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1 Introduction

1.1 The relevance of research

The decisive element in approaching fundamental questions in biology and designing efficient
disease treatments is the understanding of cellular molecular processes [1]. The analysis of
the single cell has become one of the most important challenges in natural sciences in the
21st century. The game-changing idea [2] is to treat every single cell in tissues as a separate
building block with its state and therefore treat tissues as a diverse set of such building
blocks, rather than as a homogeneous entity. The means of an extensive investigation of
this idea were the new high-throughput technologies for genome sequencing, proteomics,
metabolomics and imaging.

Such advancements made it possible to automatically and objectively analyze even on
scales as large as millions and billions of cells, thus we have an opportunity to perform high-
throughput experiments with single cells (live-cell imaging [3] [4], gene expression profiling
[5] and proteomics [6]) and then perform analysis with computational methods, applicable
for the obtained type of data and try to make biological sense out of this data.

Different types of data (or data modalities) can allow us to inspect the state of each
particular cell from different perspectives. One of the practical tasks, where all the possible
information can be useful to make decisions, is drug discovery, especially in personalized
medicine. The biggest challenge is to accurately and cost-effectively combine and use the
existing expensive treatment modalities.

Here we focus mostly on the imaging data and one of the first steps of the image-based
analysis of single cells is cell or nucleus segmentation – classification of each pixel as a
background or foreground (semantic segmentation), or determining if the pixel belongs to a
specific object (instance segmentation), examples are in Figure 1. In recent years this field
has been emerging by adopting and creating deep learning algorithms for this task, bringing
significant improvements [7].

The segmentation might be followed by the identification of biological phenotypes through
the quantification of cell morphology, variation of which might show, for instance, differences
between treated and not treated cells in drug screening experiments [8]. The phenotypes can
be described by feature-vectors, also called profiles and the process of the extraction is called
profiling and morphological profiling is also might be referred to as image-based profiling [9]
[10].
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Figure 1: Example of segmentation left-to-right: original image, semantic segmentation,
instance segmentation. The source of the image and segmentations: Data Science Bowl 2018
dataset [11].

1.2 Specific aims of the thesis

1.2.1 Review existing methods for cell segmentation

Image pre-processing and nucleus (or cell) segmentation are usually the first steps of the
analysis of single-cell images. The accurate segmentation affects the quality of the following
downstream analysis, so this step is crucially important.

The author of the thesis contributed to the review paper [7], which puts together the
state of the field of nucleus segmentation in 2020-2021. Besides the segmentation methods
for 2D and 3D data, it also covers the pre- and post-processing methods, existing datasets
and tools for annotation of cellular images.

1.2.2 Deep-learning assisted nuclei annotation

To train a single-cell (nuclei) segmentation based on deep learning, annotated data is needed
and the bigger the dataset is, the more robust the model will be. Manual annotation is
an expensive process as it requires a significant amount of time and effort from biology
experts. To make the annotation process faster and more accurate, a plugin AnnotatorJ
[12] for ImageJ/FIJI [13] (the software for bioimage analysis) was developed which combines
single-cell identification with deep learning and manual annotation.

1.2.3 Evaluate test-time augmentation approach for nuclei segmentation

Test-time augmentation was an existing approach to improve image classification [14]. In
this thesis, test-time augmentation for nuclei segmentation is evaluated. The trained deep
learning model for segmentation processes the original input image and several transformed
variants of the same image. The obtained segmentation results are then merged. The
core idea is that the combination of segmentation results from the original image and its
transformed variants will perform better than the segmentation of just the original image or
at least will give us hints about uncertain segmentations. The final result is an experimental
evaluation of this approach for two popular segmentation deep learning networks.
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1.2.4 Image-based morphological profiling with deep learning

The use of deep learning models for image-based profiling (phenotyping of single cells) is
investigated. Those deep learning models can be either pre-trained (with ImageNet dataset
[15]) or trained (weakly supervised) for the particular single-cell dataset. Using those models,
it is possible to extract features (profiles) of the single cells. The obtained features are used
in the downstream analysis afterwards (for instance, to predict the mechanisms of action of
drugs). We investigate if the features obtained with deep learning networks provide better
results in the downstream analysis than classical morphological features [16], particularly for
the images obtained with Cell Painting [10] (also see in 2.2).

1.2.5 Assess different sources of features for drug screening

The relative predictive power is compared for three high-throughput sources of features:
representations of chemical structures [17] of compounds, gene expression phenotypic profiles
obtained with L1000 assay [18] and image-based morphological profiles obtained from Cell
Painting [10] images processed with CellProfiler [19] for the task of assay-compound activity
prediction.

1.3 Importance of the presented work

The review [7] (Aim 1.2.1) of the most recent 2D and 3D segmentation methods provides
insights for practitioners about usage and the most suitable methods for different microscopy
modalities. As the end-users of the segmentation pipelines are usually biologists, the guid-
ance for the most effective and easy-to-use framework might be helpful to the community,
as accurate segmentation is crucially important for the following downstream tasks.

The usage of deep learning-based algorithms is not possible without accurately annotated
image datasets and in the field of nuclei segmentation, such datasets are usually built by
experts. We have developed a tool [12] (Aim 1.2.2) to make the creation of annotated nuclei
datasets faster, more comfortable and, thus, cheaper.

One of the possible ways to obtain better segmentation is to apply post-processing meth-
ods. One of such potential methods is test-time augmentation, which is traditionally used
for image classification. The systematic evaluation [20] (Aim 1.2.3) of this method for the
task of segmentation of nuclei for the most popular deep learning frameworks and the most
popular nuclei dataset so far provides insights into its usefulness.

The main goal of image-based morphological profiling is to get such feature representation
that accurately captures the cell state [21]. Deep learning networks for image classification
might be able to capture such representations, especially with post-processing steps, such
as aggregation. Deep learning image-based morphological profiling combined with a cost-
efficient Cell Painting assay [10] can be used in drug discovery and other biologically relevant
questions (Aim 1.2.4).
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Besides morphology, gene expression profiles and information and representations of
chemical structures [17] are useful for extracting useful information in the drug discovery
task. The comparison (Aim 1.2.5) of their predictive power can provide insights and demon-
strate the usefulness of machine learning models for early-stage drug discovery processes.

1.4 Publications

Papers related to the research topic:

• Moshkov N., Mathe B., Kertesz-Farkas A., Hollandi R., Horvath P. Test-time aug-
mentation for deep learning-based cell segmentation on microscopy images. Scien-
tific Reports. 2020. Vol. 10, 5068. Q1 journal, IF 3.998 (2020). DOI: https:
//doi.org/10.1038/s41598-020-61808-3

• Hollandi R.*, Moshkov N.*, Paavolainen L., Tasnadi E., Piccinini F., Horvath P.
Nucleus segmentation: towards automated solutions. Trends in Cell Biology. 2022.
Q1 journal, IF 20.808 (2021). DOI: https://doi.org/10.1016/j.tcb.2021.12.004

• Hollandi R., Diosdi A., Hollandi G., Moshkov N., Horvath P. AnnotatorJ: an ImageJ
plugin to ease hand-annotation of cellular compartments. Molecular Biology of the
Cell. 2020 Vol. 31. � 20. P. 2157-2288. Q1 journal, IF 3.791 (2020). DOI: https:
//doi.org/10.1091/mbc.E20-02-0156

Preprints related to the research project:

• Nikita Moshkov, Tim Becker, Kevin Yang, Peter Horvath, Vlado Dancik, Bridget
K. Wagner, Paul A. Clemons, Shantanu Singh, Anne E. Carpenter, Juan C. Caicedo.
Predicting compound activity from phenotypic profiles and chemical structures bioRxiv
2020.12.15.422887, DOI: https://doi.org/10.1101/2020.12.15.422887

• Nikita Moshkov, Michael Bornholdt, Santiago Benoit, Matthew Smith, Claire Mc-
Quin, Allen Goodman, Rebecca Senft, Yu Han, Mehrtash Babadi, Peter Horvath, Beth
A. Cimini, Anne E. Carpenter, Shantanu Singh, Juan C. Caicedo. Learning represen-
tations for image-based profiling of perturbations. bioRxiv 2022.08.12.50378, DOI:
https://doi.org/10.1101/2022.08.12.503783

Conferences, related to the research project:

• HEPTECH AIME19 AI & ML (2019). Test-time augmentation for deep learning-based
cell segmentation on microscopy images (poster). Link: https://indico.wigner.hu/
event/1058/contributions/2542/

Papers unrelated to the research topic published in 2017-2022:

• Moshkov N.*, Smetanin A.*, Tatarinova T. Local ancestry prediction with PyLAE.
PeerJ. 2021. Article 12502. Q2 journal, IF 2.816. DOI: https://doi.org/10.7717/
peerj.12502
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• Piccini F., Balassa T., Carbonaro A., Diosdi A., Toth T., Moshkov N., Tasnadi E.
A., Horvath P. Software tools for 3D nuclei segmentation and quantitative analysis in
multicellular aggregates. Computational and Structural Biotechnology Journal. 2020.
Vol. 18. P. 1287-1300. IF 6.018 (2020), Q1 journal. DOI: https://doi.org/10.
1016/j.csbj.2020.05.022

• Grexa I., Diosdi A., Harmati M., Kriston A., Moshkov N., Buzas K., Pietiäinen V.,
Koos K., Horvath P. SpheroidPicker for automated 3D cell culture manipulation using
deep learning. Scientific Reports. 2021. Vol. 11, 14813. Q1 journal, IF 4.379 (2021).
DOI: https://doi.org/10.1038/s41598-021-94217-1

