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1 Introduction

1.1 Subject of the study

Brain-computer interfaces (BCIs) directly link the nervous system to external devices

[51] or other brains [41]. While there exist many applications of BCIs [34], clinically

relevant solutions are of primary interest since they hold promise to rehabilitate patients

with sensory, motor, and cognitive disabilities [53],[31].

BCIs can deal with a variety of neural signals [44, 26] such as, for example,

electroencephalographic (EEG) potentials sampled with electrodes located on the scalp

[49], or neural activity recorded invasively with intracortical electrodes penetrating the

cortex [40] or placed directly onto the cortical surface [48]. In general, methods of

recording brain activity can be divided into invasive and non-invasive. In the first case,

a medical procedure is assumed for implanting electrodes on the surface of the cerebral

cortex (subdural or epidural) and subsequent counting and interpretation of signals of

neural population activity. At the moment, interfaces that register brain activity in a

non-invasive way do not provide the necessary width of the information channel. The

amount of information in the invasively recorded signals far outweighs the complexities

and ethical issues associated with this technology.

A promising and minimally invasive way to directly access cortical activity is to use

stereotactic EEG (sEEG) electrodes inserted via a burr hole made in the skull. Recent

advances in implantation techniques including the use of the brain’s 3D angiography,

MRI, and robot-assisted surgery help to further reduce the risks of such implantation

and make sEEG technology an ideal trade-off for BCI applications [9]. ECoG strips are

another method to achieve direct electrical contact with cortical tissue with minimal

discomfort to a patient [21].

A step towards improving the work of neural interfaces is the use of advanced and

advanced machine learning methods. From the arsenal of available methods, both classical

models and deep learning methods can be used. The use of neural networks in many

mathematical and medical problems shows good results compared to other methods, so

an attempt to test them in predictive signal decoding tasks seems quite reasonable and

promising [50] [46].
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Nevertheless, one of the problems when decoding brain signals using deep learning

algorithms is the interpretability of these methods. Typical BCI signal processing

comprises several steps, including signal conditioning, feature extraction, and decoding.

In modern machine learning algorithms, parameters of the feature extraction and decoding

pipelines are jointly optimized within computational architectures called Deep Neural

Networks (DNN) [46].

DNNs derive features automatically when trained to execute regression or classification

tasks. While it is often difficult to interpret the computations performed by a DNN,

such interpretations are essential to gain an understanding of the properties of brain

activity contributing to decoding and to ensure that artifacts or accompanying confounds

do not affect the decoding results. DNNs can also be used for knowledge discovery. In

particular, the interpretation of features computed by the first several layers of a DNN

could shed light on the neurophysiological mechanisms underlying the behaviour being

studied. Ideally, by examining DNN weights, one should be able to match the algorithm’s

operation to the functions and properties of the neural circuitry to which the BCI decoder

connects. Such physiologically tractable DNN architectures are likely to facilitate the

development of efficient and versatile BCIs.

Based on the foregoing, the main object of the thesis is machine learning methods

and, in particular, deep learning methods used in the tasks of decoding brain signals, as

well as their interpretation and construction of interpreted architectures.

1.2 Objectives

From all of the above, it becomes obvious that improving machine learning methods

for decoding data from brain signals is an actual task that directly affects the practical

applicability of BCI, and the ability to interpret these methods guarantees the reliability of

the results obtained and opens up new possibilities for studying the principles of the brain.

The main research objective is the development of domain-informed architectures of

neural networks in combination with the development of algorithms for interpreting the

corresponding weight coefficients and the application to the tasks of decoding neuronal

activity in ideomotor and speech neurointerfaces.

The dissertation research was carried out on the basis of the Center for Bioelectrical
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Interfaces of the National Research University Higher School of Economics, in which work

is underway to create invasive neural interfaces to replace motor and speech functions.

The following research objectives were formulated:

1. To develop the architecture of a compact neural network, consistent with modern

scientific data on the origin of electrophysiological activity, the mechanism of its

propagation in tissues, and the physical principles of its registration.

2. To carry out a comparative analysis of the quality of decoding from ECoG and

stereo-EEG data of kinematics of the finger and parameters of the articulatory tract,

using the proposed compact neural network and other competing solutions.

3. To develop methods for interpreting weight coefficients in the proposed neural net-

work architecture in order to identify the geometric characteristics of key populations

of neurons and the dynamic properties of their activity.

4. To implement real-time hand movement kinematics decoding.

5. To implement speech decoding based on the minimum number of spatially segregated

electrodes.

1.3 Main ideas, results and conclusions of the dissertation

We have described a compact architecture based on a convolutional network for

adaptive decoding of electrocorticography (ECoG) data into finger kinematics and sEEG

data into speech. We have also proposed a new theoretically grounded approach to the

interpretation of spatial and temporal weights in architectures combining adaptation

in both space and time. The resulting spatial and frequency patterns characterizing

populations of neurons that are crucial for a specific decoding task are subject to further

analysis using electromagnetic and dynamic models in order to characterize the localization

and activity parameters of key neuron populations.

First, we tested our solution using a realistic Monte Carlo simulation. Then, in

relation to ECoG data from the Berlin BCI Competition IV dataset, our architecture

worked comparable to the winners of the competition, without requiring any manual data

preprocessing. Using the proposed approach to the interpretation of network weights, we
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were able to reveal the spatial and spectral patterns of neural processes underlying the

successful decoding of finger kinematics from the ECoG dataset. Finally, we also applied

the method to the analysis of a 32-channel dataset of imaginary EEG movements and

observed physiologically plausible patterns characteristic of the task. Also, we applied

our real-time architecture on a real patient and achieved high-quality decoding of the

kinematics of the patient’s fingers solely from brain activity data. Relevant details are

described in [11, 12].

We have also expanded the architecture and applied it to the task of decoding speech

from invasive ECoG and stereo-EEG data. To do this, we collected 60 minutes of

data (from two sessions) for each of the two patients who were implanted with invasive

electrodes. We then used only electrodes related to one stereo EEG shaft or one ECoG

strip to decode neural activity into 26 words and one class of silence. The interpretation

of the network weights gave a physiologically plausible result, which coincided with the

results of stimulation mapping.

We achieved an average of 58% accuracy using only 6 data channels recorded with one

minimally invasive sEEG electrode in the first patient, and 72% accuracy using only 8 data

channels recorded for one ECoG strip in the second patient in the classification of 26+1

spoken words. Our compact architecture did not require the use of pre-selected features,

was quickly trained, and led to a stable, interpretable, and physiologically significant

decision-making rule. Spatial characteristics of the main populations of neurons confirm

the results of mapping of the active and passive speech and demonstrate the inverse

spatial-frequency dependence characteristic for neural activity. When compared with

other architectures, our compact solution worked at the level or even better than those

solutions that were recently mentioned in the literature on neural speech decoding, while

using many times fewer minimally invasive electrodes and trained on a compact amount

of data.

We also analyzed the influence of intermediate representations of speech on the quality

of the final classification and obtained approximately the same results, despite the fact

that the intermediate representations themselves are decoded with different accuracy.

This study takes the first step towards minimally invasive speech decoding prostheses

and demonstrates the fundamental possibility of their creation based on a minimally
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invasive technology for recording brain activity. The details of this study are described in

[2].

1.4 Theoretical and practical significance

From a theoretical point of view, we could state the following results:

• For the first time, we justified the architecture of a neural network based on the

generally accepted model in electrophysiology for monitoring the electrical activity

of the brain using a distributed set of electrodes.

• For the first time, we proposed a theoretically substantiated method for interpreting

the weights of a compact neural network with factorized space-time processing and

conducted the necessary modeling to demonstrate the efficiency of the proposed

method.

• We have demonstrated the physiology of the resulting spatial and frequency patterns

characterizing key neuronal populations. The information obtained fully coincided

with the results of an active study of the cerebral cortex of patients in order to

search for the speech cortex. In the motor task, the somatotopy observed in spatial

patterns is fully consistent with the established idea of the organization of the motor

cortex.

From a practical point of view, we achieved the following:

• We implemented a prototype of an invasive motor neurointerface in real-time.

• We proposed architecture and methodology for interpreting weight coefficients that

can be used to build classifiers in neurophysiological studies. The interpretation of

the weight coefficients of such classifiers makes it possible to obtain new knowledge

about the studied neurophysiological processes.

• In addition, we implemented and tested a system for decoding speech from ECoG

data. Our algorithm worked in a causal mode, that is, it used data from the past in

relation to the decoding time. This allows us to hope for a successful transfer of the

achieved quality of the work of our decoder in a real patient with impaired speech

function.
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• Also, we explored the possibility of our speech interface working in an asynchronous

mode, which is of great practical importance when translating our solution into

clinical practice.

1.5 The author’s contribution to the study

The author of this study is the developer of the proposed methodology and architecture

of the neural network as applied to the analysis of the model and real data. The developed

approach to interpreting the weights of a wide family of architectures was studied in detail

by the author in Monte Carlo simulation mode. The author has obtained all the results

concerning the accuracy of the proposed algorithms as applied to real data. The results

of this work are described in two papers published in first-tier international journals and

in three conference papers. In all these works, the author is the first and main author.

1.6 Publications and approbation of the work

1.6.1 First-tier publications:

• Petrosyan A. et al. Decoding and interpreting cortical signals with a compact

convolutional neural network //Journal of Neural Engineering (Q1). – 2021. –

Т. 18. – №. 2. – С. 026019 [6].

• Petrosyan A. et al. Speech Decoding From A Small Set Of Spatially Segregated

Minimally Invasive Intracranial EEG Electrodes With A Compact And Interpretable

Neural Network //Journal of Neural Engineering (Q1). – 2022. – Т.. – №. . –

С. [2].

1.6.2 Second-tier publications:

• Petrosyan A., Lebedev M., Ossadtchi A. Linear Systems Theoretic Approach to

Interpretation of Spatial and Temporal Weights in Compact CNNs: Monte-Carlo

Study //Biologically Inspired Cognitive Architectures Meeting (Q4). – Springer,

Cham, 2020. – С. 365-370 [12].
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• Petrosyan A., Lebedev M., Ossadtchi A. Decoding neural signals with a com-

pact and interpretable convolutional neural network //International Conference on

Neuroinformatics (Q4). – Springer, Cham, 2020. – С. 420-428 [11].

• Arthur Petrosyan, Alexey Voskoboinikov, Alexei Ossadtchi, Compact and in-

terpretable architecture for speech decoding from stereotactic EEG // 2021 Third

International Conference Neurotechnologies and Neurointerfaces – IEEE, 2021. – С.

79-82 [4].

1.6.3 Other publications:

• Petrosyan A. et al. Compact and Interpretable Architecture for Speech Decoding

From iEEG //International Journal of Psychophysiology. – 2021. – Т. 168. – С.

S195 [5].

• Volkova Ksenia, Arthur Petrosyan, Dubyshkin Ignatii, Ossadtchi Alexei, «de-

coding movement time-course from ecog using deep learning and implications for

bidirectional brain-computer interfacing» [30].

1.6.4 Conferences and seminars:

• 2020 Annual International Conference on Brain-Inspired Cognitive Architectures

for Artificial Intelligence (BICA*AI 2020) “Linear systems theoretic approach to

interpretation of spatial and temporal weights incompact CNNs: Monte-Carlo study”

(2020).

• XXII International Conference "Neuroinformatics-2020" - «Decoding neural signals

with a compact and interpretable convolutional neural network» (2020).

• BCI Samara - «Decoding neural signals with a compact and interpretable

convolutional neural network» (2020).

• Report at the forum «Center for Bioelectric Interfaces» (2020).

• BCI Samara - «Compact and interpretable architecture for speech decoding from

sEEG» (2021).

11



• 20th World Congress of Psychophysiology - “Compact and interpretable architecture

for speech decoding from sEEG” (2021).

• The Third International Conference «Neurotechnologies and Neurointerfaces» -

“Compact and interpretable architecture for speech decoding from sEEG” (2021).
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2 Content of the work

2.1 The architecture of a compact neural network reflecting modern

scientific ideas about the origin of neuroelectrophysiological activity

This section contains a summary of the article [12].

Contribution of the author: the architecture of the neural network was developed, a

method for its interpretation was developed, computer simulations were implemented

(including Monte Carlo simulations).

