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1 Dissertation topic

1.1 EEG and MEG inverse problem

Electroencephalography (EEG) [1] and magnetoencephalography (MEG) [2] are noninvasive

neuroimaging techniques with high temporal resolution of the millisecond range, unavailable

to many other methods of brain activity research. Due to the high temporal resolution, EEG

and MEG techniques are widely used for diagnostics of a wide range of neurological disorders,

including epilepsy, without exposing the patient to additional risk.

More accurate diagnosis and detailed analysis of cognitive processes require the use of

EEG/MEG inverse problem solving methods, which allow the activity of neuronal populations

to be assessed from noninvasive recordings of brain electromagnetic activity. The spatial res-

olution of EEG is quite high, on the order of a few millimeters, especially in areas of the brain

with high curvature [3]. The spatial resolution of EEG is lower than that of MEG and is on

the order of a centimeter [4].

Due to fundamental physical constraints, the inverse problem is known to be ill-posed (or

underdetermined) [5] and need to be regularized in order to find a unique solution [6]. Even after

imposing constraints, the solution can be unstable: small errors in the recorded experimental

data can lead to significant changes in the solution. Thus, the spatial resolution of EEG/MEG

ultimately depends on the choice of method for solving the inverse problem.

An obligatory prerequisite for solving the inverse problem is the forward problem solution:

the problem of signal recovery on sensors by known activations of dipole sources. It is known

that electric field and, consequently, EEG measurements are sensitive to conductivity changes

of different tissues on the way from sources to sensors: some tissues have high conductivity, such

as brain, cerebrospinal fluid and scalp, but skull has low conductivity. The magnetic field is

less sensitive to differences in tissue conductivity [7]. For the forward EEG problem, therefore,

the best choice is the boundary element method, BEM [8], which realistically simulates different

tissues. The overlapping spheres method [9] may also be suitable and less computationally

expensive for MEG.

Let the recorded EEG/MEG data for each time moment 𝑡 be a vector x(𝑡)[𝑀×1], where here

and further in square brackets the size of the vector (matrix) is given, and 𝑀 is the number of

sensors. Let the solution of the forward problem be found by one of the suitable methods and

stored in the operator G[𝑀×𝑁 ], where 𝑁 — the number of sources in the cortical model.

The regularization of the inverse problem consists in introducing additional a priori as-

sumptions about what properties the desired source activity should have. The assumptions are

implemented in the form of constraints imposed on the final solution. Depending on the regu-

larization technique used, one can distinguish a number of approaches to the inverse problem
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solving.

1.2 Interictal spike analysis in patients

Most of the methods proposed in this research have been tested on data from patients with

epilepsy, and in this section we provide the motivation for this particular application of our

algorithms.

Epilepsy is one of the most common neurological diseases in the world, accompanied not

only by the presence of seizures, but also by the risk of co-morbidities, cognitive deficits, psycho-

logical disorders and adverse social consequences. According to the World Health Organization,

there are more than 50 million people worldwide with diagnosed epilepsy1. Despite the fact

that for most patients seizures can be stopped with the right combination of antiepileptic drugs,

about 30% of patients have a pharmacoresistant form of epilepsy, in which drug treatment can

not control seizures [10]. In this case, the patient may have an option of neurosurgery, and in

about half of the cases such surgery can completely eliminate seizures for at least 10 years, and

in 85% of cases surgery leads to a significant reduction in seizure frequency and improves the

patient’s quality of life [11], [12].

In a common case of multifocal epilepsy, pathological activity originates in one compact

part of the brain, called the epileptogenic zone, from which it subsequently spreads to other

parts of the brain, often involving deep structures, and propagates to broad cortical areas,

causing a seizure [13]. Localization of the epileptogenic zone is the most important step in the

treatment of pharmacoresistant forms of epilepsy, and the effectiveness of surgical intervention

directly depends on its quality. Neurosurgical intervention is the removal of tissue in the

epileptogenic zone or dissection of neural connections to prevent the spread of pathological

activity. Typically, noninvasive EEG recordings, invasive electrocorticogram (ECoG) or depth

electrode recordings are used to localize the epileptogenic zone, but increasingly, and when

available, noninvasive MEG [14] technique is preferred.

To identify the epileptogenic zone, various brain regions are examined for the presence of

interictal spikes — short, high-amplitude events 100-200 ms in length, significantly prominent

compared to background EEG/MEG activity, and usually generated by one or more focal

sources. The area of the brain that generates the interictal spikes is called the irritative zone.

Typically, one of the irritative zones coincides with the epileptogenic zone. To improve the

accuracy of preoperative diagnosis of epilepsy, new methods and approaches for detailed analysis

of interictal spikes need to be developed, and noninvasive diagnostic methods are most valuable

because they involve less risk for the patient.
1https://www.who.int/news-room/fact-sheets/detail/epilepsy
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In the paper [15], the authors analyze epileptiform activity induced by traumatic brain

injury in humans and rats. The authors note that noninvasive EEG recordings were insensitive

to pathological activity, whereas invasive recordings showed its presence in 86% of patients. At

the same time, [16] showed that interictal MEG recordings can contain meaningful information

sufficient for proper localization of the epileptogenic zone and subsequent surgical intervention.

Often the problem of finding the epileptogenic zone is solved in terms of analyzing the distri-

bution of activity between areas throughout the brain, but there is also reason to believe that

epileptiform activity has a distribution at the local level, but such observations are based on

invasive recordings [17], [18] or on the modeled data [19].

1.3 Research goals

Usually the choice of a priori assumptions about the nature of brain source activity for the

inverse problem regularization is determined not by their physiological plausibility, but rather

by technical convenience, allowing, for example, to obtain an analytical solution for the inverse

operator (MNE, wMNE, LORETA), or the availability of a known numerical optimization

algorithm for iterative solution search (MCE, FOCUSS). The aim of this work is to develop

approaches to solve the inverse EEG and MEG problem based precisely on physiologically

determined constraints. In this case, the desired solution is more reasonable, corresponds

to the physiological nature of the process and allows to draw further conclusions about the

phenomenon under study.

Among many methods for solving inverse EEG and MEG problems, adaptive LCMV beam-

formers [20], [21], [22] stand out due to their high spatial resolution, which can be achieved

when the observed activity is caused by a small number of focal sources and these sources are

not correlated. Beamformers are known to be prone to error when activations of sources are

correlated. Given the fact that the physiology of brain functioning suggests many cases where

sources are correlated, this limitation is significant for the reconstruction of source activity from

real data. The aim of the first part of the work is to develop such a modification of the adaptive

beamformer, which, on the one hand, will preserve its high spatial resolution, but, on the other

hand, will allow to recover the synchronous activity of the brain sources.

Although it has been proven that for a number of brain processes, neural activity propag-

ates in the form of cortical traveling waves [23], most cognitive studies, and thus methods for

solving the inverse problem, rely on the assumption that brain activity can be represented as

the sum of static source activations [24]. There are sufficient experimental evidence to believe

that the local distribution of interictal spikes in patients with epilepsy can be described by cor-

tical wave propagation [25], [26], [27]. In the second part of the study, our goal was to develop

an algorithm for solving the inverse EEG/MEG problem that uses the physiologically plausible
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assumption of spatiotemporal connectivity of the reconstructed activity. The algorithm also

allows to reconstruct the characteristic parameters of the wave model, namely the direction

and velocity of the wave.

Analysis of MEG recordings of interictal brain activity in patients with epilepsy makes it

possible to localize irritative zones noninvasively, with minimal patient discomfort, and with

high accuracy and to study the spatiotemporal dynamics of the epileptogenic network. Iden-

tification of irritative zones implies search and localization of interictal spikes containing valu-

able diagnostic information. Usually the search for epileptiform events is performed by means

of visual analysis of recordings by experts. Given that we are talking about multi-channel

data with several hundred channels, and very focal events, such visual analysis is a very time-

consuming procedure and the result can be biased due to the expert. Since manual processing of

a large amount of data leads to expert fatigue and an increase in the probability of committing

an error, the analysis usually stops at the minimum number of processed events, subjectively

considered to be sufficient. The aim of the third part of the work was to develop a method

of automatic search for interictal spikes and their clustering to determine the irritative zone,

requiring minimal participation of the expert only at the time of the final validation of the

results.