• Kornienko I. V., Faleeva T. G., Schurr T. G., Aramova O. Y., Ochir-Goryaeva M. A.,
Batieva E. F., Vdovchenkov E. V., N. E. Moshkov, Kukanova V. V., Ivanov I. N.,
Sidorenko Y. S., Tatarinova T. V. Y-Chromosome Haplogroup Diversity in Khazar
Burials from Southern Russia. Russian Journal of Genetics. 2021. Vol. 57. No. 4. P.
477-488. IF 0.581. DOI: https://doi.org/10.1134/S1022795421040049

Conferences, unrelated to the research project:

• HEPTECH AIME ML&VA on Clouds (2018). Image database generation techniques
for DIC brain tissue cell segmentation (poster). Link: https://indico.wigner.hu/
event/904/contributions/1874/
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2 Background

2.1 Neural networks for segmentation of nuclei and single cells

The history of automated approaches to segment cells and nuclei starts around 60 years ago
and those very first approaches were solely based on intensity thresholding [22]. For a very
long time, the intensity thresholding (example in Figure 2) was a dominant approach, being
the only part of the segmentation pipelines or combined with other classical approaches.
Later on, just before the deep learning era, there were other approaches for nuclei segmen-
tation based on classical machine learning [23], active contours [24] [25] and the multilayer
gas of circles model [26]. The complexity of biological questions together with the data to
be analyzed (developmental biology [27], drug discovery [28], functional genomics [29] and
pathology [30]) have started to demand more accurate cell segmentation, and the field has
started to seek general solutions to nuclei segmentation task. The adoption of convolutional
neural networks and the availability of computational resources to train convolutional deep
learning models allowed us to leap toward such solutions.

Figure 2: Microscopy image and segmentation mask produced by Otsu thresholding [31]
from Scikit-image [32]. The source of the image: Data Science Bowl 2018 dataset [11].

One of the first steps of the image-based analysis of single cells is cell/nuclei detec-
tion/segmentation. Single-cell segmentation (and image segmentation in general) is a
vastly developing field: with increased performance of GPUs (graphical processing units) and
deep learning neural networks like U-Net [33] (see also 2.1.1), which was the breakthrough
for deep learning-based segmentation for biological images (and in the field of deep learning-
based segmentation in general). This approach still serves as a baseline for semantic segmen-
tation tasks (i.e. pixel classification) and is used as part of the recent general nucleus/cell
segmentation pipelines such as CellPose [34], and StarDist [35] and their derivatives. Besides
specialized methods for cell segmentation, methods initially developed for natural image seg-
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mentation, like Mask R-CNN [36] (see also 2.1.2) are also applied to single-cell segmentation
tasks either by simple fine-tuning or as a part of a complex segmentation pipeline [37].

In addition to deep learning networks themselves, there are common training techniques
for regularization, and therefore to train more robust models such as data augmentation for
training (modification of original training data by rotating, flipping or adding noise) [38],
dropout layers [39], L1 or L2 regularization [40]. Single-cell (nuclei) segmentation task is not
an exception to using those techniques.

2.1.1 U-Net

U-Net [33] (Figure 3) is a deep learning-based architecture, developed primarily for biological-
image semantic segmentation in 2015 (also was a winner of the ISBI cell tracking challenge).
It takes its name from the U-shape encoder-decoder architecture: the input data is firstly
compressed by convolutional layers and then expanded back to its original size. U-Net is
still widely used as a baseline in nuclei segmentation and there are numerous pipelines based
on it for different datasets [7].

Figure 3: Standard U-Net architecture.

2.1.2 Mask R-CNN

Mask R-CNN [36] (Figure 4) was developed in 2017 for instance segmentation (each pixel in
the image is assigned to a separate object) of natural images. Mask R-CNN uses a ResNet
[41] architecture as a backbone (usually ResNet50 or ResNet101), which is followed by a
region proposal network (RPN). This is stage one of Mask R-CNN, which finishes with a set
of proposed regions with objects.

RoIAling (RoI - region of interest) is one of the key enhancements of Mask R-CNN over
Faster R-CNN [42], which uses RoI pooling. Both of those operations in principle extract
RoIs from the feature maps, RoIAling is more precise. It is followed by the head layers: they
predict the class, box offset and an output binary mask for each region of interest (RoI).
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Classes are not taken into account for mask generation. RoIAling and the head layers are
stage two of Mask R-CNN.

Figure 4: Standard Mask R-CNN architecture.

2.2 Cell Painting and phenotypic profiling

The target-based approach used to be dominant in drug discovery, but currently, the pheno-
typic approach to drug discovery takes advantage [43]. Target-based drug discovery focuses
on the search for drug targets – gene products, which are the starting point for investigation,
and then researchers come up with an idea of how to affect it [44]. The phenotypic approach
to drug discovery is empirical: a large number of compounds are tested in target-agnostic
assay and the phenotypic variation is monitored [45]. Phenotypic drug discovery expanded
the search space of drugs, targets and mechanisms of action making their discovery possible
[46].

One way to identify phenotypic variation is through the quantification of cell morphol-
ogy, which might demonstrate the differences between treated and not treated cells in drug
screening experiments [8] [9]. An effective assay for phenotypic-based drug discovery is Cell
Painting. This assay was designed to capture as many biologically meaningful morphologi-
cal features as possible while maintaining the protocol compatible with existing microscopy
systems and at the same time keeping it relatively cheap [10]. The output images are five-
channel and capture eight cellular compartments (see Figure 5).

Cell morphology might be described by a vector of features - or profile (either for in-
dividual cells or aggregated for a population of cells), extracted by a multi-stage pipeline
[48]. This task can be referred to as morphological profiling [9] [48] or with broader term
phenotypic profiling [49]. The extracted profiles are processed in downstream analysis
of interest. The most popular software to create pipelines to obtain morphological profiles
of the cells is CellProfiler [19], the features are hand-crafted, though features obtained with
deep learning models are to be researched [50] [51] [52].
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Figure 5: Example of an image obtained with Cell Painting with compartments (labels on
top) and stains (labels at bottom). The image is from BBBC022 dataset [47].

CellProfiler [19] is open-source software for the quantitative analysis of cell phenotypes.
It is designed for biologist-analysts, so it does not require particular experience in the
field of computer science, the biologist-analyst develops only the pipeline with the mod-
ules and their settings and best practices pipelines are available for certain types of data
(https://cellprofiler.org/published-pipelines). The output of the CellProfiler is the
feature vector with human-readable features, which could be organized in the groups, such
as intensity, texture and shape.

2.3 Computational methods in chemical biology

The field strongly tied to drug discovery is chemical biology, which studies the interaction
of small molecules (drugs are usually small molecules) with biological systems (for instance
individual cells, tissues and organisms). Like any other field, chemical biology has its own
set of computational methods for different tasks [53] [54].

The first problem to solve is to represent chemical molecules conveniently and efficiently
way for computational methods. There are different approaches for doing this, the one of
the simplest ones is SMILES (Simplified Molecular Input Line Entry System) [55], which is
simple, yet very efficient and widely used nowadays. The example is in Figure 6.

Another class of representation of molecules are the fingerprints - binary or numerical
vectors of size between 16 to 16384. Fingerprints can be rule-based or obtained with deep
learning methods and the efficacy of those representations is not equal [56]. The most
commonly used molecular fingerprints are Morgan fingerprints [57], which are binary vectors.

Another term related to the representation of compounds is a scaffold. A scaffold is a
core structure of a compound, which consists of all ring structures and links between them
and was proposed by Bemis and Murcko [58], example is in Figure 6.

In the last few years, different deep learning-based approaches for computational chem-
istry have emerged based on convolutional or recurrent neural networks, autoencoders and
graph convolutional networks [54].

One of the notable recent methods, based on graph convolutional networks is Chemprop
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Figure 6: A. SMILES representation of Ibuprofen and its generated graphical representation.
B. Bemis-Murcko scaffold of Ibuprofen. Graphical representations and the scaffold were
generated with RDKit software (https://www.rdkit.org/).

(http://chemprop.csail.mit.edu/) [17] [59] [60]. It takes SMILES strings as an input
(other feature vectors can be used) and reconstructs molecular graphs, where atoms are
nodes and bonds are edges. Then a series of message passing steps are applied to aggregate
information from neighboring atoms and bonds, to refine the representation of the molecule.
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3 Summary of the research

This section contains a brief description of research projects and the results. Some details
are omitted, though can be found in the related publications.

3.1 Nucleus segmentation: towards automated solutions

This section briefly discusses the content of [7].

The field of nucleus segmentation was developing over the last few years with the help of
deep learning. Practitioners started to use widely deep learning-based segmentation meth-
ods, especially after the DSB 2018 challenge [11], which clearly showed the superiority of
deep learning-based methods over the classical ones. Besides, the computational resources
have become more affordable, and the methods tend to be more user-friendly by providing
guides for the tools and sometimes by providing graphical user interfaces. The review is
aimed to provide an overview of the methods and datasets related to nuclei segmentation
and guide practitioners in the field.

As deep learning methods require the data for training, we start the review, with the
description of the openly available annotated nuclei datasets, both in 2D and 3D and for dif-
ferent microscopy modalities. The annotations for those datasets are shared as background-
foreground (BG-FG) masks or as object masks (when each object is outlined separately).
The first observation is that not so many annotated datasets are shared particularly for 3D
data. The possible reason is that the laboratories started to massively switch to 3D not
long ago, besides the usage of 3D over 2D is not always a necessity. An example of the 3D
dataset, which might be used as a benchmark (and in fact is already used) is A549-Dataset
[61]. Another observation - very few imaging modalities are well represented even in the
case of 2D datasets. Most of the datasets have only fluorescent, brightfield or hematoxylin
and eosin stained (H&E) images. The notable exception is the LIVECell [62] large-scale
label-free dataset.

