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Introduction 

Analysis of large textual data has become one of the most needed scientific directions in 

the modern world due to the development of electronic means of storing and transmitting such 

data. Such data, according to its volume, become comparable to physical mesoscopic systems. 

Therefore, machine learning models on the basis of mathematical formalism borrowed from 

statistical physics may be used to analyze such data. An example of such a model is topic modeling 

based on a sampling procedure, where the formalism of the Potts model is used to calculate the 

distribution of words by topics [15]. The task of topic modeling is to extract the distributions of 

observable variables (i.e., texts or images and their elements) on hidden variables called topics. 

Currently, many topic models are developed [1] with different methods of determining 

hidden distributions and different measures for quality analysis. However, despite the broad usage 

of these models in different areas, a set of unsolved problems remains that, in turn, limits the 

application of TM.  

One of the main problems is the problem of determining the number of components in a 

mixture of distributions since the parameter determining the dimension of the mixture in a model 

has to be set explicitly. Let us note that in the framework of topic modeling, an approach of 

automatic selection of the number of topics was developed according to the authors of the 

approach. However, such models possess a lot of hidden parameters, which significantly impact 

the modeling results. Moreover, such a model cannot correctly determine the number of topics in 

a dataset. 

The second problem is the instability of topic modeling. This means that topic modeling 

results are not identical for different model runs on the same dataset and with the same parameter 

settings. On the one hand, this problem is related to the ambiguity of matrix decompositions (for 

topic models based on the E-M algorithm). On the other hand, this problem is associated with the 

presence of many local minima and maxima of the integrand (for topic models based on the Gibbs 

sampling procedure). 

The third unsolved problem arising from the second one is related to the development of 

regularization procedures, which can be used to improve stability and other purposes [1]. 

Regularization means adding prior information to topic models in the form of different relations 

and limitations that reduce the number of possible solutions. Currently, many generative models 

with regularizers are proposed in the literature. However, there are no clear criteria for choosing a 

combination of regularizers and selecting regularization coefficients. 

The above problems naturally impact the quality of topic modeling. Currently, the major 

measures of topic modeling quality are Shannon entropy, Kullback-Leibler divergence, log-

likelihood, and perplexity. Moreover, it is known that distributions of words, at least in European 

languages, correspond to a power law, which is typical for complex statistical systems. Also, it is 

known that the behavior of complex systems can be investigated more efficiently with methods 

developed in the framework of mathematical formalism borrowed from the theory of complex 

systems. 

 

Goals and objectives of the study 
The goal of the dissertation is the development and investigation of a new class of 

computational topic models, namely, entropic topic models, aimed at advancing in solving the 

problems of determining optimal hyperparameters of topic models, including determining the 

presence of flat or hierarchical structures in datasets and developing stable clustering models of 

text collections. 
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Obtained results:  

1. Entropic topic model based on one-parametric entropy (Renyi entropy and Tsallis entropy). 

This model is developed for the following generative algorithms: 1) LDA (Gibbs sampling 

algorithm), 2) pLSA (E-M algorithm), 3) VLDA (E-M algorithm), and 4) GLDA (Gibbs 

sampling algorithm). 

2. Entropic topic model based on two-parametric entropy (Sharma-Mittal entropy). This 

model is implemented for the following generative models: 1) pLSA (E-M algorithm), 2) 

LDA (Gibbs sampling algorithm), and 3) ARTM with sparsing regularizers of matrices Ф 

and Θ (E-M algorithm). 

3. Hierarchical entropic topic model. This model is implemented for the following generative 

hierarchical algorithms: 1) hLDA, 2) hPAM, 3) hARTM,  4) algorithm of cluster analysis 

HCA (‘complete method’). 

4. Fractal model of estimation of the performance of generative topic models. This model is 

implemented for the following algorithms: 1) pLSA (E-M algorithm), 2) ARTM (E-M 

algorithm), and 3) LDA Gibbs sampling algorithm.  

5. An aggregation method of topic models based on the renormalization procedure. The 

method is implemented for the following algorithms: 1) VLDA (E-M algorithm). 2) LDA 

(Gibbs sampling algorithm). 3) pLSA (E-M algorithm). 

6. The aggregation method is implemented for three variants of merging topics: 1) merging 

based on minimum Renyi entropy, 2) merging of random topics, and 3) merging based on 

Kullback-Leibler divergence.   

7. Granulated topic model based on Gibbs sampling procedure. This model is implemented 

for three variants of the function of local distribution of topics: 1) GLDA, 2) ELDA, and 

3) TLDA. 

The author 's personal contribution includes:  

 General mathematical formulation of entropic model based on one-parametric Renyi 

entropy, published in two articles with one author.  

 Organization and participation in large-scale computer experiments on analysis of 

entropic models' applicability for estimating different topic models' performance.  

 Leading participation in the mathematical formulation of entropic model based on two-

parametric Sharma-Mittal entropy and testing this model in a series of computer 

experiments.  

 Formulation of the fractal model for estimating generative topic models performance and 

conducting computer experiments to test this model.  

 Mathematical formulation of the aggregation method of topic models with 

renormalization procedure and conducting computer experiments on testing the 

effectiveness of the renormalization procedure.  

 General mathematical formulation of the granulated sampling method.  

On the topic of this dissertation, 8 articles were published in Q1-Q2 journals, according to 

WoS, and 11 articles indexed in Scopus.  
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Scientific novelty:  

1. For the first time, the application of one-parametric Renyi entropy and two-parametric 

Sharma-Mittal entropy was proposed for optimization of topic models' performance.  

2. For the first time, it was demonstrated that quality measures based on parameterized 

entropies outperform traditional quality measures such as log-likelihood or perplexity 

since they allow one to tune hyperparameters values of topic models and the number of 

distributions in the mixture simultaneously.  

3. For the first time, the fractal model for estimating generative topic model performance 

was proposed. This model demonstrates the self-similar behavior of topic models that 

allows one to apply the renormalization procedure to them.  

4. For the first time, the renormalization procedure of topic models was proposed, and its 

effectiveness for fast determining the optimal number of distributions in the mixture was 

demonstrated.  

5. A granulated version of the topic model, which outperforms other topic models in terms 

of stability, was proposed.  

Publications in high-impact journals (Q1-Q2 according to WOS and Scopus) 

1. Koltcov, S., Ignatenko, V., Terpilovskii, M., Rosso, P.  Analysis and tuning of hierarchical 

topic models based on Renyi entropy approach // PeerJ Computer Science, Vol. 7, 2021. 

Open access: https://peerj.com/articles/cs-608/ 

2. Koltsov S., Ignatenko V., Boukhers Z., Staab S. Analyzing the Influence of Hyper-

parameters and Regularizers of Topic Modeling in Terms of Renyi entropy // Entropy. 2020. 

Vol. 22. No. 4. pp. 1-13.  

3. Koltcov S, Ignatenko V. Renormalization Analysis of Topic Models // Entropy. 2020. 

Vol. 22. No. 5. pp. 1-23.   

4. Koltsov S., Ignatenko V., Koltsova O. Estimating Topic Modeling Performance with 

Sharma–Mittal Entropy // Entropy. 2019. Vol. 21. No. 7. pp. 1-29.   

5. Koltsov S. Application of Rényi and Tsallis entropies to topic modeling 

optimization // Physica A: Statistical Mechanics and its Applications. 2018. Vol. 512. 

pp. 1192-1204.  

6. Koltcov, S.N. A thermodynamic approach to selecting a number of clusters based on topic 

modeling / Koltcov, S.N. // Technical Physics Letters. 2017. Vol. 43. No.12. pp. 90-95.   

7. S. N. Koltsov, S. I. Nikolenko, and E. Yu. Koltsova Gibbs Sampler Optimization for 

Analysis of a Granulated Medium // Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 42, 

No. 16, pp. 21–25.  

8. Sergey Nikolenko, Sergei Koltcov, Olessia Koltsova. Topic modelling for qualitative 

studies // Journal of Information Science. 2017. Vol. 43. No. 1. pp. 88-102.   

 

Standard level publications on the research topic (Scopus) 

1. Koltsov S., Ignatenko V., Pashakhin S. How many clusters? An Entropic Approach to 

Hierarchical Cluster Analysis, in: Intelligent Computing: SAI 2020: Volume 3 Vol. 1230. 

Book 3. Cham : Springer, 2020.  pp. 560-569.   

2. Koltsov S., Ignatenko V. Renormalization approach to the task of determining the 

number of topics in topic modeling, in: Intelligent Computing: SAI 2020: Volume 1 Vol. 

1228. Part 1. Switzerland : Springer, 2020. pp. 234-247.   

https://www.hse.ru/en/org/persons/219432984
https://publications.hse.ru/view/354335135
https://publications.hse.ru/view/354335135
https://www.hse.ru/en/org/persons/219432984
https://publications.hse.ru/view/365791411
https://www.hse.ru/en/org/persons/219432984
https://www.hse.ru/en/org/persons/202747
https://publications.hse.ru/view/294173069
https://publications.hse.ru/view/294173069
https://publications.hse.ru/view/225711357
https://publications.hse.ru/view/225711357
https://publications.hse.ru/view/187040350
https://publications.hse.ru/view/187040350
https://www.hse.ru/en/org/persons/56987224
https://www.hse.ru/en/org/persons/202747
https://publications.hse.ru/view/192817051
https://publications.hse.ru/view/192817051
https://www.hse.ru/en/org/persons/219432984
https://www.hse.ru/en/org/persons/160989072
https://publications.hse.ru/view/314131398
https://publications.hse.ru/view/314131398
https://www.hse.ru/en/org/persons/219432984
https://publications.hse.ru/view/317119183
https://publications.hse.ru/view/317119183
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3. Ignatenko V., Sergei Koltcov, Staab S., Boukhers Z. Fractal approach for determining the 

optimal number of topics in the field of topic modeling // Journal of Physics: Conference 

Series. 2019. Vol. 1163. No. 1. pp. 1-6.   

4. Koltsov S., Pashakhin S., Dokuka S. A Full-Cycle Methodology for News Topic 

Modeling and User Feedback Research, in: Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). 10th International Conference on Social Informatics, SocInfo 2018; 

St.Petersburg. Cham: Springer, 2018. pp. 308-321.   

5. Mavrin A., Filchenkov A., Koltsov S. Four Keys to Topic Interpretability in Topic 

Modeling, in: Artificial Intelligence and Natural Language, 7th International 

Conference, AINL 2018, St. Petersburg, Russia, October 17–19, 2018, Proceedings Issue 

930. Switzerland : Springer, 2018. doi pp. 117-129.   

6. Koltsov S., Nikolenko S. I., Koltsova O., Filippov V., Bodrunova S. Stable Topic 

Modeling with Local Density Regularization, in: Internet Science, Proc. of 3d conf INSCI 

2016, Lecture Notes in Computer Science series Vol. 9934. Switzerland : Springer, 

2016. doi pp. 176-188.   

7. Koltsov S., Nikolenko S. I., Koltsova O., Bodrunova S. Stable topic modeling for web 

science: Granulated LDA, in: WebSci 2016 - Proceedings of the 2016 ACM Web Science 

Conference. Elsevier, 2016. pp. 342-343.   

8. Koltsov S., Koltsova O., Nikolenko S. I. Latent Dirichlet Allocation: Stability and 

Applications to Studies of User-Generated content, in: Proceedings of WebSci '14 ACM 

Web Science Conference, Bloomington, IN, USA — June 23 - 26, 2014. NY : ACM, 

2014. pp. 161-165. 

9. Nikolenko S. I., Koltsov S., Koltsova O. Measuring Topic Quality in Latent Dirichlet 

Allocation, in: Proceedings of the Philosophy, Mathematics, Linguistics: Aspects of 

Interaction 2014 Conference. St. Petersburg : The Euler International Mathematical 

Institute, 2014. pp. 149-157. 

10. Koltsov S., Ignatenko V., Pashakhin S. Fast Tuning of Topic Models: An Application of 

Rényi Entropy and Renormalization Theory, in: Proceedings of the 5th International 

Electronic Conference on Entropy and Its Applications Vol. 46. Issue 1. MDPI AG, 

2020. Ch. 5. pp. 1-8.  

11. Bodrunova S., Koltsov S., Koltsova O., Nikolenko S. I., Shimorina A. Interval Semi-

supervised LDA: Classifying Needles in a Haystack, in: Proceedings of the 12th Mexican 

International Conference on Artificial Intelligence (MICAI 2013) Part I: Advances in 

Artificial Intelligence and Its Applications. Berlin : Springer, 2013. pp. 265-274. 

 

1. Analytical overview of scientific literature  

1.1. Approaches to the problem of selecting the number of clusters  

The overview considers the most interesting and valuable for this dissertation 

investigations. The main problem in searching for the optimal number of clusters in cluster analysis 

and topic modeling is the choice of the function based on which such searching is conducted. 

Discussion of many clustering quality measures, including functions for selecting the number of 

clusters, is presented in works [10, 11]. These and other works demonstrate that minimal 

intracluster distance is frequently used for these purposes in cluster analysis. However, the problem 

with this and similar measures is that dependence of such measures on the number of clusters is 

monotone increasing (or decreasing). Correspondingly, the development of transformation 

https://www.hse.ru/en/org/persons/219432984
https://publications.hse.ru/view/228688368
https://publications.hse.ru/view/228688368
https://www.hse.ru/en/org/persons/160989072
https://www.hse.ru/en/org/persons/127184776
https://publications.hse.ru/view/224214134
https://publications.hse.ru/view/224214134
https://publications.hse.ru/view/228687457
https://publications.hse.ru/view/228687457
http://doi.org/10.1007/978-3-030-01204-5
https://www.hse.ru/en/org/persons/56987224
https://www.hse.ru/en/org/persons/202747
https://publications.hse.ru/view/192818569
https://publications.hse.ru/view/192818569
http://doi.org/10.1007/978-3-319-45982-0_16
https://www.hse.ru/en/org/persons/56987224
https://www.hse.ru/en/org/persons/202747
https://publications.hse.ru/view/195202498
https://publications.hse.ru/view/195202498
https://www.hse.ru/en/org/persons/202747
https://www.hse.ru/en/org/persons/56987224
https://publications.hse.ru/view/135448334
https://publications.hse.ru/view/135448334
https://www.hse.ru/en/org/persons/56987224
https://www.hse.ru/en/org/persons/202747
https://publications.hse.ru/view/135446513
https://publications.hse.ru/view/135446513
https://www.hse.ru/en/org/persons/219432984
https://www.hse.ru/en/org/persons/160989072
https://publications.hse.ru/view/348808912
https://publications.hse.ru/view/348808912
https://www.hse.ru/en/org/persons/202747
https://www.hse.ru/en/org/persons/56987224
https://publications.hse.ru/view/117282080
https://publications.hse.ru/view/117282080
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procedures for extracting peculiarities from these functions is needed. In work [3], an algorithm 

for determining the optimal number of topics based on ‘rate distortion theory’ was formulated. 

Modernization of this approach in the framework of non-extensive statistical physics for image 

clustering was implemented in the work [4]. 

Other approaches to solving this problem exist in cluster analysis [5, 6, 7]. In the work by 

Tibshirani [6], a method called ‘gap statistic’ was proposed. Its key idea is to measure the 

difference between null reference distribution and distribution obtained from clustering from the 

above distribution. This difference is calculated for different numbers of clusters. After that, a 

corresponding curve is plotted. In the framework of this approach, the authors assume that the 

optimal number of clusters corresponds to the situation when the logarithm of average intracluster 

distance becomes less than the analogous logarithm calculated for null reference distribution. In 

fact, this is an analog of measuring the dependence of entropy on the number of clusters with 

respect to initial entropy. In work [8], a clustering procedure is proposed based on searching 

maximum entropy (maximum entropy principle). However, the authors also rely on the classical 

variant of entropy (Shannon entropy). But already in work [9], a clustering method is implemented 

by applying the Tsallis entropy maximization principle through variation of parameter q. 

Among all existing approaches in cluster analysis, the most interesting and informative is 

an approach based on free energy minimization [12]. Its main idea is as follows: each element of 

the statistical system is characterized by probabilities of belonging to different clusters. 

Correspondingly, for each element, one can formulate the notion of internal energy (expressed 

through the probability of belonging of the element to a cluster) and calculate the free energy of 

the entire system. The temperature in such a system turns into a free parameter, which is varied to 

minimize free energy. A disadvantage of this work is model testing only on clusters with Gaussian 

distributions. Moreover, the authors' calculations demonstrate that the free energy function looks 

like a monotone function without an explicit minimum  

This dissertation is based on ideas of work [12]. However, in contrast to this work, the 

temperature is considered a number of clusters, and parameterized entropies (that possess a clear 

minimum) are considered instead of free energy. Theoretical statements of entropic topic models 

are described in chapter 2. 

 

1.2. Overview of model types in topic modeling  

Currently, more than forty different topic models are proposed in the literature on topic 

modeling, and the number of articles applying topic modeling exceeds several hundred. In general, 

one can distinguish three main types of models: 1. Flat topic models with different types of 

regularization [13, 14, 15, 16]. 2. Hierarchical topic models [17, 18, 19, 20]. 3. Topic models with 

elements of neural networks, where either different types of word embeddings or layers of neural 

networks are used [21, 22]. The most complete overviews of the various models and quality 

measures are presented in [1, 23]. In general, two main algorithms of determining distributions of 

words by topics and topics by documents dominate in the literature: 1. Expectation-Maximization 

algorithm. In the framework of this algorithm, the matrix of words in documents (F) is represented 

as the product of two matrices F=ΦΘ, where Φ is the matrix of words by topics distributions, and 

Θ is the matrix of distribution of topics by documents. 2. Algorithm of determining the probability 

of a word belonging to a topic in the form of a multidimensional integral. In this algorithm, the 

computation of probabilities is implemented with the Gibbs sampling procedure. Despite the 

different mathematical formalisms of the above algorithms, both lead to similar results [24]. Thus, 

the problems considered below are valid for different algorithms. 
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The problem of searching for the optimal number of topics/clusters in topic modeling is 

relevant and even more complicated to solve. This is due to the following reasons. First, this search 

is related to the topic's linguistic concept, which in turn causes considerable difficulties since it is 

difficult to formulate a linguistic criterion for separating two topics on a set of documents. 

Moreover, topic models often generate topics that are difficult to interpret and difficult to treat as 

topics. Second, in topic modeling as well as in cluster analysis, it is hard to formulate an 

appropriate functional dependence, which on the one hand, would characterize the topic model, 

and on the other hand, would be a function of the number of topics and hyperparameters. 

Nevertheless, there are several works, authors of which tried to solve the problem of selecting the 

number of topics in topic modeling. Based on ideas of cluster analysis, the authors of the work 

[25] considered the topic a semantic cluster (set of words), in the framework of which one can 

calculate intracluster distance. The authors used cosine measure as the function for minimization. 

Thus, according to the authors, the number of topics corresponding to the minimum average cosine 

measure calculated for all topics is optimum. Another approach to searching the optimal number 

of topics was proposed by Arun et al. in work [26] in the form of searching minimum Kullback-

Leibler divergence under variation of the number of topics. The authors propose to implement 

SVD decomposition of matrices Φ and Θ and then to calculate Kullback-Leibler divergence based 

on two vectors containing singular values. In this case, the optimal number of topics corresponds 

to the situation when both matrices are described with the same number of singular values. The 

disadvantages of these two approaches are as follows. First, it is unclear how the minima of chosen 

functions are related to the entropic principle, widely used in information theory. Second, the 

addition of another calculation step, namely SVD decomposition and calculation of Kullback-

Leibler divergence, significantly limits the application of Arun's approach to big data processing. 

Arun and his colleagues searched minimum Kullback-Leibler divergence on text collections that 

do not exceed 2500 texts. Third, the influence of the initial distributions on the results of topic 

modeling is not considered in both approaches. However, it is known that there is such an influence 

[27]. Fourth, the effect of semantic instability, which takes place in topic modeling [28], is not 

considered in the above approaches.  

A topic model based on an additive regularization algorithm (ARTM), proposed in work 

[16], is worth discussing separately. This model is based on searching the maximum of a linear 

combination of log-likelihood and a set of regularizers. The values of coefficients determine the 

level of influence of regularizers on a topic model. Despite the broad usage of this model in 

Russian-language literature, it has one significant disadvantage: the principle of choosing values 

of regularization coefficients is not formulated in the theory of additive regularization. These 

values have to be set explicitly before topic modeling. In this work, a solution to this problem is 

proposed.  

One of the leading quality measures in topic modeling is maximum log-likelihood [1] and 

perplexity, which is related to log-likelihood. In general, log-likelihood allows one to tune 

hyperparameters of flat topic models. However, it does not allow one to determine the optimal 

number of topic clusters. Moreover, log-likelihood is not suitable for tuning hierarchical topic 

models [2], where an additional unsolved problem of selecting the number of topics on each level 

of hierarchy exists as well as the traditional problem of selecting values of hyperparameters.  

Moreover, coherence measure is widely used in topic modeling. This measure allows one 

to estimate the coherence of topics in a topic solution [67]. The essence of this measure is to 

calculate how often words with high probabilities co-occur in highly probabilistic documents. 
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Large coherence corresponds to the best solution. This measure does not allow one to determine 

the optimal number of components in the mixture distribution due to its monotone behavior.  

Thus, the following unsolved problems for topic models of different types arise. 1. How to 

determine the optimal number of clusters in the topic solution is unclear. 2. The existing quality 

measures are not universal, i.e., unsuitable for all models. 3. no quality measure would allow one 

to tune several model parameters simultaneously (including hyperparameters, the number of 

clusters, and semantic coherence). 

This work proposes a solution to the above problems using the application of parameterized 

entropies in topic models. Theoretical and experimental estimation of the applicability of 

parameterized entropies in topic models is presented in chapter 2.  

 

1.3. Application of entropic principles in the field of topic modeling  

The following part of the overview is devoted to applying the simulated annealing 

procedure for determining the hidden distributions in topic modeling. In works [29, 30], a classical 

version of the annealing algorithm based on the Markov process is used. In work by Tsallis [74], 

a modified annealing algorithm is proposed. However, in the field of machine learning, this 

algorithm was not applied.   

In work by Zhu [31], the maximum entropy discrimination latent Dirichlet allocation 

(MedLDA) model was proposed. The essence of this model is the introduction of Kullback-Leibler 

divergence, which is an entropic regularizer, into log-likelihood. Let us also mention work [32], 

where a topic model was proposed, where minimum Shannon entropy calculated by words is used 

for determining the optimal values of the regularization coefficient. A significant disadvantage of 

this work is testing the proposed model on datasets marked-up only with two topics. 

 

1.4. Stability of topic models  

Despite a large number of works devoted to topic models, the number of works related to 

the estimation of their stability is very limited. The problem of topic model stability is related to 

topic model construction features.  

The solution of the task of topic modeling is equivalent to stochastic matrix decomposition, 

where a large matrix F, containing documents d and words w, is approximated with a product of 

matrices Θ and Φ of lower dimensions. However, stochastic matrix decomposition is not uniquely 

determined, but with accuracy up to non-degenerate transformation [16]. If F=ΦΘ is a solution, 

then F=(ΦS)(S^(-1) Θ) is also a solution for all non-degenerate S, for which matrices Φ^'=ΦS and 

Θ^'=S^(-1) Θ are stochastic. In terms of TM algorithm, ambiguity in the reconstruction of the 

multidimensional density of a mixture of distributions is because the algorithm, starting from 

various initial points, will converge to different points from a set of solutions. It means that 

different runs of an algorithm on the same source data will lead to different matrices Θ and Φ. The 

tasks, solutions of which are not unique or are unstable, are called ill-posed. Regularization by 

Tikhonov [38] gives a general approach to solving such tasks. The essence of regularization is 

adding prior information that reduces the set of solutions. Regularization is implemented either by 

introducing limitations on matrices Θ and Φ [16] or modifying the sampling procedure [72, 73].  

One can distinguish several works in research on the stability of topic solutions. In work 

by Griffiths and Steyvers [15], symmetric Kullback-Leibler divergence is proposed for estimation 

of similarity between two topics from different topic solutions. However, this work does not 

contain a detailed investigation of the applicability of this measure in practical experiments. A 

modified version of symmetric KLB divergence was proposed in work by Koltcov et al. [28], 
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where a complete suitable algorithm of topic model stability estimation on three runs is presented. 

In work by Belford, the ‘Average Descriptor Set Difference (ADSD)’ measure was proposed [39]. 

This measure characterizes an average value of the number of similar words in two topic solutions. 

Moreover, this work also considers the ‘Average Term Stability’ measure based on average 

Jaccard distance. The authors of this work propose a new way to extract stable topics using the ‘K-

Fold ensemble approach’. This approach is tested for LDA model with Gibbs sampling and NMF 

(Non-negative Matrix Factorization approach), which is closely related to TM. In the work by 

Greene et al. [40], ‘Average Jaccard (AJ) measure’ was also used to determine the optimal number 

of topics in marked-up datasets in English. In work [41], De Waal demonstrated that perplexity is 

not suitable for estimation of topic models stability since, first, it depends on the dataset size, that, 

in turn, complicates comparison between different datasets. Second, it has a monotone decreasing 

behavior.  

The above works aim only at developing and testing a stability measure. However, several 

works propose a modification of a topic model itself to increase its stability. In the work of Koltcov 

et al. [42], it is demonstrated that the choice of regularization coefficients in LDA model with 

Gibbs sampling and ARTM model significantly impact topic model stability. Moreover, a 

granulated version of Gibbs sampling procedure (GLDA), which provides a very high level of 

topic model stability, is proposed in this work. A detailed description of GLDA is presented in 

chapter 5 of this work. It was demonstrated in this work that adding regularizers impacts topic 

model stability. 

The most detailed overview of articles related to the problem of stability/instability of topic 

models is given in the work of Agarwal [44]. In general, the problem of instability of topic models 

is not solved completely.  

Based on the literature overview, one can conclude the following. In English-language 

literature, the following models are most widely used: 1. pLSA (E-M algorithm). 2. LDA with 

Gibbs sampling. 3. Variation LDA (E-M algorithm). These models are most often used as a 

baseline for comparison with other topic models. In Russian-language literature, ARTM model 

with Gibbs sampling) is widely used. This model contains an alternative approach to the variational 

principle of topic model inference and inference based on the physical Potts model (an extended 

version of the Ising model).  

Among quality measures of topic models, the most widely used are the following: 1. 

Maximum log-likelihood (tuning of topic models). 2. Kullback-Leibler divergence (determining 

the stability of topic models). 3. Coherence (determining coherence of topics in topic models).  

In the field of topic modeling, the following problems are found: 1. The problem of 

determining the optimal number of topics. In the existing models, this number has to be set 

explicitly; however, the selection criteria are unclear. 2. The problem of estimation of 

hyperparameter values, including regularization coefficients, which significantly impact the 

results of topic modeling. The choice of such parameters can be partially solved using log-

likelihood optimization; however, this approach is suitable only for several flat topic models. 3. 

The problem of stable topic model development. This problem is aggravated by the fact that 

stability significantly depends on the number of topics and hyperparameters values, the choice of 

which is not clear. 4. The problem of simultaneous estimation of a topic model in terms of 

hyperparameters tuning and in terms of semantic coherence of topics. The above problems remain 

unsolved since the development of topic modeling mainly proceeded in the direction of developing 

a large number of new models. Investigations related to the analysis of model tuning or solving 
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the problem of stability are incomplete and very limited in their number. Thus, this dissertation 

aims to partially solve the above problems.  

In the framework of this work, the following topic models are considered: 1. LDA (with 

Gibbs sampling), 2. pLSA (E-M algorithm), 3. VLDA (E-M algorithm), 4. GLDA (with Gibbs 

sampling). 5. ARTM with sparsing regularizers of matrices Ф and Θ (E-M algorithm). 6. hLDA. 

7. hPAM. 8. hARTM. This choice is according to the following facts. First, these models are the 

most frequently used in the literature (especially as baselines when developing new models). 

Second, they are based on two different principles (E-M algorithm and Gibbs sampling procedure). 

Third, these models are designed to work with datasets having different topical structures. In this 

dissertation, datasets in different languages with mark-up and without mark-up and with the topical 

structure of different hierarchy depths and without it were used. This allows us to estimate the 

effectiveness of the developed models for determining different topical structures.  

 

2. Entropic topic model based on parameterized Renyi entropy and Sharma-Mittal 

entropy 

This chapter considers the theoretical formulation of an entropic topic model for one- and 

two-parametric entropies. Moreover, a series of computer experiments on marked-up datasets and 

collections without mark-up is presented. The experiments demonstrate the usefulness of 

parameterized entropies for topic model tuning and determining the presence of flat or hierarchical 

topical structure in the data. 

The proposed entropic topic model is based on the ideas of work by Rose [12], where it 

was demonstrated that the clustering procedure might be considered in terms of the probability of 

belonging to a cluster. Such probability is expressed through the free energy of the entire statistical 

system (i.e., through the partition function of the system). In such a clustering model, the 

temperature is a parameter of the cluster model that can be tuned and found by means of an 

annealing procedure. In contrast to the model of Rose, the entropic topic model considers 

temperature as the number of clusters, and parameterized entropies are used as objective functions. 

This difference makes it possible to formulate an entropic model of hyperparameter tuning, 

including the number of topics, based on the search for the minimum of parametrized entropy. The 

entropic topic model generally is based on the following assertions [45, 46]. 1) A document 

collection is a mesoscopic information system containing elements (words and documents). 

Therefore, the behavior of such a system can be studied using methods from statistical physics. 

Moreover, such information systems are not close since information is exchanged with the 

surroundings: for example, a user can change the number of topics/clusters. Correspondingly, it is 

possible that such a system does not reach an equilibrium state in the sense of the maximum of 

Shannon entropy but may reach an intermediate equilibrium state, which is determined by a local 

minimum of the parametrized Renyi entropy or Tsallis entropy. 2) Topic is considered as a state 

(analogous to spin direction) that each word and document can take in the collection. Moreover, 

each word and document belong to all topics with different probabilities (matrices of these 

probabilities are usually denoted by Φ and Θ, correspondingly). The set of words and documents 

with high probabilities on a topic form what can be called a topic cluster. 3) Information system 

exchanges only energy with the surroundings by changing temperature. In this approach, the 

number of topics is considered as the temperature of the information system, which is set externally 

and is a parameter to be determined by means of searching for a minimum of non-symmetric 

Kullback-Leibler divergence (free energy is the physical analog of this measure). Since this 

measure is equivalent to the difference of free energies [47], where one part of free energy 
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corresponds to the initial (equilibrium) state, and the second one characterizes the non-equilibrium 

state of the system [47], the following expression can be used as a measure of the degree to which 

a given information system is non-equilibrium: ΛF=F(T) - F0, where F0 is free energy of the initial 

state (chaos) of the topic model, F(T) is the free energy under given number of topics T, obtained 

after topic modeling. 4) Minimum of ΛF depends on different parameters of topic model. 5) The 

optimal number of topics and set of optimal parameters of topic model corresponds to the situation 

when information maximum 𝑆 = −𝐼 [48] is reached, i.e., minimum of  𝛬𝐹 and minimum Renyi 

entropy, which can be expressed in terms of the difference of free energies. 

In topic models, the sum of all word probabilities equals the number of topics: 𝑇 =
∑ ∑ 𝑝𝑡𝑛

𝑊
𝑛=1

𝑇
𝑡=1 . In the framework of statistical physics, it is common to investigate the distribution 

of statistical system by energy levels, where the energy of a level is expressed through probability. 

According to this approach, in this work, the range of probabilities is divided into a fixed number 

of intervals, energies of these levels and the number of words on each level are determined. Let us 

note that the number of words in each interval depends on the number of topics and parameter 

values of the topic model. The division into intervals is conditional and convenient from a 

computational point of view. When the length of such an interval tends to zero, the distribution of 

words by intervals tends to density function ρ. However, to simplify the presentation, we will 

consider a two-level system in which words with a high probability will arise on one level, and 

words with a low probability (i.e., with a probability close to zero) will appear on the other level.  

 

2.1. Entropic topic model based on Renyi entropy  

Let us introduce a density-of-states function for the level of words with high probabilities 

under a fixed number of topics and a fixed set of parameters [46]: 

𝜌̌ =
∑ ∑ 𝑁𝑡𝑛

𝑊
𝑛=1

𝑇
𝑡=1

𝑊𝑇
             (1), 

𝑁𝑡𝑛 is the number of words with high probabilities, T is the number of topics, n refers to summation 

by a list of unique words, t refers to summation by all topics. Probability is considered high if it 

satisfies 𝑝𝑡𝑛 > 1/𝑊, where 𝑊 is the number of unique words in the dataset. The choice of this 

threshold is due to the fact that the value 1/𝑊 is the initial value for the initialization of matrix 𝛷. 

Value 𝑊𝑇 determines the total number of all microstates in a topic model (under microstate we 

mean probability of one word in one topic), i.e., the size of matrix 𝛷 is the normalization of the 

density-of-states function. During the process of topic modeling probabilities of words are 

redistributed with respect to the given threshold. A small part of words falls into the level with 

high probabilities 𝑝𝑡𝑛 > 1/𝑊, and the larger part of words falls into another level, where 𝑝𝑡𝑛 >
1/𝑊. The level of words with high probabilities in the topic model can be characterized by energy 

value, which can be expressed through the sum of probabilities of words residing on this level and 

normalized by the total number of topics:  

𝐸 = −𝑇 · ln 𝑃̌          (2), 

where 𝑃̌ = ∑ ∑ 𝑝𝑡𝑛
𝑊
𝑛=1

𝑇
𝑡=1 /𝑇, the summation is for all words with high probabilities residing on 

this level, 𝑇 is the number of topics. Thus, the level is determined by two experimentally measured 

values: 1. The sum of words probabilities on the given level 𝑃̌. 2. The number of words residing 

on this level (density-of-states function 𝜌̌).  

For a two-level system, the main contribution to the entropy and energy of the entire system 

is given by words with high probabilities; therefore, the free energy of the entire system is 

approximately determined through entropy and energy of one level. The free energy of such a 

system is expressed through Gibbs entropy (Shannon entropy) and energy in the following way 
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[47]: 𝐹 = 𝐸 − 𝑇 · S = E − S/, where 𝑞 = 1/𝑇. The entropy of the information system (Shannon 

entropy) is expressed through the number of words on one level as follows: 𝑆 = ln⁡(𝜌̌(𝑇)) [45]. 

The difference between free energy of the system is expressed through 𝑃̌ and 𝜌̌ as follows: 

𝛬𝐹 = 𝐹(𝑇) − 𝐹0 = (𝐸(𝑇) − 𝐸0) − (𝑆(𝑇) − 𝑆0) · 𝑇 = − ln(𝑃̌) − 𝑇 · ln(𝜌̌)⁡    (3) , 

where 𝐸0, 𝑆0 are energy and entropy of the system under initial distribution, which corresponds to 

maximum entropy, i.e., 𝑆0 = ln⁡(𝑇) and 𝐸0 = −ln⁡(𝑊 · 𝑇). Thus, the level of non-equilibrium of 

topic model is determined as the difference of free energies and is expressed through 

experimentally determined values  𝜌̌ и 𝑃̌. Normalization of these values, in its essence, is the 

entropy of the initial state, that is, chaos. Values 𝜌̌ и 𝑃̌ are calculated for each topic model under 

variation of free parameter 𝑇 and other model parameters; thus, value 𝛬𝐹 is a function of the 

number of topics 𝑇, size of the vocabulary 𝑊, i.e., of the dataset, and it depends on parameters 

values of the generative topic model. 

 

2.2. Relation between free energy and Renyi entropy in topic models 

Based on the partition function 𝐙𝐪 = ∑ 𝛒̌ · 𝐏̌ ⁡= ∑ 𝛒̌ · 𝐞−𝐪·𝐄 = ∑𝐞−𝐪·𝚲𝐅, q=1/T [49], one can 

express free energy of topic model through Renyi entropy and experimentally determined values 

𝑷̌ и 𝝆⁡̌ as follows: 

𝑆𝑞
𝑅 =⁡

ln⁡(𝑍𝑞)

𝑞−1
=⁡

ln⁡(𝑒−𝑞·𝐹)

𝑞−1
=⁡

−q·𝛬𝐹

𝑞−1
=⁡

𝛬𝐹

𝑇−1
            (4). 

 

Let us note that the relation between free energy and Renyi entropy can also be found with 

escort distribution [50, 51] since specifying the above partition function is equivalent to escort 

transformation. 

Thus, Renyi entropy in topic models is expressed through free energy, parameter 𝑞, where 

𝑞 = 1/𝑇, and experimentally determined values 𝑃̌ и 𝜌̌. In the framework of this approach, first, 

Renyi entropy characterizes the measure of the degree to which a given topic model is non-

equilibrium since its calculation is based on the difference of free energies. Second, optimization 

of machine learning models can be implemented based on searching minimum Renyi entropy. 

Third, Renyi entropy in its formulation, in contrast to Shannon entropy, includes two processes in 

different directions; namely, an increasing the number of topics leads to decreasing Shannon 

entropy and increasing total energy, and to increasing the total sum of probabilities in the model. 

Thus, the difference between these two processes has a region of balance, where these two 

processes counterbalance each other. In this region, Renyi entropy is minimal. Moreover, entropy 

minimum corresponds to information maximum in a topic model. Therefore, topic model 

parameters can be tuned based on searching a minimum of one-parametric Renyi entropy. 

 

2.3. Entropic model based on Sharma-Mittal entropy  

Topic model based on Renyi entropy does not include a semantic component, which plays 

an important role in the practical application of clustering models on textual data. However, the 

entropic topic model may be extended using the application of two-parametric Sharma-Mittal 

entropy [52, 53]. It is expressed as follows: 𝑆𝑆,𝑀 =
1

1−𝑟
[(∑ 𝑝𝑖

𝑞
𝑖 )

1−𝑟

1−𝑞 − 1],⁡⁡⁡⁡where 𝑟 and 𝑞 are 

parameters that determine the type of entropy parameterization. Sharma-Mittal entropy includes 

Renyi and Tsallis entropies as special cases for certain r, q. For example, for r → 1 entropy 

SS,M⁡equals Renyi entropy, and for r → q SS,M⁡equals Tsallis entropy. Let us note that the limit of 
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Sharma-Mittal entropy when r → 0 equals the exponential function of Renyi entropy minus 1, that 

can be considered as parameterized perplexity. Namely, in this case, lim
r→0

SS,M = eSq
R
− 1. Let us 

demonstrate that eSq
R
− 1 > Sq

R if Sq
R ⁡≠ 0. Let us consider f(x) = ex − 1 − x for x ≠ 0. We obtain 

that f´(x) = ex − 1. Correspondingly, f increases for x > 0 and decreases for x < 0. Thus, 

min f(x) = f(0) = 0. For example, if Sq
R = 6, eSq

R
− 1 ≅ 402; for Sq

R = 1, eSq
R
− 1 ≅ 1.7; for 

Sq
R = 0.1, eSq

R
− 1 ≅ 1.005, i.e., fluctuation of parameter r leads to very large values of entropy.  

Since parameter q=1/T is related to the number of topics in a topic model, one has to define 

parameter r to apply Sharma-Mittal entropy for the analysis of topic models. The values of this 

parameter may vary in the region [0;1]. Moreover, if r=1, then Sharma-Mittal entropy turns into 

Renyi entropy, and, correspondingly, the quality of a topic model is determined only by Renyi 

entropy and parameter q. Based on this, one can conclude that parameter q for Sharma-Mittal 

entropy is the inverse number of topics. If 𝑟 = 0, Sharma-Mittal entropy is as follows: 𝑆𝑆,𝑀 =

𝑒𝑆𝑞
𝑅
− 1, i.e., becomes very large. Since entropy maximum corresponds to information minimum, 

one can conclude that minimal values of parameter r, which lead to maximal values of 𝑆𝑆,𝑀, 

correspond to minimal values of information.  

In the literature, the concept of the Jaccard distance is used, which is defined as follows 

[54]: 𝐽(𝑋, 𝑌) = 1 −
𝑋⋂𝑌

𝑋⋃𝑌
. Jaccard distance measures the similarity of two sets (in our case, between 

two sets of words) and is determined as the size of the intersection of the sets divided by the size 

of the union of the sets. If two sets are identical, then this distance equals zero. Jaccard distance 

plays an important role especially in the field of computer science for the investigation of regular 

languages [55], and is related to entropy distance as follows: 

𝐷𝐻(𝑋, 𝑌) = 1 −
𝐼(𝑋, 𝑌)

𝐻(𝑋, 𝑌)
= 𝐽(𝑋, 𝑌) = 1 − 𝐽, 

where 𝐼(𝑋, 𝑌) is the mutual information of X and Y,  𝐻(𝑋, 𝑌)  is the joint entropy of X and Y. In 

information theory, mutual information corresponds to the intersection of sets X and Y, and joint 

entropy corresponds to the union of X and Y, and, correspondingly, entropy distance corresponds 

to Jaccard distance. If 𝐽(𝑋, 𝑌) = 0, then 𝐷𝐻(𝑋, 𝑌) = 0.  Thus, we can define parameter r as 

follows. Parameter 𝑟 in 𝑆𝑆,𝑀⁡entropy will be responsible for semantic component of topic model, 

i.e., it will be measured by means of Jaccard distance. This parameter characterizes the value of 

variation of semantic composition under variation of the number of topics (and variation of 

hyperparameters values of the topic model). This is related to the fact that variation of model 

hyperparameters and the number of topics impact the composition of high-probability words in 

the topic model.   

Thus, tuning the entropic topic model is implemented by selecting the number of topics 

(parameter q=1/T) and model hyperparameters under the condition of reaching a minimum of two-

parametric Sharma-Mittal entropy, i.e., among the set of parameter values, one has to choose those 

values that correspond to the information maximum of the topic model for the chosen dataset.   

 

2.4. Entropic topic model based on Sharma-Mittal entropy  

Based on equation (4) and partition function 𝑍𝑞 = ∑ 𝜌̌ · 𝑒−𝑞·𝐸, Sharma-Mittal entropy of a 

topic model can be expressed in terms of experimentally determined values 𝑃̌ и 𝜌̌ as follows [56]: 
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𝑆𝑆,𝑀 =
1

1 − 𝑟
[(𝑍𝑞)

1−𝑟
𝑞−1 − 1] =

1

1 − 𝑟
[(𝜌̌ · 𝑃̌⁡)

1−𝑟
𝑞−1 − 1] = 

=
1

1 − 𝑟
[((

𝑃(𝑇)

𝑇
)
𝑞

· ⁡(
𝑁𝑡𝑛
𝑊𝑇

))

1−𝑟
𝑞−1

− 1],⁡⁡⁡(5),⁡ 

where 𝑊 is the number of words in vocabulary, 𝑇 is the number of topics, 𝑃(𝑇) is the sum of 

probabilities on the second level, 𝑁𝑡𝑛⁡is the number of words with high probabilities, i.e., the 

number of words on the second level, n refers to summation by the list of unique words, 𝑡 refers 

to summation by all topics. Correspondingly, equation (5) allows one to calculate two-parametric 

entropy of topic model based on experimentally observable values: normalized sum of 

probabilities of words on the given level 𝑃̌ and normalized density-of-states function  𝜌̌. Thus, on 

the one hand, 𝑆𝑆,𝑀 allows one to estimate topic model parameters, for example, such as 

regularization parameters in LDA Gibbs sampling model and ARTM model, and the number of 

topics based on searching for a minimum of 𝑆𝑆,𝑀, which, in turn, is characterized by the difference 

of entropies between the initial distribution and the distribution obtained in the result of modeling. 

On the other hand, it allows us to estimate what contribution to entropy is added by Jaccard 

distance between two different topic solutions with different parameter values and the number of 

topics. Correspondingly, the best values of topic model parameters correspond to the situation 

when entropy reaches its minimum, and the worst values correspond to entropy maximum. 

 

2.5. Hierarchical entropic topic model  

Textual collections may contain a flat topic structure or hierarchical structure. Currently, 

there are no methods for determining the type of structure except the entropic model proposed in 

work [2]. The general idea of determining the structure is as follows. As it was demonstrated earlier 

[46], a dataset may possess several local minima of parameterized entropy, which correspond to 

different numbers of topics. Correspondingly, these minima may be associated with different 

hierarchical levels. Thus, the number of minima may be a marker of a particular topic structure. If 

a dataset has only one minimum, it has only one level of topics; if a dataset has two minima, one 

can assert that it has two levels of hierarchy. Based on the above, the considered entropic topic 

model should be extended for hierarchical models in the following way [2]. Since the hierarchical 

structure in TM can be represented as a graph, where each node represents one topic, the procedure 

of hierarchical TM leads to the construction of a hierarchical tree with a fixed number of topics on 

each level. Each node-topic has a list of words and documents with probabilities of belonging to 

this topic. The total number of words on each level is a constant that equals the total number of 

elements W in the statistical system. The set of nodes-topics on one level is represented with matrix 

Φ (distribution of words by topics). 

The procedure of hierarchical topic modeling consists of the construction of a sequence of 

matrices 𝛷, in which the number of words is constant, but the number of topics is sequentially 

increasing (from one hierarchical level to another). Correspondingly, the portion of words with 

probabilities above 1/𝑊 is changes during the transition from one level to another in hierarchical 

topic modeling. Thus, each hierarchical level is characterized by the following parameters: 1. The 

number of topics  𝑇𝑖 on level 𝑖. 2. The number of words with probabilities above the threshold 

1/𝑊 on level  𝑖: 𝑁𝑖 = ∑ 𝑁𝑖𝑡 (ϕ𝑖𝑡 >
1

𝑊
) ,𝑡 where 𝑊 is vocabulary size, 𝑡 refers to summation for all 
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topics. 3. Sum of probabilities of words 𝑃̃ = ∑ 𝜙𝑖𝑡
𝑇𝑖
𝑡=1 (𝜙𝑡𝑖 >

1

𝑊
). Based on the above values, one 

can determine internal energy and Shannon entropy (𝑆) of the current level with respect to the 

equilibrium state of this level:  𝐸𝑖 = −𝑙𝑛⁡(𝑃̃/𝑇𝑖), 𝑆𝑖 = 𝑙𝑛⁡(
𝑁𝑖

𝑊𝑇𝑖
) , where 𝑖 is the level number. 

Further, one can define free energy and Renyi entropy of i-th level by means of 𝑆𝑖 and 𝐸𝑖as follows:  

𝛬𝐹𝑖 = 𝐸𝑖 − 𝑇𝑖 · 𝑆𝑖. Renyi entropy of i-th level is expressed through the free energy of i-th level in 

the following way: 𝑆𝑖
𝑅 =⁡

𝛬𝐹𝑖

𝑇−1
, where 𝑞 = 1/𝑇𝑖 is a parameter characterizing each hierarchical 

level.   

Therefore, by measuring the entropy value on each hierarchical level under variation of 

model parameters (including the number of levels) for a given dataset, one can estimate the process 

of hierarchical model construction in terms of the behavior 𝑆𝑖
𝑅 under transition from one level to 

another, i.e., to estimate the dependence of entropy on the number of topics and parameter values. 

The process of clustering words by topics starts with entropy maximum, when all elements (words) 

of the statistical system are related to one or two topics, and also ends with entropy maximum, 

where all elements are related to all topics (for a large number of topics) with approximately the 

same probabilities. The location of a global minimum and a set of local minima of Renyi entropy 

in terms of the number of topics is determined by dataset features. Renyi entropy 𝑆𝑖
𝑅serves as a 

measure of the degree to which the given system is non-equilibrium, where entropy minimum 

corresponds to information maximum, and the number of Renyi entropy minima serves as a marker 

of topical structure. 

Let us note that this principle was used for tuning the hierarchical clustering procedure 

(based on the ‘complete’ method) [57] when clustering users of the social network VK. 

 

2.6. Experimental testing of application of Renyi and Tsallis entropy in topic models  

In this work, four topic models were investigated in terms of behavior of Renyi and Tsallis 

entropy as functions of the number of topics: 1. LDA GB. 2. Granulated LDA (GLDA GB). 3. 

PLSA (E-M algorithm). 4. Variational LDA (E-M algorithm). The choice of these models is due 

to the following reasons. First, these models are used as baselines in many articles in the field of 

topic modeling, Second, these models represent the main types of topic model inference 

algorithms. In each experiment, the number of microstates with probabilities 𝑝𝑡𝑛 >
1

𝑊
 was 

computed for each model. Then, the density-of-states function, internal energy, entropy, and free 

energy were calculated for each model in dependence on the number of topics. Renyi and Tsallis 

entropies were calculated for each topic solution based on free energy.  

Datasets: 1. ‘Live Journal’ dataset. This is a set of Russian-language posts from the social 

network ‘Live Journal’, size: 101481 posts; vocabulary size: 172939 unique words. The number 

of topics was varied in the region T = [2; 330] with the increments in two topics. 2. English-

language dataset ’20 newsgroups’ [58]. Size: 15404 posts and N=50948 unique words, marked-up 

on 20 topics. The number of topics for the second dataset was varied in the region T = [2; 120] 

with the increments in two topics. The choice of these datasets is due to the following reasons. 

First, these datasets are in different languages, which allows us to demonstrate the cross-language 

applicability of entropic topic models and establish common model features for different 

languages. Second, different sizes of the collections show that changing size may lead to the 

appearance of additional local minima. Moreover, different clustering models were tested on the 
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above English-language collection [59], which allows us to compare the results of topic modeling 

with cluster analysis results.  

Figures (1) and (2) demonstrate Shannon and Renyi entropies for four models (’20 

newsgroups’ dataset). Each model was run three times; then, the results were averaged. Entropies 

were calculated based on the averaged results. Averaging of modeling results is related to 

considering the instability of topic models.  

 

Fig. 1. Distribution of Shannon entropy.            Fig. 2. Distribution of Renyi entropy. 

Distributions of Shannon and Renyi entropies as functions of the number of topics for ’20 

newsgroups’ dataset. LDA (Gibbs sampling): black, GLDA (Gibbs sampling): red, PLSA (E-M 

algorithm): blue, LDA (E-M algorithm): green. 

Renyi entropy in contrast to Shannon entropy has a global minimum and demonstrates correct 

results for boundary values of the number of topics. For T→1 Renyi entropy has a maximum since 

topic modeling as any other clustering algorithm does not provide distribution of clusters, i.e. 

information is close to zero. At the same time, increasing the number of clusters/topics (i.e., T→∞) 

leads to uniform distribution of each word on topics, that corresponds to increasing entropy. 

However, different models provide slightly different locations of Renyi entropy minimum and 

different values of this minimum. To determine which of the above models provides more accurate 

results, one has to compare the results of TM with the cluster analysis results on the same 

collection. The authors of work [59] tested several clustering algorithms on ’20 newsgroups’ 

dataset and demonstrated that the optimal number of clusters varies in the region of 15-20 clusters 

for different algorithms due to the correlation of some topics. 

Models LDA (Gibbs sampling, LDA GB) and LDA (E-M algorithm) demonstrate that the 

optimal number of topics is about 15, PLSA (E-M) model gives 20 topics. However, the GLDA 

model provides a significantly different number of topics, which is almost two times larger 

compared to LDA (Gibbs sampling) and LDA (E-M algorithm) models. This is related to the fact 

that in GLDA model, strong averaging is present in the sampling procedure, which leads to high 

stability, but shifts the global minimum of Renyi entropy. 

The results of calculations of Renyi and Tsallis entropies for four topic models on the 

Russian-language dataset are presented in figures (3) and (4). 
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Fig. 3. Distribution of Renyi entropy.            Fig. 4. Distribution of Tsallis entropy.  

Distribution of Renyi and Tsallis entropies as functions of the number of topics for ‘Live 

Journal’ dataset: LDA (Gibbs sampling): black, GLDA (Gibbs sampling): red, PLSA (E-M 

algorithm): blue, LDA (E-M algorithm): green. 

The calculations demonstrate that models based on E-M algorithm demonstrate a 

substantial difference from models based on Gibbs sampling for the Russian-language dataset, 

especially for a large number of topics (over 100). LDA GB model demonstrates the presence of 

large jumps in Renyi entropy, which are related to significant fluctuations of the density-of-states 

function. However, LDA (E-M algorithm) model and PLSA (E-M algorithm) model do not see 

these jumps. Fluctuations in the density-of-states function in models with Gibbs sampling cannot 

be explained by features of the sampling procedure, since in work [45], investigation on the same 

dataset was implemented, where LDA (Gibbs sampling) was run three times for each number of 

topics, and the number of topics was varied in the range [105 - 120] with the increments in one 

topic and the range [120-600] with the increments in ten topics. A jump in the region of [110 – 

120] topics was observed for all runs of the model. Thus, models based on Gibbs sampling are 

more sensible with respect to other models. Tsallis entropy calculated for LDA(Gibbs sampling) 

model also demonstrates a jump in the region of  [110-120] topics and in the region of [190-200] 

topics, however, the amplitude of the jump is significantly smaller. This is because Tsallis entropy 

is more stable in terms of Leshe [60].  

Based on the implemented calculations, one can conclude the following. First, 

parameterized Renyi entropy is suitable for determining the number of topics in textual datasets 

since its minimum corresponds to the results of human mark-up. The number of topics is the 

entropy parameter. Second, different topic models demonstrate different numbers of minima of 

parameterized entropy, but the location of a global minimum for different models is almost the 

same. Dataset features characterize the locations of minima and their number. 

 

2.7. Numerical experiments on semantic stability of topic models  

The indistinguishability of particles is an important factor when describing different 

physical statistical systems. It makes it possible to use a  combinatorial approach for the calculation 

of the number of states and the estimation of the probability density function. In this case, it is not 



19 
 
 

important which particles exactly reside in states with high probabilities. However, in the case of 

information systems consisting of many documents, a topic is formed from many different words 

and the semantic differences between words are important. Therefore, when investigating the 

behavior of textual systems, it is necessary to verify how reproducible are distributions of words 

in a semantic point of view under variation of the number of topics hyperparameters. In this work, 

semantic reproducibility in TM of two clouds of words  𝑇1  and 𝑇2 (corresponding to two different 

topics) was measured according to Jaccard distance. 

Jaccard distance was calculated by pair-wise comparison of each topic solution with all 

other topic solutions and was stored in a matrix where each element contains a value of Jaccard 

distance 𝐽𝑡1,𝑡2, where 𝑡1, 𝑡2 are topic numbers. 

Figures (5) and (6) demonstrate curves of diagonal Jaccard distances for LDA (Gibbs 

sampling) and LDA (E-M algorithm) for the Russian-language dataset. The values of Jaccard 

distances are not provided for the English-language dataset since all the models demonstrated 

almost the same values, about 0.99. 

          
Fig. 5. Behavior of Jaccard distance                    Fig. 6. Behavior of Jaccard distance 

for LDA Gibbs sampling model.        for LDA (E-M algorithm) model.  

 

The distribution of Jaccard distances demonstrates that models of both types have areas of 

semantic stability. Moreover, there are areas with a high level of the coefficient 𝐽𝑡1,𝑡2 ≅ 0.9 and 

areas with a lower level 𝐽𝑡1,𝑡2 ≅ 0.5. However, if a significantly large number of top words is used 

in each topic solution, for example, 1000 words, then such periodical structure almost disappears. 
 

2.8. Experimental testing of Sharma-Mittal entropy and Renyi entropy as meausers of 

quality for estimating the number of topics and semantic coherence of topic models.  

2.8.1. Experiments on application of Renyi entropy  

In this part of the work, the possibility of determining the optimal parameter values in topic 

models was investigated. The investigation was implemented for the following models:  1. LDA 

Gibbs sampling (LDA GB) [20], 2. pLSA  (E-M ) [21], 3. ARTM with regularizers ‘sparse Φ’ and 

‘sparse Θ’ [16]. Parameters of LDA GB are α, β, which characterize Dirichlet distribution, and T 

is the number of topics. Parameters of ARTM model are regularizer coefficients of sparsing 

matrices Φ, Θ, and the number of topics. PLSA model has only one parameter, which is the number 

of topics. Therefore, this model was compared to two other models.  

Datasets: 1. ‘20 newsgroups dataset’ (human mark-up, the range is [15 - 20] topics). 2. 

Russian-language dataset (‘lenta_ru’) (custom mark-up for 10 topics). Analysis of the correlation 

of topics demonstrates that the ‘real’ number of topics is in the range [7-10]. The dataset size is 

82852 documents, vocabulary size is 172939. All datasets were calculated for each model under 
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variation of parameters. Then, the density-of-states function, distribution of Jaccard distances, 

Renyi entropy, and log-likelihood were calculated for each obtained topic solution. Moreover, 

two-parametric Sharma-Mittal (𝑆𝑆,𝑀) entropy was calculated for the estimation of semantic 

stability of topic solutions under variation of model hyperparameters, including the number of 

topics.  

 

2.8.1.1.  pLSA and LDA GB models: Renyi entropy  

Renyi entropy curves for pLSA and LDA GB for two datasets are given in figures (7), (8).  

 

 
Fig. 7. Renyi entropy (‘Lenta_ru’). pLSA: black, LDA GB (α=0.1, β=0.1): red, LDA GB (α=0.5, 

β=0.1): green, LDA GB (α=1, β=1): blue. 

 
 

Fig. 8. Renyi entropy (’20 newsgroups’). pLSA: black, LDA GB (α=0.1, β=0.1): red, LDA GB 

(α=0.5, β=0.1): green, LDA GB (α=1, β=1): blue. 

Figures (7) and (8) demonstrate that Renyi entropy of pLSA model and LDA Gibbs sampling 

model with parameters α=0.1, β=0.1 are very close to each other. Increasing regularization 

parameters α, β leads to increasing Renyi entropy. Moreover, minimum of parameterized entropy 
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is shifted. Figure (9) demonstrates curves of log-likelihood as a function of the number of topics. 

One can see that increasing values α, β worsens log-likelihood, which is equivalent to increasing 

entropy. Thus, comparing the behavior of log-likelihood and Renyi entropy curves, one can 

conclude the following: 1. Renyi entropy is suitable for tuning topic model parameters, and Renyi 

entropy minimum corresponds to the optimal parameter values of the considered topic models. 2. 

Renyi entropy, based on its local minimum, allows us to determine the optimal number of topics 

in contrast to log-likelihood. 

 
 

Fig. 8. Log-likelihood (‘lenta_ru’). pLSA: black, LDA GB (α=0.1, β=0.1): red, LDA GB (α=0.5, 

β=0.1): green, LDA GB (α=1, β=1): blue. 

 

 

2.8.1.2. ARTM model with sparsing of matrix Φ: Renyi entropy  

The result of topic modeling based on ARTM model significantly depends on 

regularization coefficients [16]. Increasing these values may lead to a significant change in the 

stability level of the topic model [43]. Based on the above, in this part of the work, the effect of 

the influence of regularization parameter Φ (𝜏𝛷) and the number of topics on the behavior of Renyi 

entropy under variation of ARTM model hyperparameters is analyzed. The number of topics was 

varied in the range [2-50], and the value of 𝜏𝛷 was varied in the range [-10, 10] when investigating 

this model. The set of Renyi entropy curves as functions of the number of topics is presented in 

figure (9).  One can see that increasing parameter 𝜏𝛷 leads to shifting Renyi entropy minimum in 

the region of a small number of topics (about 2), which is significantly smaller than the ‘real’ 

number of topics (7-10). Thus, strong regularization of sparsing matrix Φ leads to an incorrect 

number of topics. Let us note that changing the sign of the regularization coefficient does not 

influence the modeling results. Renyi entropy curve of this model for the English-language dataset 

’20 newsgroups’ is given in figure (10). Increasing regularization parameter leads to significant 

shifting Renyi entropy minimum. For 𝜏𝛷 = 1, the minimum is shifted to 10 topics, however, the 

real number of topics is 14-17. Further increment of 𝜏𝛷 leads to model deterioration. Thus, the best 

result of the topic model corresponds to the minimal value of the regularization coefficient, and 

Renyi entropy curve almost coincides with an analogous curve for pLSA model.  



22 
 
 

 

2.8.1.3. ARTM model with sparsing of matrix Θ: Renyi entropy  

In this model, parameters are the regularization coefficient of matrix Θ (𝜏𝛩) and the number 

of topics. In contrast to the previous model, in this case, sparsing is implemented for the matrix of 

the distribution of topics in documents. In the experiments, the number of topics was varied in the 

range [2-50], and coefficient 𝜏𝛩 was varied in the range [-10, 10]. The set of Renyi entropy curves 

for this regularizer as functions of the number of topics is given in figure (11) (‘lenta’ dataset). 

Renyi entropy curves for regularization coefficients 𝜏𝛩 = [0.01, 0.1, 1] are almost 

indistinguishable. However, coefficient 𝜏𝛩 =10 does not allow us to calculate free energy and 

Renyi entropy since the model deteriorates (analogously to the previous one). Analogous result is 

obtained for ’20 newsgroups’ dataset. Thus, the best result is obtained with a small value of the 

regularization coefficient, since its increment leads to a significant decrease of log-likelihood and 

to an increment of Renyi entropy.  

 

2.8.2. Experiments on application of quality measure based on Sharma-Mittal entropy to 

topic models.  

In the framework of this set of experiments, an investigation of the behavior of two-

parametric Sharma-Mittal entropy under variation of hyperparameters was implemented for pLSA, 

ARTM, and LDA Gibbs sampling models. The application of this type of parameterized entropy 

makes it possible to estimate changes in the semantic component of topic models to the level of 

entropy under variation of hyperparameters. The chosen topic models are most frequently used 

models in English-language and Russian-language scientific literature.   

 

2.8.2.1. PLSA model: Sharma-Mittal entropy  

For the calculation of two-parametric entropy 𝑆𝑆,𝑀, first of all, pairwise values of Jaccard 

distances were calculated under variation of the number of topics. Examples of these calculations 

are visualized in the form of heat maps in figures (12), (13). Behavior of 𝑆𝑆,𝑀 entropy curves for 

PLSA model (for two datasets) are given in figure (14). Large jumps of Sharma-Mittal entropy are 

due to small values of Jaccard distances.  

   

Fig. 9 (‘Lenta’ dataset).       Fig. 10 (’20 newsgroups dataset).  

Renyi entropy curves ( ‘Lenta’ dataset,’20 newsgroups’ dataset) under variation of 

regularizers 𝜏𝛷 ‘sparse Φ’ (ARTM). Black: 𝜏𝛷 =0.01, red: 𝜏𝛷 =0.1, green: 𝜏𝛷 =1, blue: 𝜏𝛷 =10 
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Fig. 11. Renyi entropy curves (‘Lenta’ dataset) under variation of regularizer τ ‘sparse Θ’ 

(ARTM). Black: 𝜏𝛩 =0.01, red: 𝜏𝛩 =0.1, green: 𝜏𝛩 =1. 

 
 

Fig. 12 (LDA Gibbs sampling).              Fig. 13 (VLDA (E-Malgorithm)).  

Jaccard distances for LDA Gibbs sampling model and VLDA (E-M algorithm) model. 

However, two-parametric entropy also possesses a minimum, which allows us to find the optimal 

number of topics. Figures (15), (16) demonstrate entropy curves of 𝑆𝑆,𝑀for PLSA model with 

truncated peaks (for the purposes of visualization of minima, since 𝑆𝑆,𝑀⁡has large jumps for small 

values of Jaccard distance). These figures demonstrate that for the Russian-language dataset the 

minimum of two-parametric entropy lies in the region of [7-10] topics, and for the English-

language dataset the minimum is in the region of [18-20] topics, which completely corresponds to 

the human mark-up.  

2.8.2.2. LDA GB model: Sharma-Mittal entropy  

The results of calucations of 𝐒𝐒,𝐌 entropy for LDA GB model in comparison to PLSA 

model are given in figures (17), (18). They demonstrate that two-parametric entropy also allows 

us to correctly estimate the ‘real’ number of topics for datasets in two different languages. 

Moreover, increasing the value of regularization coefficients α, β leads to increasing entropy and 

shiftinig minimum, that violates the possibility to correctly determine the number of topics in a 

dataset. Thus, one can conclude the following. First, 𝑺𝑺,𝑴 entropy allows us to correctly determine 

the optimal number of topics for datasets in different languages. Second, 𝑺𝑺,𝑴 entropy allows us 

to correctly choose hyperparameters of LDA GB model. 
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Fig. 14. Curve of 𝑆𝑆,𝑀entropy for ‘Lenta’ dataset and ’20 newsgroups’ dataset (PLSA 

model) for diagonal elements of the matrix with Jaccard distances. Russian-language dataset: 

black; English-language dataset: red. 

 
           Fig. 15 𝑆𝑆,𝑀 (‘Lenta’ dataset).          Fig. 16  𝑆𝑆,𝑀 (’20 newsgroups’ dataset).  

Curves of 𝑆𝑆,𝑀entropy for ‘Lenta’ and ’20 newsgroups’ datasets, PLSA model with truncated 

peaks. 

   

           Fig. 17 𝑆𝑆,𝑀 (‘Lenta’ dataset).          Fig. 18  𝑆𝑆,𝑀 (’20 newsgroups’). 

 Curves of 𝑆𝑆,𝑀entropy (LDA GB vs pLSA) in dependence on the number of topics. (‘Lenta’, ’20 

newsgroups’ datasets). PLSA: black; LDA (α = 0.1, β = 0.1): red; LDA (α = 0.5, β = 0.1): green; 

LDA (α = 1, β = 1): blue. Peaks are truncated. 

 

2.8.2.3.  ARTM model with sparsing of matrices 𝜱 and 𝜣: Sharma-Mittal entropy 
ARTM model is implemented based on the principle of additive regularization, where the 

regularization coefficient, which the user sets, determines the level of contribution of the specified 
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regularizer to the result of topic modeling. Currently, there is no suitable method for determining 

the optimal coefficient value. Therefore, this work aims to demonstrate experimentally the 

possibility of application of parameterized entropy for tuning regularization coefficients in ARTM 

model. 

In this model, parameters are values of regularization coefficients and the number of topics. 

Correspondingly, for the investigation of this model, the number of topics was varied in the range 

[2-50] and coefficients 𝜏𝛷 , 𝜏𝛩 were varied in the range [-10, 10]. The set of entropy curves as 

functions of the number of topics is given in figures (19), (20). Increasing parameters 𝜏𝛷 , 𝜏𝛩 in 

𝑆𝑆,𝑀  entropy as well as for Renyi entropy leads to increasing the total value of entropy, i.e., to 

worsening of topic model performance.  

 

      
 

Fig. 19 𝑆𝑆,𝑀 entropy (sparse 𝛷).         Fig. 20 𝑆𝑆,𝑀entropy (sparse 𝛩).  

Curves of 𝑆𝑆,𝑀 entropies for ARTM model with regularizers sparse Φ and sparse Θ. Black: 𝜏𝛷 , 

𝜏𝛩=0.01, red: 𝜏𝛷 , 𝜏𝛩=0.1, green: 𝜏𝛷 , 𝜏𝛩=1.  

Thus, based on the analysis of the implemented computer experiments on marked-up 

datasets one can say the following: 1. Under variation of parameter 𝑞 = 1/𝑇, 𝑆𝑆,𝑀 entropy and 

Renyi entropy allow us to determine the optimal number of topics and to choose the optimal value 

of regularization coefficient; 2. Variation of parameter r (Jaccard distance) in 𝑆𝑆,𝑀 entropy leads 

to the appearance of areas of semantic stability, which are separated by peaks with large entropy 

values. However, the value of the jump depends on the number of words that are used for the 

calculation of Jaccard distance. 3. