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Introduction

This work addresses the following two problems, arising in elimination theory in the context of
Newton polytopes. The first one is to compute the signs of the leading coefficients of the sparse
mixed resultant. The second problem concerns the singular points of a plane projection of a complete
intersection curve given by a generic system of polynomials with given support.

In a broader sense, this work is devoted to developing new methods of enumeration of singular-
ities which arise naturally in the context of Newton polytopes and sparse polynomials.

As an application of the obtained methods we describe the Newton polytope of the Morse
discriminant – the closure of the set of all non-Morse polynomials in the space of polynomials of a
given degree.

In subsections below, we provide a more detailed overview of the abovementioned problems and
the application.

Leading coefficients of the sparse resultant

The classical resultant was initially studied by Sylvester (1853), and later extended to the case of
a system of n homogeneous polynomials in n variables by Cayley (1948) and Macaulay (1902). In
the 1990s, the advances in several fields, such as symbolic algebra and multivariate hypergeometric
functions, revived the interest in resultants. Sparse resultants were introduced and studied by
Gelfand, Kapranov, Zelevinsky, and Sturmfels (see e.g. [9]). In particular, in [17], Sturmfels gives
an explicit combinatorial construction of the Newton polytope of the sparse resultant, and proves
that the leading coefficient of the resultant with respect to an arbitrary monomial order is equal
to ±1. However, the signs of such coefficients have been computed explicitly only for some special
cases so far, although the general answer might be useful for the purposes of real algebraic geometry.

In our work, we construct the 2-mixed volume (Definition 3.14), which is an analogue of the
classical mixed volume of convex lattice polytopes taking values in F2. Besides that, we express the
signs of the leading coefficients of the sparse resultant in terms of the 2-mixed volume of certain
tuples of polytopes (Theorem 3.19).

The 2-mixed volume is a symmetric and multilinear function of lattice polytopes (Proposition
3.15). However, its convex-geometric nature remains unclear, because we cannot define it as a
polarization of any kind of an additive measure, or characterize it by any kind of its monotonicity
properties.

Our explicit formula for the 2-mixed volume employs the so-called 2-determinant, that is, the
unique nonzero multilinear function of n+1 vectors in the n-dimensional vector space over the field
F2 which ranges in F2, remains invariant under all linear transformations, and equals zero whenever
the rank of the n + 1 vectors is less than n. This function implicitly appeared in the context of
the class field theory for multidimensional local fields by Parshin and Kato (see e.g. Remark 1 in
Section 3.1 of [15], which is probably the first occurence of the 2-determinant in the literature).
Later this notion was explicitly introduced in full generality by A.Khovanskii in [10] for the purpose
of his multidimensional version of the Vieta formula (i.e. the computation of the product in the
group (C \ {0})n of all the roots for a system of n polynomial equations with sufficiently generic
Newton polytopes).

The algebro-geometric part Chapter 3 of our work includes an extension of related results
by A. Khovanskii. In particular, our notion of the 2-mixed volume is the result of our effort to
provide an invariant interpretation of the sign in Khovanskii’s multivariate version of the Vieta
formula, and to relax the genericity assumptions on the Newton polytopes in this formula. The
convex-geometric part employs the techniques of tropical geometry to prove the existence of the
2-mixed volume (Theorem 3.13).



Singular points of a plane projection of a complete intersection curve

One of the main tools in the study of singularities of maps is the theory of Thom polynomials. They
express the fundamental classes of the multisingularity strata for a generic map of arbitrary compact
smooth manifolds in terms of their characteristic classes. This theory is however not applicable to a
natural class of generic maps, namely the maps between varieties that are defined by generic Laurent
polynomials with given Newton polytopes. Such varieties are not compact, and the maps are not
proper. At the same time, their toric compactifications associated with the Newton polytopes do
not satisfy the genericity conditions necessary for classical Thom polynomials to be applicable (for
details see e.g. Example 1.1 and Remark 1.2 in [6]). Therefore, working with multisingularity
strata of the abovementioned class of maps requires alternative methods. We will now give a short
overview of developments in this direction.

The discriminant (i.e. A1 stratum) of a projection of a generic hypersurface was described in
[16]. If H is a hypersurface given by a generic polynomial f(x1, . . . , xd, y) and π is the projection
forgetting the last coordinate, then the Newton polytope of the polynomial defining the abovemen-
tioned A1 stratum is equal to the fiber polytope Qπ(f) ⊂ Rd of the Newton polytope N(f).

The image (i.e. A0 stratum) of a projection of a generic complete intersection was studied by A.
Esterov and A. Khovanskii in [4]. They proved that the image under an epimorphism π : (C\{0})n →
(C\{0})n−k of a complete intersection {f1 = . . . = fk+1} ⊂ (C\{0})n defined by generic polynomials
with given Newton polytopes N(fi) = ∆i is a hypersurface {g = 0} ⊂ (C \ {0})n−k, whose Newton
polytope N(g) ⊂ Rn−k is equal to the so-called mixed fiber polytope MPπ(∆1, . . . ,∆k+1) of the
polytopes ∆1, . . . ,∆k+1.

An approach to studying the strata of higher codimension, e.g for A2 (cusps) and 2A1 (double
points), is suggested in [6]. However, this approach only works under additional assumptions on
the Newton polytopes and employs operations with tropical fans of dimension that is too high for
practical applications (namely, those dimensions are of the same order as the number of monomials
inside the given Newton polytopes).

For low dimensional maps or projections, the above mentioned strata are 0-dimensional, and the
problem of computing their cardinalities in terms of the given Newton polytopes arises naturally.
For example, this problem was solved in [7] for a mapping C2 → C2 whose components are generic
polynomials of given degrees. See [6] for an overview of some other literature on problems of this
kind.

To the best of our knowledge, our work is the first one where such a problem is solved for
polynomials with arbitrary Newton polytopes.

Let us state the main result of Chapter 4.

Theorem 1. Let ∆ be a lattice polytope in Zn⊕Z2. If, for generic polynomials f1, . . . , fn+1 supported
at ∆, the image of the complete intersection curve

C̃ = {f1 = . . . = fn+1 = 0} ⊂ (C \ {0})n × (C \ {0})2

under the projection π : (C \ {0})n × (C \ {0})2 → (C \ {0})2 is a reduced nodal curve, then the
number of its nodes is given by formula (5) in Theorem 4.9.

Remark 2. The classification of the Newton polytopes for which the abovementioned projection
is not a nodal curve, is a non-trivial problem (see Example 4.2) that is not addressed in this
thesis. Instead, we will prove a certain generalization of Theorem 1 which is applicable to all lattice
polytopes ∆ (see Theorem 4.9).

For some support sets A ⊂ Zn+2, it is quite easy to show that the projection of a complete
intersection given by generic polynomials supported at A has only nodes as singularities. For
instance, this is the case for A = dT ∩ Z3, where d ∈ Z>0, and T ⊂ R3 is the standard simplex.

Example 3 (Counting the nodes of the projection of a complete intersection curve defined by
generic equations of given degree). Let us apply (5) to A = dT ∩Z3, where d ∈ Z>0, and T ⊂ R3 is
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the standard simplex. In the notation of this formula, we then have n = 1, the area of the polygon P
is equal to d4, the term d2 comes from the area of the horizontal facet of dT , and the non-horizontal
facets do not contribute, since for every Γ ∈ F(dT ) \ H(dT ), we have indv(Γ ∩ A) = 1. Thus, the
answer is

-D =
d4 − 2d3 + d2

2
=
d2(d− 1)2

2
.

Remark 4. The same answer for the number of nodes of the curve C, as in Example 3 can be
obtained by the double-point formula (see Theorem 9.3 in [8]). Passing to a suitable toric compact-
ification, we reduce the computation to finding the number of double points for the corresponding
map F : X → Y, where X ⊂ CP3 is the closure of the curve C̃ and Y = CP2. Applying the
double-point formula

|2A1| =
1

2

(
(F∗1)2 − F∗c1(F

∗TY
/
TX )

)
∈ H4(Y,C)

to the case considered, we obtain

|2A1| =
1

2
(d4 − (2d3 − d2)) =

d2(d− 1)2

2
.

This approach, however, does not work in general, because it is directly applicable to counting
self-intersections of the image only for a map whose multisingularities are stable, and our projection
of the compactified curve may have arbitrarily complicated singularities and multisingularities at
infinity.

The problem addressed in Chapter 4 of our work might also be of interest with regard to the
study of algebraic knots, which is motivated by Viro’s work [18] about the rigid isotopy invariant
called encomplexed writhe, as well as the works of Mikhalkin and Orevkov (see e.g. [14], [13], [12]).
Namely, it is quite natural to estimate the complexity of an algebraic knot/link (i.e., the minimal
crossing number) in terms of the algebraic complexity of its defining equations (i.e., the size of their
Newton polytopes).

Theorem 1 gives an upper bound for the number of self-intersections of a projection of a real
complete intersection curve onto a coordinate plane. It is easy to show that this upper bound is
sharp for the case of real complete intersection links given by a pair of polynomials of given degree.
Much harder problems, such as obtaining a sharp upper bound for arbitrary plane projections (not
only onto coordinate planes), or topological classification of complete intersection links given by
polynomials with arbitrary Newton polytopes, still remain unsolved.

The Newton polytopes of objects such as the image or the discriminantM of the projection of a
complete intersection are known (see [5], [4], [16]). Therefore a natural first step in the study of the
singularities of M would be passing to the corresponding toric compactification M. If M did not
have any additional singularities, then the problem of describing the simplest singularity strata ofM ,
such as A2 and 2A1, could be solved using classical methods. Unfortunately, the compactification
M does in general have singularities at infinity. Moreover, these singularities are significantly more
complicated than the ones studied. Dealing with them turns out to be the most challenging part in
this class of problems. Our approach is to realize M as the base space of a certain covering, such
that the covering space has significantly less complicated singularities at infinity, namely, so-called
forking–path singularities.

The Newton polytope of the Morse Discriminant

For a set A ⊂ Z, by CA we denote the space of Laurent polynomials with support in A :

CA = {
∑
p∈A

αpx
p | αp ∈ C}.
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Definition 5. The caustic in the space CA is the set of all Laurent polynomials f ∈ CA such that
the map f : (C \ {0})→ C has a degenerate critical point.

Definition 6. The Maxwell stratum in CA is the set of all Laurent polynomials f ∈ CA such that
the map f : (C \ {0})→ C has a pair of coinciding critical values taken at distinct points.

Definition 7. A polynomial f ∈ CA is called Morse, if it belongs neither to the caustic, nor to the
Maxwell stratum.

Definition 8. TheMorse discriminant is the closure of the set of all non-Morse polynomials f ∈ CA.
It is given by the polynomial h2

mhc, where hm and hc are polynomials defining the Maxwell stratum
and the caustic, respectively, if these two sets are hypersurfaces. Otherwise we set the corresponding
defining polynomial to 1.

The problem of describing the Newton polytope and other closely related invariants of the Morse
discriminant was studied by various authors. The degree of the Morse discriminant for general degree
d univariate polynomials was computed in [11]. The tropical fan of the variety of univariate degree
d polynomials having two multiple roots was studied in [3] and in [6] (in a more general setting).
The maximal cones of the tropical fan, that were computed in these works, under the projection
along a line spanned by a constant monomial, define the directions of all the edges of the Morse
polytope. However, due to non-trivial intersections of the images of the cones under this projection,
the results obtained in [3] and in [6] cannot be directly used to enumerate the edges and vertices of
the Morse polytope.

In Chapter 5, using the methods and results obtained in Chapters 3 and 4, we will compute an
explicit formula for the support function of the Newton polytope of the Morse discriminant in the
space of univariate polynomials of given degree, which yields a combinatorial description of all the
vertices of this polytope.

3 Signs of the leading coefficients of the resultant

This chapter is organized as follows. Section 3.1 is devoted to the notion of the 2-mixed volume.
First, we recall the definition and the basic properties of the 2-determinant, and use it to define the
so-called 2-intersection number of tropical hypersurfaces, which in fact depends only on the Newton
polytopes of the hypersurfaces, provided that those Newton polytopes satisfy a certain genericity
condition. The latter allows to construct a well-defined function of lattice polytopes — the so-called
2-mixed volume.

Section 3.2 concerns the multivariate Vieta’s formula which expresses the product of roots for a
polynomial system of equations in terms of the 2-mixed volume of its Newton polytopes.

In section 3.3 we compute the signs of the leading coefficients of the resultant reducing this
problem to finding the product of roots for a certain system of equations (see Theorem 3.19).

3.1 The 2-mixed volume

Definition 3.1. We define det2 to be the function of n+ 1 vectors in an n-dimensional linear space
over F2, that takes values in F2 and satisfies the following properties:

• det2(k1, . . . , kn+1) is equal to zero, if the rank of the collection of vectors k1, . . . , kn+1 is smaller
than n;

• det2(k1, . . . , kn+1) is equal to λ1 + . . . + λn+1 + 1, if the vectors k1, . . . , kn+1 are related by
the unique relation λ1k1 + . . .+ λn+1kn+1 = 0.

Lemma 3.2. The function det2
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1. is GLn(F2)-invariant, i.e. for any linear transformation A ∈ GLn(F2) the equality
det2(k1, . . . , kn+1) = det2(Ak1, . . . , Akn+1) holds;

2. is multilinear.

Theorem 3.3. [10] There exists a unique nonzero function det2 which satisfies the properties listed
in Lemma 3.2.

Theorem 3.4. [10] In coordinates the function det2 can be expressed by the formula

det2(k1, . . . , kn+1) =
∑
j>i

∆ij ,

where ∆ij is the determinant of the n×n matrix whose first n−1 columns represent the sequence of
vectors k1, . . . kn+1 from which the vectors with the indices i and j are deleted, and the last column
is the coordinate-wise product of the vectors ki and kj.

Definition 3.5. Let H1, . . . ,Hn be tropical hypersurfaces. We say that H1, . . . ,Hn intersect trans-
versely (denote byH1 t . . . t Hn), if |H1∩H2∩. . .∩Hn| <∞ and all the points x ∈ H1∩H2∩. . .∩Hn

are smooth for every Hi.

Definition 3.6. Let H1 t . . . t Hn be a transverse tuple of tropical hypersurfaces. The intersection
number ι(H1, . . . ,Hn) ∈ Z is the sum

ι(H1, . . . ,Hn)
def
=

∑
x∈H1∩H2∩...∩Hn

det(Nx(H1), . . .Nx(Hn)). (1)

It is well known that the intersection number of tropical hypersurfaces depends only on their
Newton polytopes (and coincides with the mixed volume of the Newton polytopes). This fact
is often referred to as the tropical Bernstein–Kushnirenko formula. We shall need the following
F2-verison of the intersection number.

Definition 3.7. Consider an arbirtary point ζ ∈ Zn. Let H1 t . . . t Hn be a transverse tuple of
tropical hypersurfaces. We define the 2-intersection number ι2(H1, . . . ,Hn; ζ) ∈ F2 as follows:

ι2(H1, . . . ,Hn; ζ)
def
=

∑
x∈H1∩H2∩...∩Hn

det2(Nx(H1), . . .Nx(Hn), ζ). (2)

Unfortunately, in general, the 2-intersection number does depend on the tropical hypersurfaces,
and not only on their Newton polytopes. However, this dependence disappears if the Newton
polytopes themselves are in general position in a sense that we describe below.

Definition 3.8. Let P ⊂ Rn be a polytope or a finite set. We define the support face of a covector
v ∈ (Rn)∗ to be the maximal subset of P on which v |P attains its maximum. We shall denote this
face by P v.

Definition 3.9. A finite set P ⊂ Zn is called a 2-vertex, if for any pair of points p1, p2 ∈ P, p1 ≡
p2 (mod 2) (i.e., the corresponding coordinates of the points p1, p2 are of the same parity). A lattice
polytope is called a 2-vertex, if the set of its vertices is a 2-vertex.

Definition 3.10. Let P1, . . . , Pn be convex lattice polytopes in Rn or finite sets in Zn, and ζ be
a point in Zn. The tuple P1, . . . , Pn is said to be 2-developed with respect to ζ if, for any covector
v ∈ (Zn)∗ such that v(ζ) 6≡ 0 mod 2, there exists i ∈ {1, . . . , n} such that the support face P vi is a
2-vertex.

Definition 3.11. A tuple P = (P1, . . . , Pn) of convex lattice polytopes is said to be ζ–prickly, if
for any covector v ∈ (R∗)n such that v(ζ) 6= 0, there exists i ∈ {1, . . . , n} such that the support face
P vi is a vertex.
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Remark 3.12. Obviously, if a tuple P is ζ–prickly, then it is 2–developed with respect to ζ.

Theorem 3.13. Consider a point ζ ∈ Zn and finite lattice sets P1, . . . , Pn. Suppose that P1, . . . , Pn
are 2-developed with respect to ζ. Then for any two tuples (H1, . . . ,Hn) and (H ′1, . . . ,H

′
n) of

tropical hypersurfaces, whose equations are supported at P1, . . . , Pn, the 2-intersection numbers
ι2(H1, . . . ,Hn; ζ) and ι2(H ′1, . . . ,H

′
n; ζ) coincide.

Definition 3.14. For a tuple of polytopes P1, . . . , Pn, 2-developed with respect to ζ ∈ Zn, consider
generic tropical hypersurfaces H1, . . . ,Hn, such that the equation of Hi is supported at the set of
vertices of Pi. Then the function MV2 : (P1, . . . , Pn; ζ) 7→ ι2(H1, . . . ,Hn; ζ) is well-defined. We call
it the 2-mixed volume.

Proposition 3.15. The function MV2 is symmetric and multiplinear with respect to the Minkowski
summation of the arguments.

3.2 Multivariate Vieta’s formula

Take an arbirtary point 0 6= a ∈ Zn and consider an a–prickly tuple P = (P1, . . . , Pn) of convex
lattice polytopes in Rn (see Definition 3.11). By CPi1 we denote the set of all polynomials f =∑

p∈Pi cpx
p such that N(f) = Pi and if p ∈ Pi is a vertex, then cp 6= 0. Consider the set CP1 =

CP1
1 ×. . .×C

Pn
1 . The multivariate Vieta’s formula expresses the product of the monomials xa over all

the roots x for a system of polynomial equations f1(x) = . . . = fn(x), where F = (f1, . . . , fn) ∈ CP1
and the coefficients of fi at the vertices of its Newton polytope are equal to 1, in terms of the
2-mixed volume (see Section 3.1) of the polytopes P1, . . . , Pn and the point a.

Namely, we can state the following result.

Theorem 3.16. Under the same assumptions as above, we have∏
f1(x)=...=fn(x),x∈(C\{0})n

xa = (−1)MV2(P1,...,Pn;a). (3)

3.3 Computing the signs of the leading coefficients of the resultant

Definition 3.17. Consider a tuple A = (A0, . . . , An) of finite sets in Zn such that codim(A) = −1
and the sets Ai jointly generate the affine lattice Zn. Then the sparse mixed resultant RA is a unique
(up to scaling) irreducible polynomial in |A| =

∑n
0 |Ai| variables ci,a which vanishes whenever the

Laurent polynomials fi(x) =
∑

a∈Ai ci,ax
a have a common zero in (C \ {0})n.

By |Ai| we denote the cardinality of the set Ai ⊂ Zn, and |A| stands for the sum
∑n

0 |Ai|. For
simplicity of notation, by R we denote the sparse mixed resultant R(A).

Consider the Newton polytope N(R) of the resultant R(A). Suppose that we are given a pair
of gradings γ = (αi,a | i ∈ {0, . . . , n}, a ∈ Ai) and σ = (βj,b | j ∈ {0, . . . , n}, b ∈ Ai) ∈ (Z∗)|A| with
strictly positive coordinates such that the support faces N(R)γ and N(R)σ are 0-dimensional. We
will now compute the quotient of the coefficients rγ and rσ of R which are leading with respect to
the gradings γ and σ respectively, by reducing this problem to the multivariate Vieta’s formula (see
Theorem 3.16).

To the covectors γ, σ one can associate the tuple P γ,σ = (P γ,σ0 , . . . , P γ,σn ) of polytopes in Rn+1

such that

P γ,σi = conv({(a, αi,a) | a ∈ Ai} ∪ {(a,−βi,a) | a ∈ Ai}).

Example 3.18. Let A = (A0, A1), where A0 = {0, 1}, A1 = {0, 1, 2} ⊂ Z. The Newton polytope
N(R(A)) is a triangle with vertices γ̄ = (2, 0, 0, 0, 1), σ̄ = (0, 2, 1, 0, 0) and δ̄ = (1, 1, 0, 1, 0). Con-
sider the covectors γ = (2, 1, 1, 1, 2), σ = (1, 2, 2, 1, 1), and δ = (2, 2, 1, 2, 1), whose support faces
are the vertices γ̄, σ̄, δ̄. Thus, we obtain the the polygons P γ,σ0 and P γ,σ1 (see Figure 1a) and the
polygons P γ,δ0 and P γ,δ1 (see Figure 1b).
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Figure 1a. Figure 1b.

Figure 1: The polygons P γ,σ0 , P γ,σ1 and the polygons P γ,δ0 , P γ,δ1

Theorem 3.19. Let A = (A0, . . . , An) be a tuple of finite sets in Zn satisfying the properties given
in Definition 3.17 and γ, σ ∈ (Z∗)|A| be a pair of gradings with strictly positive coordinates and
0-dimensional support faces N(R)γ and N(R)σ. Then the quotient of the coefficients rγ and rσ of
R(A) that are leading with respect to the gradings γ and σ respectively can be computed as follows:

rγ
rσ

= (−1)MV(P γ,σ0 ,...,P γ,σn )(−1)MV2(P γ,σ0 ,...,P γ,σn ,
(

0
1

)
). (4)

Example 3.20. Using Theorem 3.19, let us compute the quotient of the coefficients rγ and rσ
corresponding to the vertices γ̄ and σ̄ which were considered in 3.18:

rγ
rσ

= 1 · (−1)det2
(

1 0 0
1 1 1

)
+det2

(
0 0 0
1 1 1

)
+det2

(
1 0 0
1 0 1

)
= (−1)0 = 1.

For the coefficients rγ and rδ corresponding to the vertices γ̄ and δ̄, we obtain

rγ
rδ

= 1 · (−1)det2
(

0 1 0
1 1 1

)
+det2

(
0 0 0
1 1 1

)
+det2

(
1 0 0
0 0 1

)
+det2

(
1 1 0
0 1 1

)
= (−1)1 = −1.

Thus, we obtain the well-known formula for the resultant R = R(f, g) of the polynomials
f = a0 + a1x, g = b0 + b1x+ b2x

2: we have R = ±(a2
0b2 + a2

1b0 − a0a1b1), just as expected.

The rest of this Subsection is devoted to the proof of Theorem 3.19.

Definition 3.21. To the gradings γ, σ, we can associate the Khovanskii curve C γ,σ ⊂ C|A|
parametrized by the complex parameter t 6= 0 and defined by the following equations:
zi,a = tαi,a + t−βi,a , where i ∈ {0, . . . , n} and a ∈ Ai.

Restricting the resultant R to the Khovanskii curve C γ,σ, we obtain a Laurent polynomial in
the variable t, which we denote by φ(t). The following statements are obvious.

Proposition 3.22. The coefficient of the leading (lowest) term of φ(t) equals rγ (rσ, respectively).

Proposition 3.23. The equality φ(t0) = 0 holds if and only if the point with coordinates (t
αi,a
0 +

t
−βi,a
0 | i ∈ {0, . . . , n}, a ∈ Ai) belongs to the set {R = 0} ∩ C γ,σ.

Remark 3.24. Note that the polytopes P γ,σ0 , . . . , P γ,σn are exactly the Newton polytopes of the
Laurent polynomials g0(x, t), . . . , gn(x, t), where

gi(x, t) =
∑
a∈Ai

(tαi,a + t−βi,a)xa.
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Proof of Theorem 3.19. Remark 3.24 implies that the equality (4) can be rewritten as follows:

rγ
rσ

= (−1)MV(N(g0),...,N(gn))(−1)MV2(N(g0),...,N(gn),
(

0
1

)
).

At the same time, using the classical Vieta’s formula, we obtain
rσ
rγ

=
∏

φ(t)=0

t.

It follows from Proposition 3.23 and the Bernstein-Kouchnirenko theorem (see [2] for the details)
that ∏

φ(t)=0

t = (−1)|{R=0}∩C γ,σ |
∏

g0(x,t)=...=gn(x,t)=0

t = (−1)MV(N(g0),...,N(gn))
∏

g0(x,t)=...=gn(x,t)=0

t.

Then, applying the multivariate Vieta’s formula (see Theorem 3.16), we have

(−1)MV(N(g0),...,N(gn))
∏

g0(x,t)=...=gn(x,t)=0

t = (−1)MV(N(g0),...,N(gn))(−1)MV2(N(g0),...,N(gn),
(

0
1

)
),

which finishes the proof of the theorem.

4 Singularities of a projection of a complete intersection

In Chapter 4 we compute the sum of δ-invariants of a plane projection of a complete intersection
curve given by a generic system of polynomial equations with a given support. First we introduce
the necessary notation, discuss the important assumptions and then state the main result of the
chapter – Theorem 4.9. For more details see [19].

4.1 Dramatis Personæ

– (x1, . . . , xn, y, t), coordinates in (C \ {0})n+2, n > 1;

– {e1, . . . , en+2}, the standard basis of the character lattice Zn+2;

– A ⊂ Zn+2, a finite subset of maximal dimension;

– ∆ = conv(A) ⊂ Rn+2, the convex hull of the set A;

– F(∆), the set of all facets of the polytope ∆;

– X∆, the toric variety associated to the polytope ∆;

– f1, . . . , fn+1 ∈ CA, a tuple of polynomials supported at A;

– C̃ = {f1 = . . . = fn+1 = 0} ⊂ (C\{0})n+2, the complete intersection given by the polynomials
f1, . . . , fn+1;

– π : (C \ {0})n+2 → (C \ {0})2, the projection forgetting the first n coordinates;

– C ⊂ (C \ {0})2, the closure of the image π(C̃) ⊂ (C \ {0})2;

– P ⊂ R2 the Newton polygon of the curve C;

– S, the singular locus of the curve C.

Remark 4.1. In general, the image π(C̃) is a plane curve with punctured points coming
from the intersection of the closure of the curve C̃ in the toric variety X∆ with the orbits
corresponding to horizontal facets of the polytope ∆ (see Definition 4.8). Therefore, we define
the curve C to be the Zariski closure of π(C̃).
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4.2 Statement of the problem

In this subsection we give a precise formulation of the question that we address in this chapter
and discuss all the assumptions we make. For generic f1, . . . , fn+1 ∈ CA, the complete intersection
C̃ = {f1 = . . . = fn+1 = 0} ⊂ (C \ {0})n+2 is a smooth curve and the closure C of its image under
the projection π is a plane curve in (C\{0})2 whose singular locus consists of finitely many isolated
singular points.

It is quite natural to expect that under certain genericity conditions, all the singular points of
the curve C are nodes. However, this is the case not for all support sets. Moreover, the following
example shows that when the support sets supp(fj) = Aj do not coincide, one can no longer expect
the singular points of the projection of the corresponding complete intersection to be nodes even
for generic polynomials fj ∈ CAj . If we take a point (y0, t0) ∈ π(C) and substitute it into the
polynomials defining C̃, then we obtain a system of n+ 1 polynomial equations in n variables. The
number of solutions for this system is equal to the number of preimages of the point (y0, t0). Now,
take n = 1 and C̃ = {f1 = f2 = 0} with

f1(x1, y, t) = g0(y, t) + x1g1(y, t) + x3
1g3(y, t) and f2(x1, y, t) = h0(y, t) + x3

1h3(y, t),

where gi, hj are some Laurent polynomials in the variables y, t. The example below shows that in
this case, if the point (y0, t0) has more than one preimage in C̃, then it has 3 preimages, so it cannot
be a node. If the support sets supp(f1) and supp(f2) are big enough, then the curve C will actually
have points with 3 preimages.

Example 4.2. Consider A1 = {0, 1, 3} ⊂ Z1 and A2 = {0, 3} ⊂ Z1. Let f1(x) and f2(x) be
polynomials supported at A1 and A2 respectively. Suppose that the univariate system {f1(x) =
f2(x) = 0} has 2 distinct roots r1, r2 ∈ (C \ {0}). Let us show that this system also has another
root r3 ∈ (C \ {0}). Indeed, the assumption we made implies that r2 = α · r1, where α is a root of
unity. Substituting these roots into the first equation, we obtain that the linear term of f1 has to
be 0. But then it is clear that the third root r3 = α · r2 is also a root for the first equation.

Instead of computing the number of nodes of the curve C, we address a slightly more general
problem: namely, we compute the sum of the δ-invariants of the singular points of the curve C. On
one hand, this problem makes sense for any collection of support sets. On the other hand, if the
curve C only has nodes as singularities, then the answer is exactly the number of those nodes.

Problem 4.3. In the same notation as above, express the sum -D of the δ-invariants of the
singular points of the curve C in terms of the set A.

Definition 4.4. Let B be any finite set in Zn+2 and let Λ̃B ⊂ Zn+2 be the sublattice affinely
generated by B. Denote by ΛB the image of Λ̃B under the projection ρ : Zn+2 � Zn+2

/
〈en+1, en+2〉 .

We define indv(B) to be the index of ΛB in Zn+2
/
〈en+1, en+2〉 .

Assumption 4.5. The set A contains 0 ∈ Zn+2.

This assumption can be made without loss of generality since multiplication by monomial does
not change the zero set of the polynomial inside the algebraic torus. At the same time, the resulting
support set is a shift of the initial one.

Assumption 4.6. The set A satisfies the following property: indv(A) = 1.

Remark 4.7. We can make this assumption without loss of generality due to the following reason.
The lattices ΛA and Λ = Zn+2

/
〈en+1, en+2〉 admit a pair of aligned bases such that Λ =

⊕
Zwi

and ΛA =
⊕

Zaiwi for some ai ∈ Z. Performing a monomial change of variables to pass from the
basis {e1, . . . , en+2} to (w1, . . . , wn, en+1, en+2) and then another change of variables of the form
x̌i = xaii , we will reduce our problem to the case indv(A) = 1.
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Let Q = p(∆) be the image of the polytope ∆ under the projection ρ : Rn+2 �
Rn+2

/
〈en+1, en+2〉 .

Definition 4.8. We call a face Γ̃ ⊂ ∆ horizontal, if its projection is contained in the boundary of
Q. We denote the set of all horizontal facets of the polytope ∆ by H(∆).

4.3 Statement of the main result

Denote by (ε1, . . . , εn+2) the coordinate system induced by the basis {e1, . . . , en+2} of Rn+2. Let
Γ ⊂ ∆ be a non-horizontal facet contained in a hyperplane given by a linear equation of the form
`(ε1, . . . , εn+2) = c. The function ` is unique up to a scalar multiple, therefore, one can assume that
the coefficients of ` are coprime integers and that for any α ∈ A \ Γ, `(α) < c.

We now construct a sequence of integers iΓ = (iΓ1 , i
Γ
2 , . . .) as follows. We set BΓ

1 = A ∩ Γ. For
every r > 1, we define

BΓ
r = BΓ

r−1 ∪ (A ∩ {`(ε1, . . . , εn+2) = c− (r − 1)}).

Finally, for every r > 1, we set
iΓr = indv(B

Γ
r ).

It is clear that for every r, the element iΓr divides iΓr−1. Moreover, since for the set A we have
indv(A) = 1, any such sequence stabilizes to 1.

Theorem 4.9. Let A ⊂ Zn+2 be a finite set of full dimension, satisfying Assumption 4.6, and let
∆ ⊂ Rn+2 be its convex hull. In the same notation as above, for generic f1, . . . , fn+1 ∈ CA, the
closure C of the image of the curve C̃ = {f1 = . . . = fn+1 = 0} under the projection π : (C\{0})n+2 →
(C\{0})2 forgetting the first n coordinates is an algebraic plane curve, whose singular locus S consists
of isolated singular points. Then the number -D =

∑
s∈S

δ(s) can be computed via the following formula:

-D =
1

2

(
Area(P )− (n+ 1) Vol(∆) +

∑
Γ∈H(∆)

Vol(Γ)−
∑

Γ∈F(∆)\H(∆)

Vol(Γ)
∞∑
1

(iΓr − 1)

)
, (5)

where δ(s) is the δ-invariant of the singular point s, P =
∫
π(∆) is the fiber polytope of ∆ with respect

to π, the set F(∆) is the set of all facets of the polytope ∆ and H(∆) is the set of all horizontal
facets of ∆.

5 Application: Newton polytope of the Morse discriminant

In this section, we explain how combining the methods introduced in the previous chapters, allows
to compute the vertices of the Newton polytope of the Morse discriminant in the space of univariate
polynomials of given degree. In other words, in the notation of subsection , we fix A = Z∩[1, n] ⊂ Z,
and we want to compute the Newton polytope of the polynomial hch2

m, where the polynomials hc
and hm define the caustic and the Maxwell stratum in CA, respectively.

Remark 5.1. Since rescaling the variables or multiplying all the coefficients of a polynomial by
the same non-zero number does not affect whether or not it is Morse, the polytopeMA should lie
in the intersection of two affine hyperplanes in R|A| : namely, the hyperplanes {e1 + . . .+ en = d1}
and {1 · e1 + 2e1 + . . .+ n · en = d2} for some d1, d2.

Remark 5.2. Since adding a constant to a polynomial f(x) does not change its property of being
Morse or non-Morse, one can always consider sets A without 0.
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Example 5.3. For the set A = {1, 2, 3, 4}, the space CA consists of polynomials of the form
α1x+ α2x

2 + α3x
3 + α4x

4 with complex coefficients αi, and we have

hc = α2
2α

2
3 − 4α1α

3
3 − 4α3

2α4 + 18α1α2α3α4 − 27α2
1α

2
4,

hm = α3
3 + 8α1α

2
4 − 4α2α3α4.

Example 5.4. For the set A = {1, 2, 3, 4}, we have

MA = conv
(
{(4, 0, 0, 6), (0, 2, 8, 0), (1, 0, 9, 0), (0, 5, 2, 3), (2, 3, 0, 5)}

)
⊂ R4.

Problem 5.5. Obtain a combinatorial description of the vertices of the Newton polytope
MA of the Morse discriminant in terms of the support set A.

5.1 The geometric interpretation of the problem

The vertices of the polytopeMA are in 1-to-1 correspondence with the full-dimensional cones of its
dual fan. The support function µA is linear on each of these cones, and its coefficients on the given
cone are the coordinates of the corresponding vertex.

As it was discussed in Remark 5.1, the sought polytope lies in the intersection of the following two
hyperplanes in R|A| : the hyperplane {e1+. . .+en = d1} and the hyperplane {1·e1+. . .+n·en = d2}
for some d1, d2. Therefore it suffices to compute µA only on the covectors γ ∈ (R|A|)∗ with non-
negative entries.

Moreover, to find the coefficients of the function µA on its domains of linearity, it is enough
to compute µA on rational, or, equivalently, on integer covectors supported at the corresponding
vertices. The latter observation allows to use the following geometric interpretation of the main
problem. Namely, we can use the same idea as, for instance, in [1] (see Chapter 3) or the works [4]
and [6].

Let γ be an integer covector with non-negative entries supported at a vertex of MA. Alter-
natively it can be viewed as a function γ : A → Z>0. Replacing the coefficients of xp, p ∈ A of a
polynomial f(x), supp(f) = A, with polynomials of degrees γ(p) in a new variable t turns the Morse
discriminant into a polynomial in t. And since we can interpret the value µA(γ) as the number of
roots of this univariate polynomial, the main problem of this chapter can be reduced to the following
one.

Problem 5.6. Let γ : A→ Z>0 be an arbitrary function and qp, vp, p ∈ A be generic tuples
of complex numbers. For how many values of the parameter t ∈ C is the polynomial ft(x) =∑
p∈A

(qp + vpt
γ(p))xp not Morse?

This question was discussed in Example 1.1 of [6], and the answer was obtained for a special
case of a concave function γ : {1, . . . , n} → Z>0. Using a similar approach and the results of section
4, we will obtain the answer for any function γ : A→ Z>0.

Given a function γ : A → Z>0, we consider the hypersurface H = {ft(x) − y} ⊂ (C \ {0})3.
Let π be the projection π : (C \ {0})3 → (C \ {0})2, (x, y, t) 7→ (y, t), and let A1, A2 and 2A1

be the open multisingularity strata of its restriction π |H to the hypersurface H. The sets A1,A2

and 2A1 consist of all the points (y, t) ∈ (C \ {0})2 such that the equation ft(x) = y has exactly
one root of multiplicity 2, exactly one root of multiplicity 3 and exactly two roots of multiplicity
2, respectively. Due to the choice of the set A(we recall that in our case, A = Z ∩ [1, n]), the only
strata of codimension 2 are A2 and 2A1, while the strata of other singularities are of strictly higher
codimension.

Denote by ∆ the Newton polytope of the polynomial ft(x) − y. Equivalently, ∆ is the convex
hull of the set

Ã = {(0, 1, 0)} ∪ {(a0, 0, 0)} ∪ {(a|A|−1, 0, 0)} ∪ {
(
p, 0, γ(p)

)
| p ∈ A} ⊂ Z3.
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(1, 0) (w1, 0) (w2, 0)(n, 0)

(n, γ(n))

(w2, γ(w2))

(w1, γ(w1))

e1

e3

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(w1, 0, 0)

(w2, 0, 0)

(n, 0, 0)

(n, 0, γ(n))(w2, 0, γ(w2))

(w1, 0, γ(w1))

e1

e3

e2

Figure 2: The polytopes N and ∆.

Figure 2 below shows what the polytopes N and ∆ may look like.
All the convex subdivisions of the interval conv(A) are in 1-to-1 correspondence with the subsets

of the form W = {w0 < w1 < . . . < wk−1 < wk} ⊂ A with w0 = 1 and wk = n. Moreover, every
function γ : A → Z>0 defines a convex subdivision of the interval conv(A). Indeed, let N be the
Newton polygon of the polynomial ft(x) =

∑
p∈A

(qp + vpt
γ(p))xp. Then the corresponding subset W

consists of all the points p ∈ A such that the point (p, γ(p)) is a vertex of N.
To obtain the desired formula, we view the set D ⊂ (C \ {0})2 of the critical values of the

projection π as the plane projection of the curve C = {f(x, t) − y = x∂f(x,t)
∂x = 0} ⊂ (C \ {0})3,

which is the set of the critical values of the projection π. The Newton polytope of the curve D is
precisely the fiber polygon P =

∫
π ∆. A direct computation yields the following formula for the area

of the polygon P.

Proposition 5.7. In the same notation as above, for A = Z∩ [1, n] and a covector γ ∈ (R|A|)∗ with
the corresponding subdivision W ⊂ A, we have the following formula:

Vol(

∫
π

∆) = w1(w1 − 1)γ(1) + (n− wk−1)(2n+ wk−1 − 2)γ(n)+

+

j=k−1∑
j=1

(wj+1 − wj−1)(wj−1 + wj + wj+1 − 2)γ(wj).

The singular points of the curve D inside the torus are nodes and cusps (namely, |2A1| nodes and
|A2| cusps). Theorem 4.9 allows to compute the total sum of the δ-invariants of the curve D inside
the torus, taking the singularities of D at infinity into account. Just as in the setting of Theorem
4.9, the answer depends not only on the convex hull of the support set Ã = supp(f(t, x)− y), but
on the sequences iΓ for all non-horizontal facets Γ ⊂ ∆.

The latter can be encoded as follows: for every number j = 0, . . . , k− 1, we can write down the
M j = (mj

1,m
j
2, . . .) composed of the elements A \ {wj , wj+1} ordered as follows. Let ` be a line

passing through (wj , γ(wj)) and (wj+1, γ(wj+1)). Now, let us trace the copies of ` shifted by vectors
(0,−r), where r ∈ Z> 0. If the covector γ is generic, then the points (m, γ(m)) ∈ supp(f(t, x)) are

12



encountered one by one by the copies of the line ` as r increases. The order, in which they are
encountered, determines the order of the elements in the sequence M j .

Together with every sequence M j , we define an auxillary sequence Bj = (bj0, b
j
1, . . .) : we set

bj0 = gcd(wj , wj+1) and for every l > 1, we set bjl = gcd(bl−1,ml).
Finally, for every j = 0, . . . , k − 1, we can define the expressions Cj as follows.

Cjγ =
∑
l>1

(
(wj+1 − wj)γ(mj

l )) + (mj
l − wj+1)γ(wj) + (wj −mj

l )γ(wj+1)
)

(bjl−1 − b
j
l ). (6)

Using Theorem 4.9, we can compute the total number of nodes and cusps of the curveD. Together
with the well-known formula for the support function of the classical discriminant, Theorem 4.9
allows to compute 2|2A1|+ |A2|. The latter coincides with the value of the sought support function
µA at a generic integer covector γ ∈ (R|A|)∗, which yields the desired formula for the support function
µA.

5.2 The vertices of the Newton polytope of the Morse discriminant

A generic covector γ : A → R>0 determines a subdivision W = {1 < w1 . . . < wk−1 < n} ⊂ [1, n]
and for every j = 0, . . . , k− 1, the covector γ the sequences M j , bj and the linear expression Cj , as
explained in the previous section.

Theorem 5.8. In the same notation as above, for A = Z ∩ [1, n], the value of the support function
µA of the Morse polytopeMA at the covector γ can be computed via the following formula:

µA(γ) = (w1 − 2)2γ(w0) +
k−1∑
j=1

(wj+1 − wj−1)(wj−1 + wj + wj+1 − 5)γ(wj)+

+ (n− 1− wk−1)(2n+ wk−1 − 6)γ(wk) +

j=k−1∑
j=0

Cjγ . (7)

Remark 5.9. One can easily observe that the covectors γ defining the same combinatorial data,
that is, the subdivision W = {w0, . . . , wk} and the sequences M j , j = 0, . . . , k − 1, form a convex
full-dimensional cone in (RA)∗. The result above establishes a surjection between the cones of
covectors defining the same combinatorial data and the linearity domains of the support function
µA of the polytope MA. Thus, it allows to compute all the vertices of the polytope MA by
computing the tuples of coefficients of the support function µA in its linearity domains.

Remark 5.10. Formula (7) allows to compute the polytopeMA up to a shift. In the special case
A = Z ∩ [1, n], we have chosen the shift which moves the polytope as close as possible to 0 ∈ RA,
while keeping it in the positive octant.

5.2.1 Example: degree 4 polynomials

We will now compute the vertices of the Newton polytope of the Morse discriminant in the space
of polynomials with support A = {1, 2, 3, 4} using Theorem 5.8.

To do this, we need to enumerate all possible tuples of combinatorial data arising from generic
covectors in (R4)∗ and evaluate the support function on the corresponding cones.

There are 5 cases, we will treat each of them separately. The graphs of typical representatives
γ ∈ (R4)∗ (viewed as functions γ : A → R) of the corresponding cones are shown in Figure 3. The
elements of the subsetsW are marked red. By comparing the slope of the interval [(1, γ(1)), (3, γ(3))]
with the slope of [(2, γ(2)), (4, γ(4))] we distinguish the cases 4 and 5.

– W = {1, 4}. In this case, we have gcd(w0, w1) = 1, therefore the summand C0 is equal to 0
and does not depend on the sequence M0. The corresponding vertex is (4, 0, 0, 6).
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– W = {1, 2, 3, 4}. Similarly to the previous case, the summands Cj do not depend on the
sequences M j and are equal to 0. The corresponding vertex is (0, 2, 8, 0).

– W = {1, 3, 4}. In this case, gcd(w0, w1) = 1, gcd(w1, w2) = 1, so the summands C0 and C1

do not depend on the sequences M0 and M1 and are equal to 0. The corresponding vertex is
(1, 0, 9, 0).

– W = {1, 2, 4}, M1 = (3, 1). In this case, gcd(1, 2) = 1, so C0 = 0. We have b1 = (2, 1, 1),
thus C1 = 2γ(3) − γ(2) − γ(4), therefore the corresponding vertex of MA is (0, 6, 0, 4) +
(0,−1, 2,−1) = (0, 5, 2, 3).

– W = {1, 2, 4}, M1 = (1, 3). So, we have C0 = 0, and C1 = 2γ(1) − 3γ(2) + γ(4), therefore,
the corresponding vertex is (0, 6, 0, 4) + (2,−3, 0, 1) = (2, 3, 0, 5).

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1 2 3 4 1 2 3 4

4 5

Figure 3: The 5 vertices of the polytope MA.

The polytope MA is a polygon in R4, and its image under the projection forgetting the first and
the last coordinates is shown in Figure 4 below.

1

2

3

4

5

Figure 4: A projection of the polytope MA.
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The main results of the thesis are presented in two papers:

– A. Arkhipova and A. Esterov, “Signs of the Leading Coefficients of the Resultant”, Geom.Funct.
Anal., vol. 27, no. 1, pp. 33–66, Feb. 2017, issn: 1420-8970. doi: 10.1007/s00039-017-0393-z.

– A. Voorhaar, “On the singular locus of a plane projection of a complete intersection”, Math.Z.,
Apr. 2022, issn: 1432-1823. doi: 10.1007/s00209-022-03014-7.
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