Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет математики

На правах рукописи

Латышев Александр Михайлович Теоретическое описание транспорта в связанных низкоразмерных сверхпроводниках

Резюме диссертации на соискание ученой степени кандидата математических наук

Научный руководитель

кандидат физико-математических наук

доцент Семенов Андрей Георгиевич

Введение

0.1 Квантовые проскальзывания фазы

Квантовые флуктуации оказывают значительное влияние на физику сверхпроводящих нанопроводов при достаточно низких температурах, делая их поведение существенно отличным от поведения объемных сверхпроводящих образцов [ZG19], SZ13], AGZ08, SZ22]. Большое количество интересных свойств таких нанопроволок связано с эффектами квантового проскальзывания фазы (QPS), которые представляют собой пространственно-временные конфигурации, в которых в окрестности некоторых точек $x = x_0$ порядка длины когерентности ξ сверхпроводящего провода в пространстве-времени абсолютное значение параметра порядка $\Delta = \Delta_0(x, t)e^{i\varphi(x,t)}$ обращается в ноль, при этом происходит скачок фазы на $\pm 2\pi$ Рис 1 [ZG19], [LMB⁺01], Hav10]. Как хорошо известно из теории Голубева-Заикина [ZG19], vOGZB99], основной динамической переменной сверхпроводящей проволоки в низко энергетическом пределе оказывается фаза параметра порядка, эффективное действие для которой является следующим функционалом

$$S_{eff}[\varphi] = \frac{Cv}{8e^2} \int dt \int dx \left(\frac{1}{v} (\partial_t \varphi(x,t))^2 + v (\partial_x \varphi(x,t))^2 \right),$$

где *C*-геометрическая емкость единицы длины провода, $v \propto \sqrt{s}$ -скорость плазмонных возбуждений в системе. Согласно соотношению Джозефсона $V = \dot{\varphi}/2e$, первое слагаемое в эффективном действии связано с емкостной энергией провода, тогда как второе слагаемое соответствует магнитной энергии сверхпроводящего конденсата. Интенсивность фазовых флуктуаций управляется безразмерным параметром $\lambda = \pi C v / 4e^2$.

Эффективное действие на (QPS) конфигурации велико, и амплитуда проскальзываний фазы на единицу длины провода γ_{QPS} экспоненциально подавлена

$$\gamma_{QPS} \sim \frac{g_{\xi} \Delta_0}{\xi} e^{-ag_{\xi}},$$

где $g_{\xi} = R_q/R_{\xi}$ -безразмерный кондактанс участка проволоки размера длины когерентности ξ , $R_q = 2\pi/e^2$ -квантовое сопротивление и R_{ξ} -сопротивление нормального участка проволоки, $a \approx 1$ -численный префактор.

Каждый процесс (QPS) генерирует плазменные возбуждения со звуковым спектром $\omega = kv$, которые распространяются вдоль провода со скоростью v и взаимодействуют с другими (QPS).

Рис. 1: QPS конфигурация.

Такие возбуждения носят название плазменных мод Муи-Шона [MS85]. Наличие данных плазменных возбуждений является важной особенностью длинных сверхпроводящих нанопроволок, приводящих к ряду интересных эффектов. В частности, теоретически предсказанное [RSZ17], RSZ19 и экспериментально обнаруженное [ALR⁺17], [ALR⁺21] размывание корневой сингулярности в плотности состояний (DOS) вблизи сверхпроводящей щели, сопровождаемой неисчезающим хвостом в плотности состояний при подщелевых энергиях.

