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Introduction

The thesis is devoted to the study of the sl2 weight system. Weight sys-
tems are assigned to invariants of knots of finite order. Weight systems are
functions on chord diagrams (combinatorial objects having the form of an ori-
ented circle with a set of chords on it). In particular, the sl2 weight system
corresponds to the colored Jones polynomial.

Despite the simplicity of the definition, computing the values of the sl2
weight system is a cumbersome and meaningful problem. We computed the
values of the sl2 weight system on certain families of graphs, representing
a join of a given graph with discrete graphs, namely, on complete bipartite
graphs (joins of two discrete graphs) and on the joins of the cycle on five
vertices with discrete graphs. We denote the join of a graph G with a discrete
graph on n vertices by (G, n). If G is the C5 graph, a cycle on 5 vertices, then
graphs (G, n) are not intersection graphs of chord diagrams for n ≥ 1. The
family (C5, n) is the first infinite family of graphs that are not intersection
graphs, for which the values of the sl2 weight system are known.

In addition, we prove an explicit formula for the projections of graphs
of series (G, n) to the subspace of primitive elements along the subspace of
decomposable elements in the Hopf algebra of graphs. Our formula expresses
the exponential generating function for projections of graphs (G, n), n =
0, 1, 2, . . . in terms of exponential generating functions for graphs (H,n), n =
0, 1, 2, . . ., where H are all possible subgraphs of the graph G. Applying this
formula to the explicit values of the sl2 weight system on the specified series
of graphs we deduced, we compute its values on projections of these graphs
to the subspace of primitive elements. In particular, the results obtained
confirm the following conjecture due to S. Lando: the value of the sl2 weight
system on the projection of the graph onto the subspace of primitive elements
is a polynomial of degree at most half of the circumference (that is, the length
of the longest simple circle) of the graph.
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Part I

General theory

1 Theory of Vassiliev invariants

Vasiliev’s wide-reaching theory of complements to discriminants and the
topology of these complements [1] has an important part: the theory of
Vasiliev knot invariants. A knot is an isotopy class of embeddings of the
oriented one-dimensional circle to the space S1 → R3. A knot invariant is a
function on the set of knots. A singular knot is a class of isotopy of mappings
u : S1 → R3, such that

1. u′(t) 6= 0 for all t ∈ S1;

2. all self-intersection points of the image u(S1) are simple double points
with transversal self-intersections (that is, if u(t1) = u(t2), t1, t2 ∈ S1,
t1 6= t2, then there is no point t3 ∈ S1 different from t1 and t2 such that
u(t3) = u(t1) = u(t2), and the two tangent vectors u′(t1) and u′(t2) are
not collinear).

As it is easy to see, the number of double points of a singular knot is finite.
V. A. Vasiliev proposed a way (Vasiliev’s skein relation) to extend each in-
variant of knots with values in an abelian group to an invariant of singular
knots. A knot invariant is called Vasiliev invariant of order at most n if its
extension vanishes on all singular knots having more than n double points.

The notion of a finite type invariant extends naturally to the invariants
of links (“multicomponent knots”). Many classical knot invariants, e.g. the
Conway polynomial or the HOMFLYPT polynomial, are expressed in some
way in terms of finite type invariants, although they are not invariants f finite
type themselves.

Vasiliev’s knot invariants (also known as finite type invariants) have a
number of advantages, which make them a convenient and important tool
for studying knots and links. Let us list them following [14]. First, the space
of invariants of an order not greater than a given one is finite-dimensional,
and there is an a priori upper bound on its dimension. In addition, each
space of invariants of a fixed degree is algorithmically computable. Further,
for each Vasiliev invariant, there exists a polynomial-time algorithm for com-
puting this invariant. Finally, Vasiliev invariants are stronger than all known
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classical polynomial knot invariants (Alexander, Jones, Kaufmann, Conway,
HOMFLYPT polynomials, etc.). V. A. Vasiliev’s conjecture states that for
any two different knots there exists an invariant of finite order distinguishing
them. Note, however, that until now prospective approaches to the proof of
this conjecture are not known, as well as ways to construct counterexamples
to it.

2 Hopf algebras of graphs and chord diagrams

Functions on chord diagrams are closely related to graph invariants. The
structure of many of the naturally occurring invariants, in turn, is closely
related to Hopf algebra structures on spaces of graphs and chord diagrams.
In this section, we describe the corresponding structures.

2.1 Hopf algebras of graphs

By a graph we mean an isomorphism class of simple (i.e., having no multiple
edges or loops) finite graphs. Formal linear combinations of graphs form a
vector space graded by the number of vertices of a graph.

