
k=1

(
Pk −

N

∑
i=1

Fk,ie−r(ti)ti

)2

+ γJk [r(·)] , (14)

where the functional Jk[·] is determined by the chosen kernel. Smoothing splines arising as the
solution to (10) are a particular case of this for a very special choice of the kernel (Rasmussen and
Williams, 2006). However, it turns out that the next step is robust to different specifications of Jk[·],
so we can use the solution to (10), which is much easier to compute, instead of the true maximum

a posteriori estimate given by (14).
Now, given an estimate rP(·), either maximum a posteriori or obtained otherwise, we calculate

3Smoothness characteristics of random samples generated by the Matérn kernel are discussed in more detail by
Kanagawa et al. (2018).
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the residuals

εk =
N

∑
i=1

Fk,ie−rP(ti)ti −Pk,

which allows us to estimate Σε or σε since we assume Var[εk] = σ2
ε to be equal for all k.

Now consider a portfolio consisting of a single observed bond k (B0 = Bk) without hedging
(w = 0). Then Eq. (12) becomes

1
σ2

ε

Var[Pk] =
1
α

BT
k KBk +1,

which is linear in α−1. We can now estimate α−1 from samples of Pk and Bk via simple linear
regression.

This approximation seems rather crude, but we have found the overall results to be quite robust
to variations in α up to the changes by a factor of 3–5. We thus need only to estimate the right
order of magnitude for α , which we believe this algorithm suffices for.

4 The Empirical Analysis

Our dataset consists of end-of-day Spanish government bonds closing prices from 1996 to 2020
obtained from Bloomberg. All bonds have coupons; we drop the bonds for which the payment
amounts were not known in advance. Figure 1 has a dot for a given date if a bond with a given
maturity was traded on that day. Figure 2 presents a histogram of numbers of traded bonds—
it ranged from 9 to 44 with typical values from 24 to 34. We use the first half of the data as
the training set—to choose model parameters. The second half is used to estimate out-of-sample
performance metrics.

Figure 1: Maturities of all bonds in the dataset.
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Figure 2: Number of bonds in the dataset.

We test the immunization performance via a randomized leave-out-one cross validation pro-
cedure. We consider a random trading day τ (in what follows we assume τ = 0 for the sake of
notation) and a random bond k traded on that day, which is neither the shortest nor the longest
bond. This bond is chosen to model the obligation to be hedged—and is therefore assigned the
index 0. We use all other bonds maturing after the immunization horizon to hedge this obligation
according to Eq. (13).

We use 1 year as the immunization horizon as most financial reporting is done at least annually
and do not consider interim portfolio rebalancing. All intermediate coupon payments are assumed
to be reinvested until the end of the immunization period at the interest rate prevailing at the
moment of receiving the payment.

If perfect immunization were possible, the immunized portfolio would be truly riskless and
would therefore earn the risk-free rate. Therefore, if the initial portfolio consisted of a short posi-
tion in 1 unit of bond 0 and the positions in other bonds described by the vector w, its projected
price would be

V H(w) =V 0(w)er0(H)H + ∑
i∥ ti<H

wT F·,ie f 0(ti,H)(H−ti),

where H is the immunization horizon, r0(·) is the term structure estimated at time 0,

f (ti, H) = r0(H)H − r0(ti)ti

is the forward rate for investing at time ti until time H implied by the term structure r0(·) observed
at time 0, and the initial portfolio price V 0(w) is given by

V 0(w) =−P0 +wT P.

The quality of immunization is measured by the mean absolute value of ∆, the deviation of the
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actual financial result from the value V H(w) one could hope to get:

∆ =−PH
0 +wT PH + ∑

i∥ ti<H
wT F·,ierti(T−ti)·(T−ti)−V H(w), (15)

where PH and PH
0 are the prices observed at the end of the immunization horizon and rti(x) is

the interest rate estimated at time ti for the term x to maturity, which is assumed to be the actual
investment rate for the coupons received at time ti.

