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The main research area of this thesis is holomorphic dynamics. In holo-
morphic dynamics we deal with dynamical systems given by analytic func-
tions, and therefore these dynamical systems can be ”complexified”. Com-
plex numbers are easier to work with than real numbers. This makes meth-
ods of holomorphic dynamics so important. In this thesis we are studying
holomorphic rational functions of one variable. We focus on the different
classes of these functions and on the methods of their classification and pa-
rameterization by meaning of geometrical objects using mainly a topological
approach.

1 Invariant trees for Thurston map

We consider 1-dimensional holomorphic rational functions f : S2 Ñ S2. Re-
call that critical points are the points at which the derivative is zero or not
defined. Images of critical points are called critical values. The first class
of 1-dimensional holomorphic rational functions is the class of post-critically
finite rational functions, which are also called Thurston functions. Recall
that the degree of a rational function is the maximum of the degrees of the
numerator and denominator.

Definition 1. Denote the set of critical points of f as Cpfq. Then the
following union P pfq :“

Ť8

n“1 f
npCpfqq is called the post-critical set of f . If

P pfq is a finite set, then f is said to be post-critically finite.

These Thurston maps were introduced by W. Thurston in his work related
to the studying of the rational maps. The main celebrated result of this work
is Thurston’s characterization theorem (see [DH93]). This theorem allows to
study algebraic objects (rational functions) by topological tools. More pre-
cisely, we can look at rational maps as at a class of purely topological objects
– branched coverings. It turnes out that on the class of Thurston maps there
exists a natural equivalence relation, which is called Thurston equivalence,
such that different rational functions are almost never equivalent. Formally,

Definition 2. Two Thurston maps f : S2 Ñ S2 and g : S2 Ñ S2 are called
(Thurston) equivalent if there exist two orientation-preserving homeomor-
phisms h0, h1 : S2 Ñ S2 such that h0 ˝ f “ g ˝ h1 and such that h0 and h1
are homotopic relative the post-critical set P pfq.
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Informally, Thurston equivalence can be seen as a combination of the
topological conjugacy (existence of a homeomorphism h : S2 Ñ S̃2 such that
h ˝ f “ g ˝ h) on the set of post-critical points and of the ”perturbed”
topological conjugacy on the other surface.

From the formal definition we can see that topological conjugacy is a
special case of a Thurston equivalence.

So Thurston theorem is a very powerful tool, which allows to understand
if a Thurston map is equivalent to a rational function. The criteria of this
equivalence depends on the existence of a purely topological object: combi-
natorial obstruction, which is some special union of simple curves outside the
set of post-critical points.

Thurston theorem shows that Thurston map is equivalent to a rational
function if and only if there is no obstruction. But it is a very compli-
cated and non-trivial problem to show “non-existence” of obstruction, since
it basically means that we have to check infinitely many options for sets
of curves. Thus, even if there exists a classification theorem, the general
problem of classification of Thurston maps up to equivalence remains an
important problem. It has been focus of recent developments, for exam-
ple [BN06, BD17, CG+15, KL18, Hlu17]. We will be interested in degree 2
Thurston maps.

We look on the rational function as on the branched coverings of the
sphere, so we write S2 for the oriented topological 2-sphere. One of the goals
of our work is to reduce the dynamics on the sphere to the dynamics on
the purely combinatorial object: a graph in the sphere, which is exactly a
1-dimensional cell complex embedded into S2. By its vertices and edges, we
mean 0-cells and 1-cells, respectively. Then for a graph G, we denote the set
of its vertices as V pGq and the set of its edges as EpGq. A tree is a simply
connected graph. For a vertex x of a tree T Ă S2 and an edge e of T if x
is in the closure of e, then x is called incident to e. In this case e is also
incident to x. We say that a vertex is terminal if it is adjacent to exactly one
edge. Vertex a is non-terminal if and only if its complement T ztau consists
of at least two connected components. Vertices of the graph T which do not
satisfy the last property are called branch points. Let P Ă S2 be some finite
subset. Then a tree T in S2 such that P Ă V pT q is called a spanning tree for
P if V pT q ´ P consists of branch points.