The product of graphs G1 and G2 is their disjoint union: G1G2 := G1 t
G2. This multiplication is extended to the space of graphs by linearity. It
preserves the grading and defines a structure of a graded algebra on this
space.

Denote by V (G) the vertex set of a graph G. The coproduct µ of a
graph G is defined as follows:

µ(G) :=
∑

U⊂V (G)

G|U ⊗G|V (G)\U .

Here, G|U denotes the subgraph in G induced by a subset U ⊂ V (G) of its
vertex set. As well as the multiplication, the comultiplication is extended to
linear combinations of graphs by linearity and preserves the grading, i.e., we
have introduced a structure of a graded coalgebra on the space of graphs.
Moreover, it is true that

Claim 1. The multiplication and comultiplication introduced above, together
with the naturally defined unit, counit, and antipode, define the structure of
the graded commutative and co-commutative Hopf algebra on the space of
graphs.
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This structure of Hopf algebra on the space of graphs was introduced
in [13], and it was Tutte [24] who suggested to consider the disjoint union of
graphs as a multiplication.

Denote by G the Hopf algebra of graphs and by Gn the homogeneous
vector subspace in it, spanned by the graphs with n vertices, n = 0, 1, 2, . . . ,
so that

G = G0 ⊕G1 ⊕G2 ⊕ . . .
In connection with the theory of finite type knot invariants, we will also

be interested in the Hopf algebra of graphs modulo the so-called four-term
relations for graphs :

G−G′AB − G̃AB + G̃′AB = 0,

where G is a graph, A,B are two vertices in G, A,B ∈ V (G), G′AB is the

graph G in which the incidence of vertices A and B is reversed; G̃AB is the
graph G in which for each vertex connected with B its incidence with A is
reversed. Note that all the four graphs entering the four-term relation have
the same number of vertices. As a consequence, this relation preserves the
grading, and the corresponding quotient Hopf algebra is also graded. We
denote it by F. Referring to the elements of the Hopf algebra F, we will say
“a graph” meaning its equivalence class modulo four-term relations.

There are noteworthy Hopf subalgebras in the Hopf algebra of graphs.
One such Hopf subalgebra is generated by complete graphs. Another example
(a whole family of Hopf subalgebras) is constructed using the construction
of graph join. The join of two simple graphs G and H is a graph obtained
by adding all edges connecting the vertices of G with the vertices of graph H
in the disjoint union G t H of these graphs. For n = 0, 1, 2, . . ., we denote
by (G, n) the join of G and the discrete graph on n vertices.

Some families of graphs of this form always consist of intersection graphs
of chord diagrams (see below), for example, complete bipartite graphs. How-
ever, using this construction it is easy to construct an infinite series of graphs
that are not intersection graphs.

Any induced subgraph of a graph (G, n) has the form (H, k), where H
is a subgraph of G, and k ≤ n. Graphs of the form (H,n), where H is a
subgraph of G, n ∈ N∪ {0}, generate a Hopf subalgebra in the Hopf algebra
G. If G0, G1, G2, . . . is a sequence of graphs in which each graph is an induced
subgraph of the next one, then the corresponding Hopf subalgebras form a
chain of embedded Hoph subalgebras.
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2.2 The Hopf algebra of chord diagrams

A chord diagram of order n is an oriented circle with 2n pairwise distinct
points in it, split into n pairs, considered up to orientation-preserving dif-
feomorphisms. Points belonging to the same pair are usually depicted by
a chord connecting them. Two chords are said to intersect if their ends
alternate in the circle.

Formal linear combinations of chord diagrams form a graded vector space.
Each homogeneous component in it is spanned by diagrams of the same order.
Vasiliev’s four-term relation for chord diagrams has the form

− + − = 0

(1)

Here and below, unless otherwise indicated, the dashed line indicates the
parts of the circle that may contain some set of chords which is the same in
all the diagrams of the relation.

The diagrams of the four-term relation are constructed as follows: one of
the chords is fixed, one of the ends of the other chord is also fixed, while the
other end runs through all the four possible positions close to the two ends
of the first chord. (The ends of chords are said to be close to each other if
there are no ends of other chords between them.)

Let us introduce multiplication and co-multiplication both preserving the
grading on the vector space of chord diagrams modulo all possible four-term
relations.

Definition 1. An arc diagram of order n is an oriented line with 2n pairwise
distinct points chosen in it, split into n pairs, considered up to orientation
preserving diffeomorphisms of the line.

