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Introduction

The dissertation was prepared at the International Laboratory of Stochastic Anal-

ysis and its Applications of the National Research University �Higher School of

Economics� (NRU HSE).

Relevance of the topic. An important area of stochastic analysis consists in

searching for a set of joint distributions of stochastic processes and their components.

The central objects of our dissertation are increasing processes and their compen-

sators. The problem that we study is related to the characterization of the set of

joint distributions of an increasing process and its compensator at two consecutive

points in time. Since similar problems were considered separately for increasing

processes and for martingales (the di�erence between an increasing process and its

compensator is a martingale), let us brie�y consider the previous history of studies

in these problems, in which integral orders play an essential role.

Apparently, one of the �rst works where the ideas of stochastic ordering arose

is the �rst edition of the book ¾Inequalities¿ by Hardy, Littlewood and Polya, 1934

(see [23]). Their idea of majorization of vectors in the space Rn was not formulated

in terms of stochastic orders, but can be naturally reformulated into this language by

interpreting a vector x = (x1, . . . , xn) as a discrete probability measure
∑n

j=1
1
n
δ{xj}

on the real line concentrated at the points x1, . . . , xn and having mass 1/n at each of

these points. In section 2.18 of this book, Hardy, Littlewood, and Polya introduce

the following order relation on the set of nonnegative n-dimensional real vectors.

A vector x = (x1, . . . , xn) is said to be majorized by a vector y = (y1, . . . , yn)

if
∑k

j=1 x(j) ≤
∑k

j=1 y(j) for all k = 1, . . . , n and
∑n

j=1 x(j) =
∑n

j=1 y(j), where

(x(1), . . . , x(n)) means the vector x reordered in descending order. In section 3.17

of the same book, Hardy, Littlewood, and Polya obtained an interesting charac-

terization of this order relation (see Proposition 108). It states that the following

conditions are equivalent:
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(i) a vector x is majorized by a vector y,

(ii) there exists a doubly stochastic matrix Π such that x = Πy (here vectors x

and y are treated as column vectors),

(iii)
∑n

j=1 f(xj) ≤
∑n

j=1 f(yj) for any convex function f : R→ R.

More information about the theory of majorization and the history of the devel-

opment of this direction can be found in the classic book by Marshall and Olkin [7].

Now, consider more recent research in this direction. Let us recall some de�ni-

tions.

Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be vectors from the space Rd. In the

space Rd we introduce the partial order relation � in the standard way. We say that

x � y if xi ≤ yi for all i = 1, . . . , d. A function f : Rd → R is called nondecreasing

if it is nondecreasing with respect to the partial order �, i.e. f(x) ≤ f(y) if x � y.

In what follows, we will repeatedly need the de�nition of Markov kernel (tran-

sition kernel or transition probability). Let two measurable spaces (Ω1,F1) and

(Ω2,F2) be given. A mapping Q: Ω1 × F2 → [0; 1] is called a Markov kernel from

Ω1 to Ω2 if

1) for any ω1 ∈ Ω1 the function Q(ω1; · ) is a probability measure on (Ω2,F2);

2) for any A2 ∈ F2 the function Q( · ;A2) is measurable on (Ω1,F1).

More detailed information about Markov kernels, including the Fubini theorem for

Markov kernels, can be found, for example, in [8] (Ch. III, � III.2), [28] (Ch. 8, � 8.3

and Ch. 14, � 14.2), or [10] (Ch. 2, � 2.6).

As noted at the beginning of this section, the problem we are studying is closely

related to stochastic orders. A fairly complete review of this topic is contained in

the fundamental monograph by M�uller and Stoyan [32]. In a concentrated form,

a necessary information about stochastic orders can be found, for example, in the

book [9] by F�ollmer and Schied (see Ch. 2, �� 2.4, 2.6). Here we will focus only on

two stochastic orders that are directly related to our study. These are the ordinary

stochastic order and the convex stochastic order.