Definition 3 (Invariant spanning tree). Let f : S2 Ñ S2 be a Thurston map.
A spanning tree T for P pfq is called an invariant spanning tree for f if:
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1. we have fpT q Ă T ;

2. vertices of T map to vertices of T .

Some examples of invariant spanning trees (or of close similar objects)
were also considered in some other works:

1. First example for polynomials could be obtained from the construction
of invariant graphs, called Hubbard tree, which was introduced by A.
Douady and J. Hubbard. These trees are are finite planar trees, con-
taining postcritical set. We can connect Hubbard trees to infinity to
form invariant spanning trees.

2. For two polynomials p and q we can consider their formal mating
f “ p > q. Informally, we identify the dynamical plane of p to the
upper hemisphere H`of S and the dynamical plane of q to the lower
hemisphere H´of S and then we consider their ”regluing”. Then we
can obtain invariant spanning trees by joining the two Hubbard trees.

3. We can obtain invariant spanning trees from the geometrical construc-
tion of classical captures in the sense of [Wit88, Ree92].

We are also interested in some additional structure on a graph.
We want to work not only with embedded graphs, but also with abstract

graphs. Then we should define a ribbon graph (or a fat graph, or a cyclic
graph):

Definition 4. An abstract graph in which the edges incident to each partic-
ular vertex are cyclically ordered is called a ribbon graph.

In fact, by [MA41], ribbon trees can be seen as isomorphism classes of
embedded trees in S2.

The following result shows the importance of the invariant spanning trees.
It enables us to recover the Thurston equivalence class of f from an invariant
spanning tree of f .

For a spanning tree T for P pfq, we write CpT q for the set of critical points
of f in T .

Theorem 1 (Theorem A in [ST19]). Suppose that f , g : S2 Ñ S2 are two
Thurston maps of degree 2. Let Tf and Tg be invariant spanning trees for f
and g, respectively. Suppose that there is a cellular homeomorphism τ : Tf Ñ

Tg with the following properties:
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1. The map τ is an isomorphism of ribbon graphs.

2. We have τ ˝ f “ g ˝ τ on V pTf q Y CpTf q.

3. The critical values of f are mapped to critical values of g by τ .

Suppose also that τ can be extended to edges of f´1pTf q incident to points
in CpTf q to the isomorphism of the new graph (with the edges as mentioned
above attached, for which CpTf q are vertices) and a similar graph constructed
for a map g, to preserve the cyclic order of edges incident to a given vertex
of CpTf q and so that to satisfy p2q. Then f and g are Thurston equivalent.

In other words, to know the Thurston equivalence class of f , it suffices to
know the following data:

1. the ribbon graph structure of Tf ;

2. the restriction of the map f to the set V pTf q Y CpTf q;

3. the cyclic order, in which pullbacks of certain edges of Tf appear around
a point of CpTf q.

These data are purely combinatorial. It means that it can be inserted in the
computer program to analyse and compare branched coverings.

There exists also a very important algebraic invariant of a Thurston map
– a biset. A biset is a algebraic object, which fully encodes the Thurston
equivalence class. To describe it let us fix some objects for a Thurston map
f and notations for them:

‚ a fixed basepoint y P S2 ´ P pfq;
‚ the set Xf pyq denoting the set of all homotopy classes of paths from y

to f´1pyq in S2 ´ P pfq;
‚ the fundamental group π1pS2 ´ P pfq, yq denoted as πf .
It turns out, that there is a structure of a biset over a fundamental group

πf on the Xf pyq. The most full definition with algebraic background can
be found in [Nek05] (bisets are called bimodules there, see Chapter 2). The
iterated monodromy group of f can be immediately recovered from the biset.

It turns out, the the biset can be recovered from the invariant spanning
tree:

Theorem 2. [Theorem B in [ST19]] Suppose that f is a Thurston map of
degree 2, and T is an invariant spanning tree for f . There is an explicit
presentation of the biset of f based only on the data p1q ´ p2q listed below:
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1. the ribbon graph structure on T ,

2. the restriction of f to V pT q Y CpT q.