To sum up, the goals of this research:

1. To develop algorithms and methodology for solving the EEG/MEG inverse problem for

reconstruction of synchronous source activity with high spatial resolution.

2. To study the properties of the proposed methods in numerical experiments and to apply

it to the real data in the auditory paradigm. To analyze the evoked potentials in auditory tasks.

3. To develop an algorithm for solving inverse EEG/MEG problems based on the assump-

tion of wave propagation of the activity, to study its properties and to apply the developed

method to interictal recordings of patients with epilepsy.

4. To develop the algorithms for automatic interictal EEG/MEG processing to detect

irritative zones in the patients with epilepsy.

5. To develop an epileptogenic zone detection methodology based on mathematical analysis

of the dynamics of epileptic activity during the interictal period (algorithm from part 2) and on

the analysis of a large number of automatically detected and clustered spikes (algorithm from

part 3).

1.4 Key results

As a result of this study, we have developed several new techniques for solving the inverse

problem of EEG and MEG, which are based precisely on physiologically plausible assumptions

about neuronal activity.
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In the first part of the study, we developed two new methods: ReciPSIICOS and whitened

wReciPSIICOS, which are modifications of the classical adaptive LCMV beamformer and, on

the one hand, preserve its high spatial resolution but, at the same time, allow to reconstruct

the synchronous activity of brain sources. The properties of the two proposed algorithms were

investigated first using realistically simulated data and then on real MEG data recorded in

auditory paradigms. We compared the solutions obtained by the proposed methods with the

classical MNE and LCMV approaches. An analysis of the properties of the algorithms on real

data showed similar results to the analysis of model data. Our experiments showed that the

LCMV beamformer is significantly sensitive to the presence of correlated sources in the data,

the solution suffersv from the signal cancellation problem and often contains only one of the

synchronous sources, and with a smeared activation map. MNE often fails to find all active

sources, or finds overly biased and highly distributed activations. ReciPSIICOS and whitened

wReciPSIICOS, however, show high solution quality and allow finding focal bilateral sources.

In auditory EEG experiments, we were able to show that in two consecutive sessions of a

monetary incentive delay task in which monetary losses were encoded using auditory stimuli,

the auditory MMN component increased significantly for those signals that predicted large

monetary losses. We also showed that the FRN component was modulated by both magnitude

and probability of results during the auditory MID task, whereas no such effect was found for

dN200. In addition, the dN200 component, which is associated with updating information about

the magnitude of the estimated gain, correlated with the standard FRN, which is associated

with a negative RPE. The methods developed to reconstruct the activity of correlated sources

at high resolution will allow further analysis of the observed phenomena.

In the second part of the research, we propose a methodology for the noninvasive study

of the fine spatial and temporal structure of interictal spikes observed in EEG and MEG,

based on the concept of traveling cortical waves. We presented the interictal spike event as a

superposition of pregenerated traveling waves specified for individual anatomy. We used the

LASSO method with positive coefficients to estimate the optimal velocity and directions of

wave propagation. We tested the performance of the algorithm on both model data and real

MEG signals and demonstrated that the propagation dynamics of spikes recorded in MEG

can be measured on a spatiotemporal scale of millimeter/millisecond. Despite the presence of

errors, some of the interictal spikes were successfully fitted using a traveling wave model. We

observed that in all three patients whose data were analyzed, wave behavior was not typical

for all interictal spikes. «Wave» spikes form the well spatially delineated clusters. Moreover,

for patients in whom epileptogenic region data were available, these clusters coincide with

this region. Based on these results, which are in good agreement with invasive data [17],

[18], we suggest that analysis of interictal spikes recorded in MEG may help in localizing the
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epileptogenic zone.

In the third part, we proposed a two-stage method for automatic detection of interictal

spikes and clustering them to determine the irritative zones. In the first stage, we use ICA

(independent component analysis) decomposition of the data into independent components

and automatically select «spike» components using heuristics. We then use the threshold in

the time series of the selected components to identify the time samples that are candidates to be

the peaks of the interictal spikes. In the second step, we validate the found events by the results

of spatiotemporal clustering of the sensor records around the found peaks using convolutional

sparse coding. We validated the results of our analysis by comparison with the irritative

zones identified by visual inspection, as well as by comparison with the resection zone along

with the known outcome of surgery. Automatically reconstructed irritative zones overlapped

with those reconstructed by visual analysis in six of seven patients. In the remaining patient,

both automatically and visually reconstructed areas did not overlap with the resection area

and, for this patient, the surgical outcome corresponded to the Engel IIB classification. The

advantageous difference of our method from the currently existing ones is the fully automatic

analysis of the MEG record, implying the participation of an expert only at the final stage to

verify the results.

1.5 Scientific novelty

It is known that while for a small number of independent sources, adaptive beamformers exhibit

a quality of inverse solution that is superior to other methods, in the presence of correlated

sources, the solutions turn out to be inconsistent. Several approaches to solving this problem

have been presented in the literature, but most of them use the idea of zeroing out sources that

are potentially correlated with the target source. Since there may be several correlated sources

and the cortical model may be complex, such approaches are in practice too computationally

expensive. In addition, they require the researcher to hypothesize about sources that are

correlated, which may not be known for all experimental paradigms. We propose a modification

of the beamformer that only requires the user to select the rank of the projection used in the

method.

In addition, we have proposed for the first time an algorithm for solving the inverse

EEG/MEG problem using the wave activity propagation assumption (wave priors). The cur-

rently available software FieldTrip [28], MNE Python [29], Brainstorm [30] have implemented

a wide range of techniques to solve the inverse problem. Approaches that refuse to model neur-

onal activity using a set of current dipoles have also been proposed in the literature, for example

the paper [31] considers spherical harmonics as a solution. However, despite the fact that the

phenomenon of traveling cortical waves has gained popularity during the last decade and more
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and more studies demonstrate the diversity of their function in norm and pathology, none of

the currently proposed solutions uses information about the spatiotemporal connectivity of the

activations.

In the literature there are a number of approaches for automatic search for interictal

spikes in EEG/MEG recordings. Despite the variety of ideas implemented, all of the currently

existing methods have significant drawbacks. Methods based on morphological analysis face the

problem of high variability of spike morphology even for one patient, and even more between

different patients. Template search methods imply labeling of a significant amount of record

by an expert. Methods of adaptive filtering turn out to be inefficient and characterized by

low specificity. The closest to the approach we are developing are the methods based on

the analysis of independent components, but even in this case the analysis is not automatic,

because the choice of the necessary component and the interpretation of the results must be

made by an expert. The advantage of the proposed approach is the full automation of the

algorithm combined with the high efficiency of irritative zone reconstruction and the possibility

of additional cluster analysis based on the estimated typical patterns.

1.6 Theoretical and practical significance

The algorithm for solving the inverse EEG/MEG problem using the assumption of spatiotem-

poral propagation of neuronal activity will make it possible to further investigate the increas-

ingly popular phenomenon of cortical traveling waves. In addition to theoretical contribution,

the developed method can be used for applied purposes, namely for functional diagnostics of

the dynamics of neuronal activity in pathology: to study the interictal activity of patients with

epilepsy. The development of noninvasive or minimally invasive methods to analyze the spati-

otemporal distribution of interictal spikes in patients with pharmacoresistant forms of epilepsy

will potentially increase the effectiveness of neurosurgical intervention and reduce postoperative

risks. In the future, analysis of local patterns of interictal activity propagation may become

an integral part of preoperative diagnosis. The proposed algorithm can be easily extended to

analyze segments of data related to the onset of a seizure, which will become more available

in the near future due to the development of new mobile MEG units with optically pumped

magnetometers that the patient can wear on the head. It is important to emphasize that the

developed algorithm can be applied not only to the study of epilepsy, but also to other neuro-

physiological studies that study brain activity, which has a spatiotemporal propagation pattern.

For example, this method can be used to analyze evoked and induced responses in a paradigm

with multiple presentation of stimuli. In this case, the task of finding the moment of the onset

of local wave propagation is greatly facilitated.

One of the most important clinical applications of EEG and MEG is preoperative dia-
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gnostics of epilepsy, search for irritative zones and establishment of epileptogenic zone among

them. The effectiveness of diagnosis directly depends on the number and quality of interictal

spikes marked in the data. Since marking is usually done manually by an expert as a result

of visual analysis, the number of events found is limited by the notion of a reasonable labor

intensity of the marking task and is often insufficient for a complete analysis. We have demon-

strated the applicability of the convolutional sparse coding method to detect interictal spikes

and localize the irritative zone in patients with epilepsy. The advantage of this analysis is that

it does not require the participation of an expert, and as a result localizes several clusters with

characteristic activity patterns. The simplicity and accuracy of automatic detection of inter-

ictal spikes will allow further development of noninvasive methods in preoperative diagnosis.

Although we were able to reproduce the results of visual analysis and provide clinically relevant

information based on our results, a larger set of cases is needed to further quantify the reliability

of our approach and test its application in clinical settings.

1.7 Research Methods

Methods from the following areas were used in the research: signal processing techniques, theory

of inverse problem, estimation theory and machine learning, optimization theory.

1.8 The main defense points

1. Two LCMV beamformer modification methods (ReciPSIICOS, wReciPSIICOS) have been

developed that allow the reconstruction of synchronous source activity from noninvasive

EEG and MEG data. The superiority of the proposed algorithms over the classical MNE

and LCMV beamformer on both model and real data is shown.

2. An algorithm for solving the inverse EEG/MEG problem based on the assumption of wave

propagation was developed. Its properties have been investigated on model data. The

results obtained for three patients demonstrate the relationship between the goodness of

fit of interictal spikes with the traveling wave model and the belonging of the spikes to

the epileptogenic zone.

3. We developed an algorithm for analyzing interictal MEG recordings of patients with

epilepsy to search for irritative zones. The methodology includes automatic detection of

interictal spikes, their localization and clustering, as well as determination of a typical

activity pattern for each cluster. The methodology has been validated on seven patients.
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1.9 Author’s contribution to the study

1. In the first part of the study the author: worked on the development of the idea of the

algorithm, which originally belongs to the supervisor A. E. Ossadchi and is complement-

ary to the idea presented in the thesis of D. I. Altukhov; wrote code to implement all

algorithms in Matlab2; fully calculated the results of all computational experiments to

explore the properties of the algorithm; analyzed real data for Dataset 1; created visual-

ization results; made a significant contribution to the manuscript.

2. In the second part of the study, the author: worked on the development of the method

idea, which belongs to the scientific supervisor A. E. Ossadchi and in the first version

was implemented by the author’s colleague E. A. Kalenkovich, in the process the method

was significantly changed, compared with the original version; wrote code to implement

the method in Matlab and partially in Python3; computed results of all computational

experiments; computed results on real patient data; mainly contributed to the manuscript.

3. In the third part of the study, the author: continuing the research of her supervisor A. E.

Ossadchi, made a significant contribution to the development of Stage 1 of the proposed

algorithm; wrote the code in Matlab for Stage 14; tested the algorithm on three patients

from the second part of the study.
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2 Contents

2.1 Inverse EEG/MEG problem solving in the presence of correlated

sources using a modified beamformer

The spatial resolution of EEG/MEG and the result of source activation reconstruction from

recorded sensor signals critically depend on the approach used to solve the incorrectly posed
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inverse problem. In recent years, adaptive beamformer solutions have become increasingly

popular [20], [21], [22]. In cases where a small number of uncorrelated sources are activated,

the beamformer solution is optimal and provides high spatial resolution. However, it is also

known that beamformers tend to make errors when activations of sources correlate with each

other: as a result, the resulting time series have a low signal-to-noise ratio and cortical maps

of the resulting activation distributions are often meaningless.

This limitation significantly hampers the wider use of the promising beamformer technique,

especially given that the fundamental mechanisms of brain function, its inherent symmetry,

and the use of experimental paradigms linking activations to stimulus presentation result in

significant correlation in brain source activity. To overcome this limitation, we have developed

a new approach based on a modification of the covariance matrix of the data, which allows the

creation of beamformers that maintain high spatial resolution despite the presence of correlated

sources in the data [32].

2.1.1 The main idea of the proposed method

We propose a new modification of the beamformer that is insensitive to the contributions of

correlated sources in the data. The two proposed methods are based on a projection operation

applied to the vectorized covariance matrix of the sensor space. This projection procedure

is complementary to the one developed earlier by colleagues in the PSIICOS [33] method.

The PSIICOS method was originally developed to analyze connectivity from MEG data, in

particular, to noninvasively detect interactions between sources with near-zero phase delay.

The problem PSIICOS solves is the presence of volume conduction artifacts in the MEG data.

Source activations, which are in fact independent, may show up as correlated activity on the

sensors. Thus, the goal of the method is to project away from the effects of volume conduction

and estimate true source correlations. PSIICOS uses a projection operation that is applied

to a cross-spectrum sensor space matrix represented as an element of 𝑀2-dimensional vector

space. It has been shown [33] that PSIICOS can separate the signal leakage subspace and the

subspace containing the contribution of truly coupled sources quite well.

However, the presence of correlated sources is the reason for the problem solved in this

paper: the interactions of the sources lead to the signal cancellation problem when solving the

inverse problem with the adaptive beamformer. The solution is arranged so that in the case of

correlated sources it is possible to select for them the reciprocal coefficients of the spatial filter,

so as to artificially reduce the target functional. Applying a projection-based approach similar

to the one described above allows us to efficiently solve the problem of estimating the time

series of correlated sources using an adaptive beamformer. We use a complementary version

of the PSIICOS projection for the sensor covariance matrix, so that instead of suppressing the
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contribution of source powers, we emphasize them, and, conversely, reduce the contribution

of correlated sources. This projection does not remove the activity of the correlated sources,

but rather selectively treats their contributions to the covariance matrix and creates a fairly

accurate approximation of the ideal data covariance that would be hypothetically observed

if these sources were independent. We called the new methods ReciPSIICOS and whitened

wReciPSIICOS because the proposed algorithms solve a problem complementary to the one

that PSIICOS solves.

2.1.2 Covariance matrix in the sensor space

The covariance matrix C𝑥[𝑀×𝑀 ] computed in sensor space plays a key role for the adaptive

beamformer and is the central object for our methods. We represent the vectorized sensor

covariance matrix as the following sum:

𝑣𝑒𝑐(C𝑥) = 𝑣𝑒𝑐(𝐸{x(𝑡)x𝑇 (𝑡)}) =
𝑅∑︁
𝑖=1

𝑣𝑒𝑐(g𝑖g
𝑇
𝑖 )𝑐

𝑠𝑠
𝑖𝑖 +

𝑅∑︁
𝑖=1

𝑅∑︁
𝑗=𝑖+1

𝑣𝑒𝑐(g𝑖g
𝑇
𝑗 + g𝑗g

𝑇
𝑖 )𝑐

𝑠𝑠
𝑖𝑗 + 𝑣𝑒𝑐(C𝑛) (1)

where 𝑣𝑒𝑐(·) – matrix vectorization operation, (·)𝑇 – transpose operation, 𝑅 – number of active

sources, g𝑖 – column of direct model matrix corresponding to 𝑖-th source (source topography),

C𝑛 – the noise covariance matrix and, the most key entity here, 𝑐𝑠𝑠𝑖𝑗 – the source covariance

matrix element for 𝑖 and 𝑗 sources.

It can be observed that the terms in the above sum are divided into two types: those

containing the powers of sources 𝑐𝑠𝑠𝑖𝑖 (the diagonal elements of the covariance matrix) and those

containing the values of covariances between different sources 𝑐𝑠𝑠𝑖𝑗 (the off-diagonal elements).