2.1.1 Phenomenological model

Figure 1 illustrates a hypothetical relationship between motor behavior (hand move-

ments), brain activity, and ECoG recordings. The activity, s[𝑛] = [𝑠1[𝑛], . . . , 𝑠𝐼 [𝑛]]
𝑇 ∈ R𝐼 ,

of a set of 𝐼 neuronal populations, 𝐺1 − 𝐺𝐼 , engaged in motor control, is converted

into a movement trajectory, 𝑧[𝑛], through a non-linear transform 𝐻: 𝑧[𝑛] = 𝐻(e[𝑛]),

where e[𝑛] = [𝑒1[𝑛], . . . , 𝑒𝐼 [𝑛]]
𝑇 is the vector of envelopes of s[𝑛]. The activity of another

set of 𝐽 populations 𝐴1 − 𝐴𝐽 is unrelated to the movement. The recordings of this

activity with a set of 𝐿 sensors at time instance 𝑛 are represented by a 𝐿 × 1 vector

of sensor signals x[𝑛] ∈ R𝐿. At each time instance 𝑛, this vector can be modeled as a

linear mixture of signals resulting from the application of the forward-model matrices

G = [g1[𝑛], . . . ,g𝐼 [𝑛]] ∈ R𝐿×𝐼 and A = [a1[𝑛], . . . ,a𝐽 [𝑛]] ∈ R𝐿×𝐽 to the column vector

of activity of task-related sources at the time moment 𝑛, s[𝑛] = [𝑠1[𝑛], . . . , 𝑠𝐼 [𝑛]]
𝑇 , and

task-unrelated sources, f [𝑛] = [𝑓1[𝑛], . . . , 𝑓𝐽 [𝑛]]
𝑇 , respectively:

x[𝑛] = Gs[𝑛] +Af [𝑛] =
𝐼∑︁

𝑖=1

g𝑖𝑠𝑖[𝑛] +
𝐽∑︁

𝑗=1

a𝑗𝑓𝑗 [𝑛] =
𝐼∑︁

𝑖=1

g𝑖𝑠𝑖[𝑛] + η[𝑛] (1)

Column vectors g𝑖, 𝑖 = 1, . . . , 𝐼 and a𝑗 , 𝑗 = 1, . . . , 𝐽 are the topographies of the task

related and task-unrelated sources. We refer to the noisy, task-unrelated component of

the recording as η[𝑛] =
∑︀𝐽

𝑗=1 a𝑗𝑓𝑗 [𝑛] ∈ R𝐿. A similar generative model has been recently

described in [13].

Given the linear generative model of electrophysiological data, the inverse mapping

used to derive the activity of sources from the sensor signals is also commonly sought
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in the linear form: ŝ[𝑛] = W𝑇X[𝑛], where columns of W form a spatial filter that

counteracts the volume conduction effect and decreases the contribution from the noisy,

task-unrelated sources.
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Figure 1: Phenomenological diagram.

Neuronal correlates of motor planning and execution have been extensively studied

[59]. In the cortical-rhythm domain, alpha and beta components of the sensorimotor

rhythm desynchronize just prior to the execution of a movement and rebound with a

significant overshoot upon the completion of a motor act [35]. The magnitude of these

modulations correlates with the person’s ability to control a motor-imagery BCI [36].

Additionally, the incidence rate of beta bursts in the primary somatosensory cortex is

inversely correlated with the ability to detect tactile stimuli [28] and also affects other

motor functions. Intracranial recordings, such as ECoG, allow reliable measurement of

the faster gamma band activity, which is temporally and spatially specific to movement

patterns [19] and is thought to accompany movement control and execution. Overall,

based on the very solid body of research, rhythmic components of brain sources, s[𝑛],

appear to be useful for BCI implementations. Given the linearity of the generative model
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(1), these rhythmic signals reflecting the activity of specific neuronal populations can be

computed as linear combinations of narrow-band filtered sensor data x[𝑛].

The most straightforward approach for extracting the kinematics, 𝑧[𝑛], from brain

recordings, x[𝑛], is to use concurrently recorded data and directly learn the mapping

𝑧[𝑛] = ℋ(x[𝑛]). To practically implement it, one needs to parametrically describe this

mapping. Here we used a specific network architecture for this purpose. The architecture

was constructed in close correspondence with the observation equation (1) and the

neurophysiological description of the observed phenomena illustrated in Figure 1, which

facilitated our ability to interpret the results.

2.1.2 Network architecture

The compact and adaptable architecture (ED-net) that we used here is shown in

Figure 2. As shown the architecture comprises 𝑀 branches. Each branch is an adaptive

envelope detector with its own pair of temporal filters preceded by the branch-specific

spatial filter. Our envelope detector approximates the envelope extracted as the absolute

value of the analytic signal calculated using the Hilbert transform of the input signal.

The processing flow we use mimics that of an analog detector receiver and has also been

used in other similar compact CNN architectures that employ separate treatment of the

spatial and temporal dimensions [27, 20]. Each branch of our network is a parametric

pipeline capable of extracting the instantaneous power of the input signal and adapting

to the specific neuronal population and frequency band by tuning spatial and temporal

filter weights correspondingly.

As shown in the diagram, the envelope detector can be implemented using modern

DNN primitives, namely, a pair of convolutional operations that perform band-pass and

low-pass filtering with a single non-linearity ReLu(-1) in between that corresponds to

computing the absolute value of the output of the first 1-D convolutional layer. This step

rectifies the signal(acts as a full-wave rectifier built using a pair of diodes) and is followed

by a low-pass filter that smooths the rectifier output 𝑟𝑚[𝑛] to obtain the approximation

of the envelope 𝑒𝑚[𝑛]. Note that ReLu(𝑎) is now a standard non-linearity used in the

modern neural networks and defined as ReLu(𝑥,𝑎) = {𝑥, 𝑥 ≥ 0; 𝑎𝑥, 𝑥 < 0}. To make the

decision rule of this structure tractable, we used non-trainable batch normalization when
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streaming the data through the structure. This way we can harness the power of the

optimization tools implemented within the deep learning approach to tune the parameters

of our network that uses spatial filters followed by envelope estimation as the feature

extraction block.
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Figure 2: The architecture based on the compact CNN comprises several branches -

adaptive envelope detector, receiving spatially unmixed input signals and outputting the

envelopes whose 𝑁 most recent values with indexes 𝑛 −𝑁 + 1, . . . , 𝑛 are combined in

the decoded variable 𝑧 by the fully connected layer. Note that for compactness we have

omitted the temporal index in the sequence names.

In our architecture, the envelope detector of the 𝑚-th branch receives as an input

spatially filtered sensor signal 𝑠𝑚[𝑛] calculated by the point-wise convolutional layer.