Обмен плазмонами Муи-Шона дает логарифмическое взаимодействие, которое на больших расстояниях R пропорционально ~ $\lambda \log(R/\xi)$, в пространстве-времени между различными квантовыми проскальзываниями фазы. Как видно из формы взаимодействия, его величина контролируется параметром λ , а следовательно диаметром провода (площадью поперечного сечения). Для достаточно толстых проволок сила данного взаимодействия достаточно велика, поэтому проскальзывания фазы существуют только в связанных парах. В данной фазе γ_{QPS} является малым параметром и поэтому влияние (QPS) можно исследовать пертурбативно. Эффект взаимодействия различных QPS может существенно влиять на транспортные свойства тонкого сверхпроводящего провода, в частности приводить к появлению конечного сопротивления сверхпроводящей проволоки $R(T) \propto \gamma_{QPS}^2 T^{2\lambda-3}$, которое стремится к нулю в пределе $T \rightarrow 0$, демонстрируя сверхпроводящее поведение, что согласуется с результатами экспериментальных работ [LMB+01], BLT00, ZRTA08, BCA+16]. Исследование резистивного состояния сверхпроводящего провода, обусловленного QPS явлениями проводилось методам мнимой части свободной энергии во мнимом времени в работе [AGZ08], а также в технике Келдыша в работах [ZGvOZ97], SZ16]. Кроме того, была продемонстрирована полная эквивалентность двух данных подходов [SZ17].

Интересно также отметить, что согласно флуктуационной диссипационной теореме FDT проскальзывания фазы также генерируют шум напряжения в сверхпроводящих проводах. Особый интерес представляет изучение неравновесного шума напряжения, который в низкочастотном пределе описывается Пуасоновой статистикой. Спектральная мощность $S(\omega)$ такого шума имеет степенную зависимость от протекающего внешнего тока *I*. Данный шум может быть обусловлен как проскальзываниями фазы, обусловленными термическими явлениями (TAPS), так и квантовым туннелированием (QPS). На нулевой частоте шум напряжения обусловленный TAPS и QPS процессами, имеет Пуассонову статистику. Интересным наблюдением является то, что на конечных частотах (на малых временах) шум напряжения индуцированный процессами QPS уже не удовлетворяет Пуассоновой статистике и демонстрирует довольно нетривиальное поведение SZ16.

С другой стороны, взаимодействие между (QPS) в ультратонких (порядка 10 нм и тоныпе) проводах слабое, таким образом проскальзывания фазы распарены и следовательно фаза сверхпроводящего параметра порядка сильно флуктуирует вдоль проволоки. Параметр γ_{QPS} становится большим, так что эффект взаимодействия (QPS) перестает быть пертурбативным. В данном случае провод теряет длинно-масштабные сверхпроводящие свойства, его полное сопротивление остается конечным и более того растет с понижением температуры. Таким образом, в данном пределе сверхпроводящий провод обнаруживает изоляторное поведение при $T \rightarrow 0$. При нулевой температуре переход между этими двумя режимами происходит как квантовый фазовый переход (QPT) регулируемый диаметром провода. Здесь и далее данный тип квантового фазового перехода мы будем называть переход сверхпроводник-изолятор (SIT).

Удивительным образом оказывается, что в литературе практически не исследовались эффекты влияния QPS процессов на транспортные свойства связанных сверхпроводящих систем. При этом в данной области имеется большое количество интересных вопросов, как с чисто теоретической, так и прикладной точек зрения. В частности в работе Ari07, при исследовании транспортных свойств системы связанных Латтинжеровых жидкостей, было показано, что эффект Кулоновского увлечения в такой системе имеет место, только при наличие нелинейности (кривизны) в спектре.

Настоящая диссертация посвящена исследованию влияния QPS процессов на транспортный свойства систем электростатически связанных сверхпроводящих нанопроволок. В связи с этим были поставлены следующие задачи:

- Исследовать динамику плазменных мод Муи-Шона в связанной системе проволок
- Исследовать нелокальные флуктуации напряжения в такой системе, в частности вычислить первый и второй кумулянты напряжения, описывающие соответственно среднее напряжение и спектральную мощность шума.
- Провести ренормгрупповой анализ данной системы и найти точку фазового перехода БКТ.
- Исследовать индуцированный влиянием QPS эффект увлечения в системе связанных проволок

0.2 Основные результаты

В первой главе проведен анализ влияния квантовых флуктуаций на критические и транспортные свойства систем тонких связанных сверхпроводящих проводов.

 Исследована квазиклассическая динамика плазмонных возбуждений в такой системе. Показано, что за счет электромагнитной связи в каждом проводе происходит расщепление плазмонных мод на пары, распространяющихся со скоростями v₊ и v₋

$$v_{\pm} = \frac{1}{2k} \left[\sqrt{v_1^2 + v_2^2 + 2v_1v_2k} \pm \frac{\sqrt{v_1^2 + v_2^2 + 4C_m^2 v_1^2 v_2^2}}{\sqrt{v_1^2 + v_2^2 + 2v_1v_2k}} \right],$$

в противоположные стороны, формируя эффективное диссипативное окружение взаимодействующее с электронами внутри проводов. Наглядная картинка описывающая временную эволюцию мод Муи-Шона и соответственно импульсов напряжения в первом и втором проводе изображена на Рис 2.

Рис. 2: Эволюция сверхпроводящей фазы в первом (a) и втором (b) проводах при начальных конфигурациях (QPS в первом проводе, и нулевом условии во втором), а также соответствующие им импульсы напряжения распространяющихся вдоль проводов. Каждый из этих импульсов напряжения расщепляются на два, со скоростями v_{\pm} .

Данный результат может иметь важное значение для описания низкотемпературных транспортных свойств систем связанных сверхпроводящий нанопроволок. К примеру, поведение флуктуаций электронной плотности (DOS) в каждом проводе разное для взаимодействующего и невзаимодействующего случаев [RSZ17], [RSZ19], [ALR⁺17].

• Проведено исследование влияния емкостной связи между проводами на критические свойства систем тонких связанных проволок. В лидирующем порядке получена система связанных ренормгрупповых уравнений ВКТ типа

$$\frac{dy_i}{d\log\Lambda} = (2 - \lambda_{ii})y_i, \quad i = 1, 2,$$

где λ_{ii} -диагональные компоненты матрицы

$$\check{\lambda} = \frac{1}{\sqrt{\frac{1}{v_1^2} + \frac{1}{v_2^2} + \frac{2\sqrt{1 - \frac{C_m^2}{C_1 C_2}}}{v_1 v_2}}} \begin{bmatrix} \lambda_1 \left(\frac{1}{v_1} + \frac{\sqrt{1 - \frac{C_m^2}{C_1 C_2}}}{v_2} \right) & R_q C_m / 8 \\ R_q C_m / 8 & \lambda_2 \left(\frac{1}{v_2} + \frac{\sqrt{1 - \frac{C_m^2}{C_1 C_2}}}{v_1} \right) \end{bmatrix}$$

Таким образом, продемонстрировано, что взаимодействие между квантовыми проскальзываниями фазы в одном проводе модифицируется за счет эффекта распространения плазменных мод Муи-Шона в другом проводе. Поскольку диагональные компоненты λ_{ii} существенно зависят от параметра взаимодействия C_m между проводами, изменяя расстояние между ними можно существенно влиять на их критические свойства.

Так к примеру, согласно фазовым диаграммам, изображенным на Рис. 3. сверхпроводящие

Рис. 3: а) Критические поверхности соответствующие SIT при $\lambda_{11} = 2$ и $\lambda_{22}=2$. b) Фазовая диаграмма для сверхпроводящих проволок, связанных емкостной связью с $\lambda_1 = 2.01$ и $\lambda_2 = 2.03$. Обе кривые $\lambda_{11}(C_m)$ и $\lambda_{22}(C_m)$ уменьшаются и пересекают критическую линию $\lambda_c = 2$ с увеличением взаимной емкости C_m .

провода могут стать изоляторами при определенных значениях C_m . В главе также рассмотрено обобщение полученных результатов на сверхпроводящий провод более сложной геометрии в форме меандра.

Во **второй** главе проведено исследование нелокальных флуктуаций напряжения в системе изображенной на Рис. 4. Основной интерес представляло изучения флуктуаций напряжения во втором проводе, генерируемых QPS процессами в первом.

• Вычислено среднее напряжения обоих проволок в такой системе. Соответствующее выражение имеет вид

$$< \left[\begin{array}{c} V_1\\ V_2 \end{array}\right] > = \left[\begin{array}{c} \Phi_0 \left(\Gamma_{QPS}(I\Phi_0) - \Gamma_{QPS}(-I\Phi_0) \right)\\ 0 \end{array}\right],$$

0.2. Основные результаты

Рис. 4: Сверхпроводящие провода связанных емкостной связью C_m . Первый провод полагается достаточно тонким, так что в нем возможны QPS процессы, тогда как во втором они подавлены по толщине. Также полагается что через первый провод течет внешний ток I

где

$$\Gamma_{QPS}(\omega) = \gamma_{QPS}^2 (2\pi T\tau_0)^{2\lambda_{11}} e^{\frac{\omega}{2T}} \frac{|\Gamma(\lambda_{11} + \frac{i\omega}{2\pi T})|}{16\pi T\Gamma(2\lambda_{11})}$$

определяет скорость распада токовых состояний в первом проводе за счет QPS процессов. Было также показано, что добавление линейного диссипативного элемента в систему дает аналогичный результат, в частности оставляет нулевым среднее напряжения во втором проводе.

• Получено выражение для спектральной мощности шума $S_2(\omega)$ для второго провода на конечной частоте

$$S_{2}(\omega) = iG_{V_{2}V_{2}}^{K}(\omega) + \left(\frac{1}{2}G_{V_{2}\chi_{1}}^{R}(x_{qps},\omega)G_{V_{2}\chi_{1}}^{R}(x_{qps},-\omega)\right)$$

$$\times \sum_{\pm} [\Gamma_{QPS}(\omega \pm I\Phi_{0})] + G_{V_{2}\chi_{1}}^{R}(x_{qps},\omega)G_{V_{2}\chi_{1}}^{K}(x_{qps},\omega)$$

$$\times \sum_{\pm} [\Gamma_{QPS}^{R}(\omega \pm I\Phi_{0}) - \Gamma_{QPS}^{R}(\pm I\Phi_{0})] + (\omega \to -\omega)\Big),$$

которое содержит вклады как от равновесного шума Джонсона-Найквиста, так и неравновесный вклад индуцированный QPS процессами в первом проводе. В пределе, когда время за которое импульсы напряжения достигают контактов напряжения мало, вклад индуцированный QPS процессами принимает простой вид

$$S_2^{QPS}(\omega) = \tau_{21}^2 \Phi_0^2 \omega^2 \sum_{\pm} \left[\left(2n_B + \frac{3}{2} \right) \Gamma_{QPS}(-\omega \pm I \Phi_0) - \left(2n_B + \frac{1}{2} \right) \Gamma_{QPS}(\omega \pm I \Phi_0) \right],$$

график которого изображен на Рис. 5. Таким образом показано, что флуктуации напря-

Рис. 5: Спектральная мощность шума во второй проволоке индуцированного проскальзываниями фазы в первой проволоке (в условных единицах)

жения во втором проводе существенно зависят от протекающего в первой проволоке тока. Однако данные флуктуации имеют место и в пределе $I \to 0$, т.е остаются и в равновесном случае. Интересно отметить, что при некоторых значениях внешнего тока, $S_2^{QPS}(\omega)$ может принимать отрицательные значения, что видно из Рис. 5. При этом, было также показано, что равновесный вклад $G_{V_2V_2}^K$ параметрически больше чем $S_2^{QPS}(\omega)$, так что спектральная мощность шума $S_2(\omega)$ остается положительной, что согласовано с общими принципами.

Третья глава посвящена исследованию эффекта Кулоновского увлечения в системе тонких сверхпроводящих проволок связанных емкостной связью. Основной интерес представляет получение ненулевого среднего напряжения во втором проводе, при условии протекания внешнего тока в первом.

 На основе анализа динамики плазменных возбуждений в рассматриваемой системе, было продемонстрировано, что для получения ненулевого среднего напряжения во втором проводе, необходимо наличие нелинейного элемента в системе. Что согласуется с результатами работ, посвященным эффектам Кулоновского увлечения в различных системах [BSS19], [Ari07]. Таким нелинейным элементом в рассматриваемой системе могут служить соответствующие QPS во втором проводе. Тогда импульсы напряжения во втором проводе, генерируемые QPS процессами в первом будут нелинейным образом взаимодействовать с QPS

0.2. Основные результаты

во втором проводе, что приведет к асимметрии вкладов на контактах напряжения и соответственно к ненулевому среднему напряжению.