1.1 Dynamical tree pairs

But it is not a trivial problem to find the invariant spanning tree in general
case. It turns out that we can generalize Theorem 2. We need to introduce
one more object for being able to do it:

Definition 5. For a Thurston map f : S2 Ñ S2 of degree 2 two spanning
trees T ˚ and T for P pfq such that fpT ˚q Ă T are called a dynamical tree pair
for f if the vertices of T ˚ are mapped to vertices of T under f . We denote a
dynamical tree pair as pT ˚, T q.

From the definition we can see that dynamical tree pairs generalize in-
variant spanning trees.

Then to find an actual invariant spanning tree it is natural to look at an
iterative process of the transitions from T to T ˚. This iterative process will
is called an ivy iteration.

Moreover, a spanning tree T for P pfq gives rise to a distinguished gener-
ating set ET of the fundamental group π1pS2 ´P pfq, yq with y P S2 ´T . The
set ET consists of the identity element and the homotopy classes of smooth
loops based at y intersecting the edge of T only once and transversely.

We also show that the biset of f is determined by a dynamical tree pair
pT ˚, T q. More precisely, the biset can be explicitly presented knowing the
following discrete data:

1. the ribbon graph structures on T ˚, T ;

2. the map f : V pT ˚q Y CpT ˚q Ñ V pT q;

3. how elements of ET˚ are expressed through elements of ET (or how both
ET˚ , ET are expressed through some other generating set of π1pS2 ´

P pfq, yq).

1.2 The ivy iteration

As the final result we introduce a combinatorial method of finding invariant
spanning trees. ”Combinatorial” means that using this method we can insert
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the combinatorial information about the dynamical tree pair of a Thurston
map f into the computer program and thus find invariant spanning trees.The
ivy object is defined as a homotopy rel. P pfq class of spanning trees for P pfq.
Then we introduce the pullback relation rT s ⊸ rT ˚s on the set Ivypfq of
ivy objects. A similar relation on isotopy classes of simple closed curves in
S2 ´P pfq was discussed in [Pil03, KPS16]. Then let ivypfq denote the set of
all ivy objects for f . Let T be a spanning tree, and rT s be the corresponding
ivy object. A symbolic presentation of the biset of f plus a symbolic encoding
of the ribbon tree structure on T give rise to several choices of a spanning
tree T ˚ such that pT ˚, T q is a dynamical tree pair for f . We can equip
the set Ivypfq with the structure of an abstract directed graph: we connect
two vertices corresponding to two ivy objects rT1s and rT2s by an oriented
arrow from rT1s to rT2s if pT2, T1q is a dynamical tree pair. We show that all
the data corresponding to this graph can be encoded purely combinatorially.
Each arrow of the graph is associated is the transition from T to T ˚. Moving
by these arrows is exactly an ivy iteration.

In the end we introduce some examples of the ivy iteration, which were
obtained as the results of the computer program.

2 Zakeri slices parametrization

The second class of rational mappings we focus on is the class of complex
cubic polynomials. Let us recall that if z0 is a fixed point of an analytic
function f , i.e. fpz0q “ z0, then the number λ “ f 1pz0q is called themultiplier
of f at z0. We assume fixed point to be 0. Then we are interested in the
class Cλ of polynomials with a fixed multiplier |λ| ď 1 of a fixed point. This
space Cλ is called λ-slice. For a cubic polynomial P we write rP s for its affine
conjugacy class. We have some additional requirements to λ in our work.

Definition 6. The number θ is bounded type if the continued fraction coef-
ficients of θ are bounded.

If we suppose that the rotational number of fixed λ “ eiϕ is of bounded
type, then for the polynomials in this slice the origin is a fixed Siegel point
(in its neighbourhood function is linearizable). Slices with this property were
studied by S. Zakeri as parameter spaces, so we call them Zakeri slices.

There exists classical and very powerful method of studying polynomials
with fixed or periodic points based upon linearizations :
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Definition 7. A function fpzq is called linearizable if there exists a holomor-
phic change of coordinates h (the linearization of f) such that h´1˝f ˝h “ λz,
i.e. f is conjugate to λz. The region, where linearization exists is the Siegel
disc or a Herman ring, or a part of attracting domain.