The hedging error ∆ is then calculated for N = 10,000 randomly chosen trading days to play the
part of the day 0 in Eq. (15), each time with a randomly chosen bond substituted for the obligation
to be hedged (bond 0 in Eq. (15)). Then we calculate the mean absolute hedging error for each
hedging method over N simulations.

The hedging methods we consider and compare in our empirical exercise are as follows.

1. No hedging. We let w = 0, therefore we have ∆ =−PH
0 +P0er0(H)H .

2. Duration-based. This is the usual approach based on reducing the duration of the immu-
nized portfolio to zero. We choose the least squares portfolio among all portfolios satisfying
the immunization equation.

3. Duration-Convexity. This approach sets both the duration and the convexity of the immu-
nized portfolio to zero. We choose the least squares portfolio among all portfolios satisfying
the immunization equations.

4. Parametric Exogenous. We use Nelson-Siegel parametric hedging as described by Eqs. (2)
and (8) in Section 2.1.

5. Parametric Endogenous. Again, we use Nelson-Siegel parametric hedging, now described
by Eq. (9) in Section 2.2.

6. Nonparametric Endogenous. We use the spline approach as described by Eqs. (10) and (11)
in Section 2.3. We try both s = 1 (piecewise linear splines) and s = 2 (cubic splines).

7. Nonparametric Exogenous. This is the approach we describe in Section 3. Optimal param-
eters were estimated on the training sample and found to be α ≈ 7, ε ≈ 0.0043, ν = 3/2, h≈
0.25 years.

Table 1 presents the results of our numerical experiment—the mean absolute hedging errors and
their standard deviations. We have found the relative performance on the train and test samples to
be very similar, therefore we report only the latter.

Note that even though Table 1 suggests that the nonparametric endogenous approach with linear
splines is the clear winner, there are many factors influencing the outcome of such comparison
experiment. Lapshin (2022) shows that some modelling choices implicitly or explicitly made
during such experiment might significantly influence the results. Therefore, we cautiously interpret
the results as indicative of the performance of the proposed method being comparable with the
alternatives, thus justifying further empirical studies.
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Hedging method MAE, basis points

No hedging 497 (6.7)
Duration 149 (1.5)
Duration and convexity 93.2 (0.9)
Parametric Exogenous (Nelson-Siegel) 40.4 (0.4)
Parametric Endogenous (Nelson-Siegel) 49.0 (1.2)
Nonparametric Endogenous (linear) 44.0 (0.5)
Nonparametric Endogenous (cubic) 29.6 (0.3)
Nonparametric Exogenous (new) 39.9 (0.4)

Table 1: Mean absolute hedging errors for various methods. Estimated standard deviations in
parentheses.

5 Conclusion

Nonparametric bond portfolio immunization without assuming any particular form of the term
structure equation is completely feasible—gaussian processes provide all the necessary machin-
ery, however some parameters still need to be estimated though. With reasonable parameter
tuning, nonparametric immunization performs slightly better than parametric in an out-of-time
cross-validation exercise—and significantly better than the traditional approach based on duration
matching and duration-convexity matching.

A technical advantage of the nonparametric approach is even though it requires a term structure
estimate for calculations (the matrix B depends on the term structure), this estimate does not have
to come from any specific term structure estimation method. This could be viewed as an advantage
over the parametric immunization approach, where we need to estimate the current term structure
equation parameters in order to carry out the hedging. We can thus use any term structure estima-
tion method, either parametric or nonparametric. Moreover, the nonparametric hedging portfolio
turns out to be quite robust to perturbations in the estimated term structure. This is in sharp contrast
to the parametric approach, which is quite sensitive to the solutions of the nonlinear least squares
problem in Eq. (6) being suboptimal.

There is not enough evidence to recommend switching from the existing parametric approach
to the proposed nonparametric one. However, it is a viable candidate if an immunization procedure
is only being developed. We can also recommend the proposed approach for consideration in
practical situations where parametric term structure estimates are unavailable or unreliable.
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A. Balbás, A. Ibáñez, and S. López. Dispersion measures as immunization risk measures. Journal

of Banking and Finance, 26(6):1229–1244, 2002a. doi: 10.1016/S0378-4266(01)00168-6.
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