The terms of the second type are the reason why the adaptive beamformer solution is in-

valid. The weights of the spatial beamformer filter are arranged in such a way that the target

functional can be reduced artificially by suppressing the activations of correlated sources. We

propose two methods for constructing a projection that allow us to tune out the contribution

of the cross terms to the covariance matrix in the sensor space.

2.1.3 ReciPSIICOS technique

The first proposed approach is to project the vectorized sensor covariance matrix onto the

source power subspace 𝒮𝐾
𝑝𝑤𝑟 of dimension 𝐾, which is given by the linear span of vectorized

auto-products of source topographies 𝑣𝑒𝑐
(︀
g𝑖g

𝑇
𝑖

)︀
, 𝑖 = [1, . . . , 𝑁 ].

In order to build the projector, you need to perform the following sequence of steps:
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1. Create a matrix G𝑝𝑤𝑟: the columns are the vectorized autoproducts of the topographies

for all sources from the forward model 𝑣𝑒𝑐
(︀
g𝑖g

𝑇
𝑖

)︀
.

2. Apply singular decomposition to the obtained matrix: G𝑝𝑤𝑟 = U𝑝𝑤𝑟S𝑝𝑤𝑟 (V𝑝𝑤𝑟)
𝑇 . Get

the projection matrix on the source power subspace 𝒮𝐾
𝑝𝑤𝑟: P = U𝐾

𝑝𝑤𝑟

(︀
U𝐾

𝑝𝑤𝑟

)︀𝑇
, where U𝐾

𝑝𝑤𝑟

consists of the first 𝐾 of the left singular vectors. The projection rank 𝐾 is a configurable

parameter.

3. Apply the obtained projector P to the vectorized sensor covariance matrix 𝑣𝑒𝑐 (C𝑥), to

emphasize the contribution of source powers and reduce the contribution of correlations

between them. As a result, we obtain a new covariance matrix: ̃︀C𝑥 = 𝑣𝑒𝑐−1 (P · 𝑣𝑒𝑐 (Cx)).

4. Since the projection procedure does not guarantee that the resulting matrix retains the

property of positive definiteness required of the covariance matrix, we propose to replace

the negative eigenvalues of the new matrix by their absolute values.

Thus, the final covariance matrix is equal to ̃︀C𝑎𝑏𝑠
𝑥 = ̃︀E|̃︀Λ|̃︀E𝑇 , where ̃︀E и ̃︀Λ — matrices of

eigenvectors and eigenvalues for ̃︀C𝑥.

5. When calculating the coefficients of the spatial filter of the adaptive beamformer, we use

the new covariance matrix ̃︀C𝑎𝑏𝑠
𝑥 instead of C𝑥.

2.1.4 wReciPSIICOS technique

The projection proposed in the second method allows to project the vectorized covariance mat-

rix of the sensors onto the orthogonal complement of the 𝐾-dimensional source correlation

subspace 𝒮𝐾
𝑐𝑜𝑟, which is defined by the linear span of vectorized cross products of source topo-

graphies 𝑣𝑒𝑐
(︀
g𝑖g

𝑇
𝑗 + g𝑗g

𝑇
𝑖

)︀
, 𝑖, 𝑗 = [1, . . . , 𝑁 ]. However, in order to preserve as much as possible

the contribution of the source powers, we apply this projection in the whitened space with

respect to the subspace of the source powers 𝒮𝐾
𝑝𝑤𝑟.

The algorithm consists of the following steps:

1. Compose matrix G𝑐𝑜𝑟: use vectorized symmetric sums of external products of source

topographies as columns 𝑖 and 𝑗, 𝑣𝑒𝑐
(︀
g𝑖g

𝑇
𝑗 + g𝑗g

𝑇
𝑖

)︀
and calculate C𝑐𝑜𝑟 = G𝑐𝑜𝑟G

𝑇
𝑐𝑜𝑟.

2. Compose a matrix G𝑝𝑤𝑟, similar to the previous method, from the vectorized autoproducts

of topographies. We obtain the matrix C𝑝𝑤𝑟 = G𝑝𝑤𝑟G
𝑇
𝑝𝑤𝑟.

3. Using the spectral decomposition C𝑝𝑤𝑟, calculate the whitening operator W𝑝𝑤𝑟 for the

subspace 𝒮𝑝𝑤𝑟:
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W𝑝𝑤𝑟 = E𝑝𝑤𝑟Λ
−1/2
𝑝𝑤𝑟 E𝑇

𝑝𝑤𝑟, (2)

where E𝑝𝑤𝑟 — the matrix of eigenvectors of the matrix C𝑝𝑤𝑟 and the diagonal matrix Λ𝑝𝑤𝑟

contains corresponding eigenvalues.

4. Apply the whitening transform to the matrix C𝑐𝑜𝑟: C𝑤
𝑐𝑜𝑟 = W𝑝𝑤𝑟C𝑐𝑜𝑟W

𝑇
𝑝𝑤𝑟.

5. Apply the spectral decomposition to the obtained matrix:

C𝑤
𝑐𝑜𝑟 = E𝑤

𝑐𝑜𝑟Λ
𝑤
𝑐𝑜𝑟 (E

𝑤
𝑐𝑜𝑟)

𝑇 (3)

6. Obtain a projector in space orthogonal to the source correlation subspace 𝒮𝑐𝑜𝑟, operating

in space whitened with respect to 𝒮𝑝𝑤𝑟:

P = W−1
𝑝𝑤𝑟

(︁
I− E𝑤𝐾

𝑐𝑜𝑟

(︀
E𝑤𝐾

𝑐𝑜𝑟

)︀𝑇)︁
W𝑝𝑤𝑟, (4)

where I — unit matrix, E𝑤𝐾
𝑐𝑜𝑟 — matrix of first 𝐾 eigenvectors of matrix C𝑤

𝑐𝑜𝑟, W𝑝𝑤𝑟 —

whitening matrix.

7. Apply the obtained projector P to the vectorized sensor covariance matrix 𝑣𝑒𝑐 (C𝑥) to

project it orthogonally to the source correlation subspace:

̃︀C𝑥 = 𝑣𝑒𝑐−1 (P · 𝑣𝑒𝑐 (C𝑥)) (5)

8. Just as for the previous method, the applied projection does not guarantee that the

resulting matrix ̃︀C𝑥 will be positively determined, so we propose to replace the negative

eigenvalues by their absolute values:

̃︀C𝑎𝑏𝑠
𝑥 = ̃︀E|̃︀Λ|̃︀E𝑇 , (6)

where ̃︀E и ̃︀Λ — matrices containing eigenvectors and eigenvalues ̃︀C𝑥.

9. Use the new covariance matrix ̃︀C𝑎𝑏𝑠
𝑥 instead of the original C𝑥 to calculate the adaptive

beamformer weights.

2.1.5 Key results

The properties of the two proposed algorithms, ReciPSIICOS and whitened wReciPSIICOS,

were investigated first with realistically simulated data and then on real MEG data.

Simulation results
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For each of the Monte Carlo simulations, we randomly selected a pair (symmetrical in

different hemispheres) or a triplet (random, but no closer than 4 cm to each other) of sources

and then modeled one of two cases: sources activated with strongly correlated time series, with

weak correlation, or independently. We added realistically simulated noise to the target activity,

which was created by activating 1000 non-target sources with a given signal-to-noise ratio. Non-

target sources were randomly selected for each trial. Then, in order to compare the results of

the proposed methods with the classical ones, for each of the simulations the source activity

was reconstructed by each of the four methods: reciPSIICOS, whitened wReciPSIICOS, MNE,

and LCMV beamformer.

Typically beamformers are applied to data under the assumption of a small number of

active target sources, so the study presents the results of computational experiments with 2

and 3 sources in Monte Carlo mode, that is, with an arbitrary choice of three locations and with

different degrees of source activity correlation. The method demonstrated high robustness. In

addition, the noise generated by non-target sources adds additional complexity and is another

indicator of the robustness of the method.