Suppose that a cubic polynomial P has a non-repelling fixed point a,
since it can always be arranged by a suitable affine conjugacy that a “ 0.
Let us recall again that we consider the set of all affine conjugacy classes rP s

of cubic polynomials P with P p0q “ 0 and |P 1p0q| ď 1. Then a central part
of this parameter space is the principal hyperbolic component, which consists
of classes rP s for all hyperbolic P with |P 1p0q| ă 1 and Jordan curve Julia
set.

Now let us consider a polynomial f from our class with attracting or
neutral fixed point a. Then its linearization (if it exists) is a map ψ of an open
disk Dprq of radius r ą 0 around 0 such that ψp0q “ a, and ψpλzq “ f ˝ψpzq

for all z P Dprq where λ “ f 1paq. Moreover, we assume that r ą 0 is the
radius of convergence of the power series of ψ at 0.

Then ψpDprqq is called the Siegel disc ∆pf, aq of f around a. If |λ| ă 1,
then ∆pf, aq is compactly contained in the attracting basin of a, and B∆pf, aq

contains a critical point. In the case a “ 0, the domain ∆pf, aq is denoted
by ∆pfq.

As above let Cλ be the space of complex linear conjugacy classes of com-
plex cubic polynomials with fixed point 0 with fixed multiplier λ, such that
|λ| ď 1. For a cubic polynomial P pzq “ λz ` . . . , let rP s0 be its class in Cλ.
Write Cλ Ă Cλ for the connectedness locus in Cλ. That is, rP s0 P Cλ if the
Julia set JpP q of P is connected. Again as it was described above, a central
part of Cλ is the set Pλ of all rP s0 P Cλ that lie in the closure of the principal
hyperbolic component. The main result of the second part of the thesis is
related to understanding the topology and combinatorics of Pλ through a
comparison with a suitable dynamical object.

For this comparison we consider the space of quadratic polynomialsQpzq “

Qλpzq “ λzp1´z{2q. Then λ is the multiplier of the fixed point 0 of Q. Then
we suppose that either |λ| ă 1 or λ “ e2πiθ, where θ P R{Z is of bounded
type. Let ψ “ ψQ : D Ñ ∆pQq be the corresponding linearization (here
D “ Dp1q). The set ∆pQq is a Jordan disk — this is a classical result of
Douady–Ghys–Herman–Shishikura, see [Dou87, Her87, ?]. Therefore, the
Riemann map can be extended to a homeomorphism ψ : D Ñ ∆pQq. The
finite critical point of Q is 1, thus the linearizatiton domain ∆pQq around 0
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contains 1 in its boundary. We normalize ψ so that ψp1q “ 1. If |λ| “ 1, then
the map ψ conjugates the rigid rotation by angle θ with the restriction of Q
to ∆pQq. Consider the quotient K̃pQq of the set KpQq ´∆pQq by the equiv-
alence relation „ defined as follows. Two different points z, w are equivalent

if both belong to B∆pQq, and Repψ
´1

pzqq “ Repψ
´1

pwqq.
The partially defined correspondence between the dynamical plane of P

and that of Q can be described by a following property:

Property. For any cubic polynomial P with rP s0 P Pλ, there exist a full
P -invariant continuum XpP q (i.e. P´1pXpP qq “ P pXpP qq “ XpP q) con-
taining both critical points of P and a continuous map ηP : XpP q Ñ KpQq

that semi-conjugates f |XpP q with Q|ηP pXpP qq. If both critical points of P are
in the Julia set, then the map ηP is monotone.

Now we can formulate the main result as the following theorem (illus-
trated in Figure 1).