This layer is designed to invert the volume-conduction processes represented by the

forward-model matrices G and A in our phenomenological model (Figure 1). Next,

we approximated the operator 𝐻 as a linear combination of the lagged instantaneous

power (envelope) of the narrow-band source time series s(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝐼(𝑡)] with

coefficients from the matrix U = {𝑢𝑚𝑙}, 𝑚 = 1, . . . ,𝑀, 𝑙 = 1, . . . , 𝑁 . This was performed

with a fully connected layer that mixed the samples of envelopes, 𝑒𝑚[𝑛], into a single

estimate of the kinematic parameter 𝑧[𝑛] =
∑︀𝑀

𝑚=1

∑︀𝑁
𝑙=1 𝑒𝑚[𝑛 − 𝑙]𝑢𝑚𝑙 + 𝑢0, where 𝑢0

models the DC offset term that may be present in the kinematic profile.
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2.1.3 Two regression problems and DNN weights interpretation

The described architecture processes data in chunks of a prespecified length of 𝑁

samples. We will first assume that the chunk length is equal to the filter length in

the 1-D convolution layers. Consider a chunk of input data from 𝐿 channels observed

over the interval of 𝑁 time moments that can be represented with a Toeplitz matrix

X[𝑛] = [x[𝑛],x[𝑛− 1], . . .x[𝑛−𝑁 +1]] ∈ R𝐿×𝑁 . Processing of X[𝑛] by the first two layers,

which perform spatial and temporal filtering, can be described for the 𝑚-th branch as

follows:

𝑏𝑚[𝑛] = w𝑇
𝑚X[𝑛]h𝑚, (2)

where w𝑚 ∈ R𝐿 is the spatial weights and h𝑚 ∈ R𝑁 is the temporal weights of the branch

𝑚. The nonlinearity, 𝑅𝑒𝐿𝑢(−1), in combination with the low-pass filtering performed by

the second convolutional layer extracts the envelopes of rhythmic signals.

The analytic signal is mapped one-to-one to its envelope [56] and for the original

real-valued data, the imaginary part of the analytic signal is uniquely computed via the

Hilbert transform. Therefore, the original real-valued signal is uniquely mapped to its

envelope. Our envelope detector computes a close approximation of the absolute value

of the analytic signal and therefore we can state that 𝑒𝑚[𝑛] is uniquely determined by

𝑏𝑚[𝑛]. Thus, in order to obtain the proper envelope 𝑒𝑚[𝑛] it suffices to obtain the proper

𝑏𝑚[𝑛] which is achieved by adjusting the spatial and temporal convolution weights of each

branch of the compact CNN.

Assume that the training of the adaptive envelope detectors resulted in optimal spatial

and temporal convolution weights marked with asterisks, w*
𝑚 and h*

𝑚 correspondingly.

Let us also assume that these optimal weights indeed extract the ground-truth population

activity signals 𝑏*𝑚[𝑛] that uniquely determine the envelopes 𝑒*𝑚[𝑛] that in turn give

rise to the sought kinematics 𝑧[𝑛] when transformed with a non-linear operator 𝐻()

approximated by the fully connected layer of our network. Suppose that the spatial filter

weights are not known but the temporal convolution weights are fixed to their optimal

values h*
𝑚. Then, we can find the optimal spatial weights as the solution to a convex

optimization problem formulated over the spatial subset of parameters:
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w*
𝑚 = argminw𝑚

{‖ 𝑏*𝑚[𝑛]−w𝑇
𝑚X[𝑛]h*

𝑚 ‖22} = argminw𝑚
{‖ 𝑏*𝑚(𝑛)−w𝑇

𝑚y𝑚[𝑛] ‖22}, (3)

where the temporal weights are fixed at their optimal values, h*
𝑚, and y𝑚[𝑛] = X[𝑛]h*

𝑚

is a temporally filtered vector of multichannel data. Similarly, when the spatial weights

are fixed at the optimal values w*
𝑚, the temporal weights are expressed by the equation:

h*
𝑚 = argminh𝑚

{‖ 𝑏*𝑚[𝑛]−w*𝑇
𝑚 X[𝑛]h𝑚 ‖22} = argminh𝑚

{‖ 𝑏*𝑚[𝑛]− v𝑇
𝑚[𝑛]h𝑚 ‖22}, (4)

where v𝑚[𝑛] = [𝑣𝑚[1], . . . ,𝑣𝑚[𝑁 ]]𝑇 = X𝑇 [𝑛]w*
𝑚 is a spatially filtered chunk of incoming

data.

Given the forward model (1) and the regression problem (3) and assuming mutual

statistical independence of the rhythmic potentials 𝑠𝑚[𝑛], 𝑚 = 1, . . . ,𝑀 , the topographies

of the underlying neuronal populations can be found as [61, 38]:

g𝑚 = E{y𝑚[𝑛]y𝑇
𝑚[𝑛]}w*

𝑚 = R𝑦
𝑚w*

𝑚, (5)

where R𝑦
𝑚 = E{y𝑚[𝑛]y𝑇

𝑚[𝑛]} is a 𝐿× 𝐿 spatial covariance matrix of the temporally

filtered data, assuming that channel time series are zero-mean random processes, and 𝐿

is the number of input channels.

The temporal weights can be interpreted in a similar way. The temporal pattern is

calculated as:

q𝑚 = E{v𝑚[𝑛]v𝑇
𝑚[𝑛]}h*

𝑚 = R𝑣
𝑚h*

𝑚, (6)

where R𝑣
𝑚 = E{v𝑚[𝑛]v𝑇

𝑚[𝑛]} is a 𝑁 ×𝑁 tap covariance matrix of the spatially filtered

data, assuming that channel time series are zero-mean random processes, 𝑁 is the number

of taps in the temporal convolution filter and the length of the data chunk processed at a

time.

As shown in [6], if we relax the assumption about the length of the data chunk being

equal to the length of the temporal convolution filter we can arrive at the Fourier domain

representation of dynamics of a neuronal population as pattern 𝑄𝑚(𝑓) derived from the

power spectral density (PSD) 𝑃𝑣𝑚(𝑓) of the spatially filtered data 𝑣𝑚[𝑛] and the Fourier

18



transform 𝐻𝑚(𝑓) of the temporal weights vector hm(𝑓) as in 7:

𝑄𝑚(𝑓) = 𝑃 𝑣𝑚(𝑓)𝐻𝑚(𝑓). (7)

The important distinction that contrasts our weights interpretation approach from

the methodology used in the majority of reports utilizing neural networks with separable

spatial and temporal filtering operations is that our procedure accounts for the fact that

the spatial filter formation is taking place within the context set by the corresponding

temporal filter, and vice versa. Also, in [6], the authors for the first time introduced the

notion of the frequency domain pattern 𝑄𝑚(𝑓) of neuronal population’s activity.