Let us choose a point on a chord diagram different from the ends of the
chord, “cut” the circle at this point and unfold it into a straight line. In
this way we obtain an arc representation of the chord diagram (an example
is shown in Fig. 1). A chord diagram of order n can have up to 2n dif-
ferent arc representations. In contrast, an arc diagram uniquely defines the
corresponding chord diagram.

Product of chord diagrams C1 and C2 is the chord diagram corresponding
to the arc diagram obtained by the concatenation of two arc representations
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Figure 1: Example of a chord diagram and the corresponding arc diagram

· = =

Figure 2: Multiplication of chord diagrams

of of C1 and C2 (see Fig. 2). The product of the chord diagrams is well defined
(i.e., the result is independent of the choice of the arc representations of the
factors) modulo four-term relations.

Denote by V (C) the set of chords of a chord diagram C. The coproduct
µ(C) is defined as follows:

µ(C) :=
∑

U⊂V (C)

C|U ⊗ C|V (C)\U .

Here, C|U denotes the chord diagram formed by a subset U ⊂ V (C) of the
chord diagram set C.

Multiplication and comultiplication are extended to linear combinations
of chord diagrams by linearity and preserve the grading.

As proved by Bar-Natan [2], these operations turn the vector space of
chord diagrams modulo four-term relations into a Hopf algebra. We denote
this Hopf algebra by C,

C = C0 ⊕ C1 ⊕ C2 ⊕ . . . ,
where Ck denotes the vector space spanned by chord diagrams with k chords,
modulo the four-term relations.

To each chord diagram, a simple graph is assigned using the construction
of intersection graph. The vertices of this graph correspond to the chords
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of the chord diagram, and there is an edge between two vertices if and only
if the corresponding chords intersect. This mapping is neither injective nor
surjective: on one hand, it is easy to give an example of two distinct chord
diagrams having the same intersection graph, on the other hand, not every
simple graph is an intersection graph. Bouchet [4] presented a complete set
of obstacles for a graph to be an intersection graph of any chord diagram.
The mapping that maps a chord diagram to its intersection graph is extended
to a graded homomorphism of a Hopf algebra C to the Hopf algebra F (see
[19]). Starting with order 7, this homomorphism is not injective, it has a
non-trivial kernel; the question whether it is surjective remains open.

2.3 Primitive elements in Hopf algebras

In the study of the structure of Hopf algebras, the so-called primitive elements
play an important role. The Milnor–Moore theorem [22] states, that over a
field of characteristic zero a connected commutative cocommutative graded
bialgebra is isomorphic to the polynomial bialgebra generated by its primitive
elements. An element p of a bialgebra with comultiplication µ is called
primitive if µ(p) = 1 ⊗ p + p ⊗ 1. A graded bialgebra is called connected
if its zero homogeneous component is isomorphic to the ground field. As it
is easy to see, these conditions are satisfied for the Hopf algebras G, F and
C. In polynomial Hopf algebras, the projection to the subspace of primitive
elements along the space of decomposable element is defined. An explicit
formula for this projection was proposed by Lando [19]. We consider the
projection π in the Hopf algebras of graphs, but there is a similar formula
for the Hopf algebra of chord diagrams:

π(G) :=
∑

V1t...tVk

(−1)k−1(k − 1)!G|V1G|V2 . . . G|Vk . (2)

Here and below, we denote by G|U the subgraph of a graph G induced by a
subset U ⊆ V (G) of its vertex set. We sum over all representations of the
set V (G) as a disjoint union of nonempty subsets.

The universal formula for this projection in polynomial Hopf algebras
represents it as the logarithm of the identity homomorphism (see [18], [23]).
However, for graphs of general form computations using this formula are
cumbersome. In the special case of graphs of the form (G, n), n = 0, 1, 2, . . .
the calculations related to the projections to the space of primitive elements
become significantly simpler.
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3 Weight systems

3.1 Constructing weight systems by graph invariants

To each singular knot, its chord diagram is assigned: the ends of its chords are
the preimages of double points of the singular knot. The value of a Vasiliev
invariant of order n on a singular knot with exactly n double points depends
only on the chord diagram of this knot. With such a correspondence, a
Vasiliev invariant of order at most n determines a function on chord diagrams
with n chords. In this case, it turns out that the resulting functions f
must satisfy two relations: the so-called one-term and the essentially more
important four-term (3).

f

( )
−f
( )

+f

( )
−f
( )

= 0

(3)
According to the Kontsevich theorem [14], every function on chord dia-

grams with values in a commutative algebra over a field of characteristic zero
that satisfies the one- and four-term relations is obtained from a knot invari-
ant of order at most n. In addition, there exists a renormalization operation
which allows one to construct from each function satisfying the four-term re-
lations a function that also satisfies the one-term relations. A weight system
is a function on chord diagrams that satisfies the four-term relations. For
simplicity, we consider weight systems with values in the field C of complex
numbers.