Let µ1 and µ2 be two Borel probability measures on Rd. We say that a measure

µ2 stochastically dominates a measure µ1 in sense of the usual stochastic order,

denote µ1 �st µ2, if for all bounded Borel nondecreasing functions f : Rd → R,∫
Rd

f(x)µ1(dx) ≤
∫
Rd

f(x)µ2(dx). (1)
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Apparently, the stochastic order �st �rst appeared in the work of Mann and

Whitney in 1947 (see [31]) and Lehman's paper in 1955 (see [29]) in hypothesis

testing problems. The properties of the stochastic order �st have been studied in

detail in the works [25, 26, 36, 34]. Various characterizations of the order �st were

obtained. Below we will give one modern formulation of such characterizations. The

following theorem holds.

Theorem 0.1. For two Borel probability measures µ1 and µ2 given on Rd, the
following conditions are equivalent:

(i) µ1 �st µ2;

(ii) there exists a probability space (Ω,F ,P) and random vectors Xi : Ω → Rd,
i = 1, 2, such that Law(Xi) = µi, i = 1, 2, and X1 � X2 P-a. s.;

(iii) there exists a Markov kernel Q(x;B), where x ∈ Rd, B ∈ B(Rd), such that
µ2(B) =

∫
Rd Q(x;B)µ1(dx) for all B ∈ B(Rd), and Q

(
x; {y : x � y}

)
= 1 for

any x ∈ Rd.

A modern proof of this theorem can be found, for example, in the book [9] by

F�ollmer and Schied (see Ch. 2, � 2.6, Theorem 2.95).

Now, let us consider convex stochastic order. Let two Borel probability measures

µ1 and µ2 with �nite expectations be given on Rd, i.e.
∫
Rd ||x||µi(dx) <∞, i = 1, 2,

where ||x|| is the Euclidean norm of vector x. We say that a measure µ2 stochastically

dominates a measure µ1 in sense of the convex order, denote µ1 �cx µ2, if the

inequality (1) holds for all convex functions f : Rd → R for which both integrals

in (1) make sense.

Apparently, the concept of a convex stochastic order �rst arose in Blackwell's

paper in 1953 (see [14]) in the problem of comparing statistical experiments. The

properties of the convex stochastic order were studied in detail in the works [19,

18, 37, 33]. Below we give one of the modern formulations of the theorem, which

contains a characterization of the convex stochastic order. The following theorem

holds.

Theorem 0.2. Let two Borel probability measures µ1 and µ2 with �nite expec-
tations be given on Rd. Then the following conditions are equivalent:

(i) µ1 �cx µ2;

(ii) there exists a probability space (Ω,F ,P) and random vectors Xi : Ω → Rd,
i = 1, 2, such that Law(Xi) = µi, i = 1, 2, and E[X2|X1] = X1 P-a. s.;
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(iii) there exists a Markov kernel Q(x;B), where x ∈ Rd, B ∈ B(Rd), such that
µ2(B) =

∫
Rd Q(x;B)µ1(dx) for all B ∈ B(Rd), and

∫
Rd yQ(x; dy) = x for any

x ∈ Rd.

A modern proof of this theorem can be found, for example, in the book [9] by

F�ollmer and Schied (see Ch. 2, � 2.6, Theorem 2.93, and Corollary 2.94).

Note that in the proofs of Theorems 0.1 and 0.2, the Strassen theorem [37] plays

a key role, and now we turn to its formulation.

Let S be a Polish space. Consider an arbitrary continuous function ψ : S →
[1; +∞), which will be called the gauge function. De�ne a class Cψ(S) of continuous

test functions f : S → R such that

∀f ∈ Cψ(S) ∃c ∈ R ∀x ∈ S |f(x)| ≤ c · ψ(x).

