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Introduction

Let g be a simple Lie algebra. The Yangian Y (g) is a Hopf algebra, historically one of the
first examples of quantum groups. It has been defined by V. Drinfeld in [D85].

The simplest case is g = sln. The Yangian Y (sln) can be realized as a factor of the extended
Yangian Y (gln). Thus most of this work concerns the case of Y (gln). Y (gln) is in certain
sense the unique Hopf algebra deforming the enveloping algebra U(gln[t]), where gln[t] is the
Lie algebra of gln-valued polynomials.

There is a flat family of maximal commutative subalgebras B(C) ⊂ Y (gln), called Bethe
subalgebras, parameterized by invertible diagonal matrices C ∈ GLn with pairwise different
eigenvalues, which are stable under the C-action by shift automorphisms of Y (gln). For g = sln
this algebra appears in the works of L. Faddeev and St.-Petersburg school in relation to the
inverse scattering method, see e.g. [T84, TF]. In full generality this algebra firstly appears in
the paper of V. Drinfeld [D85]. The maximality of Bethe subalgebras has been studied in [NO].
This family originates from the integrable models in statistical mechanics and algebraic Bethe
ansatz. More precisely, the image of B(C) in a tensor product of evaluation representations of
Y (gln) form a complete set of Hamiltonians of the XXX Heisenberg magnet chain, cf. [B, KBI].

The main problem in the XXX integrable system is the diagonalization of the subalgebras
B(C) in the corresponding representation of the Yangian. The standard approach is the algebraic
Bethe ansatz which gives an explicit formula the eigenvectors depending on auxiliary parameters
satisfying some system of algebraic equations called Bethe ansatz equations, see for example
[KR86].

The questions we address in the present work are closely related to the completeness of the
algebraic Bethe ansatz, i.e. to the problem whether the eigenvectors obtained by Bethe ansatz
form a basis in V . This problem is extensively studied for many years, see e.g. [MV03, MTV07,
MTV09, MTV14, T18, CLV, RV]. As the first step towards the solution of this problem, it is
necessary that the joint eigenvalues have no multiplicities. The latter is satisfied if and only if
the following two conditions hold: first, there is a cyclic vector for the Bethe subalgebra in V
(i.e. v ∈ V such that B(C)v = V ) and, second, the algebra B(C) acts on V semisimply.

In this work we prove the simplicity of spectra in several new cases including tame repre-
sentations of the Yangian in type A with generic values of the parameters and some Kirillov-
Reshetikhin modules in other types.

1. Yangians and their definitions

1.1. Yangian for simple g. Let g be a simple complex Lie algebra, G is the corresponding
connected simply connected Lie group, T is the maximal torus and T reg is the regular elements
of T , h is the corresponding Cartan subalgebra, n = rk g = dim h.

Let Φ be the root system corresponding to the Lie algebra g, Φ+ are the positive roots,
{α1, . . . , αn} are the simple roots, {ω1, . . . , ωn} are the fundamental weights, (, ) is the invariant
scalar product such that (α, α) = 2 for short simple roots, gα are the corresponding root sub-
spaces of g, xα ∈ gα, x

−
α ∈ g−α are such that (xα, x

−
α ) = 1, tωi ∈ h is the element corresponding

to ωi ∈ h∗ by the invariant scalar product. In the same way hi is the element corresponding to
α∨
i = 2αi

(αi,αi)
. Also we define the Casimir elements corresponding to the invarian scalar product

Ω =
∑

α∈Φ+

(x+
α ⊗ x−

α + x−
α ⊗ x+

α ) +
∑
i

tωi
⊗ hi ∈ g⊗ g

and

ω =
∑

α∈Φ+

(x+
αx

−
α + x−

αx
+
α ) +

∑
i

tωi
hi ∈ U(g).

Definition 1.1. Yangian Y (g) is an associative algebra with a unit over C generated by the
elements {x, J(x) |x ∈ g} with the following relations:

xy − yx = [x, y], J([x, y]) = [J(x), y]

J(cx+ dy) = cJ(x) + dJ(y),
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[J(x), [J(y), z]]− [x, [J(y), J(z)]] =
∑

λ,µ,ν∈Λ

([x, xλ], [[y, xµ], [z, xν ]]){xλ, xµ, xν},

[[J(x), J(y)], [z, J(w)]] + [[J(z), J(w)], [x, J(y)]] =

=
∑

λ,µ,ν∈Λ

(([x, xλ], [[y, xµ], [[z, w], xν ]]) + ([z, xλ], [[w, xµ], [[x, y], xν ]])) {xλ, xµ, J(xν)}

for all x, y, z, w ∈ g and c, d ∈ C where {xλ}λ∈Λ is some orthonormal basis of g, {x1, x2, x3} =
1
24

∑
π∈S3

xπ(1)xπ(2)xπ(3) for all x1, x2, x3 ∈ Y (g).