• Поскольку Гамильтониан взаимодействия, описывающий QPS процессы, представим в виде суммы вершинных операторов $\hat{L}_i^{\sigma}(x,\tau) = e^{i\sigma\hat{\chi}_i(x,\tau)}$ туннелирования кванта потока Φ_0

$$H_{int}(t) = -\frac{\gamma_1}{2} \sum_{\sigma=\pm} \int_{-L/2}^{L/2} dx_1 \hat{L}_1^{\sigma}(x_1, t) e^{i\sigma I \Phi_0 t} - \frac{\gamma_2}{2} \sum_{\sigma=\pm} \int_{-L/2}^{L/2} dx_1 \hat{L}_2^{\sigma}(x_1, t),$$

то для вычисления индуцированного напряжения во втором проводе удобнее всего оказалось использовать операторную теорию возмущений, где среднее по ансамблю вычисляется как

$$\langle \hat{V}_{2}(t) \rangle = \sum_{k=1}^{N} (-i)^{k} \int_{-\infty}^{t} dt_{1} \int_{-\infty}^{t_{1}} dt_{2} \cdots \int_{-\infty}^{t_{k-1}} dt_{k} \\ \times \langle [[\hat{V}_{2}^{0}(t), \hat{H}_{QPS}(t_{1})], \hat{H}_{QPS}(t_{2})], \cdots, \hat{H}_{QPS}(t_{k})] \rangle.$$

Таким образом пертурбативное вычисление среднего напряжения во втором проводе свелось к анализу многократных коммутаторов от \hat{L}_i^{σ} операторов.

 Получено выражение для индуцированного напряжения во втором проводе пертурбативно по QPS амплитудам γ₁,γ₂ первого и второго проводов соответственно. Показано, что лидирующий порядок такого разложения пропорционален γ₁²γ₂². Было также продемонстрировано, что индуцированное напряжение может быть представлено в виде суммы трех вкладов, каждый из которых пропорционален оператору вида

$$\langle \hat{L}_{2ijk}^{\sigma_1\dots\sigma_4}(t_1, x_1; \dots t_4, x_4) \rangle = \langle e^{i\sigma_1 \hat{\chi}_2(x_1, t_1) + i\sigma_2 \hat{\chi}_i(x_2, t_2) + i\sigma_3 \hat{\chi}_j(x_3, t_3) + i\sigma_4 \hat{\chi}_k(x_4, t_4)} \rangle, \ i, j, k = 1, 2.$$

Рис. 6: Вольт-амперная характеристика для индуцированного напряжения $\langle V_2(t) \rangle$ в пределе $I \Phi_0 \gg T$.

- Построена соответствующая вольт-амперная зависимость для индуцированного напряжения во втором проводе в пределе *I*Φ₀ ≫ *T*, представленная на Рис. 6.
- Продемонстрировано, что в низкотемпературном пределе кросс-сопротивление второго провода как функция внешнего тока в первом ведет себя как $R_{21} \sim \gamma_1^2 \gamma_2^2 I^{4\lambda-7}$. В противоположном случае $I\Phi_0 \ll T$, кросс-сопротивление является степенной функцией температуры, демонстрируя универсальное поведение $R_{21} \sim \gamma_1^2 \gamma_2^2 T^{4\lambda-7}$.

Диссертация основана на трёх публикациях.

- Латышев А., Семенов А. Г., Заикин А. Д. Флуктуации напряжения в системе сверхпроводящих нанопроволок, связанных емкостной связью //Journal of Superconductivity and Novel Magnetism. – 2020. – Т. 33. – №. 8. – С. 2329-2334.
- Латышев А., Семенов А. Г., Заикин А. Д. Фазовый переход сверхпроводник-изолятор в системе связанных сверхпроводящих нанопроволок //Beilstein journal of nanotechnology. – 2020. – Т. 11. – №. 1. – С. 1402-1408.
- Латышев А., Семенов А. Г., Заикин А. Д. Плазменные моды в сверхпроводящих нанопроволоках, связанных емкостной связью //Beilstein Journal of Nanotechnology. – 2022. – Т. 13. – №. 1. – С. 292-297.