We evaluated the quality of the solution using three metrics: 1) the average distance from

the maximum of the recovered activation to the generated true source (localization bias), 2)

the average radius of activity spread in the space around the maximum (spreading area), and

3) the proportion of computational experiments with successful detection of all true sources

(all 2 or 3 sources found, detection ratio). We evaluated the distribution of these metrics for

different values of the signal-to-noise ratio in the data, as well as for different contributions of

the artificial error that were added to the forward problem matrix. To make the simulation

more realistic, we generated activity from a denser cortical model than reconstructed.

Two symmetrical sources

• We have plotted curves showing the dependence of the three listed quality metrics (bias,

spreading area, proportion of complete detections) on the signal-to-noise and error levels

in the forward model matrix for synchronous and asynchronous sources and four methods

for solving the inverse problem: ReciPSIICOS, wReciPSIICOS, MNE, LCMV.

• In the case of modeling asynchronous sources, both of our proposed ReciPSIICOS and

wReciPSIICOS methods retain high spatial resolution of the LCMV beamformer and

show similar metrics to it: they allow us to obtain a compact solution (with a maximum

radius of about 0. 5 cm) with a small bias relative to the simulated location (about 1

cm), explained by the use of a more sparse cortical model for source recovery, as well as

the high proportion of experiments in which all sources were found (about 95 %).

18



• In the case of synchronous sources, as expected, the LCMV beamformer demonstrates the

effect of signal cancellation and tends to find activation only in one hemisphere. The values

of the observed metrics are significantly degraded compared to the asynchronous case: the

bias is about 6 cm, the spreading area is about 2.2 cm, and the ratio of experiments in

which all sources are found is about 5 %.

• At the same time, ReciPSIICOS and wReciPSIICOS are also sensitive to the appearance

of correlated sources, but much less. The values of the metrics are slightly inferior to the

asynchronous case: the bias is approximately 1.2 cm and the spreading area is approx-

imately 0.7 cm. The fraction of computational experiments with successful detection of

all sources differs slightly for the two methods as the signal-to-noise ratio increases: for

ReciPSIICOS it reaches 80 %, and for wReciPSIICOS it is about 70 %.

• The developed ReciPSIICOS and wReciPSIICOS methods are less sensitive to errors in

the forward model operator than the classical LCMV beamformer.

• Quality of source reconstruction using distributed MNE solution does not depend on the

presence or absence of correlation between sources, but in all cases is inferior to other

methods on all three metrics.

Three synchronous sources

• In the case of three strongly correlated sources, the whitened wReciPSIICOS shows the

best recovery quality: in 60% of all computational experiments it allows to find all three

sources, and in almost 100% at least two of them. The resulting source activations are

very focal.

• ReciPSIICOS shows a quality similar to MNE, and inferior to wReciPSIICOS. All three

sources are detected only 40% of the time, the bias and spreading area of the activation

is larger than in the previous case.

• LCMV shows the same dramatic deterioration of the metrics as in the case of two cor-

related sources. The method is unable to detect three sources, because the resulting

activation maps are too smeared.

Three moderately correlated sources

• In this case, ReciPSIICOS shows the same high quality as the whitened wReciPSIICOS.

By all metrics the methods are superior to the classic MNE and LCMV.
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Real data analysis results

To test the proposed algorithms on real data, we used two sets of MEG data. In each of

them subjects participated in experiments with auditory stimuli. The advantage of such data

for us is that the auditory system is sufficiently well-studied and we can predict what the final

solution on the sources should look like.

In addition, the auditory system is involved in more complex mechanisms than just primary

perception of sounds, for example, we have studied the phenomenon of neuroplasticity by

presenting auditory stimuli in various tasks. Previous studies in both humans and animals

have demonstrated remarkable results of cortical plasticity induced by some kind of experience.

In our work [34], we studied whether the widely used monetary incentive delay task, MID

alters the neural processing of stimulus signals that encode expected monetary outcomes. We

used a novel auditory version of the oddball paradigm in which participants responded to

acoustic cues that encoded expected monetary losses. To investigate brain plasticity induced

by the task, we encoded the loss amounts as deviant auditory cues in the oddball paradigm.

We conducted oddball sessions before and after two sessions of the MID task. During the

oddball task, we detected a component of MMN, mismatch negativity, acting as an indicator of

cortical plasticity. We found that two sessions of the MID task caused a significant increase in

MMN for stimulus signals that predicted large monetary losses, especially when discrimination

of monetary signals was necessary to maximize the amount of gain. Task-induced plasticity

correlated with learning-related neural activity recorded during the MID task.

Reflecting the mismatch between received and predicted outcomes, reward prediction error,

RPE plays an important role in learning in a dynamic environment. A number of studies have

suggested that the feedback related negativity, FRN, component that is known to occur when

unexpected outcomes are obtained encodes the RPE. Although FRN has been shown to be

sensitive to the probability of receiving a reward, the effect of the size of the reward on FRN

has yet to be clarified. In studies of the neural basis of outcome reward prediction, the MID

task has proven particularly useful. In study [35], we investigated whether the FRN and

dN200 components recorded during the auditory MID task were sensitive to the probability

and size of rewards. The dN200 component was associated with updating information about

the magnitude of the estimated outcomes. We showed that FRN was modulated by both

magnitude and probability of outcomes during the auditory MID task, whereas no such effect

was found for dN200. In addition, the dN200 component, which is associated with updating

information about the magnitude of intended outcomes, correlated with the standard FRN,

which is associated with a negative RPE.

Further analysis of the sources that are involved in the mechanisms described above requires

the development of methods that can reconstruct the activity of correlated sources with high
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resolution.

Dataset 1

The first data set includes MEG recordings of two subjects who participated in sessions of

passive listening to sounds with a frequency of 40 Hz monaural to the left ear. For each trial,

we considered a latency of 250 ms after stimulus presentation as the point with the maximum

amplitude of the evoked response. We expected to see bilateral activation in the primary

auditory cortex: more amplitude in the contralateral right hemisphere and less amplitude in

the left hemisphere.

• For both subjects, source reconstruction with ReciPSIICOS showed the result we expec-

ted: we obtained fairly focal activations located bilaterally in the primary auditory cortex,

with greater amplitude in the right hemisphere.

• wReciPSIICOS results for both subjects were similar to ReciPSIICOS: bilateral activa-

tions were found, the amplitudes between hemispheres were correctly distributed, but the

activations appeared more spatially distributed than the first method.

• LCMV for both subjects showed similar ipsilateral activation to ReciPSIICOS, but com-

pletely incorrect localization in the contralateral hemisphere. The amplitudes recovered

with the LCMV beamformer were about 400 times lower than those recovered with Re-

ciPSIICOS, a consequence of the signal cancellation effect.

• For the first subject, MNE reconstructed only activation in the right hemisphere. For the

second subject, bilateral activations were obtained, but with a significant bias and too

large a propagation area.

Dataset 2

The second set of data presents MEG recordings of one subject who listened sounds binaur-

ally in the oddball paradigm: he was presented with a series of identical sounds with occasional

inclusions of different frequency (deviant) sounds. In response to the deviant stimulus, the

subject had to press a button with the index finger of his right hand. We solved the inverse

problem for the MMNm component of evoked potentials [36]: the average difference between

responses to deviant stimuli and responses to standard stimuli. The component found peaked

at 159 ms after stimulus presentation.

• Using the example of a source from the primary auditory cortex, which for a given latency

turned out to be highly active in both the ReciPSIICOS solution and the LCMV solution,
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we showed that the amplitude of the time series reconstructed with ReciPSIICOS is

significantly higher than in the LCMV solution. We have shown that this effect cannot be

explained by the difference in the norms of the obtained solution coefficients. At the same

time, also the time series obtained with ReciPSIICOS shows a significantly prominent

activation peak for the MMNm peak latency, while the time series reconstructed by

LCMV does not have such a prominent peak.

• The activation map obtained with the LCMV beamformer highlights activity in the

primary auditory cortex of the right hemisphere. Activity was also found in the left

hemisphere, but weakly pronounced and significantly distributed throughout the cortex.

• ReciPSIICOS made it possible to reconstruct high amplitude activations in the primary

auditory cortex bilaterally.