The Yangian Y (g) is a Hopf algebra with comultiplication ∆, counit ϵ, and antipode S defined
by

∆(x) = x⊗ 1 + 1⊗ x,

∆(J(x)) = J(x)⊗ 1 + 1⊗ J(x) +
1

2
[x⊗ 1,Ω],

S(x) = −x, S(J(x)) = −J(x) +
1

4
cgx ∀x ∈ g,

ϵ(x) = 0, ϵ(J(x)) = 0,

where cg is the eigenvalue of ω in the adjoint representation.
We will also denote by ∆op the opposite comultiplication of Y (g); that is, ∆op = σ ◦∆ where

σ = σY (g),Y (g).
There is the shift automorphism τc of Y (g) defined by

x 7→ x, J(x) 7→ J(x) + cx, ∀x ∈ g.

Then we denote τc,d = τc ⊗ τd.
We are now prepared to introduce the universal R-matrix of Y (g).

Theorem 1.1 ([D85]). There is a unique formal series

R(u) = 1 +

∞∑
k=1

Rku
−k ∈ (Y (g)⊗ Y (g))[[u−1]]

satisfying
(id⊗∆)R(u) = R12(u)R13(u),

τ0,u∆
op(y) = R(u)−1(τ0,u∆(y))R(u) ∀y ∈ Y (g).

The series R(u) is called the universal R-matrix of Y (g) and it also satisfies the quantum
Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v).

Here R12(u) = R(u) ⊗ 1 ∈ Y (g) ⊗ Y (g) ⊗ Y (g)[[u−1]], and R13(u) and R23(u) are defined
similarly.

We can take the image of R(−u) under ρV ⊗ 1 for some finite-dimensional representation
(V, ρV ) of Y (g). We will denote TV (u) = ρV ⊗ 1(R(−u)) and call it T -operator. We can apply
ρV ⊗ρV ⊗1 to the Yang-Baxter equation and obtain the relations on the T -operator coefficients.
The Fourier coefficients of the T -operator can be taken as another set of generators of Y (g).

Now we will take an algebra X(g) with such generators and following [W] will obtain a
surjective homomorphism X(g) → Y (g).

Let V be a fixed finite-dimensional Y (g)-module with corresponding homomorphism ρ such
that V has a non-trivial (not necessarily proper) irreducible submodule. We let R(u) denote
the image of the universal R-matrix R(−u) under ρ⊗ ρ:

R(u) = (ρ⊗ ρ)R(−u) ∈ End(V ⊗ V )[[u−1]].

We fix a basis {e1, . . . , eN} of V and we let {Eij}1⩽i,j⩽N denote the usual elementary matrices
with respect to this basis.

The extended Yangian X(g) is the unital associative C-algebra generated by elements {t(r)ij |
1 ⩽ i, j ⩽ N, r ⩾ 1} subject to the defining RTT-relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) in (EndV )⊗2 ⊗X(g)[[v−1, u−1]],
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where T (u) =
∑N

i,j=1 Eij ⊗ tij(u) with tij(u) = δij +
∑

r⩾1 t
(r)
ij u−r for all 1 ⩽ i, j ⩽ N ,

Ta(u) =
∑

i,j 1
⊗(a−1)⊗Eij⊗1⊗(n−a)⊗ tij(u) and R(u−v) has been identified with R(u−v)⊗1.

The extended Yangian is a Hopf algebra, with the Hopf algebra structure given by

∆(T (u)) = T[1](u)T[2](u), S(T (u)) = T (u)−1, ϵ(T (u)) = Id,

where T[1](u) =
∑N

i,j=1 Eij⊗tij(u)⊗1 ∈ EndV ⊗(X(g))⊗2 and T[2](u) =
∑N

i,j=1 Eij⊗1⊗tij(u) ∈
EndV ⊗ (X(g))⊗2.