The review part about datasets is then followed by the part about annotation tools. Most
of those annotation tools were released recently. We observed the presence of open-source
and free tools for annotation of both 2D and 3D data.

The last part of the review is about segmentation methods and tools. The reviewed
segmentation methods were classified using meaningful criteria for practitioners. First, the
methods were classified by the dimensionality of the input image (2D, 3D or both 2D and
3D). Next, for each method, the availability of the code was checked. Another important
criterion is the availability of extended versions of tutorials, as the users of the segmentation
methods for biological tasks do not necessarily have computer science expertise and need a
clear step-by-step guide to use those methods. The last important criterion is if the tool
runs or can be run in the cloud, which has become a very common scenario for running
computationally demanding tasks.
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Another contribution of this review is the assistant tool for nuclei segmentation method
selection (called unbiased) which is available online at GitHub Pages https://biomag-lab.
github.io/microscopy-tree/. It is supposed to help in choosing potentially useful meth-
ods based on microscopy modality, the dimensionality of images and potential challenges in
the data of interest.

Figure 7: The interface of the assistant tool for the selection of segmentation methods. On
the left, there is a tree of microscopy modalities. In the top-right, there are controls for
filtering for choosing 2D/3D methods and specific methods for segmentation challenges. In
the bottom-right, there is a list of segmentation methods.

The main result of the review turned out to be the raising of concerns and questions
about the current state of the field. The first concern is related to the lack of diversity of
existing datasets in terms of microscopy modalities. Turns out most of those openly published
annotated datasets are either for H&E images or fluorescent images. Other microscopy
modalities (e.g, DIC (differential interference contrast), light-sheet or phase contrast) are
poorly represented in publicly available datasets. Besides, the size of the published datasets
also matters, most of the datasets do not contain many objects and images.

Another point is a call for a solution to the common challenges in nuclei segmentation,
such as touching, overlapping and irregularly shaped nuclei [35] [63] [64] [65]. Current deep
learning methods can partially address those challenges, but more progress is desired. Both
novel model architectures and high-scale training datasets might positively impact in this
regard.

The real problem, which is on the surface, but rarely discussed, is the lack of a unified
approach for the evaluation of nuclei segmentation methods. After inspecting all the methods
eventually presented in the review, it has become clear that the evaluation methods and the
datasets don’t overlap. Even though there are datasets that are supposed to be the standards,
different subsets of the test sets are getting used in different articles. The problem could
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be solved by discussions inside the community and enforcing the standards. Two candidate
platforms to host such standardized tests could be Kaggle and BIAFLOWS [66].

The last conclusion of the paper is that the field could try to move towards the general
models which can segment nuclei from images of diverse modalities. Some models are already
capable of doing this, though with a limited amount of modalities, for instance, the models
obtained during the DSB 2018 challenge [11] [67].

3.2 AnnotatorJ: an ImageJ plugin to ease hand annotation of cel-
lular compartments

This section briefly discusses the content of [12].

To train a single-cell (nuclei) segmentation based on deep learning, annotated data is
needed. To train more robust models, bigger datasets are desired, but manual annotation
is an expensive process as it requires a significant amount of time and effort from biology
experts. To make the annotation process faster and more accurate, a plugin AnnotatorJ
[12] for ImageJ/FIJI [13] (the software for bioimage analysis) was developed which combines
single-cell identification with deep learning and manual annotation.

The main feature of AnnotatorJ is a contour assistant. Contour assistant uses the pre-
trained U-Net model to predict the area covered by the object of interest. After that, the
user can refine the contours of the object if needed.

Figure 8: First step of annotation with contour assist: initialize contour by drawing a line
on the object. The numbers and green boxes show the steps to perform in the interface. The
source of the microscopy image: Data Science Bowl 2018 dataset [11].
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Figure 9: Initialized contour by pre-trained deep learning segmentation model (in the right).
The source of the microscopy image: Data Science Bowl 2018 dataset [11].

Figure 10: Refining the contour of the object. The source of the microscopy image: Data
Science Bowl 2018 dataset [11].
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Figure 11: Refined object is added as a region of interest after refining the borders and
pressing ‘Q‘ key. The source of the microscopy image: Data Science Bowl 2018 dataset [11].

To make trained models compatible with ImageJ/Fiji, which is developed in Java, we
used the library DL4J and ND4J (http://deeplearning4j.org/). AnnotatorJ is openly
available at https://github.com/spreka/annotatorj.

3.3 Test-time augmentation for deep learning-based cell segmen-
tation on microscopy images

This section briefly discusses the content of [20].

Deep learning-based nuclei segmentation heavily relies on manually annotated data,
which in most cases is annotated by domain experts. To increase the amount of training
data and train more robust models, data augmentation [38] (see 2.1) has become a common
technique in deep learning. Data augmentation is frequently used in the case of diverse or
limited datasets, which is often the case in the field of nuclei and cell segmentation.

While the usual data augmentation approach is performed during the training time,
the idea of another approach, test-time augmentation (TTA) (Figure 12) is to perform
predictions on the original and the augmented versions of the data samples and then merge
the predictions. This technique existed for some time and was successfully used in image-
analysis tasks [68] [69] [70]. The experiments with test-time augmentation were conducted
in the setting of the nucleus segmentation task.

3.3.1 Test-time augmentation

The pipeline of test-time augmentation includes four steps:

1. Augmentation of the original image.
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2. Inference of original and augmented versions of the image.

3. Dis-augmentation: if the original image was flipped or rotated, the transformation
should be reverted to the original orientation to allow further correct merging of the
predictions.

4. Final merging: this step is different for Mask R-CNN and U-Net and discussed further.

Figure 12: Proposed test-time augmentation techniques. Input: Run inference on several
augmented instances of the same test images with trained models. To merge predictions,
pixel-wise majority voting was used for U-Net and object matching with majority voting was
used for Mask R-CNN. The source of the figure [20].

For U-Net predictions step (4) is straightforward, just sum and average all the dis-
augmented probability maps. The resulting probability map is then converted to a binary
mask by thresholding (0.5) which is further used for evaluation of the segmentation (Figure
12, right).

Mask R-CNN, as an instance segmentation framework, requires more post-processing.
Here, each object is processed separately: for each detected object the majority voting is
done. Before majority voting the object alignment should be done: the objects from the
predictions of original and augmented versions of the input image are checked if those can
be considered the same object. In this setup, two objects (each from different versions of the
input image) are considered to be the same object if the intersection over union (IoU, also
known as Jaccard Index, (Eq. 1)) between them is at least 0.5. If the same detected object
is present in the majority of the predictions, then it will be included in the final prediction
mask. The mask of the included object is corrected by majority voting on the pixel level.

IoU(A,B) = |A ∩B|
|A ∪B|

(1)
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3.3.2 Materials and methods

For the experiments the popular neural networks for segmentation were chosen: U-Net [33]
(for semantic segmentation) and Mask R-CNN[34] (for instance segmentation) and the data
for experiments mostly comes from Data Science Bowl 2018 dataset [11] with additional
sources [71] [72] [73] [74] [75] [76] [77]. The original images were cropped to the size of
512× 512 pixels. Images with a resolution lower than 512× 512 were resized. This primary
dataset was split into two datasets: one with fluorescent images (further referred to as
Fluorescent or Fluo) and tissue images (further referred to as Tissue). For both of those
datasets the following train-test splits were done:

• 95% images in the train set and 5% in the test set (referred to as Fluo 5 or Tissue 5)

• 85% images in the train set and 15% in the test set - repeated 6 times in cross
validation setting (cross-validation split 1 is referred to as Fluo 15 or Tissue 15)

• 70% images in the train set and 30% in the test set (referred to as Fluo 30 or
Tissue 30)

Separate models were trained for each holdout set. For training, the augmentation was
used using horizontal and vertical flip, 90◦, 180◦ and 270◦ rotations. Augmentations were
done before the training (not on-the-fly), which means that the training set size was equal
for each split was 6 ∗ number of unique images in the training set.

In the experiments with the U-Net (the architecture was described in 2.2.1) the widely-
used implementation [78] based on Tensorflow [79] and Keras was used. The models were
trained for 200 epochs with a constant learning rate of 3 × 10−4. The initial parameters
were initialized randomly. A binary cross-entropy loss function with ADAM [80] optimizer
were used. Batch size was set to 1 due to GPU memory limitations. Additionally, trainings
with and without the use of augmentations in training time were run with U-Net. For
the experiments with Mask R-CNN, Matterport’s codebase was used [81], also based on
Tensorflow and Keras. Evaluation scripts were used from [37].

Mask R-CNN models were trained for 3 epochs for different layer groups in the following
order:

• Initialize with COCO weights (https://github.com/matterport/Mask_RCNN/releases/
download/v1.0/mask_rcnn_coco.h5)

• Epoch 1: all network layers were trained at a learning rate of 10−3.

• Epoch 2: training of ResNet stage 5 and head layers at a learning rate of 5× 10−4.

• Epoch 3: Train only head layers at a learning rate of 10−4.

The loss function was binary cross-entropy with ADAM [80] optimizer, batch size 1. This
training strategy replicates the one from [37]. Mask R-CNN models were trained only with
the use of augmentations in training.

20

https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coco.h5
https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coco.h5


mAPDSB for an image is calculated as follows: calculate the average precision over all test
images at IoU threshold t (IoU is calculated between predicted and ground-truth objects)
and average over all IoU thresholds T (2). In this equation, TP (t), FP (t) and FN(t) stand
for a number of true positive, false positive and false negative objects, respectively:

mAPDSB = 1
|T |

∑
t∈T

TP (t)
TP (t) + FP (t) + FN(t) ,

T = {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}
(2)

U-Net predictions were evaluated using the intersection over union metric (Jaccard Index)
(Eq. 1). TTA’s performance is evaluated by calculating the difference between the prediction
scores obtained after applying TTA (merged) and after regular prediction (original). Next,
TTA’s performance was evaluated by calculating the difference:

delta = merged− original (3)

3.3.3 Results

Test-time augmentation improved the performance for all the train-test splits on average, if
used together with Mask R-CNN models. The mean gain in the mAPDSB metric is between
0.01 and 0.02. While in most of the test images mAPDSB improved, there are a few images
with degraded performance (Figure 13).

Test-time augmentation used together with U-Net models also provided improvement in
the IoU metric. We can observe that for most model checkpoints in every training scenario,
except at the beginning of the training, when the model is underfitting (Figure 14).

In some test examples, test-time augmentation could change the prediction quality by a
large margin (see examples in Figure 15).

Test-time augmentation combined with the method [37] (the best performing method for
the DSB 2018 test set according to the Kaggle scoreboard at the time of publishing of the
paper [20]) further increases the performance by 0.011 in mAPDSB.
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Figure 13: Test-time augmentation impact on segmentation performance (delta of mAP).
Each point represents an image. Bars: training epochs. A dashed line in bars: mean, a
solid line in bars: median. Sets: A. Fluorescent 5. B. Fluorescent 15 (cross-validation 1) C.
Fluorescent 30. D. Tissue 5. E. Tissue 15 (cross-validation 1) F. Tissue 30. The source of
the figure [20].
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Figure 14: Mean Jaccard index in the test sets and impact of TTA for U-Net. A. Mean
delta of Jaccard index in models trained without augmentations. B. Mean delta of Jaccard
index in models trained with augmentations. C. Mean Jaccard index in test sets in models
trained without augmentations. D. Mean Jaccard index in test sets in models trained with
augmentations. The source of the figure [20].
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Figure 15: Comparison of predictions with and without TTA on example images. A. U-Net.
First column: original image, the second: predictions without TTA, the third: predictions
with TTA. Colors: false negative predictions (red), true positive (green), and false positives
(blue). The fourth column – averaged TTA predictions before thresholding and the fifth:
zoomed insets from the previous column. Rows are example images. B. Mask R-CNN.
Columns are as first three in A, rows are example images. The source of the figure [20].

Figure 16: DSB 2018 Stage 2 test scores for different methods, compared to [37] + TTA.
The source of the figure [20].

3.4 Learning representations for image-based profiling of pertur-
bations1

This section briefly discusses the content of [82].

Phenotypic drug discovery is based on observations of drug effects on treated subjects,
in our particular case, we consider single-cells. This problem not only requires significant

1The article is online as a pre-print and is being submitted to a journal
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wet lab efforts but also computational approaches to process the output data. One of the
first attempts to measure treatment effects using features extracted from fluorescent imaging
data was [9]. Later on, CellProfiler [19], the standard approach to extract representations of
single-cells was released. It produces features which are human-readable and their usefulness
was proven in different downstream tasks [16].

Now, the question is, what if we can extract even more biologically relevant representa-
tions of cells from images using deep learning? With inspiration from representation learning
and popular deep learning architectures for image classification, researchers have started to
seek a methodology that could allow them to extract such biologically relevant representa-
tions.

One of the first attempts of using transfer learning (usage of pre-trained image classifica-
tion networks with ImageNet dataset [15]) for morphological profiling was performed in [51]
on full images, meaning that the full image was resized to the input size of the network and
was run in inference mode.

Training models directly on images of single-cells have been explored in proof-of-concept
experiments [50]. It was based on weakly-supervised learning (WSL), which does not require
manually annotated data to learn feature representations. Instead, it uses treatment labels
as a proxy for the phenotypes of interest. These treatment labels are weak because there is no
certainty that all the treatments have a phenotype sufficiently different from the untreated
cells (negative controls) or resulting phenotypes are not similar for different treatments.

Here, a systematic evaluation of three large-scale Cell Painting public datasets is con-
ducted. Those datasets contain thousands of perturbations, hundreds of plates, and millions
of single cells. The tested representations are extracted by pre-trained models and mod-
els trained in a weakly-supervised setting and compared against classical features. To run
training and feature extraction experiments, the publicly available tool DeepProfiler was
developed.

The current best practices found for making deep learning methods improve the quality
of downstream analysis, which are reported below. For interpretation of the obtained results
with trained models and reasoning about challenges, a causal modeling framework is used
[83] [84].

3.4.1 Cell Painting datasets

In this study, five datasets were used in total:

• BBBC037 (also known as TA-ORF) dataset [85], published in 2017 to test morpho-
logical profiling using overexpression in human cells as a general approach to annotate
gene and allele function.

• BBBC022 dataset [47], published in 2013, screened 1600 bio-active compounds.

• BBBC036 dataset (also known as CDRP-Bioactivies) [86], published in 2017, screened
2000 bio-active compounds.
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• BBBC043 dataset (also known as LUAD) [87], testing lung adenocarcinoma variants
(375 in total).

• LINCS dataset [88] screened 1300 compounds.

Images in all datasets above were taken with 20X magnification and five-channel (all captured
with Cell Painting assay). The first three datasets in the list above are used as benchmarks,
the latter two are only used to construct a combined Cell Painting dataset (discussed in
section 3.4.5).

Figure 17: Example of quality controls for BBBC022 dataset. On the left: PCA plot for the
first two PCs. Each point is a well, colors stand for plates. The outlier cluster is observed.
On the right: examples of images from outlier wells. We see that those images are out of
focus.

For the datasets above, the quality control was done to remove very noisy or out-of-
focus images, as those are not able to preserve reliable phenotypic information and at the
end of the day may distort the aggregated features. To do so, the features were extracted
with DeepProfiler (EfficientNet-B0 model pre-trained with ImageNet dataset, see 3.4.3),
then those features were aggregated by site, by well (as described in [48]) and sphering
transformation (see 3.4.4.2) was applied. Then PCA was used on those aggregated profiles.
The outliers observed in the PCA plots were checked manually for technical problems (Figure
17).

The datasets have class labels, such as treatments (gene perturbations in BBBC037 and
compounds with concentrations for BBBC022 and BBBC036). In the case of BBBC036 and
BBBC022 datasets, the treatments which were present more than once were filtered, leaving
only entries with maximum concentrations. In the downstream analysis, the superclass
annotations matter: gene signaling pathways (BBBC037 dataset) or mechanisms of action
(for BBBC036 and BBBC022 datasets). The superclass annotations were used from [85] and
then refined. Cell locations were obtained with CellProfiler.
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3.4.2 DeepProfiler

A pipeline called DeepProfiler was developed which helps to train weakly-supervised mod-
els and extract representations of single-cells from high-throughput imaging experiments.
DeepProfiler introduces a standardized workflow for utilizing convolutional neural networks
for extracting single-cell features from large-scale image collections.

With DeepProfiler it is possible either to train the network and then perform feature
extraction or to use a pre-trained network for feature extraction. The inputs of DeepProfiler
are the images, corresponding metadata and the experiment configuration. DeepProfiler
extracts the single-cell images (simple crops, DeepProfiler does not do segmentation on its
own, but can cut objects if the segmentation mask is provided) from the full-sized images
of the predefined size, and those are the inputs of deep learning networks. The workflow is
shown in Figure 18. The extracted features can be used in the downstream analysis which is
usually unique for a dataset and depends on the biological questions. Besides training and
feature extraction, DeepProfiler has additional features for image compression and extraction
of single-cell crops from full-sized images into separate image sets.

The framework is implemented in Tensorflow [79] (for both versions 1 and 2). The source
code, documentation and discussions are available on the GitHub page (https://github.
com/cytomining/DeepProfiler/).

Figure 18: Typical usage of DeepProfiler. 1. Perform training of image classification network
2. Use the trained model to extract the representations 3. Use the representations for
downstream analysis tasks. Steps 1 and 2 in the image are performed with DeepProfiler,
step 3 is a user preference. The microscopy images used from the BBBC021 dataset [72].
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3.4.3 Experimental setup

3.4.3.1 EfficientNet

For deep learning experiments EfficientNet [89] architecture was used, in particular the base
one EfficientNet-B0. The choice was motivated by its computational efficacy and demon-
strated accuracy on the ImageNet dataset [15] superior to ResNet50 [41]. EfficientNet was
used in several prior publications related to cell imaging, for feature extraction and image-
based profiling [87], and for training a model on a combined dataset of cellular images [90].
Some of the solutions to Recursion Pharmaceuticals cellular image classification challenge
https://www.kaggle.com/competitions/recursion-cellular-image-classification/
were based on different modifications of EfficientNet.

3.4.3.2 Experiments with pre-trained models

In this approach, pre-trained on ImageNet dataset [15]. As pre-trained networks require 3-
channel input, each of the channels is replicated three times and sent to the model separately.
As an input, single-cell crops of size 128 × 128 were used. The preprocessing for the used
model also required a resize to 224×224 and min-max normalization adjusted to have a final
input in the range [−1, 1]. The features were extracted from the block6a activation layer.
For each channel, the output dimensionality is 672 features, thus the full feature vector for
the cell is 3360 features.

3.4.3.3 Experiments with weakly supervised learning

Training and the following feature extraction were conducted with DeepProfiler. The inputs
are pre-cropped images of single-cells, saved as a stripe of five channels and reshaped during
training, so the input to the network is 128 × 128 × 5. During training the augmentations
were used:

• Random crop and resize with 50% probability, the size of the crop is not less than 80%
of the original size and then it is resized back.

• Random horizontal flip and then random rotation (90 degree-based).

• Color changes: brightness (up to 10% deviation from the original) and then contrast
(up to 20% deviation from the original). Each channel is processed separately in both
steps.

As the number of single cells varies from treatment to treatment, auto-balancing is done
in each epoch of training. For all datasets, the parameters were: categorical cross-entropy
loss, batch-size 32, a constant learning rate of 0.005 with SGD optimizer, augmentations on,
no label smoothing and 30 epochs. The models are initialized with ImageNet pre-trained
weights.

Two setups for splitting the data to training and validation were used:
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• Leave-plates-out - the single-cells from one subset of plates are used for training, and
from another for validation.

• Leave-cells-out - the single-cells from each plate and each well are used both in training
and validation, approximately 60% of cells from each well are used in training, 40% in
validation.

Using trained models, features were extracted from block6a activation layer (feature
vector size is 672).

3.4.3.4 Computational efficacy

The computational efficacy was estimated in terms of computation clock-time and storage
space needed versus classical features. The proposed approach is faster, than the classical as
it utilizes GPU parallelization. NVIDIA V100 was used for all deep learning experiments.
Training time on average across the datasets takes 3.3 hours, profiling approximately takes
0.58 hours with the pre-trained model and 0.22 hours per plate with trained models. The pre-
trained model takes more time as five inference passes are needed for an image. Comparison
is available in Figure 19. The price is not compared here, though commonly cloud GPU
computation is more expensive than on CPUs.

Figure 19: Computational cost of profiling strategies. The source of the figure [82].

3.4.4 Profiling workflow and evaluation

3.4.4.1 Feature aggregation and similarity matching

The feature aggregation is a pipeline to get treatment-level profiles from single-cell profiles
[48]. There are intermediate levels, such as field-of-view (image)-level and well-level. The
feature vectors of single-cells are aggregated using the median to image-level, and then,
image-level profiles are aggregated using mean to well-level profiles. In this work, feature
aggregation steps are the same, disregarding the source of the features either CellProfiler or
deep-learning models.

To assess the similarity between treatments different metrics can be used [48], here the
cosine similarity is used (also used in other works [91]).
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3.4.4.2 Batch correction using sphering transform

One attempt for reduction of unwanted technical variation is Typical Variation Normalization
(TVN) proposed in [92], also used in [93]. It computes axes of variation using principal
component analysis on negative control well-level profiles. The obtained axes are normalized,
which makes axes of large variation be reduced and axes of low variation to be amplified.
The normalization transformation is then applied to all well-level profiles.

Here, the ZCA-sphering transformation is used similarly as TVN. As an input, the matrix
of well-level negative control features Xn×d is used, where n is the number of control wells
and d is the feature vector dimension. The covariance matrix for X is Σ = XTX

n
, its eigende-

composition is Q = U∆UT , where ∆ are eigenvalues. To obtain a final ZCA-transformation
[94] (sphering), is the following U(∆ + λ)−1UT , where λ is a regularization parameter.

3.4.4.3 Evaluation and metrics

As described in [16], the evaluation task is to check if the most similar treatments according
to the similarity metric belong to the same gene pathway or mechanism of action (MoA).
Several metrics were used for evaluation, all of them briefly described below. In further text,
query treatments are referred to as treatments which have at least two treatments in the
same MoA or pathway and are used as queries in the ranking task.

First metric that was used is folds of enrichment. The odds ratio is calculated, similar
to [16], the main difference is that here it is done only for 1% threshold and this is done for
each query treatment separately. Then, the simple mean of obtained values is computed.

As another metric, an interpolated precision-recall curve and mean average precision for
the ranking task was used. This metric is calculated in the following way: each treatment
is a query, and the top similar treatments to the query treatment are checked. Precision@K
in this ranking task is the ratio of treatments that belong to the same MoA/pathway as
the query out of the top K most similar treatments. The same intuition is applicable for
Precision@Recall: for one treatment (query) we go through all the treatments ranked by
distance until we reach a recall of 1 (find all positive matches). As each MoA/pathway has a
different number of associated ground truth treatments, Precision@Recall is interpolated to
cover the max number of recall points, interpolated precision is defined as pinterpolated(r) =
maxr′≥rp(r′) [95]. Average precision (area under interpolated Precision-Recall curve) is a
mean of pinterpolated at all recall points. mAP here is a simple mean of average precisions for
individual queries.

Hits in the top 1% metric simulates the task of finding a ’hit’ in the most promising
candidate treatments. The metric is applicable on several levels of profiling:

• Treatment-level: measure the number of query treatments which have a treatment
(response) with the same MoA/pathway among the top 1% of most similar response
treatments.
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• Well-level: The well profile is used as a query (all treatments can be used). The number
of treatments, which have query wells with the response wells of the same treatment
among the top 1% of most similar wells is computed.

• Image-level: The image profile is used as a query (all treatments can be used). The
number of treatments, which have query images with the response images of the same
treatment among the top 1% of most similar images is computed. The images of the
same well as query image are excluded from the possible responses.

3.4.5 Strong treatment selection and combined Cell Painting dataset

To expand the potential feature-space both with biological and technical variation the treat-
ments resulting into a strong phenotypes were collected from five Cell Painting datasets.
Strong treatment here is defined as one to produce a phenotype which is different to a pheno-
type of untreated cells. To estimate the strength of the phenotype, CellProfiler feature space
is used (batch-corrected with regularization parameter 1e − 2) and measure the Euclidean
distance between the well-level profiles of treatments and negative controls (Algorithm 1).

Algorithm 1 Strong treatments selection
1: for each p in Plates do
2: Calculate median profile of negative controls in the plate - MCPp

3: Calculate Euclidean distance between the treatment well-level
features and MCPp, get the distances EDTp

4: Calculate Euclidean distance between the negative control well-level
features and MCPp, get the distances ECTp

5: Calculate µ and σ of ECTp

6: Use µ and σ to Z-score EDTp

7: end for
8: for each t in Treatments do
9: Z(t) ← ∑Plates

p EDTp(t), where Z stores the final distances for each
treatment

10: end for

Selection of the strong treatments for the combined Cell Painting dataset did include the
following steps:

• Select top 500 strongest treatments according with Algorithm 1 from BBBC022.

• Intersect those with BBBC036, include the intersection into the combined Cell Painting
dataset.

• Additionally select 50 from BBBC022 and 62 from BBBC036 strongest treatments and
add them to the dataset.
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• Select 7 random treatments from LINCS, from the top 20 (by a number of associated
treatments) MoAs, and add them to the dataset.

• Select 28 overlapping wildtype genes between BBBC043 and BBBC037 dataset and
add to the dataset.

• Additionally select 29 strongest treatments from BBBC037 and 32 from BBBC043 and
add them to the dataset.

• Filter out classes with less than 100 cells.

• Add controls one class for compound screening datasets (BBBC022, BBBC036, LINCS)
and another for gene overexpression datasets (BBBC037, BBBC043). Control cells
from BBBC036 and LINCS are partially selected.

Resulting dataset contains 8.3 million single cells from 232 plates, 488 treatments and 2
types of negative controls. More information about the dataset is in the Figure 20.

Figure 20: Description of combined Cell Painting dataset. A. Treatment sources in the
combined dataset. B. Treated vs control cells distribution and sources of treated cells. C.
Sources of cells inside per cell line. The source of the figure [82].

3.4.6 Causal relations in screening experiments

By applying different treatments to cells, biologists are trying to perturb their state and
observe the response. The causal graph for that kind of experiment includes four variables:
treatments T , images O, phenotypes Y and batch-effects C. In causality modeling terms,
those are interventions, observations, outcomes and confounders respectively. T and O are
observed variables, while Y and C are latent variables. The goal is to learn Y , a multidi-
mensional representation of treatment, which could be used in the further downstream task.
To be useful in the downstream analysis task, Y should encode biologically relevant repre-
sentation, though the reality is that technical variation, the batch-effects C affect all other
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elements of this causal model. C affects images by technical variation in the image acquisi-
tion process, treatments by plate-layout design (the template of the positioning of treatments
in plates in the screening experiment) and phenotypes by environmental conditions. The
relations are shown in the graph (Figure 21).

Treatment is expected to be the main cause to change in the phenotype of the cell.
To extract the representation of phenotypic outcome, WSL is used with the pretext task of
treatment classification. The representations extracted from the intermediate layers of CNNs
encode all visual variation, in this case, both batch-effects and phenotypes. WSL together
with batch correction would help to disentangle phenotypic variation from technical.

Figure 21: Causal model for screening experiment. T stands for treatments (interventions),
O for images (observations), Y for phenotypes (outcomes) and C for batch-effects (con-
founders). The source of the figure [82].

3.4.7 Results and observations

The subsection discusses the results obtained with WSL on the combined Cell Painting
dataset CNN Cell Painting model and models trained on the benchmark datasets. Pre-
trained model on ImageNet (also referred to as CNN ImageNet) dataset and classical features
extracted with CellProfiler serve as baselines.

3.4.7.1 Learned representations sharpen biological features

CNN Cell Painting model performs better in quantitative evaluation than both baselines
in the evaluation task (Figure 22, cyan points). That was expected as manually engineered
features might miss some information and the ImageNet model is trained on a completely
different domain and not optimized for the images of cells. The models trained only on the
corresponding benchmark datasets did not show a consistent improvement in their perfor-
mance against the baselines (Figure 22, green points).

For qualitative assessment, UMAP projection [96] of feature space obtained with CNN
Cell Painting was used (Figure 23). In BBBC037 dataset, treatments are grouped together
according to their pathway annotations, reproducing observations from [85]. In BBBC022
and BBBC036 projections, many treatments are also grouping together according to their
MoAs.
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CNN ImageNet demonstrates similar or lower performance compared to CellProfiler fea-
tures (Figure 22, yellow and pink points).

Figure 22: Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis). On the plot,
the baselines are CellProfiler (pink) and CNN ImageNet (yellow), trained models: CNN Cell
Painting model (cyan), trained on corresponding benchmark dataset (green). Leave-cells-
out training-validation scheme shown with circles and leave-plates-out with diamonds. The
source of the figure [82].

Figure 23: UMAP plots of well-level features extracted with Cell Painting CNN for three
benchmark datasets. Gray points: well-level profiles of treatments, red points: well-level
profiles of negative controls, blue points: treatment-level profiles. Dashed ellipses highlight
clusters of treatment-level profiles with the same biological annotation. The source of the
figure [82].

3.4.7.2 WSL learns both the phenotypes and the batch-effects

Different validation schemes leave-plates-out and leave-cells-out (see Experimental setup
3.4.3) help to understand the information contained in features learned from Cell Painting
images. In leave-cells-out validation scheme the model as access to the full distribution of
biological variation (treatments T ) and technical variation (batch-effects C), yet with leave-
plates-out scheme, the model still has access to the full distribution of biological variation,
but only to a part of technical variation.
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Major performance difference was observed in the pretext classification task for those two
validation schemes. In leave-cells-out setup, the trained CNN can accurately classify single-
cells from both training and validation sets, while in leave-plates-out setup, the trained
model completely fails to classify single-cells in validation set (Figure 24). Nonetheless,
two models trained with different validation schemes demonstrate similar performance in
the downstream task (Figure 22). This observation leads to a conclusion that WSL models
try to take advantage of any information that can explain the link between the images
and treatments, including batch-effects. The validation performance in leave-cells-out is
too optimistic (batch-effects are heavily used to build the link between observation and
intervention), on the contrary, leave-plates-out validation performance is too pessimistic as
in this case the model is not aware of confounding variation in validation plates.

Figure 24: Classification performance in the pretext task (treatment classification) in
the benchmark datasets for leave-plates-out (orange) and leave-cells-out (blue) training-
validation schemes. A. F1-score for the training set (solid line) and validation set (dashed
line) for every fifth epoch. B. Recall (X-axis) and precision (Y-axis) for the final checkpoint.
Every point is a class (treatment, including negative control). The source of the figure [82].

3.4.7.3 Learning with strong phenotypes improves performance in the biological
task

As in the previous section it was observed that controlling the distribution of confounding
factors C does not change the downstream performance, now it is time to explore what
happens if the phenotypic distribution Y is restricted. The intuition is that WSL minimizes
an error in the pretext task by exploiting confounding factors to correctly classify treatments
with a weak phenotypic response. Such treatments might have a stronger technical signal
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rather than a biologically relevant phenotypic signal.
The strong treatments were selected by measuring Euclidean distance between negative

control and treatment profiles, obtained with CellProfiler (see section 3.4.5). That is an
approximation of average treatment effect (ATE), a causal parameter for intervention out-
comes. As we cannot observe the untreated (control) and treated conditions in the same cell,
this can be considered only as an approximation of ATE. CellProfiler features were chosen
to estimate ATE as those are non-trainable, thus can serve as independent prior.

WSL training only on strong treatments only in benchmark datasets was evaluated in
leave-plates-out training-validation scheme. The results demonstrate minor performance
improvement against training on full datasets (Figure 25, blue points).

Figure 25: Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis). On the plot
the baselines are CellProfiler (pink) and CNN ImageNet (yellow), trained models: CNN Cell
Painting model (cyan), trained on corresponding benchmark dataset (green), trained on
strong treatments from corresponding benchmark dataset (blue). All training experiments
used leave-plates-out training-validation scheme. The source of the figure [82].

3.4.7.4 Diverse experimental conditions result in improved representations

The combined Cell Painting dataset was created to maximize both phenotypic (Y ) and
technical (C) variation by combining the treatments with the strongest resulting phenotypes
from five datasets. Training on this dataset consistently improves performance over other
approaches (Figure 22, cyan points), which means that this model can disentangle Y and C

more efficiently. The most important outcome is that this model was trained once and could
be used at all benchmarks without additional training.

3.4.7.5 Batch-correction is a crucial post-processing step

The role of batch-correction (see Batch correction using sphering transform 3.4.4.2) is to
reduce the impact of confounding technical factors C. It is crucial for all representations
tested: classical features, features extracted with pre-trained and trained CNNs. Mean
average precision improves up to 90% versus raw features (see Figure 26). Also, using the
effect of batch-correction can be observed qualitatively (Figure 27). Still, this does not
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mean that the batch-effects are eliminated and further research is needed to learn how to
disentangle technical and biological information in representations.

Figure 26: Mean average precision for sphering with different regularization parameters
(smaller regularization term, more correction applied) for three datasets. For each dataset
CellProfiler features (pink), ImageNet CNN (yellow) and Cell Painting CNN (cyan) are
evaluated. The source of the figure [82].

Figure 27: The qualitative effect of batch-correction in the UMAP plots. The left plot
shows the UMAP representation of the BBBC022 dataset without batch-correction and the
right plot after batch-correction. The points are the embeddings of well-level profiles (cyan
- negative controls, red - treatments). Density plots are on the top and the right sides of the
plots. Features were extracted with Cell Painting CNN model.
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3.5 Predicting compound activity from phenotypic profiles and
chemical structures2

This section briefly discusses the content of [97].

Drug discovery is an expensive and very slow process, there are too many theoretically
possible compounds to test in a real physical experiment. Even though pharmaceutical
companies may afford to test millions of compounds in their experiments, this only covers
a small fraction of possible compounds. Besides, to test those compounds the expensive (as
those contain valuable biological materials: primary cells, antibodies, etc.) phenotypic assay
systems are used to identify candidate compounds. Finally, this process is time-consuming
and requires the time of experts to run the assays.

To reduce the costs of screens in drug discovery, there is possible room for computational
methods, for instance, modern deep learning might allow accurate prediction of assay ac-
tivations for compounds. The previous works tried to use machine learning methods with
morphology data only [98] [99].

In this project, the aim is to evaluate the predictive power of the representations of
chemical structures, cell morphology profiles and gene expression profiles, to predict assay
outcomes computationally at a large scale. The hypothesis is that the predictive capabilities
of those data sources are complementary and those data sources could be used together to
further increase the success rate of the drug screening process. Besides, the basic data fusion
techniques are tested, although it is not the focus of the project and this question might be
investigated further.

3.5.1 Materials and methods

The dataset is composed of four parts: assay-compound interaction matrix, morphology pro-
files, gene expression profiles and representations of chemical structures. All the information
was collected from assays from the drug discovery experiments conducted at Broad Institute
[86].

Assay-compound interaction matrix is the main piece of the dataset. Rows are com-
pounds (represented as SMILES strings) and columns are assays. The cells are filled with 1
(hit) and 0 (no hit) and can be blank (this compound was not tested with the assay). “Hits”
and “no hits” combined are also referred to as readouts. Only a fraction of compounds was
tested in each particular assay, which means that the matrix is quite sparse. Initially, the
matrix contained 496 assays, but filtered using the following procedure:

• Applied all pan-assay interference (PAINS) filters [100] implemented in RDKit, which
removed 786 compounds, resulting in 16,210 compounds.

• Removed all assays without hits, thus the number of assays decreased from 496 to 437.
2The article is online as a pre-print and submitted to a journal
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• Calculate intersection-over-union (IoU) for the hits between assays to find out the as-
says which carry the redundant information. The IoU matrix (437× 437) was thresh-
olded by 0.7 and then hierarchical clustering was applied with the cosine distance
metric, which was used for filtering.

• Final removal of frequent hitters, defined as compounds that are positive hits in at
least 10% of the assays (30 assays or more) and final cleaning of assays without any
hit. In the end, the final dataset consists of 16,170 compounds and 270 assays.

Most of the assays in the final dataset are cell-based, other represented types of assays
are biochemical, bacterial and yeast assays and also there are poorly represented categories
of assays, such as fungal, homogeneous, viral and worm (Figure 28).

Figure 28: Distribution of the assay types in the final dataset. The source of the figure [97].

The Cell Painting assay [10] [47] [101] [102] experiments were run to obtain high-resolution
five-channel images. Those images were processed with CellProfiler software to segment and
obtain ∼ 1700 morphological features at the single-cell level. Those were then aggregated
to the well-level as in [48]. On the well-level profiles, sphering (see also 2.2) was applied
to correct for batch effects. To calculate the sphering transformation, DMSO wells from all
plates were used. Then the profiles were aggregated to the treatment level (referred to as MO,
except for Table 3.5.2 and Table 2). The experiments were also performed with the features
without sphering, though the additional performance boost gained for the morphological
features, in that case, may be biased by batch effects (Figure 29).
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Figure 29: Compound embeddings in three different modalities. Visualizations are built
with UMAP. A. The morphology feature space originally was grouped by technical variation
(plate maps), which was corrected using the sphering. The color palette for the 94 plate maps
is continuous and may have similar tones for consecutive plates. B. Compound embeddings
in three different modalities C. The same embeddings as in B, colored by clusters obtained
for cross-validation experiments (see “Experiments and results section”). The source of the
figure [97].

3.5.2 Experiments and results

The experiments were conducted for several train-test split approaches. All the train test
approaches share the same idea that we want to predict assays-compound interaction for
compounds that are distinct relative to training data. From the practical perspective, there
is little value in searching for similar chemical structures for the one with known activity.
The closest train-test split to such a real-world scenario is a scaffold-based split (for 5-fold
cross-validation) achieved with Bemis-Murcko clustering [58] [103].

In addition to scaffold-based train-test splits, the splits based on morphological and gene
expression features are constructed. For gene expression-based splits the gene expression
features were clustered and for morphology-based splits the batch-corrected morphology
features were clustered (for 5-fold cross-validation) using same-size K-Means clustering (im-
plementation [104]), see clustering in Figure 29.

As a primary metric, the area under receiver operating characteristic curve (AUROC)
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was used. The main results are reported for 0.9 threshold as it was used in earlier works
about assay-compound activity prediction [60] [105] [106]. As a secondary metric, an area
under the precision-recall curve (AUPRC) was used.

The models were trained with a logistic regression loss function for each assay, and
total loss is a sum of losses for each assay. The mini-batch contains information about 50
compounds. If there is no ground-truth readout for assay-compound interaction, it is ignored
for gradient update. In each training, the hyperparameter optimization was run before the
training (see 3.5.1).

Our results show that morphology could accurately predict the largest number of assays
with the median AUROC > 0.9 over cross-validation splits (28 for morphology, 19 for gene
expression and 16 for chemical structures), see Figure 31. Although, for lower AUROC
thresholds (0.7) chemical structures tie with morphology (also see Figure 33). Interestingly,
all three modalities share zero well-predicted assays (Figure 31) and each pair of modalities
share a few common well-predicted assays, which means that different data sources contain
significantly complementary information.

Figure 30: Illustration of experimental setup. The source of the figure [97].
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Figure 31: A. Performance of individual modalities measured as the number of assays (ver-
tical axis) predicted with AUROC above a certain threshold (horizontal axis). B. The Venn
diagrams show the number of accurate assays (median AUROC > 0.9 over cross-validation
splits) that are common or unique to each profiling technique. The bar plot shows the dis-
tribution of assay types correctly predicted by single profiling modalities. C. Number of well
predicted (median AUROC > 0.9 over cross-validation splits) assays by each modality. The
source of the figure [97].

Not only one modality can be used for predicting the assay-compound interaction. To
combine modalities into a single predictor, two approaches were used: a) Early fusion -
the feature vectors are concatenated into a single vector and used as an input for the neural
network. b) Late fusion - for each modality the separate model is trained and then the
prediction scores are aggregated, using the maximum probability among predictions for each
compound-assay pair.

According to our experiments (Table 2), early data fusion did not provide any additional
performance, in fact, it did hurt the performance. Our results for individual modalities did
show that they do not share many well-predicted assays in common (Figure 31), and when
the feature vectors are combined, additional noise to the assays is introduced, as assays can
be well predicted by one modality but cannot be predicted by another. Late fusion works
better in practice, though according to the results, the performance gain is minor at best (31
well-predicted assays with CS+MO combination vs 28 with MO only). The fusion approaches
in the demonstrated tests are quite simple and more investigation for more effective fusion
techniques is needed. As an additional metric, retrospective performance was measured. It
is a simulation of the best possible data fusion. In this analysis, know the predictions are
known in advance. Usage of fused with individual modalities can give 7-17% of performance
boost (Figure 32).

42



Scaffold-based splits — Real world setting

Avg. assays tested: 233.2 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.261 0.252 0.234 0.231 0.232 0.223
Mean AUROC 0.657 0.637 0.592 0.587 0.630 0.610
AUC > 0.5 160.0 151.4 139.2 138.8 150.2 146.8
AUC > 0.7 91.2 83.2 57.2 59.4 88.4 81.6
AUC > 0.9 27.0 28.0 21.8 18.4 21.6 21.0

Gene expression splits (simulation)

Avg. assays tested: 232.0 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.263 0.248 0.222 0.201 0.246 0.244
Mean AUROC 0.664 0.642 0.577 0.561 0.647 0.658
AUC > 0.5 155.6 150.2 127.6 127.2 153.2 157.4
AUC > 0.7 94.4 86.2 45.4 46.6 94.2 99
AUC > 0.9 27.4 23.6 14.2 12.6 22.6 22.4

Morphology(bc)-based splits (simulation)

Avg. assays tested: 179.8 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.224 0.207 0.199 0.198 0.225 0.245
Mean AUROC 0.634 0.600 0.562 0.564 0.631 0.652
AUC > 0.5 142 128.6 125.4 126.2 140.8 143.6
AUC > 0.7 72.8 63.0 49.2 49.2 81.0 82.6
AUC > 0.9 21.6 17.0 14.4 13.6 19.4 22.6

Random splits (simulation)

Avg. assays tested: 232.4 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.259 0.247 0.234 0.228 0.244 0.242
Mean AUROC 0.670 0.643 0.601 0.595 0.659 0.651
AUC > 0.5 163.6 154.2 145.6 144.0 157.6 157.8
AUC > 0.7 97.2 88.4 61.8 66.0 94.8 94.0
AUC > 0.9 26.2 22.0 20.4 17.4 25.8 23.4

Table 1: Results of 5-fold cross-validation experiments. The tables present the mean results
of 5-fold cross-validation experiments according to different data partition approaches. The
metrics are: Mean AUPRC for 5 splits, Mean AUROC for 5 splits, mean counts of the
predicted assays thresholded by AUROC (AUC > 0.5, AUC > 0.7, AUC > 0.9) for 5
splits. Sources of data used: MO: morphological features without batch-correction. MO-
BC: morphological features with batch-correction. GE: Gene expression features. CS-GC:
graph convolutional (GC) features. CS-MF: Morgan fingerprints. An average number of
assays in the test set differs between modalities, as it is impossible to evaluate an assay
without hits in the test set (which are different as different train-test split approaches were
used). The source of the table [97].

43



Baseline: independent modalities (scaffold-based partitions)
MO GE CS

Mean Std Mean Std Mean Std
Mean AUPRC 0.252 0.021 0.234 0.038 0.232 0.036
Mean AUROC 0.637 0.021 0.592 0.034 0.630 0.018
AUC > 0.5 151.4 13.502 139.2 13.773 150.2 13.255
AUC > 0.7 83.2 11.100 57.2 16.316 88.4 6.066
AUC > 0.9 28.0 4.848 21.8 8.198 21.6 6.229

Early fusion — concatenation (scaffold-based partitions)
GE-MO MO-CS GE-CS GE-MO-CS

Mean Std Mean Std Mean Std Mean Std
Mean AUPRC 0.214 0.045 0.251 0.021 0.219 0.028 0.221 0.021
Mean AUROC 0.586 0.038 0.632 0.031 0.577 0.061 0.582 0.038
AUC > 0.5 138.8 18.377 151.8 19.905 138.6 26.773 137.2 22.928
AUC > 0.7 59.2 12.215 87.8 15.531 63.4 21.663 59.8 14.516
AUC > 0.9 16.0 4.743 23.6 4.159 17.0 2.292 20.4 4.278

Late fusion — max pooling (scaffold-based partitions)
GE-MO MO-CS GE-CS GE-MO-CS

Mean Std Mean Std Mean Std Mean Std
Mean AUPRC 0.261 0.026 0.267 0.034 0.251 0.039 0.265 0.032
Mean AUROC 0.652 0.028 0.661 0.027 0.645 0.026 0.665 0.031
AUC > 0.5 157.4 11.845 157.8 13.773 155.6 16.637 159.0 15.017
AUC > 0.7 86.0 9.670 98.8 7.430 87.0 9.566 96.4 10.877
AUC > 0.9 29.4 6.618 29.4 5.128 23.8 8.843 28.0 5.148

Table 2: Performance of individual and combined modalities for models trained with scaffold-
based splits. The metrics are: Mean AUPRC for 5 splits, Mean AUROC for 5 splits, mean
counts of the predicted assays thresholded by AUROC (AUC > 0.5, AUC > 0.7, AUC >
0.9) for 5 splits. Standard deviations are in a separate column. The source of the table [97].
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Figure 32: Accurately predicted assays (median AUROC over splits is higher than 0.9).
A. Venn diagram of accurately predicted assays using late fusion (left), bar plots show
the distribution of accurately predicted assay types with late fusion (right). B. Number
of accurately predicted assays per individual modality. C. Number of accurately predicted
assays for combined modalities with the use of late fusion. Counts for median and mean
AUROC over splits. D. Number of accurately predicted assays for retrospective analysis.
“Single” is a simple union of the accurately predicted assays with individual modalities.
“Plus fusion” is a union of accurately predicted assays with individual modalities plus the
combined late fusion predictor. The source of the figure [97].

Figure 33: Predicted assays with moderate accuracy (median AUROC over splits is higher
than 0.7). A. Venn diagram of predicted assays with individual modalities (left), bar plot
of predicted assay types by individual modalities and late fusion (center), Venn diagram
of predicted assays with late fusion (right). B. Performance of individual modalities and
late fusion. The metrics are: Mean AUC for 5 splits, mean counts of the predicted assays
thresholded by AUROC (AUC > 0.7) for 5 splits. The source of the figure [97].
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CS GE MO CS+GE CS+MO GE+MO CS+GE+MO Evaluated assays

Cell-based 7.05% 11.54% 13.46% 10.90% 16.03% 17.31% 16.67% 156
Biochemical 6.78% 0.00% 1.69% 1.69% 3.39% 0.00% 1.69% 59
Bacterial 0.00% 3.33% 16.67% 0.00% 6.67% 3.33% 3.33% 30
Yeast 5.56% 0.00% 5.56% 0.00% 11.11% 0.00% 0.00% 18
Fungal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3
Viral 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2
Worm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1

Homogeneous 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1

Table 3: Predicted assays by type at the 0.9 threshold, median AUROC over scaffold-based
splits was used. The source of the table [97].

CS GE MO CS+GE CS+MO GE+MO CS+GE+MO Evaluated assays

Cell-based 36.54% 37.18% 44.23% 47.44% 46.15% 51.28% 50.00% 156
Biochemical 40.68% 8.47% 23.73% 32.20% 42.37% 18.64% 33.90% 59
Bacterial 40.00% 13.33% 46.67% 23.33% 56.67% 36.67% 43.33% 30
Yeast 33.33% 11.11% 11.11% 33.33% 33.33% 16.67% 16.67% 18
Fungal 66.67% 33.33% 33.33% 33.33% 66.67% 33.33% 33.33% 3
Viral 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 50.00% 2
Worm 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 1

Homogeneous 0.00% 0.00% 100.00% 0.00% 100.00% 100.00% 100.00% 1

Table 4: Predicted assays by type at the 0.7 threshold, median AUROC over scaffold-based
splits was used. The source of the table [97].
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4 Conclusions

The progress in computation and high-throughput biology methods is a mutual exchange:
the rise of computational power paved the way for high-throughput methods. This, in
turn, engages the computational powers by producing new piles of data, which have to be
analyzed. As a part of those processes, new scientific sub-fields and computational analysis
methods emerged. Imaging waited its turn, strengthening its methods from the wet lab and
computational sides for a little while, even though the first image analysis attempts were
successful and founded a new field [9] [19].

Biological image analysis skyrocketed in the middle of the 2010s when the shift from clas-
sical image analysis to deep-learning-based image analysis started and GPU-computation has
become affordable. By this time, the wet-lab protocols for imaging were mostly established,
and new specific protocols [10] and techniques (i.e. super-resolution) [107] appeared. The
methods for image classification, detection and segmentation were swiftly adopted by the
community of computational biologists for the specific tasks [7][108].

The sub-field of cell (nucleus) segmentation has matured in the last few years, besides
the new methods (including attempts to build a general cell segmentation method) and
additional post-processing methods, also new large-scale datasets and annotation tools were
published [7]. Currently, new methods, usually specific for a particular domain of data are
developed, but the community strives for general segmentation models and 3D segmentation
[7].

As a part of the renaissance of phenotypic drug discovery [46], one of the biological
imaging analysis sub-fields of particular interest with wide applicability of deep-learning
methods [48] [51] is image-based profiling [10]. It is expected to advance in near future
from both biological and computational sides [52]. From the computational side, all eyes
are on unsupervised deep-learning methods. The hope is, that those will be more capable of
capturing biologically relevant features of single-cells [93], rather than their supervised and
weakly-supervised counterparts.

This thesis is focused on the usage of deep learning-based methods for single-cell segmen-
tation and phenotypic profiling. From the segmentation side, the thesis presents the review
of the nucleus segmentation sub-field, an annotation tool to create cell(nucleus) segmentation
datasets and an evaluation of a post-processing method for nucleus segmentation. From the
phenotyping side, the thesis presents weakly-supervised learning for large-scale image-based
profiling and an evaluation of the predictive power of different cellular data modalities.

1. In a review paper, descriptions of the deep learning-based segmentation methods for
2D and 3D data, descriptions of the datasets and annotation tools. Several important
points regarding the current state of the field of nuclei segmentation were expressed
with the hope that the community will take those into account. The decision support
helper tool for segmentation method selection was developed.

2. AnnotatorJ, the plugin for the popular imaging software ImageJ/Fiji, which utilizes
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pre-trained models based on U-Net to ease the annotations of nuclei images. The
experiments with expert annotators showed that AnnotatorJ reduces the time needed
for the annotation and improves the accuracy of the produced annotations.

3. The test-time augmentation approach was experimentally evaluated for two popular
deep learning frameworks: U-Net and Mask R-CNN. According to the observed results,
it is possible to obtain additional segmentation accuracy with TTA on average, though
in individual cases it is not guaranteed. Besides, in cases with underfit models, the
usage of TTA marginally hurts the average segmentation performance. Visual observa-
tion of the images also showed, that TTA mostly modifies the output segmentations in
the objects’ borders, though in rare cases, especially in the case of Mask R-CNN, as it
is instance segmentation-based the segmentations of the whole objects (improving seg-
mentation by removing false positives or adding true positives). The recommendation
would be to use TTA for the analysis of uncertain regions in segmentation. Besides,
the computational cost of predictions increases with the use of TTA, but it is a concern
only at a very large scale or if the inference is running on a CPU.

4. CNNs trained with a weakly-supervised learning approach were benchmarked in three
large-scale profiling datasets versus classical features and pre-trained CNN baselines.
The main finding is that by maximizing technical and phenotypic variation, WSL im-
proves in capturing the biologically relevant representations. Batch-correction turned
out to be a crucial element in capturing phenotypic variation. During this project, the
combined Cell Painting dataset was gathered and a software tool DeepProfiler for deep
learning-based image profiling was developed. As a result of experiments, a trained
model for feature extraction from Cell Painting data was obtained.

5. The predictive power of different data modalities was evaluated: morphology, tran-
scriptional profiles and chemical structures for the prediction of assay readouts. The
results show that those three modalities individually can predict 6-10% of assays with
high accuracy. According to experiments, those modalities turned out to be comple-
mentary combined and can provide up to 21% of assays that can be predicted with
high accuracy or up to 64% if lower accuracy is acceptable.
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22 Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis).
On the plot, the baselines are CellProfiler (pink) and CNN ImageNet (yellow),
trained models: CNN Cell Painting model (cyan), trained on corresponding
benchmark dataset (green). Leave-cells-out training-validation scheme shown
with circles and leave-plates-out with diamonds. The source of the figure [82]. 34

23 UMAP plots of well-level features extracted with Cell Painting CNN for three
benchmark datasets. Gray points: well-level profiles of treatments, red points:
well-level profiles of negative controls, blue points: treatment-level profiles.
Dashed ellipses highlight clusters of treatment-level profiles with the same
biological annotation. The source of the figure [82]. . . . . . . . . . . . . . . 34

24 Classification performance in the pretext task (treatment classification) in the
benchmark datasets for leave-plates-out (orange) and leave-cells-out (blue)
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including negative control). The source of the figure [82]. . . . . . . . . . . . 35

25 Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis).
On the plot the baselines are CellProfiler (pink) and CNN ImageNet (yellow),
trained models: CNN Cell Painting model (cyan), trained on corresponding
benchmark dataset (green), trained on strong treatments from correspond-
ing benchmark dataset (blue). All training experiments used leave-plates-out
training-validation scheme. The source of the figure [82]. . . . . . . . . . . . 36

26 Mean average precision for sphering with different regularization parameters
(smaller regularization term, more correction applied) for three datasets. For
each dataset CellProfiler features (pink), ImageNet CNN (yellow) and Cell
Painting CNN (cyan) are evaluated. The source of the figure [82]. . . . . . . 37

27 The qualitative effect of batch-correction in the UMAP plots. The left plot
shows the UMAP representation of the BBBC022 dataset without batch-
correction and the right plot after batch-correction. The points are the em-
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29 Compound embeddings in three different modalities. Visualizations are built
with UMAP. A. The morphology feature space originally was grouped by
technical variation (plate maps), which was corrected using the sphering. The
color palette for the 94 plate maps is continuous and may have similar tones for
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32 Accurately predicted assays (median AUROC over splits is higher than 0.9).
A. Venn diagram of accurately predicted assays using late fusion (left), bar
plots show the distribution of accurately predicted assay types with late fusion
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Number of accurately predicted assays for combined modalities with the use
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Gilloteaux, Raphaël Marée, and Sébastien Tosi. BIAFLOWS: A collaborative frame-
work to reproducibly deploy and benchmark bioimage analysis workflows. Patterns (N
Y), 1(3):100040, June 2020.

[67] Ruchika Verma, Neeraj Kumar, Abhijeet Patil, Nikhil Cherian Kurian, Swapnil Rane,
Simon Graham, Quoc Dang Vu, Mieke Zwager, Shan E Ahmed Raza, Nasir Rajpoot,
Xiyi Wu, Huai Chen, Yijie Huang, Lisheng Wang, Hyun Jung, G Thomas Brown,
Yanling Liu, Shuolin Liu, Seyed Alireza Fatemi Jahromi, Ali Asghar Khani, Ehsan
Montahaei, Mahdieh Soleymani Baghshah, Hamid Behroozi, Pavel Semkin, Alexandr
Rassadin, Prasad Dutande, Romil Lodaya, Ujjwal Baid, Bhakti Baheti, Sanjay Talbar,
Amirreza Mahbod, Rupert Ecker, Isabella Ellinger, Zhipeng Luo, Bin Dong, Zhengyu
Xu, Yuehan Yao, Shuai Lv, Ming Feng, Kele Xu, Hasib Zunair, Abdessamad Ben
Hamza, Steven Smiley, Tang-Kai Yin, Qi-Rui Fang, Shikhar Srivastava, Dwarikanath
Mahapatra, Lubomira Trnavska, Hanyun Zhang, Priya Lakshmi Narayanan, Justin
Law, Yinyin Yuan, Abhiroop Tejomay, Aditya Mitkari, Dinesh Koka, Vikas Ramachan-
dra, Lata Kini, and Amit Sethi. MoNuSAC2020: A multi-organ nuclei segmentation
and classification challenge. IEEE Trans. Med. Imaging, pages 1–1, 2021.

[68] Kazuhisa Matsunaga, Akira Hamada, Akane Minagawa, and Hiroshi Koga. Image
classification of melanoma, nevus and seborrheic keratosis by deep neural network
ensemble. March 2017.

[69] Murat Seckin Ayhan and Philipp Berens. Test-time data augmentation for estimation
of heteroscedastic aleatoric uncertainty in deep neural networks. April 2018.

60



[70] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and Tom
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