Thus, weight systems are elements of the graded dual Hopf algebra to
the Hopf algebra C. Note that the multiplication and comultiplication of
chord diagrams arise naturally: they correspond to the dual operations on
the bialgebra of knot invariants.

3.2 Constructing weight systems from Lie algebras

One of the richest sources of weight systems is provided by the construction
of a weight system from a finite-dimensional Lie algebra endowed with a
nondegenerate invariant bilinear form. This construction was proposed by
Bar-Natan [2] and Kontsevich [14].
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xi1 xi1xi2 xi2xi3 xi3xi4 xi4xi5 xi5

Figure 3: Calculating the value of the weight system corresponding to a Lie
algebra with an orthonormal basis x1, . . . , xm on an arc diagram correspond-
ing to a chord diagram.

Let g be a finite-dimensional complex Lie algebra of dimension m and
let (·, ·) be a nondegenerate invariant bilinear form on g. The bilinear form
is invariant if for any x, y, z ∈ g it is true that ([x, y], z) = (x, [y, z]). Let
X = {x1, x2, . . . , xm} be an orthonormal basis of g, (xi, xj) = δij. Denote by
U(g) the universal enveloping algebra of the Lie algebra g. We construct the
map wg : C→ U(g) as follows.

Let D be a chord diagram, let A be some arc representation of it, let V (A)
be the set of arcs of this arc diagram, and let ν be a mapping ν : V (A) →
{1, 2, . . . ,m}. Let us associate with the diagram A and the mapping ν an
element wX(A, ν) ∈ U(g) as follows: for each arc v ∈ V (A), we write the
element xν(v) ∈ X at both its ends and denote by wX(A, ν) the result of
multiplication of these elements from left to right. Denote by wX(A) the
sum over all such mappings ν:

wX(A) :=
∑

ν:V (A)→{1,...,m}

wX(A, ν). (4)

For example, the value of the weight system corresponding to a Lie algebra
with an orthonormal basis x1, . . . , xm, on the arc diagram shown in Fig. 3
equals

m∑

i1=1

m∑

i2=1

m∑

i3=1

m∑

i4=1

m∑

i5=1

xi1xi2xi3xi2xi4xi1xi5xi3xi4xi5 .

Claim 2 ([14]). 1. For any element C ∈ C the result of such an opera-
tion is uniquely defined and does not depend on the choice of an arc
representation of a chord diagram C.
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2. For any arc diagram A the element wX(A) lies in the center of the
universal enveloping algebra: wX(A) ∈ Z(U(g)).

3. The value of wX(A) does not depend on the choice of the orthonormal
basis.

4. The mapping of chord diagrams to Z(U(g)) thus obtained satisfies the
four-term relations and thus is extended to a homomorphism of com-
mutative algebras.

Since the product of chord diagrams is given by the concatenation of
the corresponding arc diagrams, the weight system corresponding to a Lie
algebra is multiplicative. Note that the given construction is easily modified
for the case of an arbitrary (not necessarily orthonormal) basis in g: it is
only necessary to put xi at the left end of the arc with index i, and at its
right end the element x∗i of the dual basis. We will apply this construction
to the Lie algebra sl2 in such a form.

In the thesis we study in detail the properties of the simplest of such
weight systems which corresponds to the Lie algebra sl2. This weight system
will be discussed in detail below.

A weight system corresponding to the Lie algebra sl3 is much more com-
plicated and lacks many of the properties of the sl2 weight system which, in
particular, make computations of the sl2 weight system much easier. This
weight system was studied, for example, in [17], and in [27] its values at chord
diagrams with intersection graph K2,n were calculated. In the recent article
[28] a significant progress in understanding of the weight systems constructed
from the Lie algebras glN , for arbitrary N , is described.

The construction of weight systems from Lie algebras has been general-
ized to Lie superalgebras by A. Vaintrob [25]. In [9], this construction was
considered in detail for the special case of a Lie superalgebra gl(1 | 1). In
particular, a recurrence relation for the values of gl(1 | 1) weight system was
obtained there.
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Part II

The sl2 weight system

4 Main properties of the sl2 weight system

The simplest case of the construction described in the previous section is the
weight system corresponding to the Lie algebra sl2, or, more briefly, the sl2
weight system. The knot invariant to which this weight system corresponds
is the colored Jones polynomial. The values of this weight system lie in the
center of the universal enveloping algebra of the Lie algebra sl2, that is, they
are polynomials in one variable c (the Casimir element in sl2). Its value on
a chord diagram with n chords is a monic polynomial of degree n.

The weight system corresponding to the Lie algebra sl2 has been stud-
ied in detail in the article by S. V. Chmutov and A. N. Varchenko [8]. In
particular, the following relations were derived there:

1. if a diagram D contains a leaf, that is, a chord intersecting only one
chord, then

wsl2(D) = (c− 1)wsl2(D
′), (5)

where D′ denotes the chord diagram obtained from D by removing the
leaf;

2. if there is no leaf in the chord diagram, then it has a triplet of chords
arranged as shown in the left-hand side of one of the following equa-
tions;

3. if the chords are arranged this way, then for the values of the sl2 weight
system the following equations hold:

= − + + −
.

= − + + −
.
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= − + + −
.

= − + + −
.

The six-term relations given here allow one to simplify a chord diagram by
reducing the number of chord intersections. In addition, in the same article
[8] a recurrence relation is derived from these relations, which allows one to
reduce by one the number of chords in a diagram.

5 The sl2 weight system on graphs

In the article by S. V. Chmutov and S. K. Lando [7] it is proved, that the
value of the sl2 weight system on a chord diagram depends only on its inter-
section graph and thus determines a function on intersection graphs. This
result leads to the natural question formulated by S. K. Lando: is there an
extension of this weight system to a polynomial invariant of graphs that sat-
isfies the four-term relations for graphs? For all graphs with no more than
eight vertices such an extension exists and is unique, as shown by E. S. Krasil-
nikov [15].

One possible approach to find an extension of the sl2 weight system to
a polynomial invariant of arbitrary graphs is to define some polynomial in-
variant of arbitrary graphs satisfying the four-term relations for graphs and
coinciding with the sl2 weight system on intersection graphs. In order to
realize this, it is necessary to have a sufficient number of examples of values
of the sl2 weight system on different families of graphs.

For instance, the values of the sl2 weight system on complete graphs have
recently been computed: P. E. Zakorko proved the following conjecture of
S. K. Lando (2016, see [3]) about an explicit form of the generating function
for these values:

Claim 3. The generating function for the sequence of values of the weight
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system wsl2 on complete graphs K0, K1, K2, . . . is a continuous fraction

∞∑

n=0

wsl2(Kn)tn =
1

1− α0(c)t−
β1(c)t

2

1− α1(c)t−
β2(c)t

2

1− α2(c)t−
β3(c)t

2

1− . . .

,

the coefficients of which have the following form

αn(c) = c− n(n+ 1), βn(c) = −n2c+
n2(n2 − 1)

4
.

5.1 Algebra of shares and computation of values of the
sl2 weight system on complete bipartite graphs

The main results of the thesis include explicit formulas for the values of the
sl2 weight system on some families of graphs and methods for obtaining them.
We describe the approach using which we obtained in the thesis a recurrence
formula for the generating functions for sequences of the values of the wsl2

weight system on complete bipartite graphs.
A share in a chord diagram is a pair of non-intersecting arcs of a chord

diagram such that if an end of a chord lies on one of these arcs, then its
second end also lies on one of these arcs. Given a share, one may obtain a
chord diagram by closing a share (adding an empty share as a complement).

All the possible shares span a vector space, and we define the sl2 weight
system on it. Its values lie in a commutative subalgebra of the tensor square
U(sl2)⊗U(sl2) of the universal enveloping algebra of the Lie algebra sl2. This
commutative subalgebra is generated by three elements which we denote by
c1, c2, ξ. For this weight system, analogues of the four-term and Chmutov–
Varchenko relations hold, and the proof of this fact is almost the same as the
proof for chord diagrams. We work with the quotient space of the vector space
of shares modulo these relations. Using the Chmutov–Varchenko relations,
we conclude that each element of this vector space admits a representation
in the form of a linear combination of shares of a simpler kind such that
the values of the sl2 weight system on them have the form (c1 − 1)k1(c2 −
1)k2cn1

1 c
n2
2 ξ

N , k1, k2, n1, n2, N ∈ N ∪ {0}. On the set of shares, we can define
multiplication as the concatenation of the shares and extend it by linearity to
all the elements of the quotient space. In this way, we introduce an associative
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algebra structure in it; we denote this algebra by S. Further, it follows from
the existence of such a representation that the sl2 weight system gives a
homomorphism from the algebra of shares to the algebra of polynomials in
ξ whose coefficients are polynomials in c1, c2. Moreover, this homomorphism
is an isomorphism.

Following the approach proposed by P. E. Zakorko, we introduce opera-
tors of adding a chord, which we denote by Sk, k = 1, 2, (we use only the
operator S1 further on) and X, on the algebra of shares and corresponding

(in the sense of the said homomorphism) operators S̃1, X̃ on the polyno-
mial algebra. Again using the six-term Chmutov-Varchenko relations and
the four-term relations, we derive recurrence formulas for the action of these
operators. Using them, we obtain a generating function for the matrix coeffi-
cients of the operator S̃1 in the basis 1, ξ, ξ2, . . .. (We denote these coefficients
by si,m,m = 0, 1, 2, . . . ; i = 0, 1, 2, . . . ,m). In addition, we compute the lead-

ing matrix coefficients sm,m explicitly. It turns out that sm,m = c− m(m+1)
2

.
To deduce formulas for the values of the sl2 weight system on chord di-

agrams with a complete bipartite intersection graph Kn,m (we denote such
chord diagrams by Bn,m, n,m = 0, 1, 2, . . .) we introduce a specialization,
that is, a mapping from the algebra of shares to the algebra of generating
functions that maps the share such that the value of the sl2 weight system on
it equals ξm to the ordinary generating function Gm for the values of the sl2
weight system on the chord diagrams B0,m, B1,m, B2,m, . . .. Using this special-
ization, we obtain a formula that expresses Gm in terms of G0, G1, . . . , Gm−1
and the matrix coefficients of the operator S1.

Theorem 1. A sequence of ordinary generating functions Gm(t) for the val-
ues of the sl2 weight system on complete bipartite graphs satisfies the initial
condition G0(t) = 1

1−t·c and the recurrence relation

Gm(t) =
cm + t

∑m−1
i=0 si,mGi(t)

1− t ·
(
c− m(m+1)

2

) ,

where si,j stands for the coefficients given by the following generating func-
tion:

∞∑

m=0

S1(ξ
m)tm =

∞∑

m=0

m∑

i=0

si,mξ
itm

=
1

1− ξt

(
c1 +

c1c2t
2 − ξt

1− (2ξ − 1)t− (c1 + c2 − ξ2 − ξ)t2
)
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It follows that

Theorem 2. The ordinary generating function Gm(t) for the values of the
sl2 weight system on complete bipartite graphs K0,m, K1,m, K2,m, . . . is a linear

combination of geometric progressions of the form
∑m

k=0
pm,k(c)

1−t(c− k(k+1)
2 )

, where

pm,k(c) are polynomials of degree at most m.

Corollary 1. The exponential generating function

Gm(t) :=
∞∑

n=0

wsl2(Kn,m)
tn

n!

for the values of the sl2 weight system on complete bipartite graphs K0,m, K1,m, K2,m, . . .
is a linear combination of the form

m∑

k=0

Pm,k(c) exp

(
t

(
c− k(k + 1)

2

))
, (6)

where Pm,k(c) are polynomials of degree at most m.

Corollary 2. For any G which is an intersection graph of a chord diagram
obtained by closing some share with both ends of each chord lying on different
arcs, the exponential generating function

GG(t) :=
∞∑

n=0

wsl2((G, n))
tn

n!

for the values of the sl2 weight system on graphs of the form (G, 0), (G, 1), (G, 2), . . .
is a linear combination of the form

GG(t) =

|V (G)|∑

k=0

pG,k(c) exp

(
t

(
c− k(k + 1)

2

))
,

where pG,k(c) are polynomials of degree at most |V (G)|.

5.2 The sl2 weight system and the projections to the
space of primitive elements

Many graph invariants behave naturally with respect to the structure of the
Hopf algebra of graphs. Such invariants are significantly simplified under the
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projection (2) to the subspace of primitive elements. For example, the value
of the chromatic polynomial on π(G) is the linear term of the chromatic
polynomial of the graph G (see [5]).

S. K. Lando conjectured that the value of the sl2 weight system on the
projection of a chord diagram is a polynomial of degree at most half the
circumference (length of the longest circle of its intersection graph).

In the proof of this statement for some infinite series of graphs the fol-
lowing formula (7) obtained in the thesis proved useful.

For an arbitrary graph G we introduce exponential generating functions

GG(x) := x|V (G)|
∞∑

n=0

(G, n)
xn

n!
,

PG(x) := x|V (G)|
∞∑

n=0

π((G, n))
xn

n!
.

Theorem 3. The generating function PG(x) is equal to

PG(x) =
∑

V1t...tVk=V (G)

(−1)k−1(k − 1)!GG|V1 (x)GG|V2 (x) · · · GG|Vk (x) (exp(−K1x))k ,

(7)

where the summation is over all representations V (G) = V1 t · · · t Vk of the
set V (G) as a disjoint union of nonempty subsets.

Note that the structure of this formula resembles the formula (2) by Lando
for the projection of a graph.

It follows from Theorem 3 and Corollary 1 that the following theorem is
true:

Theorem 4. The value of the sl2 weight system on the projection of a com-
plete bipartite graph to the space of primitive elements is a polynomial in
c such that its degree is less than or equal to the number of vertices in the
smaller of the two parts.

Thus, for complete bipartite graphs, Lando’s conjecture assering that
the value of the sl2 weight system on the projection of a chord diagram to
the space of primitive elements is a polynomial of degree at most half the
circumference of its intersection graph is true.
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Moreover, it follows from Corollary 2 that the same is true also for a more
wide family of graphs:

Corollary 3. Under the assumptions of Corollary 2, the exponential gener-
ating function PG(t) for the values of the sl2 weight system on the projections
of graphs of the form (G, 0), (G, 1), (G, 2), . . . is a linear combination of the
form

|V (G)|∑

k=0

FG,k(c) exp(k · t), (8)

where FG,k(c) are polynomials of degree at most |V (G)|.

Note that in [27] the values of the weight system sl3 on the projections
of chord diagrams with the intersection graph K2,n are discussed.

5.3 Values of the sl2 weight system on a family of
graphs that are not intersection graphs

If a graph G is not an intersection graph of any chord diagram, then the
value of the sl2 weight system on it is undefined. However, such a graph
may be equivalent to a linear combination of intersection graphs modulo
the four-term relations. In this case, we can determine the value of the sl2
weight system on it as the corresponding linear combination of the values
of the sl2 weight system on intersection graphs. Generally speaking, such a
definition can depend on the way in which the graph G is represented as a
linear combination of intersection graphs. The question of existence of a well
defined extension remains open. At the same time, if we have found such a
representation, then it determines the possible extension uniquely.

Let C5 be a cycle on 5 vertices. If n > 0, then the graph (C5, n) is not
an intersection graph. However, with the use of a single four-term relation
for any n > 0 such a graph is represented as a linear combination of three
intersection graphs and thus the value wsl2((C5, n)) appears as a linear com-
bination of the values of wsl2 on the corresponding chord diagrams. This
allows us to compute it explicitly.

Theorem 5. If the sl2 weight system admits an extension to graphs (C5, n),
n = 0, 1, 2, . . . that satisfies the four-term relation for graphs, then the gen-
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erating function for its values on these graphs has the form

x5·
∞∑

n=0

wsl2((C5), n)xn

n!
=

1

630
cx5
(
(270c4 − 540c3 − 999c2 + 576c+ 324)e(c−1)x

+ (280c4 − 1610c3 + 3234c2 − 2646c+ 756)e(c−6)x

+ (80c4 − 1000c3 + 4065c2 − 6120c+ 2700)e(c−15)x
)

(9)

Theorem 6. Under the assumptions of the previous theorem, the generating
function for the values of the extension of the sl2 weight system on the pro-
jections onto the space of primitive elements of graphs (C5, n), n = 0, 1, 2, . . .
is equal to

x5·
∞∑

n=0

wsl2(π((C5, n)))xn

n!
=

1

630
cx5·

(
(480c4 + 720c3 − 159c2 + 576c+ 324)e−x

+ (−5040c4 − 5040c3 + 315c2)e−3x + (4080c4 + 1620c3 − 3990c2 + 360c)e−4x

+ 15120c4e−5x + (−25760c4 + 19600c3 + 1974c2 − 2646c+ 756)e−6x

+ (8400c4 − 12600c3 + 4725c2)e−7x + (5040c4 − 13860c3 + 7560c2)e−8x

+ (−1680c4 + 5880c3 − 5985c2 + 1890c)e−9x

+ (−720c4 + 4680c3 − 8505c2 + 4050c)e−11x

+ (80c4 − 1000c3 + 4065c2 − 6120c+ 2700)e−15x
)

(10)

As in the case of complete bipartite graphs, this result confirms the con-
jecture by Lando asserting that the value of the sl2 weight system on the
projection of a chord diagram to the space of primitive elements is a polyno-
mial of degree at most half the circumference of its intersection graph.

6 Main results of the thesis

Theorem ([1,3]). The following recurrence relation for ordinary generating
functions for the values of the sl2 weight system at complete bipartite graphs
holds:

G0(t) =
1

1− t · c,

Gm(t) =
cm + t

∑m−1
i=0 si,mGi(t)

1− t ·
(
c− m(m+1)

2

) .

20



where si,j stands for the coefficients given by the following generating func-
tion:

∞∑

m=0

S1(ξ
m)tm =

∞∑

m=0

m∑

i=0

si,mξ
itm =

1

1− ξt

(
c1 +

c1c2t
2 − ξt

1− (2ξ − 1)t− (c1 + c2 − ξ2 − ξ)t2
)
.

Theorem ([3]). The ordinary generating function Gm(t) for the values of
the sl2 weight system on complete bipartite graphs K0,m, K1,m, K2,m, . . . is a

linear combination of geometric progressions of the form
∑m

k=0
pm,k(c)

1−t(c− k(k+1)
2 )

,

where pm,k(c) are polynomials of degree at most m.

Theorem ([3]). The exponential generating function

Gm(t) :=
∞∑

n=0

wsl2(Kn,m)
tn

n!

for the values of the sl2 weight system on complete bipartite graphs K0,m, K1,m, K2,m, . . .
is a linear combination of the form

m∑

k=0

Pm,k(c) exp

(
t

(
c− k(k + 1)

2

))
, (11)

where Pm,k(c) are polynomials of degree at most m.

Theorem. For any G which is the intersection graph of a chord diagram
obtained by closing some share with both ends of each chord lying on different
arcs, the exponential generating function

GG(t) :=
∞∑

n=0

wsl2((G, n))
tn

n!

for the values of the sl2 weight system on graphs of the form (G, 0), (G, 1), (G, 2), . . .
is a linear combination of the form

GG(t) =

|V (G)|∑

k=0

pG,k(c) exp

(
t

(
c− k(k + 1)

2

))
,

where pG,k(c) are polynomials of degree at most |V (G)|.
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Theorem. Under the assumptions of the previous theorem, the exponential
generating function PG(t) for the values of the sl2 weight system on the pro-
jections of graphs of the form (G, 0), (G, 1), (G, 2), . . . is a linear combination
of the form

|V (G)|∑

k=0

FG,k(c) exp(k · t), (12)

where FG,k(c) are polynomials of degree at most |V (G)|.

Theorem ([2]). The generating function for the values of the sl2 weight
system on the graphs (C5, n), n = 0, 1, 2, . . . equals

x5·
∞∑

n=0

wsl2((C5, n))
xn

n!
=

1

630
cx5
(
(270c4 − 540c3 − 999c2 + 576c+ 324)e(c−1)x

+ (280c4 − 1610c3 + 3234c2 − 2646c+ 756)e(c−6)x

+ (80c4 − 1000c3 + 4065c2 − 6120c+ 2700)e(c−15)x
)

(13)

Theorem ([2]). The exponential generating function

PG(x) =
∞∑

n=0

π((G, n))
xn

n!

for the projections of graphs (G, n) to the subspace of primitive elements is
given by the formula

PG(x) =
∑

V1t...tVk=V (G)

(−1)k−1(k − 1)!GG|V1 (x)GG|V2 (x) · · · GG|Vk (x) (exp(−K1x))k .

Theorem ([2]). The generating function for the values of the sl2 weight
system values at the projections to the space of primitive elements of the
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graphs (C5, n), n = 0, 1, 2, . . . equals

x5·
∞∑

n=0

wsl2(π((C5, n)))
xn

n!
=

1

630
cx5·

(
(480c4 + 720c3 − 159c2 + 576c+ 324)e−x

+ (−5040c4 − 5040c3 + 315c2)e−3x + (4080c4 + 1620c3 − 3990c2 + 360c)e−4x

+ 15120c4e−5x + (−25760c4 + 19600c3 + 1974c2 − 2646c+ 756)e−6x

+ (8400c4 − 12600c3 + 4725c2)e−7x + (5040c4 − 13860c3 + 7560c2)e−8x

+ (−1680c4 + 5880c3 − 5985c2 + 1890c)e−9x

+ (−720c4 + 4680c3 − 8505c2 + 4050c)e−11x

+ (80c4 − 1000c3 + 4065c2 − 6120c+ 2700)e−15x
)

(14)

7 The main results of the thesis are presented

in these papers

1 Filippova (Zinova), P. A., Values of the sl2 Weight System on Complete
Bipartite Graphs, Functional Analysis and Its Applications, 2020, 54:3,
208–223 (arXiv:2102.03487)

2 Filippova(Zinova), P. A., Values of the sl2 weight system on a family
of graphs that are not the intersection graphs of chord diagrams, Sb.
Math., 213:2 (2022), 235–267

3 Kazaryan M. E., Zinova P. A. Algebra of shares, complete bipartite
graphs, and the sl2 weight system, submitted
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