2.1.4 Realistic simulations

To interpret optimal temporal convolution weights we need to consider the spectral

characteristics of neural recordings. To illustrate this, we first used simplified simulations

with one task-related source occupying the 50-150 Hz frequency range and one task-

unrelated source active within the 50-100 Hz band which is a subrange of the task-related

signal frequency band. We trained a single-channel (𝑀 = 1) adaptive envelope detector.

As can be seen from Figure 3, the Fourier profile of the identified temporal convolution

weights can not be used to assess the power spectral density of the underlying signal as it

has a characteristic suppression over the frequency range occupied by the interference.

At the same time, the expression in (7) allows us to obtain a proper pattern that matches

well the simulated spectral profile.

To explore the performance of the proposed approach, we performed a set of simulations.

The simulated data corresponded to the setting shown in the phenomenological diagram

(Figure 1). We simulated 𝐼 = 4 task-related sources with rhythmic potentials 𝑠𝑖[𝑛]. The

potentials of these four task-related populations were generated as narrow-band processes

in the lower to higher gamma sub-bands (30-80 Hz, 80-120 Hz, 120-170 Hz, and 170-220

Hz) obtained from filtering Gaussian pseudo-random sequences with a bank of FIR filters.

We then simulated the kinematics 𝑧[𝑛], as a linear combination of the four envelopes

of these rhythmic signals with a randomly generated vector of coefficients. We used

task-unrelated rhythmic sources with activation time series obtained similarly to the

task-related sources but with filtering within the following four bands: 40-70 Hz, 90-110
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Figure 3: Three possible ways to interpret temporal convolution weights. The true pattern

of dynamic activity i.e. the power spectral density (PSD) (orange ∙) of the source. Fourier

domain representation of the temporal convolution weights (black ∙), Ball’s method (green

+), and the dynamic source activity pattern reconstructed with the proposed approach

(blue ▼).

Hz, 130-160 Hz, and 180-210 Hz bands. For each Monte-Carlo trial, we generated new

mixing matrices G, A, and new source time series. We have also added 1/𝑓 noise to the

sensor data to simulate spatially uncorrelated brain noise. We generated 20 minutes of

data sampled at 1,000 Hz and divided them into two equal contiguous parts.

As a result, in the absence of noise, all interpretation methods coped well (4), but in

the presence of noise, as can be seen in the graph 5, only Patterns match well with the

simulated topographies of the underlying sources. Spectral characteristics of the trained

temporal filtering weights exhibit characteristic deeps in the bands corresponding to the

activity of the interfering sources. After applying expression (7), we obtain the spectral

patterns that more closely match the simulated ones and have the deeps compensated.

Also, in order to obtain reliable results, we applied Monte Carlo simulations with

different parameters, which clearly show that the proposed method gives a more correct

interpretation (figure 6)

2.2 Decoding and Interpreting Cortical Signals With A Compact Con-

volutional Neural Network

This section contains a summary of two articles [6] [11].
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Figure 4: Temporal (left) and spatial (right) patterns were obtained for the noiseless case.

See the main text for a description.

Contribution of the author: the architecture of the neural network was developed, a

method for its interpretation was developed, computer simulations were implemented (in-

cluding Monte Carlo simulations), the results of the quality of decoding and interpretation

on real patients were obtained.

2.2.1 Introduction and existing methods

Several useful and compact architectures have been developed for processing EEG and

ECoG data. The operation of some blocks of these architectures can be straightforwardly

interpreted. Thus, EEGNet [33] contains explicitly delineated spatial and temporal

convolutional blocks. This architecture yields high decoding accuracy with a minimal

number of parameters. However, due to the cross-filter-map connectivity between any

two layers, a straightforward interpretation of the weights is difficult. Some insight

regarding the decision rule can be gained using the DeepLIFT technique [29] combined

with the analysis of the hidden unit activation patterns. Schirrmeister et al. describe

two architectures: DeepConvNet and its compact version ShallowConvNet. The latter
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Figure 5: Temporal (left) and spatial (right) patterns were obtained for the noisy case,

SNR = 1.5. See the main text for a description.

architecture consists of just two convolutional layers that perform temporal and spatial

filtering, respectively [27]. In [23], authors describe a compact CNN architecture with

separable spatial and temporal convolutions to perform the classification of EEG in

the SSVEP paradigm. A recent study of Zubarev et al. [20] reported two compact

neural network architectures, LF-CNN and VAR-CNN, that outperformed the other

decoders of MEG data, including linear models and more complex neural networks such

as ShallowFBCSP-CNN, EEGNet-8, and VGG19. LF-CNN and VAR-CNN contain only a

single non-linearity, which distinguishes them from most other DNNs. This feature makes

the weights of such architectures readily interpretable with well-established approaches

[61, 57, 38]. This methodology, however, has to be applied taking into account the

peculiarities brought about by the separability of the spatial and temporal filtering steps

in these architectures.

Here we introduce another simple architecture, developed independently but concep-

tually similar to those listed above, and use it as a testbed to refine the recipes for the

interpretation of the weights in the family of architectures characterized by separated
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Figure 6: Monte-Carlo simulations. Point coordinates reflect the achieved envelope

decoding performance (x-axis) and correlation coefficient with the true pattern (y-axis) at

each Monte Carlo trial. Each point of a specific color corresponds to a single Monte Carlo

trial and codes a method used to compute patterns. Weights - direct weights interpretation,

Patterns naive - spatial patterns interpretation without taking branch-specific temporal

filters into account, Patterns - the proposed method.

adaptive spatial and temporal processing stages. We refer to this kind of processing as

factorized processing. We emphasize that when interpreting the weights in such archi-

tectures we have to keep in mind that these architectures tune their weights not only to

adapt to the target neuronal population(s) but also to minimize the distraction from the

interfering sources in both spatial and frequency domains.

