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Introduction

0.1 Quantum phase slips

Quantum fluctuations have a significant effect on the physics of superconducting nanowires at suf-
ficiently low temperatures, making their behavior dramatically different from the behavior of bulk
superconducting samples [ZG19, SZ13, AGZ08, SZ22]. Many of them are directly related to quantum
phase slips QPS [ZG19, LMB+01, Hav10] which manifest themselves by local temporal suppression
of the superconducting order parameter ∆ = ∆0(x, t)e

iφ(x,t) inside the wire accompanied by jumps of
the phase ±2π Fig. 1.

It is known from the Golubev-Zaikin theory [ZG19, vOGZB99], the primary dynamic variable of a
superconducting wire in the low energy limit is the phase of the order parameter. The correspondence
effective action for superconducting phase has the next form

Seff [φ] =
Cv

8e2

∫
dt

∫
dx

(
1

v
(∂tφ(x, t))

2 + v(∂xφ(x, t))
2

)
,

where C is the geometric capacitance per unit wire length, v ∝
√
s is the velocity of plasmon excitations

in the system. According to the Josephson relation V = φ̇/2e, the first term in the effective action
is related to the capacitive energy of the wire, while the second term corresponds to the magnetic
energy of the superconducting condensate. The intensity of phase fluctuations is controlled by the
dimensionless parameter λ = πCv/4e2. The effective action on the QPS configuration is large, and
the amplitude of phase slips per unit wire length γQPS is exponentially suppressed

γQPS ∼
gξ∆0

ξ
e−agξ ,

where gξ = Rq/Rξ-dimensionless conductance of a wire section, this the size of the coherence length
ξ, Rq = 2π/e2-quantum resistance and Rξ-normal wire resistance, a ≈ 1-numerical prefactor.

Each QPS process generates plasma excitations with the sound spectrum ω = kv, which propagate
along the wire with a speed v and interact with others QPS. Such excitations are called Mooij-Schon
plasma modes [MS85]. The presence of such plasma excitations is an important feature of long
superconducting nanowires, leading to a number of interesting effects. In particular, the theoretically
predicted [RSZ17, RSZ19] and experimentally discovered [ALR+17, ALR+21] smearing of the root
singularity in the density of states (DOS) near the superconducting gap, accompanied by a non-
vanishing tail in the density of states at subgap energies.

The exchange of Mooij-Schon plasmons gives a logarithmic interaction in the space-time between
different quantum phase slips, which at large distances R is proportional to ∼ λ log(R/ξ). As it can be
seen from the form of interaction, its value is controlled by the parameter λ, and hence the diameter of
the wire (cross-sectional area). For sufficiently thick wires, the force of this interaction is sufficiently
large, so QPS exist only in bonded pairs [ZG19].

In this case, theory containes a small parameter γQPS and therefore the influence of QPS phenom-
ena can be studied perturbatively. The effect of interaction between different QPS can significantly



0.1. QUANTUM PHASE SLIPS 3

Figure 1: QPS configuration.

affect on the transport properties in a thin superconducting wire. In particular, lead to the appear-
ance of a finite resistance of the superconducting wire R(T ) ∝ γ2QPST

2λ−3 , which tends to zero
in the T → 0 limit, demonstrating superconducting behavior, which agrees with the experimental
results [LMB+01, BLT00, ZRTA08, BCA+16].

The investigation of the resistive state in a superconducting wires due to QPS phenomena was
carried out using the methods of the imaginary part of free energy in imaginary time in [AGZ08] and
aslo within the Keldysh technique in [ZGvOZ97, SZ16]. In addition, it was demonstrated that this
two different approaches are totally equivalent [SZ17].