Denote by Mψ
1 (S) the set of all Borel probability measures on S for which∫

S
ψ(x)µ(dx) < ∞. The ψ-weak topology on Mψ

1 (S) is the coarest topology such

that

Mψ
1 (S) 3 µ 7→

∫
S

f(x)µ(dx)

is a continuous mapping for all f ∈ Cψ(S). It is easy to see that sets

Uψ
ε (µ; f1, . . . , fm) :=

m⋂
i=1

{
ν ∈Mψ

1 (S) :

∣∣∣∣∫
S

fi dν −
∫
S

fi dµ

∣∣∣∣ < ε

}
,

where µ ∈ Mψ
1 (S), ε > 0, m ∈ N, and f1, . . . , fm ∈ Cψ(S), form the base of the ψ-

weak topology onMψ
1 (S). Note that the spaceMψ

1 (S) is metrizable and separable

(see [9], Corollary A.44). More details about the space Mψ
1 (S) and its properties

can be found, for example, in [9] (�A.6, pp. 442�445).

On the product of the spaces S × S, consider the following gauge function

ψ(x1, x2) := ψ(x1) + ψ(x2).

We de�ne the corresponding set of continuous test functions Cψ(S × S) and the

space of probability measuresMψ
1 (S × S) endowed with the ψ-weak topology. The

following famous theorem holds.

Theorem 0.3 (Strassen). Suppose that Λ ⊆ Mψ
1 (S × S) is convex and closed

in the ψ-weak topology, and that µ1, µ2 are probability measures in Mψ
1 (S). Then

there exists some measure µ ∈ Λ with marginal distributions µ1 and µ2 if and only
if ∫

S

f1(x1)µ1(dx1) +

∫
S

f2(x2)µ2(dx2) ≤ sup
λ∈Λ

∫
S×S

(
f1(x1) + f2(x2)

)
λ(dx1, dx2).
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The idea behind the proof of the Strassen theorem is to use the Hahn�Banach

theorem in the form of a separability theorem for sets in a locally convex topological

space. However, to apply the Hahn�Banach theorem, a proper topological setting

of the problem is required. This is the most di�cult part of the proof. The proof of

the Strassen theorem can be found in Strassen's original article [37] or, for example,

in the book by F�ollmer and Schied (see [9], Ch. 2, �2.6, Theorem 2.88).

We emphasize that the Strassen theorem plays a central role not only in sub-

stantiating Theorems 0.1 and 0.2, but also in proving the main proposition of our

dissertation, Theorem 1.3.

Remark 0.1. Note that Theorems 0.1 and 0.2 can be reformulated in terms
of the existence of d-dimensional stochastic process with certain properties. In-
deed, let us �x two moments of time 0 ≤ a < b < ∞. Let two Borel probability
measures µ1 and µ2 be given on Rd. Theorem 0.1 (see items (i) and (ii)) gives
necessary and su�cient conditions on the measures µ1 and µ2 for the existence of
a d-dimensional random process Xt, t ∈ [a; b] having nondecreasing trajectories, for
which Law(Xa) = µ1 and Law(Xb) = µ2. If the Borel measures µ1 and µ2 on Rd have
�nite expectations, then Theorem 0.2 (see items (i) and (ii)) contains necessary and
su�cient conditions on the measures µ1 and µ2 for the existence of d-dimensional
martingale Xt, t ∈ [a; b], such that Law(Xa) = µ1 and Law(Xb) = µ2.

The two constructions described above refer to the situation when all the com-

ponents of the d-dimensional process X have �the same nature�. This is, to some

extent, a simpler situation. A more complicated situation arises when the com-

ponents of the process X are of �di�erent nature�. For example, when one of the

components of the process X is built in some way by its other component. An ex-

ample of such a situation is the case when the �rst component of a two-dimensional

process X is a nonnegative submartingale of class (D) starting from zero, and the

second component is its compensator, i.e., a predictable increasing process from the

Doob�Meyer decomposition. Such a construction was considered in a recent paper

in 2017 (see [4]). Other constructions of this kind are presented, for example, in the

classical work of C. Rogers [35] and a number of other works [15, 21, 11, 12, 27, 38].