Theorem 3 (Main Theorem in [BOST22]). Suppose that θ P R{Z is of
bounded type, and λ “ e2πiθ. Let Qpzq “ Qλpzq “ λzp1 ´ z{2q be a quadratic
polynomial with a fixed point of multiplier λ. Then there is a continuous map
Φλ : Pλ Ñ K̃pQq taking rP s0 to the ηP -image of some critical point of P .
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Figure 1: Left: the parameter plane Cλ with λ “ exppπi
?
2q. We used the

parameterization, in which every linear conjugacy class from Cλ is represented
by a polynomial of the form fpzq “ λz `

?
az2 ` z3, where a is the parameter

(that is, the figure shows the a-plane). The conjugacy class of f is independent on
the choice between the two values of the square root. Regions with light uniform
shading are interior components of Pλ. There are also various “decorations” of Pλ

(that is, components of Cλ ´ Pλ) shown in black; these decorations contain copies
of the Mandelbrot set. Right: the dynamical plane of Q “ Qλ. The bounded
white region near the center is the Siegel disk ∆pQq. A conjectural model of Pλ is
obtained from KpQq by removing this white region and gluing its boundary into
a simple curve. Our main theorem provides a continuous map from Pλ to this
conjectural model.
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Conclusion

First result of this thesis is the theorem about classifying the Thurston maps
up to the Thurston equivalence based only on their restriction on the invari-
ant spanning trees:

Theorem 1 (Theorem A in [ST19]). Suppose that f , g : S2 Ñ S2 are two
Thurston maps of degree 2. Let Tf and Tg be invariant spanning trees for f
and g, respectively. Suppose that there is a cellular homeomorphism τ : Tf Ñ

Tg with the following properties:

1. The map τ is an isomorphism of ribbon trees.

2. We have τ ˝ f “ g ˝ τ on V pTf q Y CpTf q.

3. The critical values of f are mapped to critical values of g by τ .

Suppose also that τ can be extended to edges of f´1pTf q incident to points
in CpTf q to the isomorphism of the new graph (with the edges as mentioned
above attached, for which CpTf q are vertices) and a similar graph constructed
for a map g, to preserve the cyclic order of edges incident to a given vertex
of CpTf q and so that to satisfy p2q. Then f and g are Thurston equivalent.

After we show, that knowing an invariant spanning tree we can fully
describe another important invariant – the biset:

Theorem 2. [Theorem B in [ST19]] Suppose that f is a Thurston map of
degree 2, and Tf is an invariant spanning tree for f . There is an explicit
presentation of the biset of f based only on the data p1q ´ p2q listed below:

1. the ribbon graph structure on T ,

2. the restriction of f to V pT q Y CpT q.

Finally, this thesis provides a new algorithm for searching invariant span-
ning trees for post-critically finite branched coverings.

In the second part we deal with slices of cubic polynomials obtained by
fixing the fixed point multiplier. polynomials obtained by fixing the fixed
point multiplier. We parameterize their parts Pλ, belonging to the closure of
the principal hyperbolic component. This parametrization uses the quadratic
reglued model K̄pQq of the Julia set KpQq. We show that the paremetrizing
map Φλ satisfy the following property:
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Property. For any P P Pλ, there exist a full P -invariant continuum XpP q

(i.e. P´1pXpP qq “ P pXpP qq “ XpP q) containing a critical point c of P
and a continuous monotone map ηP : XpP q Ñ KpQq such that ηP semi-
conjugates f |XpP q with Q|ηP pXpP qq, and ΦλpP q is the image of ηP pcq in K̃pQq.

Moreover, we prove the continuity of this parametrization by proving the
following Theorem:

Theorem 3 (Main Theorem in [BOST22]). Suppose that θ P R{Z is of
bounded type, and λ “ e2πiθ. Let Q “ Qλ be a quadratic polynomial with a
fixed point of multiplier λ. Then there is a continuous map Φλ : Pλ Ñ K̃pQq

taking rP s0 to the ηP -image of some critical point of P .
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The results of the thesis are published at two papers
‚ A. Shepelevtseva, V. Timorin, Invariant spanning trees for quadratic

rational maps, Arnold Mathematical Journal.2019. №5, p.435–481

‚ A. Blokh, L. Oversteegen, A. Shepelevtseva, V. Timorin, Modeling core
parts of Zakeri slices I, Moscow Mathematical Journal.2022. №2 p.265–294
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