It is also interesting to note that, according to the fluctuation dissipation theorem FDT, phase
slips also generate voltage noise in superconducting wires. Of particular interest is the study of
nonequilibrium voltage noise, which is described by Poisson statistics in the low-frequency limit. The
spectral noise power S(ω) has a power-law dependence on the flowing external current I. This noise can
be caused by both thermal phase slips (TAPS) and quantum tunneling (QPS). At zero frequency limit,
the voltage noise due to TAPS and QPS processes has Poisson statistics. An interesting observation
is that at finite frequencies (or is the same at short times) the voltage noise induced by the QPS
processes no longer satisfies the Poisson statistics and exhibits a rather non-trivial behavior [SZ16].

On the other hand, the interaction between QPS in ultra-thin (this the cross section 10 nm and
thinner) wires is weak, thus the phase slips are decoupled and hence the phase of the superconducting
order parameter fluctuates strongly along the wire. The parameter γQPS becomes large, so that the
interaction effect between different QPS becomes nonperturbative. In this case, the wire loses long-
scale superconducting properties, its total resistance remains finite and increases with temperature
decreasing. Thus, in this limit the superconducting wire exhibits insulating behavior even at T → 0.
At zero temperature, the transition between these two regimes occurs as a quantum phase transition
(QPT) controlled by the wire diameter. Here and below, we will refer to this type of quantum phase
transition as a superconductor-insulator transition SIT.

Surprisingly, it turns out that the interplays between QPS phenomena and the transport properties
of coupled superconducting systems have hardly been studied in the literature. At the same time,
there are a large number of interesting issues in this area, both from a purely theoretical and applied
point of view. In particular, in the paper [Ari07] by considering the transport properties of a system
of coupled Luttinger liquids, it was shown that in order to have the Coulomb drag effect in such a
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system it is neccesary to take into account the nonlinearity (curvature) in the spectrum.
This thesis is devoted to study the interplay between QPS phenomena and transport properties in

a system of capacitively coupled superconducting nanowires. In this regard, we have set the following
tasks:

• Investigate the dynamics of Mooij-Schon plasma modes in a system of coupled wires

• Investigate non-local voltage fluctuations in such a system. In particular it is important to
calculate the first and second voltage cumulants, which correspond to the average voltage and
the spectral noise power respectively.

• Provide the renormalization group analysis in the system under consideration and find the BKT
phase transition point.

• Investigate the Coulomb drag effect induced by QPS in a system of capacitively coupled nanowires.

0.2 Main results

In the first chapter we analyze the effects of quantum fluctuations on the critical and transport
properties in a system of coupled superconducting nanowires.

• The quasiclassical dynamics of plasmon excitations in such a system was studied. We demon-
strate that in the presence of inter-wire coupling plasma modes in each of the wires get split into
two “new” modes propagating with different velocities v+ v−

v± =
1

2k

[√
v21 + v22 + 2v1v2k ±

√
v21 + v22 + 4C2

mv21v
2
2√

v21 + v22 + 2v1v2k

]
,

across the system. These plasma modes form an effective dissipative quantum environment
interacting with electrons inside both wires and causing a number of significant implications for
the low-temperature behavior of the systems under consideration. A clear picture describing
the time evolution of the Mooij-Schon plasma modes and, accordingly, the voltage pulses in the
first and second wires is shown in Fig. 2. Our results might have significant implications for the

Figure 2: Time-dependent phase configurations in a first (a) and second (b) wires at initial configura-
tions (QPS in the first wire and zero condition in the second), and also corresponding voltage pulses
propagating along the wires. Each of these voltage pulses is split into two, with velocities v±.

low-temperature behavior of coupled superconducting nanowires. For instance, electron DOS in



0.2. MAIN RESULTS 5

each of the wires can be affected by fluctuations in a somewhat different manner as compared
to the noninteracting case [RSZ17, RSZ19, ALR+17].