Now, let us turn directly to the objectives of our study. Let the stochastic basis

(Ω,F ,P, (Ft)t∈R+) be given. An adapted stochastic process X = (Xt)t∈R+ is called a

increasing process if all its trajectories are right-continuous, start from zero, and are

nondecreasing functions. An increasing process X = (Xt)t∈R+ is called an integrable

increasing process if E[X∞] <∞. The class of all integrable increasing processes is

denoted by A+.
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Note that every integrable increasing process X = (Xt)t∈R+ is a submartingale of

class (D) (see [5], �1.46). Hence, by the Doob�Meyer decomposition (see [5], �3.15)

there exists a unique (up to indistinguishability) increasing integrable predictable

process A with A0 = 0 , such that the process X − A is a uniformly integrable

martingale. The process A in this decomposition will be called the compensator of

the process X.

In the paper [4] mentioned above, a class W of probability measures was intro-

duced. It includes all probability measures µ on (R2
+, B(R2

+)) satisfying the following

conditions:

1)
∫
R2
+

(x+ y)µ(dx, dy) <∞,

2)
∫
R2
+
xµ(dx, dy) =

∫
R2
+
y µ(dx, dy),

3) ∀c ≥ 0
∫
{y≤c} xµ(dx, dy) ≤

∫
R2
+

(y ∧ c)µ(dx, dy) .

Let T ∈ [0;∞] be an arbitrary �xed moment of time. In [4] it is shown that a

measure µ belongs to the class W if and only if there exists an integrable increasing

process (Xt)t∈R+ with a compensator (At)t∈R+ such that Law(XT , AT ) = µ.

In our work, we generalize the problem statement considered in [4]. To do this,

we introduce the concept of a generalized integrable increasing process and its gen-

eralized compensator. An adapted process X = (Xt)t∈R+ will be called a generalized

integrable increasing process if it can be represented as Xt = ξ0 + X◦t , t ∈ R+,

where ξ0 is a F0-measurable integrable random variable, and X◦ = (X◦t )t∈R+ is an

integrable increasing process in the usual sense. By the Doob�Meyer theorem, the

process X◦ has a compensator A◦ = (A◦t )t∈R+ . Then the generalized compensator of

the generalized integrable increasing process X will be de�ned as a random process

A = (At)t∈R+ of the form At = η0 + A◦t , where η0 is an arbitrary F0-measurable

integrable random variable. Thus, according to this de�nition, the generalized com-

pensator of a generalized integrable increasing process is uniquely de�ned up to the

addition of a F0-measurable integrable random variable. Note that every generalized

compensator of an integrable generalized increasing process is itself an integrable

generalized increasing process.

Let us �x on [0;∞] two moments of time a and b. Without loss of generality,

we can assume that a = 1 and b = 2. Consider the class of probability measures Λ,

which includes all joint distributions λ := Law
([

X1
A1

]
,
[
X2
A2

])
, where (Xt)t∈[1;2] is a
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generalized integrable increasing process, and (At)t∈[1;2] its generalized compensator.

We are interested in how the class Λ of measures is arranged.

More speci�cally, in this work we solve the following two main problems. The

�rst of them is to obtain necessary and su�cient conditions for a probability measure

λ given on B(R2×R2) to belong to the class Λ. If we take into account the de�nition

of the class Λ, then the �rst problem can be reformulated as follows: it is required

to �nd necessary and su�cient conditions on the measure λ for the existence of a

generalized integrable increasing process (Xt)t∈[1;2] having a generalized compensator

(At)t∈[1;2] such that Law
([

X1
A1

]
,
[
X2
A2

])
= λ.

The second task is posed as follows. Let two probability measures µ1 and µ2

be given on (R2,B(R2)) and satisfy the conditions
∫

(|x| + |y|) dµi < ∞, i = 1, 2.

It is required to obtain necessary and su�cient conditions for the measures µ1 and

µ2 in order to the set Λ to contain a measure λ for which µ1 and µ2 are marginal

distributions, i.e., λ(B × R2) = µ1(B) and λ(R2 × B) = µ2(B) for any B ∈ B(R2).

In other words, it is required to �nd necessary and su�cient conditions on the

measures µ1 and µ2 for the existence of a generalized integrable increasing process

(Xt)t∈[1;2] having a generalized compensator (At)t∈[1;2], such that Law
[
X1
A1

]
= µ1 è

Law
[
X2
A2

]
= µ2.

The study of the properties of increasing processes and their compensators is

an important area of stochastic analysis. In particular, this is due to the fact that

quadratic characteristics of martingales and random time changes are increasing

processes. The study of the properties of increasing processes and their compen-

sators is not only of purely theoretical interest, dictated by the internal needs of

the development of stochastic analysis (see, e.g., [20], [24], [30], [6]). These objects

also often arise in applied areas such as �nancial mathematics. For example, in

[22], square integrable semimartingales are considered and convex-order relations

between their quadratic and predictable quadratic variation, i.e. between an in-

creasing process and its compensator, are investigated. The results of this work are

used in the pricing of options in which the underlying asset is a realized variance.

Another example is the article [13], related to credit risk models, which examines

the increasing process generated by the moment of default of a company (or state)

and its compensator.

It should be noted that the problems considered in the dissertation are of a the-

oretical nature, and issues related to speci�c applications require separate consider-



Introduction 9

ation. Apparently, this may become one of the directions of our further research.

The purpose of the study. The main goal of the dissertation is to study the

properties of the set of measures Λ introduced above, as well as to obtain necessary

and su�cient conditions for the existence of a measure λ ∈ Λ with given marginal

distributions µ1 and µ2.

Scienti�c novelty. All main results of the dissertation are new and are as

follows.

1. Consider the set Λ of all boundary joint distributions Law([Xa, Aa], [Xb, Ab])

at moments of time t = a and t = b of integrable increasing processes (Xt)t∈[a;b]

and their compensators (At)t∈[a;b], which at the initial moment of time start

from an arbitrary integrable initial condition [Xa, Aa]. We have established

that the set Λ is convex and closed in the ψ-weak topology with a gauge

function ψ of linear growth. We found necessary and su�cient conditions for

a certain probability measure λ de�ned on B(R2 × R2) to belong to the class

of measures Λ. The main result of the dissertation is the following: for two

measures µa and µb de�ned on B(R2), necessary and su�cient conditions are

obtained in order to the set Λ to contain a measure λ whose marginals are µa

and µb.

2. In [4], the class W of terminal distributions of integrable increasing processes

and their compensators was introduced. We have shown that distributions

with �nite support lying in W form a dense subset in the set W in the ψ-weak

topology with a gauge function of linear growth.

3. We have proved that the joint distribution of an arbitrary locally integrable

increasing process and its compensator at a terminal time can be realized as a

joint terminal distribution of some other locally integrable increasing process

and its compensator, but the compensator is already continuous.

Research methods. Methods of probability theory, methods of the general the-

ory of stochastic processes and, in particular, martingale theory, as well as methods

of real and functional analysis are used in the work.



10 Introduction

Theoretical and practical value. The work is of a theoretical nature. Its

results can be useful in the theory of random processes, stochastic analysis, as well

as in problems of �nancial mathematics.

Approbation of the work. The results related to the dissertation were pre-

sented at the following conferences and scienti�c seminars:

1. �5-th International Conference on Stochastic Methods (ICSM-5)�, Moscow,

2020. Topic: �Locally integrable increasing processes with continuous com-

pensators�;

2. �LSA Autumn Meeting 2020�, Moscow, 2020. Topic: �Locally integrable in-

creasing processes with continuous compensators�;

3. �LSA Autumn Meeting 2021�, Moscow, 2021. Topic: �On the denseness of the

subset of discrete distributions in a certain set of two-dimensional distribu-

tions�;

4. Scienti�c seminar of CEMI �Probabilistic control problems and stochastic mod-

els in economics, �nance and insurance� under the guidance of V. I. Arkin,

T.A. Belkina, E. L. Presman. Topic: �Joint distributions of increasing pro-

cesses and their compensators�, (in Russian), Moscow, 2021.

Publications. The results of the dissertation are published in [1, 17, 16]. All

articles are published in journals indexed in the abstract and citation database

¾Scopus¿:

1) the article [1] was published without co-authors in the journal ¾Theory of

Probability and Its Applications¿ (Q3);

2) the article [17] was published jointly with the supervisor in the journal ¾Mod-

ern Stochastics: Theory and Applications¿ (Q2�Q3);

3) the article [16] was published without co-authors in the journal ¾Theory of

Stochastic Processes¿ (Q4).

Structure and volume of the work. The dissertation is presented on 95

pages and consists of a table of contents, a list of designations, an introduction,

three chapters, conclusion and bibliography, including 47 titles.



The content of the work

Chapter 1 contains the main results of the dissertation. First of all, these

are Theorems 1.1 and 1.3. In Theorem 1.1, necessary and su�cient conditions are

obtained that a certain probability measure λ, given on B(R2 ×R2), belongs to the

class of measures Λ introduced above. We give an exact formulation of this theorem.

Theorem 1.1. The probability measure λ de�ned on B(R2 × R2) belongs to the

class Λ if and only if it satis�es the following conditions:∫
R2×R2

(
|x1|+ |y1|+ |x2|+ |y2|

)
λ
([

dx1
dy1

]
,
[
dx2
dy2

])
<∞;

for all B ∈ B(R2), ∫
R2×R2

(x2 − x1) · 1{[x1y1 ]∈B} λ
([

dx1
dy1

]
,
[
dx2
dy2

])
=

=

∫
R2×R2

(y2 − y1) · 1{[x1y1 ]∈B} λ
([

dx1
dy1

]
,
[
dx2
dy2

])
;

for any B ∈ B(R2) and for all c ≥ 0,∫
R2×R2

(x2 − x1) · 1{y2−y1≤c} · 1{[x1y1 ]∈B} λ
([

dx1
dy1

]
,
[
dx2
dy2

])
≤

≤
∫
R2×R2

[
(y2 − y1) ∧ c

]
· 1{[x1y1 ]∈B} λ

([
dx1
dy1

]
,
[
dx2
dy2

])
.

If we take into account the de�nition of the class Λ, then it becomes clear that

Theorem 1.1 gives necessary and su�cient conditions on the measure λ for the

existence of a generalized integrable increasing process (Xt)t∈[1;2] having a generalized

compensator (At)t∈[1;2] such that Law
([

X1
A1

]
,
[
X2
A2

])
= λ.

Now, we turn to Theorem 1.3. Let two probability measures µ1 and µ2 be given

on (R2,B(R2)) and satisfy the conditions
∫

(|x|+ |y|) dµi <∞, i = 1, 2. Theorem 1.3

contains necessary and su�cient conditions for the set Λ to contain a measure λ for

which µ1 and µ2 are marginal distributions. In order to give an exact formulation

of Theorem 1.3, we de�ne the following class of test functions.

11
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De�nition 1.1. Let us introduce a class K of upper semicontinuous test func-

tions ϕ : R2 → R that satisfy the following two conditions:

1) ∀ϕ ∈ K ∃c ∈ R ∀x, y ∈ R ϕ(x, y) ≤ c ·ψ(x, y), where ψ(x, y) := 1+ |x|+ |y|;

2) for all x, y ∈ R and any probability measure µ ∈W,

ϕ(x, y) ≤
∫
R2
+

ϕ(x+ u, y + v)µ(du, dv).