• Whitened wReciPSIICOS not only allowed us to reconstruct similar activity in the primary

auditory cortex bilaterally, but also the activation of the left hemisphere motor cortex

that we expected to see due to the motor part of the task. This result replicates the

wReciPSIICOS result described above in the simulation of three synchronous sources.

• MNE reconstructed activity only in the left hemisphere, and it turned out to be too

spreaded.

Based on all of the above results, we can say that the analysis of the properties of the

algorithms on real data showed similar results to the analysis of model data. The LCMV

beamformer is significantly sensitive to the presence of correlated sources in the data, whereas

ReciPSIICOS and whitened wReciPSIICOS show high solution quality and allow finding focal

bilateral sources with a much larger dynamic activation interval.

Thus, we can conclude that the methods proposed in this paper represent simple and

efficient solutions that inherit the property of high spatial resolution of the beamformer, but

increase its robustness to the presence of correlated sources in the data.

2.2 A traveling wave model for analyzing the local dynamics of inter-

ictal spike propagation

In this section we present a summary of [37], in which we proposed a new method for solving

the inverse EEG/MEG problem, which uses the assumption of the wave nature of neuronal

activity propagation as its basis. We investigated the properties of the method using realistic

computational experiments. We then applied the proposed algorithm to interictal spikes in

MEG recordings of patients with epilepsy. Although the following narrative is built around the
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application of the method specifically to epilepsy research, the proposed method can be used

to study any neuronal processes that involve wave propagation.

2.2.1 Data model

In this paper we propose a methodology for a noninvasive study of the fine spatial and temporal

structure of interictal spikes observed in the MEG data of patients with pharmacoresistant forms

of epilepsy. We consider the interictal spike as an episode of traveling wave propagation.

We assume that the radial wave emanates from the generating source and propagates in

𝑁*
𝑑 different directions along the cortical surface. Keeping in mind that the distance travelled

by the wave depends on the speed of its propagation, we assume that the path lengths of

all waves are equal to each other by the number of 𝑁𝑠 nodes of the cortex which the wave

has visited. Thus, the 𝑑-direction of propagation can be represented as a sequence of active

cortical sources p𝑑 = [r1𝑑, . . . , r
𝑁𝑠
𝑑 ], where r𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] contains the coordinates of the source

in three-dimensional space, 𝑑 ∈ [1, . . . , 𝑁*
𝑑 ], and the first source is the same for all directions

(the generating source).

The time series of activation sources from the set p𝑑 form a matrix S𝑑. To represent the

propagation of the neural activity generating the discharge as a wave in space and time, we

model the activation time series, which for subsequent sources are shifted in time relative to

the previous ones. Having a direct operator G with fixed source orientation, the multichannel

EEG/MEG signal, X, can be represented as a linear combination of cortical traveling waves

W𝑑, 𝑑 ∈ [1, . . . , 𝑁*
𝑑 ] projected into sensor space:

X =

𝑁*
𝑑∑︁

𝑑=1

𝛼𝑑G𝑑S
𝑑 + E =

𝑁*
𝑑∑︁

𝑑=1

𝛼𝑑W
𝑑 + E

The matrix G𝑑 is formed from the columns of the direct operator matrix G, corresponding

to the source topographies from the path p𝑑. The E matrix models non-related brain activity

and additive sensor noise. The 𝛼𝑑 coefficients correspond to the contribution of each propagation

direction to the observed MEG activity.

2.2.2 «Basis» waves

For the data model presented above, we assume that the propagation of MEG activity can be

represented as a linear combination of traveling waves in the sensor space. The basic idea of

the methodology proposed in this paper is to generate patterns of traveling waves, which we

call «basic» waves, and then to find their combination with the least number of terms that best

fits to the MEG data.
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Next, we describe the algorithm for calculating basis waves. For simplicity, we define the

number of active cortical sources along each propagation pathway as equal to the number of

observations made during an event: 𝑁𝑠 = 𝑇 ·𝑓𝑠, where 𝑇 is the duration of the event in seconds,

𝑓𝑠 is the sampling frequency. In our computational experiments, we consider the case where

the simulated activation time series for each of the 𝑁𝑠 sources have a sinusoidal waveform and

are shifted in time relative to their sequence from the starting point. For each direction of

propagation, the source time series matrix S𝑑 is formed from rows:

S𝑑
𝑖 = 1 + 𝑐𝑜𝑠

(︂
2𝜋(𝑡− 𝑘𝑖)

𝑁𝑠

)︂
, 𝑘𝑖 ∈ [1, . . . , 𝑁𝑠], 𝑡 = [1, . . . , 𝑁𝑠]

.

The source positions p𝑑 = [r1𝑑, . . . , r
𝑁𝑠
𝑑 ] in each case depend on the individual anatomy, the

position of the source v𝑠 = [𝑥𝑠, 𝑦𝑠, 𝑧𝑠] and the wave speed. For each «basic»> wave, we need to

find a path on a graph with 𝑁 vertices connected according to the adjacency matrix A defined

by the 3-D model of the cortex. For a given initial position on the cortex with 𝑁𝑑 nearest

neighbors, we define 𝑁𝑑 «basic» waves propagating in the directions of these nearest neighbors.

For ease of analysis in practical applications, we do not add new vertices or edges to the graph

corresponding to the cortical model. A limitation of this approach is the fact that the number

of propagation directions depends on the density of vertices in the region under study and, in

the case of adaptive meshes, on the local curvature. The latter makes sense, since the spatial

resolution of the MEG correlates with the local curvature [3].

In this paper, we describe in detail the algorithm for generating propagation paths for the

starting point v𝑠. We generate sets of «basic» waves for different propagation velocities: from

0.3 to 1.5 m/s.

In addition to radial waves, we also considered a spherical wave propagating simultaneously

in all directions and consisting of a sum of radial waves, but our tests on model and real data

showed that spherical waves are not selected by the algorithm as participants in the optimal

combination.

2.2.3 Optimal combination of traveling waves

Once the «basic» waves have been generated, the next stage of analysis is to find the com-

bination that best describes the observed MEG data. Based on physiological assumptions, the

desired combination should contain only a few «basic» waves corresponding to several dominant

propagation directions. Therefore, we look for the most sparse solution that describes the data

and corresponds to a small number of well-defined dominant propagation directions.

To find the contribution of each precomputed «basic» wave to the MEG data, we used

the LASSO [38] method, with the additional restriction that the LASSO coefficients must be
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positive. Since we are considering a multichannel problem, we vectorized the data matrix X

and «basic» waves on the sensors. The optimization problem is formalized in the following:

min
𝛼0,...,𝛼𝑁𝑑

⃦⃦⃦⃦
⃦⃦𝑣𝑒𝑐(X)−

𝑁𝑑∑︁
𝑑=0

𝛼𝑑 · 𝑣𝑒𝑐(W𝑑)

⃦⃦⃦⃦
⃦⃦
2

+ 𝜆

𝑁𝑑∑︁
𝑑=0

|𝛼𝑑|

subject to 𝛼𝑑 ≥ 0, 𝑑 = 0, . . . , 𝑁𝑑

The main advantage of this method is that due to the non-smooth regularization term with

a 𝐿1 norm penalty, the selection of features is performed so that the coefficients of uninformative

propagation directions are equal to zero.

This procedure is then applied to all sets of generated basis waves with two parameters:

propagation velocity and wave onset timepoint. The best solution is chosen according to the

𝑅2 metric (i.e., the percentage of explained variance).

An important issue in the generation of «basic» waves is the detection of the very first

source initiating the wave propagation. We determine the region of interest (ROI) in a first

approximation using the RAP-MUSIC [39] dipole fitting algorithm. To improve the accuracy

of the solution, we scan the ROI, using the cortical nodes that fall there as starting points, and

compare the solutions using the 𝑅2 metric.

2.2.4 Key results

In this paper, we propose a methodology for noninvasive investigation of the fine spatiotemporal

structure of interictal spikes observed in MEG data from patients with pharmacoresistant forms

of epilepsy. We studied the properties of the algorithm in realistic computational experiments.