• We investigated the influence of capacitive coupling on critical properties of system of coupled
wires. We derive a set of coupled Berezinskii-Kosterlitz-Thouless-like renormalization group
equations

dyi
d log Λ

= (2− λii)yi, i = 1, 2,

where λii-diagonal components of matrix

λ̌ =
1√

1
v21

+ 1
v22

+
2

√
1− C2

m
C1C2

v1v2


λ1

 1
v1

+

√
1− C2

m
C1C2

v2

 RqCm/8

RqCm/8 λ2

 1
v2

+

√
1− C2

m
C1C2

v1



 .

demonstrating that interaction between quantum phase slips in one of the wires gets modified
due to the effect of plasma modes propagating in another wire. Since the diagonal components
λii essentially depend on the interaction parameter Cm between the wires, changing the distance
between them can significantly affect on corresponding critical properties.

As an example, according to the phase diagrams shown in Fig. 3. superconducting wires can

Figure 3: ) Critical surfaces corresponding to SIT at λ11 = 2 and λ22 = 2. b) Phase diagram for two
capacitively coupled superconducting nanowires with λ1 = 2.01 and λ2 = 2.03. Both curves λ11(Cm)
and λ22(Cm) crease and cross the critical line λc = 2 with increasing mutual capacitance Cm.

become insulators at certain values of Cm. In this chapter, we also considered the generalization
of the obtained results to a superconducting wire of more complex geometry.

In the second chapter, we investigated non-local voltage fluctuations in the system shown in Fig.
4. The main interest was the study of voltage fluctuations in the second wire, generated by QPS
processes in the first one.

• We calculated the average value of voltage for both wires in such a systems. Corresponding
expression takes the from

<

[
V1

V2

]
>=

[
Φ0 (ΓQPS(IΦ0)− ΓQPS(−IΦ0))

0

]
,
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Figure 4: Sustem of capacitively coupled superconducting wires. The first wire is thin enough so
that quantum phase slip processes can occur with the amplitude γQPS . The second wire is thicker,
implying that one can completely disregard QPS effects in this wire. An external current bias I is
applied to the first wire, whereas no transport current flows across the second wire

where

ΓQPS(ω) = γ2QPS(2πTτ0)
2λ11e

ω
2T

|Γ(λ11 +
iω
2πT )|

16πTΓ(2λ11)

defines the quantum decay rate of the current state in the first wire due to QPS. It has also
been shown that the addition of a linear dissipative element to the considering system gives the
same result. In particular, in a system with a resistor, the average voltage in the second wire
also vanishes.

• We have obtained an expression for the spectral noise power S2(ω) for the second wire at finite
frequency

S2(ω) = iGK
V2V2

(ω) +
(1
2
GR

V2χ1
(xqps, ω)G

R
V2χ1

(xqps,−ω)

×
∑
±

[ΓQPS(ω ± IΦ0)] +GR
V2χ1

(xqps, ω)G
K
V2χ1

(xqps, ω)

×
∑
±

[ΓR
QPS(ω ± IΦ0)− ΓR

QPS(±IΦ0)] + (ω → −ω)
)
,

which contains contributions from both the equilibrium Johnson-Nyquist noise and the non-
equilibrium contribution induced by QPS processes in the first wire.In the limit, when the time
during which the voltage pulses reach the voltage contacts is small, the contribution induced by
QPS processes takes a simple form

SQPS
2 (ω) = τ221Φ

2
0ω

2
∑
±

[(
2nB +

3

2

)
ΓQPS(−ω ± IΦ0) −

(
2nB +

1

2

)
ΓQPS(ω ± IΦ0)

]
,

whose graph is shown in Fig. 5. We demonstrate that quantum phase slips in one of these
nanowires induce voltage fluctuations in another one. These fluctuations are characterized by
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Figure 5: QPS-induced voltage noise frequency spectrum in the second wire (arbitrary units)

zero average voltage and non-vanishing voltage noise which exhibits a non-trivial behavior as
a function of frequency and bias current. However, these fluctuations persist even in the limit
I → 0, i.e., provided our structure remains in equilibrium. It is interesting to note that for some
values of the external current, SQPS

2 (ω) can take negative values, as can be seen from Fig. 5.
At the same time, it was also shown that the equilibrium contribution GK

V2V2
is parametrically

larger than SQPS
2 (ω), so that the noise spectral power S2(ω) remains positive, which is in a good

agreement with the general principles.