Theorem 1.3. Let two probability measures µ1 and µ2 be given on (R2,B(R2))

and satisfy the conditions
∫

(|x| + |y|) dµi < ∞, i = 1, 2. Then the following condi-

tions are equivalent :

(a) on some stochastic basis there is a generalized integrable increasing pro-

cess X = (Xt)t∈[1;2] with generalized compensator A = (At)t∈[1;2] such that

Law
[
X1
A1

]
= µ1 and Law

[
X2
A2

]
= µ2 ;

(b) there exists a measure λ ∈ Λ whose marginal distributions are µ1 and µ2, i.e.,

λ(B × R2) = µ1(B) and λ(R2 ×B) = µ2(B) for any B inB(R2) ;

(c)
∫
ϕ(x, y) dµ1 ≤

∫
ϕ(x, y) dµ2 for any test function ϕ ∈ K .

Let us note that both processes (Xt)t∈[1;2] and (At)t∈[1;2] from Theorem 1.3 have

nondecreasing trajectories. Thus, from the �rst part of Remark 0.1, the class of

test functions K must contain all bounded Borel functions f : R2 → R such that

f(x1, y1) ≤ f(x2, y2) if x1 ≤ x2 and y1 ≤ y2. Moreover, as Xt − At, t ∈ [1; 2], is

a martingale, according to the second part of Remark 0.1, the class K contains all

functions g : R2 → R of the form g(x, y) = h(x − y), where h : R → R is a convex

function. Therefore, we come to the conclusion that the class K contains the cone

C generated by all the above functions f and g. At the same time, it turns out that

there exists a function ϕ (see the example from Paragraph 1.6 of Chapter 1 of the

dissertation) that belongs to the class K, but does not belong to the cone C. Hence,
the class of test functions K is wider than the cone C. This remark explains the

nontriviality of the problem being solved in the dissertation.

Despite the fact that De�nition 1.1 contains a rather non-constructive description

of the class of test functions K, the de�nition turned out to be very convenient in

the proof of Theorem 1.3. Nevertheless, it is quite di�cult to use this de�nition
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when checking that a concrete function belongs to the class K. Therefore, we would
like to have a description of the class K with more easily veri�able characterizing

conditions. The following theorem gives such a description.

Theorem 1.4. Let an upper semicontinuous function ϕ : R2 → R satisfy con-

dition 1) from the de�nition of the class K. Then the following conditions are

equivalent:

(i) function ϕ satis�es condition 2) from the de�nition of class K ;

(ii) for all points x, y ∈ R, any real number k > 0, and any real number h ≥ k, we

have the inequality

0 ≤ ϕ(x, y + k)− ϕ(x, y)

k
+
ϕ(x+ h, y + k)− ϕ(x, y + k)

h
;

(iii) for any points x, y ∈ R, any real number k > 0, and arbitrary xj ≥ 0, pj ≥ 0,

such that
∑n

j=1 pj = 1 and
∑n

j=1 xjpj = k, the inequality holds

ϕ(x, y) ≤
n∑
j=1

pjϕ(x+ xj, y + k).

In other words, in the de�nition of the class K, condition 2) can be replaced by any

of the conditions (ii) or (iii) from Theorem 1.4. Note that condition (ii) means that

the sum of the tangents of the angles in the corresponding right triangles must be

nonnegative. In particular, it follows from condition (ii) for h = k that the function

ϕ grows ¾along the diagonals¿, i.e. for any x, y ∈ R and any real k > 0 we have the

inequality ϕ(x, y) ≤ ϕ(x+ k, y + k).

Chapters 2 and 3 contain auxiliary statements necessary to prove the main results

of the dissertation. At the same time, it should be noted that some of these auxiliary

propositions are of independent interest.

Chapter 2 contains technical Theorem 2.1 which is very important in proving

the main Theorem 1.3.

Before giving the exact formulation of Theorem 2.1, we will give some de�nitions.

In the set of measures W, consider a subset of simple measures Wsimp and a subset

of discrete measures Wdisc. We say that µ ∈ Wsimp (correspondingly µ ∈ Wdisc) if

µ ∈W, and the measure µ has the form

µ(dx, dy) =
∑
j∈J

pj · δ[xj
aj

](dx, dy),
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where J is a �nite set (correspondingly, J is at most countable), pj ≥ 0,
∑

j∈J pj = 1,

and δ[xj
aj

](dx, dy) is the Dirac measure at point
[ xj
aj

]
∈ R2.

On the set S = R2, we de�ne the gauge function ψ(x, y) = 1 + |x| + |y| and
consider the measure space Mψ

1 (R2), which de�nition is given above before the

formulation of Strassen theorem. We have found the following fact.

Theorem 2.1. (a) For any probability measure µ ∈ W, there is a sequence of

discrete probability measures (µn)∞n=1 ⊆Wdisc that converges to the measure µ in the

ψ-weak topology of the space Mψ
1 (R2), i.e., for any test function f ∈ Cψ(R2) we

have ∫
R2

fdµn →
∫
R2

fdµ as n→∞.

(b) For any probability measure µ ∈W, there is a sequence of simple probability

measures (µn)∞n=1 ⊆ Wsimp that converges to the measure µ in the ψ-weak topology

of the spaceMψ
1 (R2).

Let us explain why Theorem 2.1 is not trivial. It can be seen from the arguments

given in the proof of Theorem 2.1 that the case where the relation 3) (from the

de�nition of the class W) is not equality for all c ≥ 0 can be reduced to the situation

where there is equality in 3) for all c ≥ 0. However, a discretization of measures

from W, for which there is equality in 3) for all c ≥ 0, may fail to belong to W.

Moreover, it is easy to see directly that there are no discrete measures in W, for

which equality in 3) holds for all c ≥ 0, except for the measure δ(0,0). For example,

let V = 1. Then equality in 3) for all c ≥ 0 implies that W has an exponential

distribution with the parameter 1. However, the simplest discretization of W in the

form

Ŵ := E[W |W ≤ a]1{W ≤ a}+ E[W |W > a]1{W > a},

where a > 0, leads to the distribution of (V, Ŵ ) does not belong to the class W.

This remark explains why the statement of Theorem 2.1 is not trivial.

InChapter 3, we proved the theorem that the joint distribution of an arbitrary

locally integrable increasing process and its compensator at a terminal moment of

time can be realized as a joint terminal distribution of some other locally integrable

increasing process and its compensator, while the compensator being continuous.

We give an exact formulation of this result.

Theorem 3.1. For any locally integrable process X◦ = (X◦t )t∈[0;∞) with a com-

pensator A◦ = (A◦t )t∈[0;∞) on some stochastic basis there exists another locally in-
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tegrable increasing process X? = (X?
t )t∈[0;∞) with a compensator A? = (A?t )t∈[0;∞),

such that

Law
[
X?
∞

A?
∞

]
= Law

[
X◦∞
A◦∞

]
,

while the compensator A? is continuous.

Let us note that Theorem 3.1 itself is not used in proving the main theorems of

the dissertation, Theorems 1.1 and 1.3. Nevertheless, this theorem is of independent

interest, as will be discussed below. In addition, when substantiating Theorem 3.1,

we have obtained an important Lemma 3.3, which, in its turn, is used in proving

Theorem 1.1.

Now, let us say a few words about Theorem 3.1. Note that at the moment the

description of the class Wloc of possible distributions of a random vector (X◦∞, A
◦
∞)

from Theorem 3.1 is unknown. In the integrable case, such a description is available

in [4], and it is the classW. Condition 3) from the de�nition of the classW, as in the

integrable case, remains necessary for the measure µ to belong to the classWloc. The

su�ciency of condition 3) is proved under an additional assumption (see condition

(3.10) from Proposition 3.6 in [4]), which replaces conditions 1) and 2) from the

de�nition of the class W. But it turns out that this additional assumption is not

necessary (see Theorem 1 [2]). We hope that our Theorem 3.1 will be helpful to

approach the solution of the problem of describing the class of possible distributions

of a random vector (X◦∞, A
◦
∞) in the locally integrable case, or at least can help to

simplify the solution.
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