We then used the developed algorithm to analyze the local distribution of interictal spikes of

patients with epilepsy. Preliminary results from patient data demonstrated that spikes coming

from the epileptogenic zone exhibit a higher quality of wave model fitting than discharges from

other regions. We believe that information about the spatiotemporal dynamics of interictal

activity propagation in the future may be useful for planning a gentler surgical intervention.

In the present work, we considered in both model and real data only the case of focal

epilepsy, assuming that the interictal spikes is generated by a well localized cortical region and

further spreads locally, engaging the running wave mechanism. We did not consider the case

of generalized interictal spikes, which often involve deeper brain structures, because it is in the

scenario of focal epilepsy that the application of the developed algorithm makes practical sense,

making it possible to obtain additional information for localizing the epileptogenic zone.

Simulation results

Computational Monte Carlo experiments were calculated for three signal-to-noise levels:

values 1, 2 and 3. We constructed ROC curves showing how successful the proposed algorithm is
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in detecting traveling waves. To construct these curves, we used 300 Monte Carlo tests in which

the wave propagation was set to a randomly uniformly chosen propagation rate from the options

considered, and 300 tests in which only static activity was simulated without propagation in

space. The corresponding area under the curve (ROC AUC) values are 0.78, 0.95, and 0.97,

which means that the proposed method successfully separates propagating and static activity

at a reasonably high signal-to-noise ratio.

Next, we evaluated the quality of the simulated propagation speed reconstruction. For SNR

= 1, the algorithm tends to significantly overestimate the propagation velocity compared to

the true value: the reconstructed velocities do not match the true value, except for the highest

propagation velocity. For SNR = 2 there are still many errors in the velocity determination,

but the absolute difference between the estimated and actual values is much lower than for the

previous case. For SNR = 3 the estimated value coincides with the actual velocity or with the

closest to it. It is important to note that errors in the velocity estimate are unavoidable even

for the high SNR values because of the error we introduce in localizing the starting point and

because of the use of a more sparse cortical model to solve the inverse problem. Given that we

consider the propagation time as fixed, in case the initial starting point of the wave found by the

algorithm is shifted relative to the actual one towards the end point of the propagation path,

the speed will naturally appear underestimated. Conversely, if the starting point is shifted in

the opposite direction from the end of the path, the speed will be overestimated. The higher

the SNR in the data, the smaller these errors are.

We then estimated the errors in the estimated propagation direction. The error was calcu-

lated as 1−𝑐𝑜𝑠(𝜑), where 𝜑 is the angle between the actual and estimated principal propagation

directions. The values of this metric range from zero to one. For all SNR levels, most errors

are less than 0.1, and all errors tend to decrease with increasing signal-to-noise ratio.

Although the proposed method successfully finds traveling waves and reconstructs their

anatomical pathways, it is still subject to errors due to (1) uncertainties in the estimation of

the wave onset timepoint and (2) inaccuracies in the parameterization of the cortical surface.

The errors occurring for the first reason can be reduced by selecting high-amplitude spikes for

analysis. The second problem can be solved by performing a more accurate brain scan (7T

MRI).

Real data results

We used real MEG data from three patients with epilepsy: 10-minute MEG recordings dur-

ing sleep. For automatic detection of interictal spikes, we used the method [40], which is based

on the independent component analysis (ICA). Then, for each of the events found, we selected

the corresponding current dipoles using the RAP-MUSIC algorithm [39]. The localization of

the sources generating the found events on the cortex allows us to assess how physiologically
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plausible the automatically detected events are. We used 0.97 as the threshold for the sub-

space correlation metric, and all events for which RAP-MUSIC found a lower correlation were

removed from subsequent analysis.

The proposed algorithm was applied to each interictal spike found separately. We then

applied a simple deterministic clustering algorithm based on the proximity between the retrieved

points to combine all sources into dense clusters with radius no larger than 1 cm, each containing

at least ten dipoles. ASPIRE parameters were found empirically and fixed for all patients.

Despite the fact that the described automatic detection procedure was run separately for the

gradiometers and magnetometers, the resulting clusters detected were approximately the same.

We applied the proposed method to each detected interictal spike and aggregated the resulting

𝑅2 values based on their cluster membership. Since the goal of this analysis is to find a

qualitative but simple fit of the interictal spike, another important factor is the number of

propagation directions in the optimal solution. Analysis of patient data revealed variability in

the fit of the wave model depending on specific discharges. A wave model with a choice of only

a few dominant directions is appropriate only for a fraction of the discharges analyzed. We

calculated fractions of discharges with an explanation quality of at least 0.6 for each cluster

found for the three patients.

In all three data sets analyzed, the clusters found differ in the percentage of discharges

well explained by the traveling wave model. Interestingly, the areas with the highest percentage

of well explained spikes for Patient 1 and Patient 2 coincide with epileptogenic foci that were

independently identified by neurosurgeons. In the case of Patient 1, the epileptogenicity of the

foci found was also confirmed by a two-year follow-up of the patient after surgery. Information

about the location of the epileptogenic area in Patient 3 is not available because surgery was

not performed. These results are consistent with previous observations that interictal spikes in

the epileptogenic area have a stable direction of propagation [26].

2.3 Automatic detection method for irritative zones in MEG data of

patients with epilepsy

This section provides a summary of [40] work. In this work, we propose a method of automatic

detection and clustering of clinically significant events in the data, which requires minimal

user involvement and involves the possibility of visual inspection of the resulting clusters by

an expert. The analysis consists of two main steps: first, selection of potential candidates for

interictal spikes and [41] dipole fitting; and second, validation of found events based on the

results of spatiotemporal clustering of sensor records around the found peaks [42].

We applied the proposed algorithm to the MEG data of seven patients who were seizure
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free as a result of successful surgical intervention. Visual inspection of the MEG recordings by

experts, as well as information about the area removed during surgery, was available for the

patients. We performed the proposed analysis separately for gradiometers and magnetometers:

a set of clusters was formed for each sensor type, and for each cluster a list of events associated

with it. After a cluster was formed, the averaged event template was used to localize the

irritated area.

2.3.1 Search for potential interictal spike events

The advantageous difference of our method from the currently existing ones is the fully auto-

matic analysis of the MEG record, implying the participation of an expert only at the final

stage to verify the results. The independent component analysis, ICA based method is supple-

mented by the implementation of criteria for automatic selection of the component responsible

for interictal activity. To search for candidate interictal events, we first decompose the MEG

data into independent components using the fastICA method. We limited the number of in-

dependent components to twenty. Among the first ten independent components, sorted by

percentage of variance explained, we selected those that corresponded most to the «spike» pat-

tern. Such components were characterized by a high coefficient of kurtosis (from 1 to 10) and

also by a high degree of component fitting with the dipole model (degree of «dipolarity» of

the component). For magnetometers, the threshold for the degree of explanation by the dipole

model was 80%, for gradiometers 60%. If the degree of fit exceeded 95%, such component was

selected regardless of the value of the kurtosis coefficient. Approximation with current dipoles

was performed using the MUSIC [39] method.

Then, in the time series of selected independent components, we distinguished time samples

with peak activation. For this purpose, the data were filtered in the frequency band from 20

to 90 Hz. In addition, we transformed the time series of independent components using the

preprocessing.RobustScaler() method from the sklearn library, in order to bring all the series

to the same amplitude. Next, the peaks were found using the signal.find_peaks() method from

the scipy library. We automatically lowered the threshold for detection until at least 300 peaks

were found in each patient. We allocated intervals of -20 to 30 ms around the peaks found in

the data and further localized them using the MUSIC algorithm[39]. We limited the frequency

of occurrence of the interictal spike so that the interictal interval was greater than 0.5 seconds.