The solutions exercised in [55, 52, 45, 47, 42] and elegantly summarized in [38] take

care of this adaptive behaviour but are directly applicable only to the regression-like

models where a single vector of weights is applied to the data(feature) vector. This

is not the case with the type of models considered here where filtering in one domain

is followed by the application of a filter in another domain. The factorized processing

reduces the number of parameters in the architecture but requires a special weights
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interpretation approach derived here in order to accurately assess spatial patterns of the

neuronal sources underlying decision rules learned by the architectures with factorized

processing. Also using Wiener filtering arguments we for the first time expand the weights

interpretation approach to the analysis of temporal filter weights and show how the

learned temporal convolution kernels in combination with the spatially filtered neural

activity data give access to the estimates of the power spectral density of the underlying

neuronal populations pivotal to the decoding task.

To test the work of the developed neural network and the methods of its interpretation,

we applied them to three datasets.

2.2.2 Motion decoding at the Berlin BCI competition IV

Firstly, to compare the compact GCN architecture with existing solutions, we used

data collected by Kubanek et al and used in the Berlin BCI competition IV (which

is publicly available). As a result, we did not observe significant differences between

the performance of our algorithm and the winning solution of Lian and Bougrain[43]

(Mann-Whitney test, 𝑈 = 103.0, 𝑝 = 0.3543), see table 1. Nevertheless, data on the

location of the electrodes in this dataset are not disclosed, so it is not possible to make a

complete interpretation.

Subject 1|2|3 Thumb Index Middle Ring Little

Winner .58|.51|.69 .71|.37|.46 .14|.24|.58 .53|.47|.58 .29|.35|.63

NET .54|.50|.71 .70|.36|.48 .20|.22|.50 .58|.40|.52 .25|.23|.61

Table 1: Comparison of the performance of the proposed architecture (NET) and the

winning solution (Winner) at the Berlin BCI competition IV.

2.2.3 Motion decoding from ECoG

Secondly, we applied the proposed solutions to the data collected in the HSE Center for

Bioelectric Interfaces from two patients in the finger movement tasks, who were implanted

with 8× 8 ECoG microgrids placed on top of the sensorimotor cortex of the brain. Based

on these data, we knew the locations of the electrodes and as a result, we received an
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interpretation that is consistent with knowledge from the subject area of neuroscience.

An example can be seen in the figure 7
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Figure 7: Network weights interpretation for the little finger kinematics decoder in CBI

patient 2 (ECOG). Each row of plots corresponds to one of the three branches of the

trained decoder. a) The leftmost column shows color-coded spatial filter weights, and

the next two columns correspond to naively and properly reconstructed spatial patterns.

Blue color corresponds to the minimum absolute activation and yellow to the maximum.

b) Temporal filter weights interpretation in the Fourier domain. FFT of filter weights

- (black ∙), power spectral density (PSD) 𝑄*
𝑚[𝑘] pattern of the underlying LFP (blue

▼) obtained according to equation (7). Another line (red ♢) is the PSD of the signal at

the output of the temporal convolution block. Results of sensitivity analysis using the

perturbation approach are shown in (green +).
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2.2.4 Motion classification from EEG

Thirdly, unlike the previous two data sets, which required decoding a continuous

trajectory from an invasive ECoG, the third data set was recorded non-invasively within

the framework of the paradigm of imaginary EEG movements. The task here was to

classify the type of motor actions performed. Given the short duration of these data, the

compact CNN architecture solved the problem quite well and gave an average of 0.83

ROC AUC. And based on these data, we also received an interpretation that is consistent

with knowledge from the subject area of neuroscience. An example can be seen in the

figure 8
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Figure 8: Network weights interpretation for the three branches (three rows of plots) of

the decoder trained on a motor-imagery EEG dataset. a) The leftmost column shows

color-coded spatial filter weights, and the next two columns correspond to naively and

properly reconstructed spatial patterns. White color corresponds to the minimum absolute

activation and red to the maximum. b) Temporal filter weights interpretation in the

Fourier domain. FFT of filter weights - (black ∙), power spectral density (PSD) 𝑄*
𝑚[𝑘]

pattern of the underlying LFP (blue ▼) obtained according to equation (7). Another line

(red ♢) is the PSD of the signal at the output of the temporal convolution block. Results

of sensitivity analysis using the perturbation approach are shown in (green +).

2.3 Speech Decoding From A Small Set Of Spatially Segregated Mini-

mally Invasive Intracranial EEG Electrodes With A Compact And

Interpretable Neural Network

This section contains a summary of two articles [2] [4].

Contribution of the author: the architecture of a neural network for speech decoding

was developed, the results of the quality of decoding and interpretation on real patients
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were obtained, the quality of decoding was compared when using different internal

speech representations, the data was analyzed for the presence of a microphone effect, an

asynchronous mode of operation of the neural network was implemented, an analysis of

the mutual information between sound and brain data.

2.3.1 Introduction and existing methods

The ability to communicate is vital to humans and speech is the most natural channel

for it. The inability to speak dramatically affects the quality of life. A number of disorders

can lead to a loss of this vital function, for example, cerebral palsy and stroke of the brain

stem. Also, in some cases, severe speech deficits may occur after a radical brain tissue

removal surgery in oncology patients. While several technologies have been proposed

to restore communication function they primarily rely on brain-controlled typing or

imaginary handwriting [7] and appear to be practical only for severely affected patients.

At the same time only in the United States, 50 million people suffer from not being able

to use their speech production machinery properly. A significant fraction of them have

pathology not amenable by alaryngeal voice prosthesis [25] or "silent speech" devices [54]

and require a neurally driven speech restoration solution.

Several successful attempts of BCI-based speech restoration have already been made

and significant progress is achieved in decoding phonemes [15, 22, 39], individual words

[10, 3, 14], continuous sentences [10, 3, 14], and even acoustic features [18, 14, 17] followed

by the speech reconstruction algorithms using either Griffin-Lim or deep neural network

algorithms inspired by WaveNet[17].

These solutions employ a broad variety of machine learning approaches for decoding

speech from brain activity data. Starting from linear models [15], LDA [8], and metric

models [18] to deep neural networks (DNN) [10, 3, 14], which in general do not require

manual feature engineering and can be applied directly to the data, however sometimes

operating over a set of handcrafted features primarily derived from high-gamma activity.

Several different neural network architectures have been tried for the speech decoding

task: 1) relatively shallow ones consisting of a few convolutional or LSTM layers, 2) truly

deep architectures with inception blocks [14] or with skip connections exploiting residual

learning technique [17] as well as those borrowed from the computer vision applications
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[24, 37], 3) ensembles of DNN [3] making the final solution more robust. Interestingly,

the linear methods demonstrate compatible, or at least close to DNNs, decoding quality.