Литература

- [AGZ08] K Yu Arutyunov, Dmitri S Golubev, and Andrej Dmitievič Zaikin. Superconductivity in one dimension. *Physics Reports*, 464(1-2):1–70, 2008.
- [ALR⁺17] K Yu Arutyunov, Janne S Lehtinen, AA Radkevich, AG Semenov, and AD Zaikin. Density of states of narrow superconducting channels in the regime of quantum fluctuations of the order parameter. *Physics of the Solid State*, 59(11):2110–2113, 2017.
- [ALR⁺21] Konstantin Yu Arutyunov, Janne S Lehtinen, Alexey Radkevich, Andrew G Semenov, and Andrei D Zaikin. Superconducting insulators and localization of cooper pairs. *Communications Physics*, 4(1):1–7, 2021.
- [Ari07] DN Aristov. Luttinger liquids with curvature: Density correlations and coulomb drag effect. *Physical Review B*, 76(8):085327, 2007.
- [BCA⁺16] Xavier DA Baumans, Dorin Cerbu, Obaïd-Allah Adami, Vyacheslav S Zharinov, Niels Verellen, Gianpaolo Papari, Jeroen E Scheerder, Gufei Zhang, Victor V Moshchalkov, Alejandro V Silhanek, et al. Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration. *Nature communications*, 7(1):1– 8, 2016.

10

Литература

- [BLT00] A Bezryadin, CN Lau, and M Tinkham. Nature 404 971 crossref pubmed google scholar lau, cn, et al 2001. *Phys. Rev. Lett*, 87:217003, 2000.
- [BSS19] Artem Borin, Ines Safi, and Eugene Sukhorukov. Coulomb drag effect induced by the third cumulant of current. *Physical Review B*, 99(16):165404, 2019.
- [Hav10] David Haviland. Quantum phase slips. *Nature Physics*, 6(8):565–566, 2010.
- [LMB+01] Chun Ning Lau, N Markovic, M Bockrath, A Bezryadin, and M Tinkham. Quantum phase slips in superconducting nanowires. *Physical review letters*, 87(21):217003, 2001.
- [MS85] JE Mooij and Gerd Schön. Propagating plasma mode in thin superconducting filaments. *Physical review letters*, 55(1):114, 1985.
- [RSZ17] Alexey Radkevich, Andrew G Semenov, and Andrei D Zaikin. Quantum phase fluctuations and density of states in superconducting nanowires. *Physical Review B*, 96(8):085435, 2017.
- [RSZ19] Alexey A Radkevich, Andrew G Semenov, and Andrei D Zaikin. Quantum fluctuations and density of states in low-dimensional superconductors. The European Physical Journal Special Topics, 227(15):2289–2295, 2019.
- [SZ13] Andrew G Semenov and Andrei D Zaikin. Persistent currents in quantum phase slip rings. *Physical Review B*, 88(5):054505, 2013.
- [SZ16] Andrew G Semenov and Andrei D Zaikin. Quantum phase slip noise. Physical Review B, 94(1):014512, 2016.
- [SZ17] Andrew G Semenov and Andrei D Zaikin. Quantum fluctuations of voltage in superconducting nanowires. Low Temperature Physics, 43(7):805–815, 2017.
- [SZ22] Andrew G Semenov and Andrei D Zaikin. Superconducting quantum fluctuations in one dimension. *arXiv preprint arXiv:2204.07477*, 2022.
- [vOGZB99] Anne van Otterlo, Dmitrii S Golubev, Andrei D Zaikin, and Gianni Blatter. Dynamics and effective actions of bcs superconductors. The European Physical Journal B-Condensed Matter and Complex Systems, 10(1):131–143, 1999.
- [ZG19] Andrei D Zaikin and Dmitry S Golubev. Dissipative Quantum Mechanics of Nanostructures: Electron Transport, Fluctuations, and Interactions. Jenny Stanford Publishing, 2019.
- [ZGvOZ97] Andrei D Zaikin, Dmitrii S Golubev, Anne van Otterlo, and Gergely T Zimányi. Quantum phase slips and transport in ultrathin superconducting wires. *Physical review letters*, 78(8):1552, 1997.

[ZRTA08] M Zgirski, K-P Riikonen, V Touboltsev, and K Yu Arutyunov. Quantum fluctuations in ultranarrow superconducting aluminum nanowires. *Physical Review B*, 77(5):054508, 2008.

12