The third chapter is devoted to study the Coulomb drag effect in a system of capacitively coupled
superconducting nanowires. The main interest is to obtain a non-zero average voltage in the second
wire, while the external bias current flowing through the first wire.

• Based on the analysis of the dynamics of plasma excitation in the observed system, it was
demonstrated that in order to obtain the non-vanishing induced average voltage in the second
wire it is necessary to add the nonlinear element to the system. Which agrees with the results
of set of works devoted to study the Coulomb drag effects in various systems [BSS19], [Ari07].

It was demonstrated that the role of non-linear element in considering system may plays the
corresponding QPS phenomena in the second wire. When the voltage pulses in the second wire,
generated by the QPS processes in the first will interact in a non-linear manner with the QPS
in the second wire, which will lead to asymmetry of the contributions at the voltage contacts
and, accordingly, to a non-zero average voltage

• Since the interaction Hamiltonian describing QPS processes can be represented as a sum of
vertex operators L̂σ

i (x, τ) = eiσχ̂i(x,τ) of flux quantum tunneling Φ0

Hint(t) = −γ1
2

∑
σ=±

∫ L/2

−L/2
dx1L̂

σ
1 (x1, t)e

iσIΦ0t − γ2
2

∑
σ=±

∫ L/2

−L/2
dx1L̂

σ
2 (x1, t),

then in order to calculate the induced voltage in the second wire, it is convinient to use the
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operator perturbation theory, where the average over the ensemble provided as

⟨V̂2(t)⟩ =
N∑
k=1

(−i)k
∫ t

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tk−1

−∞
dtk

× ⟨[[V̂ 0
2 (t), ĤQPS(t1)], ĤQPS(t2)], · · · , ĤQPS(tk)]⟩.

Thus, the perturbative calculation of the average voltage in the second wire was reduced to the
analysis of multiple commutators of L̂σ

i operators.

• We obtain an expression for the induced voltage in the second wire perturbatively with respect
to the QPS amplitudes γ1,γ2 of the first and second wires, respectively. It has also been demon-
strated that the induced voltage can be represented as the sum of three contributions, each of
which is proportional to an operator of the form

⟨L̂σ1...σ4
2ijk (t1, x1; . . . t4, x4)⟩ = ⟨eiσ1χ̂2(x1,t1)+iσ2χ̂i(x2,t2)+iσ3χ̂j(x3,t3)+iσ4χ̂k(x4,t4)⟩, i, j, k = 1, 2.

Figure 6: I-V curve for the induced voltage ⟨V2(t)⟩ in the limnit IΦ0 ≫ T .

• We also obtained the corresponding I-V dependence for the induced voltage in the second wire
in the IΦ0 ≫ T limit, shown in Fig. 6.

• It was also demostrated that in the low temperature limit the cross resistace of the second wire
as a function of external bias current flowing in the first wire demostrate a power law behavior
as R21 ∼ γ21γ

2
2I

4λ−7. In the opposite limit IΦ0 ≪ T , the cross resistance is a power function of
temperature, showing the universal behavior as R21 ∼ γ21γ

2
2T

4λ−7.

The thesis is based on three publications.
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– . 1402-1408.
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phase slips and transport in ultrathin superconducting wires. Physical review letters,
78(8):1552, 1997.

[ZRTA08] M Zgirski, K-P Riikonen, V Touboltsev, and K Yu Arutyunov. Quantum fluctuations
in ultranarrow superconducting aluminum nanowires. Physical Review B, 77(5):054508,
2008.


	fbdbe77ee5e2bafb16c75e50f62c44bdff1a4300fd36405149f1786558144131.pdf
	2577683d147c2359a0ec2e1436bd4c96c3c7403622e54c979ae484a3a3a2c081.pdf
	Quantum phase slips
	Main results
	Bibliography