The RTT-Yangian Y (g) is the quotient of X(g) by the two-sided ideal generated by the

elements z
(r)
ij , for 1 ⩽ i, j ⩽ N and r ⩾ 1, defined by

Z(u) =

N∑
i,j=1

Eij ⊗ zij(u) = S2(T (u))T (u+
1

2
cg)

−1,

where zij(u) = δij +
∑

r⩾1 z
(r)
ij u−r for each pair of indices 1 ⩽ i, j ⩽ N .

The equivalence of two definitions was stated by V. Drinfeld [D85] and proved by C. Wend-
landt in [W].

1.2. Yangian for gln. The definition of the extended Yangian X(g) for g = gln with the
standard representation V of gln gives us the Yangian of gln.

The algebra Y (gln) is generated by elements t
(r)
ij , 1 ⩽ i, j ⩽ n, r ∈ Z⩾0 and t

(0)
ij = δij . (The

elements t
(r)
ij correspond to Eijz

r ∈ gln[z] where Eij ∈ gln is the standard matrix unit.) The
relations are

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il .

Introduce the formal power series in u−1, where u is a formal variable,

tij(u) =
∑
r⩾0

t
(r)
ij u−r.

These formal power series can be combined into a matrix with values in formal series with
coefficients in Y (gln)

T (u) =
∑
i,j

eij ⊗ tij(u) ∈ End(Cn)⊗ Y (gln)[[u
−1]],

where eij is the standard matrix unit. Hence the relations can be rewritten as

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

where
R(u) = 1⊗ 1− u−1

∑
i,j

eij ⊗ eji

is the R-matrix.
The algebra Y (g) for g = sln is the subalgebra of Y (gln) which consists of all elements stable

under the automorphisms T (u) → f(u)T (u) for all f(u) ∈ 1 + u−1C[[u−1]].
For the details and links on the gln case, we refer the reader to the book [Mo] by A. Molev.

2. Bethe subalgebras

2.1. Bethe subalgebras, Y (g) case. Bethe subalgebras are a family of maximal commutative
subalgebras B(C) in Y (g) defined by the parameter C ∈ T reg.

For any finite dimensional representation (V, ρV ) of the Yangian Y (g) we can define the T -
operator TV (u) = ρV ⊗ 1(R(−u)) (as in the definition of the Yangian in Section 1.1). Then for
any element C of G we can define:

Definition 2.1. Bethe subalgebra B(C) is a subalgebra of Y (g) generated by the coefficients
of trV (ρV (C)⊗ 1)TV (u) for all finite-dimensional representations of Y (g).

For C = 1 this definition appeared in the work of V. Drinfeld [D88].

Proposition 2.1 ([IR19]). (1) Bethe subalgebra B(C) is commutative for any C.
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(2) For C regular semisimple, B(C) is maximal commutative.
(3) For C regular semisimple, B(C) is freely generated by the coefficients of TW (u) where

W ranges over fundamental representations of g.

Bethe subalgebras are determined by the following property:

Theorem 2.2 ([I]). Let C ∈ T reg. Subalgebra B(C) contains h and coincides with the centralizer
of the subspace Q(C) ⊂ Y (g) which is the linear envelope of the elements

σi(C) = 2J(tωi)−
∑

α∈Φ+

eα(C) + 1

eα(C)− 1
(α, αi)xαx

−
α ∈ Y (g), i = 1, . . . , n.

2.2. Bethe subalgebras, Y (gln) case. We have said that Y (gln) is the extended Yangian for
Y (sln) and the T -operator for Y (gln) is defined with the standard representation. We can give
a definition of the Bethe subalgebras using only this T -operator.

The symmetric group Sn acts on Y (gln)[[u
−1]]⊗(End Cn)⊗n by permuting the tensor factors.

This action factors through the embedding Sn ↪→ (End Cn)⊗n hence the group algebra C[Sn] is
a subalgebra of Y (gln)[[u

−1]]⊗ (End Cn)⊗n. Let Sm be the subgroup of Sn permuting the first
m tensor factors. Denote by Am the antisymmetrizer∑

σ∈Sm

(−1)σσ ∈ C[Sm] ⊂ Y (gln)[[u
−1]]⊗ (End Cn)⊗n.

Note that the T -operators corresponding to fundamental representations of gln are equal to
Tp(u) = ApT1(u) . . . Tp(u− p+1) since the fundamental representations are the exterior powers
of the standard representation.

Suppose that C ∈ GLn. For any a ∈ {1, . . . , n} denote by Ca the element ia(1 ⊗ C) ∈
Y (gln)[[u

−1]]⊗ (EndCn)⊗n. For any 1 ⩽ p ⩽ n introduce the series with coefficients in Y (gln)
by

τp(u,C) = trApC1 . . . CpT1(u) . . . Tp(u− p+ 1),

where we take the trace over all p copies of End Cn.

Definition 2.2. Bethe subalgebra B(C) ⊂ Y (gln) is generated by all coefficients of the series
τp(u,C) for p = 1, . . . , n.

It follows from the definition that B(C) = B(a · C) for any a ∈ C. We fix a maximal
torus T ⊂ GLn (i.e. the subgroup of diagonal matrices) and denote by T reg the set of regular
elements of T . Denote by GLreg

n the set of regular elements of the Lie group GLn. The following
Proposition summarizes known algebraic properties of Bethe subalgebras, see e.g. [NO], [IR19],
[I].

Proposition 2.3 (Properties of Bethe subalgebras). (1) For any C ∈ GLn, the subalgebra
B(C) is commutative.

(2) For C ∈ T reg, the subalgebra B(C) is a maximal commutative subalgebra.
(3) For any C ∈ GLreg

n the subalgebra B(C) is freely generated by the coefficients of τp(u,C)
with p = 1, . . . , n.

(4) Let C ∈ T reg and let C̃ be an arbitrary representative of C in the universal cover of
GLn. Then the subalgebra B(C) generated by all

trV ρ(C̃)(ρ⊗ 1)(R(−u)),

where (ρ, V ) ranges over all finite-dimensional representations of Y (gln) and R(u) is
the universal R-matrix for Y (gln).

In fact there are no doubts that the assertion (2) is true for any C ∈ GLreg
n and that (4) is

true for any C ∈ GLn but still there is no rigorous proof in the literature.
An element of the maximal torus can be represented by a point in the Deligne-Mumford

space M0,n+2 of stable rational curves with n + 2 marked points: the element of the torus C
corresponds to the non-degenerate rational curve with the marked points being 0,∞ and the
eigenvalues of C. According to [IR18], the family of Bethe subalgebras in Y (gln) extends to
a bigger family B(X) of commutative subalgebras in Y (gln) with X taking values in M0,n+2:
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the subalgebra B(C) corresponds to the non-degenerate rational curve with the marked points
being 0,∞ and the eigenvalues of C (same as the point corresponding to C), but there are also
some new subalgebras corresponding to degenerate curves X ∈ M0,n+2.

In particular, the subalgebra corresponding to the most degenerate caterpillar curve is the
Cartan subalgebra H ⊂ Y (gln), also known as the Gelfand-Tsetlin subalgebra, generated by all
centers of the smaller Yangians Y (gl1) ⊂ Y (gl2) ⊂ . . . ⊂ Y (gln) embedded in the standard way.

Proposition 2.4 ([IMR]). Bethe subalgebra B(C) of Y (gln) is the tensor product B′(C) ⊗
ZY (gln) where B

′(C) is a commutative subalgebra in Y (sln) and ZY (gln) is the center of Y (gln).

B′(C) is the Bethe subalgebra of Y (sln). In the present work we restrict ourselves by C ∈
T reg, i.e. we fix maximal torus and consider the family of Bethe subalgebras parameterized by
its regular points.

2.3. Bethe subalgebras, Y (gl2) case. In this case the algebra B(C) is generated by all the
coefficients of two following formal power series,

qdetT (u) = t11(u)t22(u− 1)− t21(u)t12(u− 1)

and

trCT (u) = c11t11(u) + c12t21(u) + c21t12(u) + c22t22(u).

The algebra does not change under dilations of C, hence the family is parametrized by points
in CP 3 = P(Mat2).

If C is a regular matrix, then B(C) is a maximal commutative subalgebra of Y (gl2), as shown
in [NO]. Even more, for a regular C, all the coefficients of qdetT (u) and trCT (u) generate B(C)
and are algebraically independent. The Poincare series of B(C) with respect to the standard

filtration deg t
(r)
ij = r is

PB(C)(t) =

∞∏
k=1

1

(1− tk)2
.

For non-regular C the Poincare series drops. Namely, the coefficients at u−1 of trCT (u) and

qdetT (u) are both equal to t
(1)
11 + t

(1)
22 , while all other coefficients remain algebraically indepen-

dent, and the Poincare series is equal to

P
B(( 1 0

0 1 ))
(t) =

1

1− t

∞∏
k=2

1

(1− tk)2
.

We study maximal commutative subalgebras, in the sense of [NO], so following [IR18] we com-
plete this smaller subalgebra to have the same Poincare series as for generic C. This completion
is defined as the limit

lim
t→0

B(( 1 0
0 1 ) + tC ′)

and depends on the choice of direction in the tangent space to CP 3 at the point corresponding
to the unit matrix, i.e. on C ′. We consider the family of Bethe subalgebras B(C) for regular
C ∈ Mat2 and define its closure. We prove the following result:

Theorem 2.5 ([Ma21]). The closure B of the family of Bethe subalgebras in Y (gl2) is parametrized
by the points of the blow up of CP 3 at the point corresponding to ( 1 0

0 1 ).

We denote by Z this blow-up of CP 3, i.e. the parameter space of the family B.

Remark. The family B is a flat family of commutative subalgebras of Y (gl2) over Z. In [IR19]
the definition of B(C) is extended to the points of the De Concini-Procesi compactification of
the adjoint Lie group of the Lie algebra for which the Yangian is defined. And it is expected that
the limit space is some resolution of the De Concini-Procesi compactification. In our case the
algebra is gl2 and the corresponding group is PGL(2,C). Its De Concini-Procesi compactification
is CP 3.
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3. Representations of Yangians

3.1. Representations of Y (g). Since Y (g) is a Hopf algebra, the action of Yangian on tensor
products of representations can be defined.

The shift automorphism τu of Y (g) defines the shift action on representations of Y (g), i.e.

V 7→ V (u), ρ 7→ ρ ◦ τu, u ∈ C.

We will be considering representations of the Yangian Y (g) which have the form
N⊗
j=1

Wj(uj),

where Wj are “small” representations.

Definition 3.1. Kirillov-Reshetikhin module Wk,r is an irreducible representation of Y (g) gen-
erated by the highest vector v with highest weight rωk for g such that J(h)v = 0 and J(x+

α )v = 0
for all α ∈ Φ+.

Kirillov-Reshetikhin modules were defined in [KR87]. It is known that

Wk,r|g = Vkωr
⊕

⊕
s

Vλs

where λs are weights smaller than kωr.

3.2. Representations of Y (gln). It is possible to obtain Yangian representations from repre-
sentations of gln using the evaluation homomorphism

ev : Y (gln) → U(gln)

which gives a structure of Y (gln) module on every gln-module called evaluation Y (gln)-module.
The Kirillov-Reshetikhin modules defined in the general case can be obtained in this way.

In the case of Y (gln) the shift automorphism can be considered as a deformation of the action
of C on U(gln[t]) which shifts the variable t.

It is possible to generalize this construction of Y (gln)-modules using the centralizer construc-
tion of the Yangian, due to Olshansky [O]. Namely, consider the embedding glk ⊂ gln+k as the
subalgebra of lower-right block k × k-matrices, then for any k ≥ 0 there is a homomorphism

ηk : Y (gln) → U(gln+k)
glk ,

which is surjective modulo the center of U(gln+k) (in particular, we have η0 = ev). Let Vλ be
an irreducible representation of gln+k with the highest weight λ. Consider the restriction of Vλ

to glk:

Vλ =
⊕
µ

Mλµ ⊗ Vµ,

where Mλµ := Hom(Vµ, Vλ) is the multiplicity space with action of U(gln+k)
glk and therefore

is an irreducible representation of Y (gln). Representations of this form are called skew repre-
sentation of Y (gln) because they depend on the skew Young diagram λ \ µ. If Mλµ is any skew
representation of Y (gln) then we denote by Vλ\µ(z) the (irreducible) representation where the
action of Y (gln) is given by ηk ◦ τz. We also call these representations skew representations of
Y (gln).

In [NT], Nazarov and Tarasov introduce the class of tame representations, i.e. representations

of the form
⊗k

i=1 Vλi\µi
(zi) such that zi − zj ̸∈ Z for all i ̸= j. This is the class of irreducible

representations of Y (gln) such that the Cartan subalgebra H ⊂ Y (gln) acts without multiplic-
ities. So it is natural to expect similar properties for the action of Bethe subalgebras on this
class of representations of Y (gln). The eigenbasis for the Cartan subalgebra H ⊂ Y (gln), known
as the Gelfand-Tsetlin basis, is naturally indexed by semistandard skew Young tableaux and is
described explicitly. The eigenbasis for a general Bethe subalgebra B(X) is then a deformation
of the Gelfand-Tsetlin basis (being itself much less explicit).
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3.3. Representations of Y (gl2). Let L(a, b) denote the evaluation representation of Y (gl2)
which comes from the finite-dimensional representation of gln with highest weight (a, b). Then
B(x) acts on L(a, b) = L(a1, b1)⊗ . . .⊗ L(aN , bN ) for any x ∈ Z.

Any finite-dimensional irreducible representation of Y (gl2) is isomorphic to L(a, b) for some
set of weights {(ai, bi)}Ni=1.

4. Hermitian property

We will consider two different Hermitian forms on the representations of the Yangians. One
will be considered in the general case and the other only in the case of gl2. The first is compatible
with the compact form of the group and the second with the split form of the group.

4.1. Hermitian property compatible with the compact form. Let θ be the Cartan invo-
lution on g. This is an antilinear involution given by θ(xα) = −x−

α , θ(x
−
α ) = −xα, θ(hi) = −hi.

Fixed points of this antiinvolution are the compact real form gcomp of the Lie algebra g. The
corresponding subgroup Gcomp ⊂ G is compact.

On the Yangian Y (g) acts the antiautomorphism θ̂ given by θ̂(x) = θ(x), θ̂(J(x)) = −J(θ(x))
∀x ∈ g. This antiautomorphism is generalizing the antiautomorphism defined by Kirillov and
Reshetikhin in [Re].

Consider T reg
comp, the fixed points of the Cartan involution of T reg. I.e., T reg

comp = T reg∩Gcomp.

Lemma 4.1 ([Ma22]). If C ∈ T reg
comp then θ̂(B(C)) = B(C).

Being Hermitian is the sufficient condition for semisiplicity of operators, i.e. on the repre-
sentation there is a Hermitian scalar product with respect to which B(C) acts with normal
operators.

Definition 4.1. The representation π : Y (g) → End(V ) in a Hermitian space V we call Her-

mitian if π(x)+ = π(θ̂(x)) for any x ∈ Y (g).

4.2. Hermitian property compatible with the split form. In the case of g = gln we
consider a different Hermitian form on finite dimensional representations of Y (gln). This form
extends the standard form that we have on a representation of gln.

Definition 4.2. A representation V of Y (gln) is called unitary if there is a positive definite
Hermitian form ⟨·, ·⟩ on V such that for any v, w ∈ V ⟨tij(u)v, w⟩ = ⟨v, tji(u)w⟩.

We denote by ϕ+ the Hermitian conjugate operator to an operator ϕ with respect to this
Hermitian form.

Lemma 4.2 ([Ma21]). If C ∈ T reg
split then we have B(C)+ = B(C) in the representation V .

5. Main results

We have said that as the first step towards the solution of the Bethe Ansatz problem, it is
necessary to establish that the joint eigenvalues of a Bethe subalgebra have no multiplicities.
As noted, this condition is satisfied if and only if the following two conditions hold: first, there
is a cyclic vector for the Bethe subalgebra in V (i.e., v ∈ V such that B(C)v = V ) and, second,
the algebra B(C) acts on V semisimply.

In this section we will discuss under which assumptions these two conditions are satisfied.

Conjecture 5.1. B(C) acts with a cyclic vector in any irreducible finite dimensional represen-
tation of Y (g) for all C ∈ T reg.

The condition that can be verified and that guarantees semisimplicity of operators from the
Bethe subalgebra B(C) is that they act with normal operators with respect to a Hermitian form,
i.e. B(C)+ = B(C).

Conjecture 5.2. For all tensor products of Kirillov-Reshetikhin modules
⊗N

j=1 Wkj ,rj (uj) where

uj ∈ iR, B(C) acts with normal operators with respect to the Hermitian form defined in section
4.1 for C ∈ T reg

comp.
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In this thesis, we obtain several results supporting these conjectures and these are the main
results of our work. In the following subsections we will discuss them.

5.1. Y (g) case for simple g. For the cyclic vector condition we consider representations for
which Wk,r|g = Vkωr . According to [KR87], for all classical Lie algebras such representations
exist. In particular, in type A all Kirillov-Reshetikhin modules are of this form, and in type C
all Kirillov-Reshetikhin modules with r = 1 are of this form. Also in the orthogonal case the
spin representation has such a form.

Theorem 5.3 ([Ma22]). If Wk,r is a Kirillov-Reshetikhin module satisfying the condition above,
then for all C ∈ T reg for generic uj, i.e. a Zariski open subset in C⊗N , Bethe algebra B(C)
acts in representation V =

⊗
j Wkj ,rj (uj) with a cyclic vector.

Now we state the result on the semismplicity.
Consider T reg

comp, the fixed points of the Cartan involution on T reg. I.e. T reg
comp = T reg∩Gcomp.

Theorem 5.4 ([Ma22]). Let V be a representations of the Yangian Y (g) which is a tensor
product of representations Wk,r(u) where u ∈ iR with the condition that Wk,r is irreducible as
g-module. Then V is Hermitian.

The main result of our work in this general case is the following:

Corollary 5.5. If C ∈ T reg
comp, the spectrum of Bethe subalgebra B(C) is simple in representa-

tions that satisfy the conditions of Theorems 5.3 and 5.4.

5.2. Cyclic vector and simplicity of spectrum, Y (gln) case. Let X ∈ M0,n+2 and consider
the Bethe subagebra B(X). Our conjecture in this setting is as follows:

Conjecture 5.6. B(X) has a cyclic vector in any tame representation of Y (gln) for all X ∈
M0,n+2.

In fact, it is easy to see that the Conjecture is true for generic X, z1, . . . , zN . Indeed, consider
the parameter space M0,n+2 × CN . The condition that B(X) acts with a cyclic vector on⊗N

i=1 Vi(zi) determines a Zariski open subset of M0,n+2 × CN , therefore once we have a single

point (X, z1, . . . , zN ) ∈ M0,n+2×CN such that B(X) acts with a cyclic vector on
⊗N

i=1 Vi(zi) we
automatically have the same property for generic (X, z1, . . . , zN ). On the other hand, according
to [NT] the Gelfand-Tsetlin subalgebra of Y (gln) (which is a particular case of B(X)) acts
without multiplicities on any tame representation, so has a cyclic vector. Hence this Zariski-open
subset is non-empty. The problem with this argument is that it does not give any representation
such that B(X) acts cyclicly for all X ∈ M0,n+2.

Theorem 5.7 ([IMR]). There is a Zariski open dense subset of I ⊂ CN such that B(X) has a
cyclic vector in V for all X ∈ M0,n+2 and (z1, . . . , zN ) ∈ I.

Particularly, in a generic tame representation in the sense of [NT] every Bethe subalgebra
B(X) with X ∈ M0,n+2 acts with a cyclic vector. This allows to study the joint spectrum

of B(X) in a given tame representation as a finite covering of M0,n+2 and reformulate some
properties of this spectrum in terms of geometry of Deligne-Mumford compactifications.

Theorem 5.8 ([IMR]). Let Wk,r be a Kirillov-Reshetikhin module such that its weights have
no multiplicities. Then for all C ∈ T reg for generic uj ∈ iR Bethe subalgebra B(C) acts in the
representation V =

⊗
j Wkj ,rj (uj) with a cyclic vector.

Another main result of this work is the following theorem. It was first proved in type A by
Reshetikhin [Re] for g = sl3.

Theorem 5.9 ([Ma22]). Let V be a representation of the Yangian Y (g) such that V is a tensor
product of representations Wk,r(u) where u ∈ iR and Wk,r is irreducible as a g-module. Then
V is Hermitian (in the sense of definition 4.1).
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Theorem 5.7 implies that once B(C) acts semisimply, it has simple spectrum (i.e. the joint
eigenvalues have no multiplicities). The usual sufficient condition for this is the existence of a
Hermitian scalar product such that B(C)+ = B(C) i.e. all elements of B(C) act by normal
operators. We give sufficient conditions on the representation of the Yangian guaranteeing that
such scalar product exists provided that C belongs either to the closure of the set of regular
elements of the compact real torus Tcomp ⊂ T or to that of the split real torus Tsplit ⊂ T . So
we get

Corollary 5.10 ([IMR]). For C ∈ T reg
comp the spectrum of Bethe subalgebra B(C) in represen-

tations satisfying the conditions of Theorems 5.8 and 5.9 is simple.