In the case of overlapping candidates at such an interval, we chose the event for which the

quality of the dipole fitting was higher.
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2.3.2 Detected events validation

We used the convolutional sparse coding, 𝛼CSC paradigm to validate the found events. We

used a multivariate [42] model, which effectively reflects the fact that the activity of each

source is reflected on a whole set of MEG sensors. A multichannel record X[𝑀×𝑇 ], where 𝑀

is–the number of sensors and 𝑇 is–the number of time samples in the record, is decomposed

into a set of 𝑘 patterns with a spatial pattern 𝑢𝑘[𝑁×𝑘] and a temporal pattern 𝑣𝑘[𝑘×𝑡], where 𝑡

is–the number of time samples in one event. The closeness of each point to the 𝑘-pattern is

determined by a sparse activation vector 𝑧𝑘[𝑘×𝑇 ], which consists of a small number of non-zero

positive elements. The optimization problem for finding patterns looks like this:

min
𝑢𝑘,𝑣𝑘,𝑧𝑘

𝑀∑︁
𝑚=1

1

2

⃦⃦⃦⃦
⃦X−

𝐾∑︁
𝑘=1

𝑧𝑘𝑢𝑘𝑣
𝑇
𝑘

⃦⃦⃦⃦
⃦
2

+ 𝜆
𝐾∑︁
𝑘=1

|𝑧𝑘|

subject to ‖𝑢𝑘‖2 ≤ 1, ‖𝑣𝑘‖2 ≤ 1, 𝑧𝑘 ≥ 0

The 𝛼CSC algorithm produces spatiotemporal patterns represented by the triplet 𝑢𝑘 (the

weight of each sensor), 𝑣𝑘 (the temporal trend) and the activation vector 𝑧𝑘, which determines

the proximity of each temporal point in the MEG data to the pattern. To assign an event to

a template, we set the threshold to 7 median absolute deviations (mean absolute deviations,

MAD) and then decrease it until at least 15 events fall into the template or the threshold reaches

1.5 MAD. Thus, each template is associated with a set of events with similar spatiotemporal

characteristics.

The quality of the cluster built around each template was evaluated using three metrics:

the quality of the spatial pattern fit 𝑢𝑘; the average correlation 𝑣𝑘 with the epoch time series

on the sensor with maximum 𝑢𝑘; and the number of events in the cluster (flag, 1 for 20 or more

pieces). Each of these three metrics is scored between 0 and 1, and the average value forms

the score of the pattern. Templates for which the values of the metrics exceed the threshold

of mean + 1 standard deviation of the score distribution have been selected into the template

library.

In order to delineate the boundaries of irritative zones, we use the minimum norm al-

gorithm, MNE [8], implemented in the MNE-Python [29] library. For the averaged events in

each cluster, we calculated the covariance matrix for the interval [-0.5, 0.5] around the peak.

The activation map for each spike was binarized: we assigned a value of 1 to each point where

the activation exceeds 50% of the maximum activation, and 0 otherwise. The final binary map

thus contains only points that are indicated by at least half of the individual digit maps. The

binary activation map was smoothed to within 10 mm to delineate the area associated with

spike activity.
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Spatiotemporal clusters based on 𝛼CSC templates were used to estimate the irritative

zones. For each template in the library, we localized the average event from all belonging

to the cluster. Templates obtained from gradiometers and magnetometers were considered

independently. For each template, an activation map was calculated for two time points: PEAK,

i.e., the time count of maximum discharge amplitude, and SLOPE — the time count preceding

the peak point, when the activity is still above the baseline and the spatial pattern provides

a clear focus. For both time samples, SLOPE and PEAK, the activation map was threshold-

filtered at 50% of the maximum activation value and converted into a binary activation map.

For each patient, we summarized the binary maps of all patterns. Sources that were indicated

by more than half of the templates were selected and smoothed over a range of 10 mm. The

resulting activation map delineated the predicted irritative zone.

2.3.3 Key results

In this paper, we proposed a method for automatic detection of interictal spikes in MEG data

of patients with epilepsy, which are then used to localize irritative zones. We applied the

developed method to 20-minute sleep recordings of seven patients who were seizure free as a

result of neurosurgical intervention. Our algorithm involves two steps: 1) searching for potential

epileptiform events and 2) clustering them using convolutional sparse coding. For each cluster

combining interictal spikes, we reconstructed its characteristic spatiotemporal pattern.

For the seven patients analyzed, we identified 25 event patterns (16 by gradiometer and 9

by magnetometer). We automatically detected 549 discharges and calculated that the rate of

discharge generation per minute averaged 2.41 with a scatter [0.9 - 3.6]. Each cluster included

an average of 22.1 events with a spread [15.0 - 31.0].

We validated the results of our analysis by comparison with irritable areas identified by

visual inspection as well as by comparison with the resection area along with the known outcome

of surgery. Automatically recovered irritable areas overlapped with those recovered by visual

analysis in six of seven patients. In the remaining patient, both automatically and visually

restored areas did not overlap with the resection area, and for this patient, the surgical outcome

matched the Engel IIB classification.

SLOPE and PEAK latencies of detected sources correspond to different spatial distribution

of activity, and therefore different localization of the irritative zone. We compared the average

distance from the localized irritative zones recovered by PEAK and SLOPE to the resection

border and found that the irritative zone localized by SLOPE was significantly closer to the

resection border (Wilcoxon test, p = 0.01). The distance from the resection border to the

SLOPE-localized area was not significantly different from the distance to the area recovered by

visual analysis (Wilcoxon test, p = 0.31). In all patients, the mean distance from the resection
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border was 8.4 ± 9.3 mm for visual analysis, 12.0 ± 12.0 mm for SLOPE, and 22.7 ± 16.4 mm

for PEAK. Thus, the irritative zone recovered for both SLOPE and PEAK is relatively close

to the resection border.

3 Conclusion

Due to fundamental limitations, the inverse problem of EEG and MEG is ill-posed and the

search for a unique solution requires the regularization: the addition of constraints on the

expected nature of the reconstructed activity. In this research, we have proposed three new

methods for activation reconstruction on sources, in which regularization is chosen due to the

physiological nature of the phenomena under study.

We have developed two methods that are modifications of the classical adaptive LCMV

beamformer and, on the one hand, preserve its high spatial resolution but, at the same time,

allow to recover synchronous activity of brain sources. The properties of the algorithms were

investigated first with realistically simulated data and then on real MEG data recorded in

auditory paradigms. The ReciPSIICOS and whitened wReciPSIICOS methods showed high

solution quality and allowed reconstruction of focal synchronous sources, outperforming classical

methods.

We also proposed a method for localizing the traveling waves and determining their para-

meters from noninvasive EEG/MEG recordings. We applied the proposed approach to analyze

the dynamics of local propagation of interictal spikes in patients with pharmacologically res-

istant focal epilepsy. When MEG technology is used, paired with suitable inverse problem

solving methods, we can gain insight into the anatomical pathways of the traveling waves. To

regularize the inverse problem, we model interictal spikes as a superposition of traveling waves

propagating in radial directions in all directions from the source. This model works reasonably

well both on model MEG data and on data from patients with epilepsy, in whom wave patterns

of activity propagation can be reconstructed for a portion of the interictal spikes occurring in a

particular cortical region. Although the proposed method successfully finds traveling waves and

reconstructs their anatomical pathways, it is still subject to errors due to (1) uncertainties in

the estimation of the initial wave onset point and (2) inaccuracies in cortical surface paramet-

erization. The errors occurring for the first reason can be reduced by selecting high-amplitude

spikes for analysis. The second problem can be solved by performing a more accurate brain

scan (7T MRI). However, not all spikes can be equally well explained by a wave model with

few predominant propagation directions. These cases require more detailed further study.

Reliable identification of the irritative zone is a prerequisite for proper clinical assessment of

patients suffering from pharmacoresistant form of epilepsy. Given the multidimensional nature
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of MEG data, visual analysis of epileptiform neurophysiological activity is time-consuming and

can leave clinically relevant information undetected. We recorded and analyzed the interictal

activity of seven patients with epilepsy (Vectorview Neuromag) who successfully underwent

surgery (Engel ≥ II). We validated our approach by calculating the distance from the irritative

area assessed with the proposed method to the border of the surgically removed area. The

proposed analysis technique provides the basis for reproducible and unbiased analysis of MEG

recordings in epilepsy.
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