Moreover, the latest studies obtained state-of-the-art decoding accuracy using just a few

layers over a set of handcrafted physiologically plausible features [10, 3]

The majority of the existing neural speech decoding studies rely on heavily multichannel

brain activity measurements implemented with massive ECoG grids [3, 10, 17, 16] covering

the significant cortical area. These solutions for reading off brain activity are not intended

for long-term use and are associated with significant risks to a patient [32] and suffer

from a rapid loss of signal quality due to the leakage of the cerebrospinal fluid under

the ECoG grid even if it is properly perforated. sEEG is a promising alternative whose

implantation process is significantly less traumatic as compared to that of the large ECoG

grids. The use of sEEG has already been explored for the speech decoding task [8] but

the reported decoder again relied on a high count of channels from multiple sEEG shafts

distributed over a large part of the left frontal and left superior temporal lobes which

reduce the practicality of the proposed solution. A solution capable of decoding speech

from the locally sampled brain activity would be an important step toward creating a

speech prosthesis device.

The accuracy of neural speech decoding improves with the use of compressed represen-

tations encoding speech kinematic or acoustic features as an intermediate representation

of the target variable [17] or for regularization [14]. However, it still remains unclear

which of the compressed speech representations is optimal for decoding speech from

electrophysiological data and how it should be used to yield the best decoding accuracy.

In addition to the direct practical benefit, answering this question together with an

appropriate interpretation of the decision rule will shed light on the neuronal basis and

cortical representation of the speech production processes.

2.3.2 Neural network architecture and its interpretation

Here we explore the possibility of decoding individual words from intracranially

recorded brain activity sampled with compact probes whose implantation did not require

a full-blown craniotomy. Our study comprises two subjects implanted either with sEEG

shafts or ECoG stripes both via compact drill holes. We decode individual words using
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either 6 channels of data recorded with a single sEEG shaft or the 8 channels sampled

using a single ECoG strip. For decoding, we employed our compact and interpretable

CNN architecture [6] augmented with the bidirectional LSTM layer [60] to compactly

model local temporal dependencies in the internal speech representation that we used as

the intermediate decoding target. We also compared the ultimate word decoding accuracy

achieved with different internal representations. Our decoder operated causally using

only the data from time intervals preceding the decoded time moment and therefore is

fully applicable in a real-time decoding setting. Overall our study is the first attempt to

achieve acceptable individual word decoding accuracy from cortical activity sampled with

compact non-intracortical probes whose implantation is likely to cause minimal discomfort

to a patient and can be done even with local anesthesia.

For neural signals to LMSC decoding, we employed the compact and interpretable

convolutional network architecture developed earlier for motor BCI purposes [6] and

augmented it with a single bidirectional LSTM layer with 30 hidden units to compactly

model temporal regularities. The LSTM layer is followed by the fully connected layer

with 𝑀 = 40 output neurons each corresponding to a single mel-spectral coefficient whose

temporal profile we are aiming to reconstruct from the neural activity data, see Figure

9. The ED during training can potentially adapt to extracting instantaneous power of

specific neuronal populations activity pivotal for the downstream task of predicting the

LMSCs. In the search for the optimum, the ED weights are not only tuned to such a target

source but also tune away from the interfering sources [38, 6]. The proper interpretation

of the learned ED’s weights allows for the subsequent discovery of the target source’s

geometric and dynamical properties.

After having trained our compact architecture to decode the ISRs as our intermediate

target we used a 2D-convolution network to perform the discrete classification of 26 words

and the silent class using the representations developed in the one before the last layer of

the compact architecture, see Figure 9.

Here we compared this network to several other architectures. We found that out of

several neural networks only Resent-18 offers a comparable, although significantly worse,

performance when used instead of the ED block in our architecture, see Figure 2. The

LSTM layer also appears to be very useful in capturing the dynamics of features extracted
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Figure 9: The architecture is based on [6] and adapted for the speech classification task.

We used the same envelope detector technique to extract robust and meaningful features

from the neuronal data. We then used the LSTM layer to account for the sequential

structure of the mel-spectrogram and finally decoded it with a fully connected layer over

the LSTM hidden state (ℎ𝑖𝑗 on the figure). A separate 2D convolutional network was

trained and used to classify separate words from the activity of this pre-trained LSTM.

either with ED or ResNet blocks, see Figure 12.a. We hypothesize that this situation

may be caused by the adequate balance in the number of parameters to be tuned for the

ED-based network and the amount of data available for training as compared to several

other more sophisticated architectures.

2.3.3 Decoding internal speech representation

In this work, we also asked the question of the significance of the internal representation

of the language (ISR) for the task of decoding speech. As can be seen from the neural

network architecture, it uses an additional output and learns to restore some of the

possible internal representations of speech (MELS, LPC, MFCC).

Most of the ISRs are based on modeling speech signals as produced by an excitation

sequence passing through a linear time-varying filter [58]. The excitation sequence is the

airflow in the larynx and the filter is formed by the articulatory tract elements (pharynx,

vocal folds, tongue, lips, teeth) whose mutual geometry changes over time.

Linear predictive coding (LPC) and cepstral analysis are the two principal ways to

estimate the parameters of such a filter. LPC analysis is based on a direct estimate of

the auto-regressive prediction coefficients (PC) 𝑎𝑖 through Burg’s method [63]. However,
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Figure 10: Dependence of the ISR decoding quality on the final word classification

accuracy. The Red line is just a third-order trend estimation made for trend visualization.

prediction coefficients themselves are unstable, as their small changes may lead to large

variations in the spectrum and possibly unstable filters. In order to decrease such

instability the following several equivalent representations are commonly used.

Reflection coefficients (RC) 𝑘𝑖 can be computed alongside prediction coefficients

through Burg’s method and represent the ratio of the amplitudes of the acoustic wave

reflected by and the wave passed through a discontinuity.

Another descriptor, log-area ratio (LAR) coefficients, 𝑔𝑖, are equal to the natural

logarithm of the ratio of the areas of adjacent sections in a lossless tube equivalent of the

vocal tract having the same transfer function and can be computed from the reflection

coefficients as 𝑔𝑖 = ln
(︁
1−𝑘𝑖
1+𝑘𝑖

)︁
.