The case of the compact torus goes back to Kirillov and Reshetikhin [KR86]. Then Wk,r(u)

is a different notation for Vkωr (
ki

2 − ri
2 + u). Note that the closure of the set of regular points

of the compact torus Tcomp in M0,n+2 is the compact form M comp
0,n+2. Therefore for the gln case

we obtain:

Theorem 5.11 ([IMR]). Suppose that all Vi’s are Kirillov-Reshetikhin modules. Let ki × ri be
the size of the corresponding Young diagram. Suppose that zi =

ki

2 −
ri
2 +ixi, where xi ∈ R. Then,

for (x1, . . . , xN ) ∈ RN from Zariski open subset, B(X) has simple spectrum on
⊗N

i=1 Vi(zi) for

all X ∈ M comp
0,n+2.

The closure of the set of regular points of the split real torus Tsplit in M0,n+2 is the real form

Msplit
0,n+2. Our next main result is

Theorem 5.12 ([IMR]). Let Vi, i = 1, . . . , N be a set of skew representations of Y (gln). Then,
for (x1, . . . , xN ) from a non-empty Zariski open subset in RN , B(X) has simple spectrum on⊗N

i=1 Vi(xi) for all X ∈ Msplit
0,n+2.

5.3. Y (gl2) case. In the case of Y (gl2) we were able to find explicitly the Zariski open subset
we discussed before.

A string is a set S(a, b) = {a − 1, a − 2, . . . , b + 1, b} for a, b ∈ C, a > b, a − b ∈ Z. It is
known that the representation L(a, b) = L(a1, b1)⊗ . . .⊗L(aN , bN ) is irreducible if and only if,
for any 1 ⩽ i < j ⩽ N , one of three possibilities hold: S(ai, bi) ∪ S(aj , bj) is not a string, or
S(ai, bi) ⊂ S(aj , bj), or S(ai, bi) ⊃ S(aj , bj).

We have the following two results:

Theorem 5.13 ([Ma21]). The action of any algebra in the family B in L(a1, b1)⊗. . .⊗L(aN , bN )
has a cyclic vector, if, for any 1 ⩽ i < j ⩽ n, S(ai, bi) ∪ S(aj , bj) is not a string.

Secondly, we restrict to the closure of the subfamily corresponding to real diagonal matrices
parametrized by the points of RP 1 ≃ Z ′ ⊂ Z (see Theorem 2.5 for the definition of Z).

Theorem 5.14 ([Ma21]). For any x ∈ Z ′ and any a1, b1 . . . , aN , bN ∈ R such that (ai, bi) and
(aj , bj) are disjoint and S(ai, bi)∪S(aj , bj) is not a string for each pair i, j, the subalgebra B(x)
acts on L(a1, b1)⊗ . . .⊗ L(aN , bN ) with simple spectrum.

6. Further development

Theorem 5.11 allows to regard the set of eigenlines for B(X) in
⊗k

i=1 Vi(zi) as an unramified

covering of the space M comp
0,n+2. In particular, we get the monodromy action of the fundamental

group π1(M
comp
0,n+2) (which is natural to call (pure) affine cactus group) on the spectrum of Bethe

subalgebras. Moreover, it is possible to define the structure of a Kirillov-Reshetikhin crystal on
this spectrum, following the strategy of [HKRW] (see [KMR]). We expect that the action of the
affine cactus group on this set is given by partial Schutzenberger involutions on the KR-crystal.

Similarly to the case of the compact real form, Theorem 5.12 gives an action of the usual

cactus group π1(M
split
0,n+2) on the spectrum of a Bethe algebra. Specializing the parameter of

the Bethe algebra to the caterpillar point of Msplit
0,n+2 we get an action of the cactus group on
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the Gelfand-Tsetlin basis in the tensor product of skew representations. The latter is indexed
by collections of semistandard skew Young tableaux, and we conjecture that the action of the
cactus group is given by Bender-Knuth involutions, similarly to the construction of Chmutov,
Glick and Pylyavskyy [CGP].

The main results of the thesis are presented in two papers: I. I. Mashanova-Golikova
Simplicity of spectra for Bethe subalgebras in Y (gl2). Arnold Math J. (2021)

II. I. Mashanova-Golikova Hermitian property and simplicity of spectra of Bethe subalgebras
in Yangians. Funct. Anal. and its Appl. (2022) accepted for publication
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