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1 Self-similar manifolds

In [O1], we study Riemannian manifolds endowed with a homothetic vector

field. A self-similar manifold is a Riemannian manifold (M, g) endowed

with a vector field ξ satisfying Lξg = 2g. Moreover, if the vector field ξ is

complete then we say that (M, g, ξ) is a globally self-similar manifold.

Example 1 Let (C = M × R>0, g = s2gM + ds2) be a Riemannian cone

and ξ = s ∂
∂s

. Then (C, g, ξ) is a globally self-similar manifold.

Riemannian cones have important applications in supegravity ([ACDM],

[ACM], [CDM], [CDMV]).

Example 2 ([O1]) Let ϕ and s are coordinates on S1 and R>0 then the

collection
(
C = S1 × R>0, g = s2dϕ2 + sds · dϕ+ ds2, s ∂

∂s

)
is a global self-

similar manifold but (C, g) is not isometric to a Riemannian cone.

We describe global self-similar manifolds.

Theorem 1 ([O1]) Any global self-similar manifold (C, g, ξ) is isomorphic

to one of the following:

(i)
(
Rn,

∑n
i=1 (dxi)

2
, ρ+ η

)
, where a ∈ R, ρ =

∑n
i=1 x

i ∂
∂xi

is a radiant

vector field and η ∈ so(n) is a Killing vector field.

(ii)
(
M̂ = M × R>0, ĝ = s2gM + sds · α + ds2, s ∂

∂s

)
, where s is a coordinate

on R>0, gM is a Riemannian metric on M , α a 1-form on M , and

gM(X,X) + 2α(X) + 1 > 0, for any X ∈ Γ(TM).

Any self-similar manifold is locally isomorphic to a global self-similar mani-

fold.

We say that (C, g, ξ) is a self-similar manifold with a potential ho-

mothetic vector field if (M, g, ξ) is a selfimilar manifold and ξ is locally

defined as a gradient of a function. If ξ = grad f on a domain U then

ιξg|U = df . Moreover, a form is closed if and only if it is locally exact.

Therefore, the vector field ξ is potential if and only if dιξg = 0.
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Theorem 2 ([O1]) Let (M, g, ξ) is a global self-similar manifold with a

potential homothetic vector field.

(i) If ξ vanishes at a point then (M, g, ξ) is Euclidean space with a radiant

vector field
(
Rn,

∑n
i=1 (dxi)

2
,
∑
xi ∂

∂xi

)
.

(ii) If ξ does not vanishes at any point then (M, g, ξ) is a Riemannian cone(
M̂, ĝ, ξ̂

)
.

2 Selfimilar Hessian manifolds

A flat affine manifold is a differentiable manifold equipped with a flat

torsion-free connection. Equivalently, it is a manifold equipped with an atlas

such that all transition functions between charts are affine transformations

(see [FGH] or [Sh]). A Hessian manifold is a flat affine manifold with a

Riemannian metric wich is locally equivalent to a Hessian of a function.

Hessian manifolds have many different application: in supersymmetry

([CMMS], [CM], [AC]), in convex programming ([N], [NN]), in the Monge-

Ampère Equation ([F1], [F2], [Gu]), in the WDVV equations ([To]).

A self-similar Hessian manifold (C,∇, g, ξ) is a Hessian manifold

(C,∇, g) endowed with a vector field ξ such that (C, g, ξ) is a self-similar

manifold and the flow along ξ preserves ∇. If ξ is complete then (C, g, ξ) is

called a global self-similar Hessian manifold.

A radiant manifold (C,∇, ρ) is a flat affine manifold (C,∇) endowed

with a radiant vector field i.e. a field ρ satisfying

∇ρ = Id.

We call a self-similar Hessian manifold (C,∇, g, ξ) a radiant Hessian

manifold if and only if there exists a radiant vector field ρ on C and a

constant λ ∈ R such that ξ = λρ.

Theorem 3 [O1] Let (C,∇, ξ) be a self-similar Hessian manifold. Then ξ
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is potential if and only if (C,∇, ξ) is locally isomorphic to a direct product

of radiant Hessian manifolds.

3 Self-similar Hessian and conformally Kähler

manifolds

A Kähler structure (I, gr) on TM can be constructed by a Hessian structure

(∇, g) on M (see [Sh]). The correspondence

r : {Hessian manifolds} → {Kähler manifolds}

(M,∇, g) → (TM, I, gr)

is called the (affine) r-map. In particular, this map associates some special

Kähler manifolds to special real manifolds (see [AC]). In this case, r-map

describes a correspondence between the scalar geometries for supersymmetric

theories in dimension 5 and 4. See [CMMS] for details on the r-map and

supersymmetry.

An open cone V ⊂ Rn is called regular if it does not contain full straight

lines. Any convex regular cone admits a function ϕ called characteristic

function such that gcan = Hess (lnϕ) is a Hessian metric which is invariant

with respect to all automorphisms of the cone. ([V]). The r-map constructs

an invariant Kähler structure (I, grcan) on TV ' V ⊕
√
−1Rn. Thus, any

homogeneous Siegel domain of the first kind admits an invariant Kähler

structure. The Kähler potential of grcan equals 4π∗ (lnϕ).

The construction of the invariant Kähler structure on V ⊕
√
−1Rn is

well known (see [VGP] or [C]). We modify this construction. A (globally)

conformally Kähler manifold (M, I, ω) is a complex manifold endowed

with Riemannian metric g which is (globally) conformally equivalent to a

Kahler one. We consider the metric gcon = Hess ϕ on a regular homogeneous

cone V . This metric is invariant under Aut(V ) ∩ SL(Rn) and coincides with

gcan on the hypersurface {ϕ(x) = 1}. The dilation x 7→ qx acts on gcon by
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λ∗qgcon = q−ngcon. The Kähler metric grcon on V ⊕
√
−1Rn constructed by

the r-map is not invariant but it is conformally equivalent to the invariant

Riemannian metric r−2grcon on the homogeneous domain V ×
√
−1Rn. Thus,

Siegel domains of the first kind admit two different invariant structures:

Kähler and conformally Kähler.

In [O2], we generalize this construction to self-similar Hessian manifolds.

The main result of [O2] is the following.

Theorem 4 Let (M,∇, g, ξ) be a simply connected self-similar Hessian man-

ifold such that ξ is complete and G be the group of affine isometries of

(M,∇, g) preserving ξ. Suppose that G acts simply transitively on the level

set {g(ξ, ξ) = 1}. Then TM admits a homogeneous conformally Kähler

structure.

4 Statistical manifolds of constant curvature

A statistical manifold (C,D, g) is a manifold M endowed with a torsion-

free connection D and a Riemannian metric g such that the tensor Dg is

totally symmetric. The term “statistical manifolds” arose in information

geometry (see [AN]). In this sense, statistical manifolds is a space of probab-

ility distributions endowed with the Fisher information metric. For example,

the statistical manifold corresponding to the family of normal distributions

is isometric to hyperbolic plane.

A statistical manifold (C,D, g) is said to be of constant curvature c if

the curvature tensor ΘD satisfies

ΘD(X, Y )Z = c (g(Y, Z)X − g(X,Z)Y ) ,

for any X, Y, Z ∈ TM . For example, a Riemannian manifold of constant

section curvature is statistical manifold of constant curvature. The definition

of statistical manifolds of constant curvature arose in the context of geometry

of affine hypersurfaces ([Ku]). Note that Hessian manifolds are statistical
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manifolds of curvature 0. We assume that the curvature of a statistical

manifold is not equal to 0.

Convex projective geometry provides a wide class of statistical manifolds.

A domain U ⊂ RPn is called properly convex if the closure of U is a compact

convex set in some affine chart. If Γ is a discrete subgroup of the group of

projective automorphisms of a properly convex domain U ⊂ RPn such that

M = U/Γ is a manifold then M is called a properly convex RPn-manifold.

For examples of compact properly convex RPn-manifolds see [B].

Theorem 5 ([KO]) Any properly convex RPn-manifold admits a statistical

structure of negative constant curvature. Any compact statistical manifold of

negative constant curvature admits a properly convex RPn structure.

In [O3], we construct the correspondence between radiant Hessian man-

ifolds and statistical manifolds of constant curvature. Precisely, we show

that a Riemannian cone (M × R>0, s2gM + ds2) over a statistical manifold

(M, g,D) of constant curvature admits a structure of a radiant Hessian man-

ifold. Conversely, level sets of a Hessian potential on a radiant Hessian man-

ifold are statistical manifolds of constant curvature.

By ddc Lemma, Any Kähler form can be locally represented as a complex

Hessian ddcϕ. Hence, we can consider Hessian manifold are a real analogue

of Kähler manifolds. A Sasakian manifold is a Riemmanian manifold

(M, g) such that the cone metric g = s2gM + ds2 on M ×R>0 is Kähler with

respect to a dilatation-invariant complex structure I (see [OV]). Thus, we

can consider statistical manifolds of constant curvature as an analogue of

Sasakian manifolds.

The r-map construct a Kähler structure on TM by a Hessian structure on

M . The following theorem provides an analogue of the r-map for statistical

manifolds of constant curvature.

Theorem 6 ([O3]) Let (M, g,∇) be a statistical manifold of a constant

curvature. Then TM × R admits a structure of a Sasakian manifold.
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