Line spectral frequencies (LSF) is another highly efficient speech data compression

technique [62] as errors in representing one coefficient generally result in a spectral change

only around that frequency.

In what follows we will present the results of our experiments with several ISRs but

our final decoding accuracy results are based on the use of log-mel spectral coefficients
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(LMSC).

The results in the figure 12.b. We can see that the first patient log-mel spectrum

coefficients (LMSC) target results in the highest word decoding accuracy. Interestingly, in

contrast to the actual ISR decoding task displayed in Figure 11 the difference in the word

decoding accuracy between various ISRs seems to be significantly less articulated than

the differences in the quality of decoding of each of such representations. Nevertheless,

for both patients, we observe a similar pattern with PC and LSF yielding relatively worse

word decoding accuracy than the other ISRs. In this analysis, LPC reflection coefficients

(RC) yield better decoding accuracy as compared to the prediction coefficients. This

observation matches the properties of the RC coefficients as informationally equivalent

but a more stable version of the original PC.
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Figure 11: Comparison of the decoding accuracy achieved for different ISRs: PC -

autoregressive prediction coefficients, LSF - line spectral frequencies, RC - reflection

coefficients, LAR - log-area ratios, LMSCs - log-mel spectrograms, MFCC - mel-frequency

cepstral coefficients. The left panel corresponds to the correlation coefficients between

the actual and decoded temporal profiles computed over the entire time range of the test

data segment. In the right panel, the correlation coefficient is computed only over the

time intervals where the actual speech was present.

2.3.4 Synchronous and Asynchronous mode

Traditionally, BCI can be used in two different settings: synchronous and asynchronous.

In the synchronous setting, a command is to be issued within a specific time window.
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Figure 12: Comparative analysis. a) Comparison of different neural network models, b)

Comparison of different possible intermediate sound representation, PC - autoregressive

prediction coefficients, LSF - Line Spectral Frequencies, RC - reflection coefficients, LAR -

log-area ratios, LMSC - log-mel spectrogram coefficients, MFCC - mel-frequency cepstral

coefficients.

Usually, a synchronous BCI user is prompted at the start of such a time window and

has to produce a command (alter his or her brain state) within a specified time frame.

Therefore, the decoding algorithm is aware of the specific segment of data to process in

order to extract the information about the command. In the asynchronous mode, the BCI

needs to not only decipher the command but also determine the fact that the command is

actually being issued. The delineation between synchronous and asynchronous modes is

most clearly pronounced in BCIs with discrete commands implying the use of a categorical

decoder.

In BCIs that decode a continuous variable, e.g. hand kinematics,the such delineation

between synchronous and asynchronous modes is less clear. The first part of our BCI

implements a continuous decoder of the internal speech representation (ISR) features.

Should this decoding appear of sufficient accuracy it could have been simply used as

an input to a voice synthesis engine. Such a scenario has already been implemented in

several reports [17, 16] but these solutions use a large number of electrodes which may

explain the better quality of ISR decoding. In our setting, we aimed at building a decoder

operating with a small number of ecologically implanted electrodes and decided to focus

on decoding individual words. We first used the continuously decoded ISRs to classify 26
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discrete words and one silence state in a synchronous manner. To implement this we cut

the decoded ISR time series around each word’s utterance and use them as data samples

for our classification engine.

Figure 13 b) illustrates the performance of our BCI operating in a fully asynchronous

mode when the decoder is running over the succession of overlapping time windows of

continuously decoded ISRs and the decision about the specific word being uttered is

made for each of such windows. To quantify the performance of our asynchronous speech

decoder we used precision-recall (see Figure 13 a).)
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Figure 13: a) For each 𝑖−th word, we compute smoothed probability profiles 𝑝𝑖(𝑡) for each

time instance 𝑡. The decision is then made about a word being pronounced only at time

points corresponding to the local maximums of 𝑝𝑖(𝑡) that cross the threshold 𝜃. In case

the chosen 𝑖−th word matches the one that is currently being uttered, we mark this event

as true positive (TP). If after such a detection 𝑝𝑖(𝑡) remains above the threshold and

exhibits another local maximum that exceeds the values of all other smoothed probability

profiles, the 𝑖−th word is "uttered" again, but this event is marked as false positive (FP)

even if 𝑡 belongs to the time range corresponding to the actual 𝑖−th word. b) PR curves

for asynchronous words decoding task. Note that the definition of precision and recall is

slightly different from conventional binary classification PR curves (see equation 7). We

also show a chance-level PR curve.

Although the observed performance significantly exceeds the chance level, it is not yet

sufficient for building a full-blown asynchronous speech interface operating using a small
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number of minimally invasive electrodes. In our view and based on our experience with

motor interfaces, specific protocols to train the patient including those with immediate

feedback to the user [1] are likely to significantly improve the decoding accuracy in such

systems which will boost the feasibility of minimally invasive speech prosthetic solutions.

3 Conclusion

In this work, two large projects united by a common theme, dedicated to the develop-

ment and application of modern interpretable neural network models for the analysis and

decoding of brain activity, were completed. The work is a completed study, as a result of

which a whole range of software and algorithmic means for processing electrophysiological

signals was developed, containing at its core a new mathematical method, also proposed

by the authors of the work. The solutions obtained were tested in presentations at numer-

ous conferences and their scientific validity was confirmed by a number of publications

in leading international scientific journals, including two publications with the main

authorship in the Journal of Neural Engineering (Q1 - Scopus, Q2 - WoS). Currently, all

the developed tools and algorithms are used in the research activities of the Center for

Bioelectrical Interfaces of the National Research University Higher School of Economics.

3.1 List of results submitted for the defense

1. The compact neural network architecture reflects modern scientific ideas about

the origin of neuroelectrophysiological activity, the mechanism of its propagation

in tissues, and the physical principles of its registration using a distributed set of

electrodes.

2. The results of a comparative analysis of the quality of decoding from ECoG and

s-EEG of finger kinematics and articulatory tract parameters, demonstrate the

superiority of the proposed neural network architecture compared to competing

solutions.

3. A theoretically justified method for interpreting weight coefficients in the proposed

architecture of a neural network in order to identify the geometric characteristics of
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key populations of neurons and the dynamic properties of their activity.

4. The results of the analysis of the dependence of the final classification accuracy on

the choice of the intermediate representation of the speech signal.

5. Implementation of real-time hand movement kinematics decoding.

6. Implementation of speech decoding based on the minimum number of spatially

segregated electrodes.
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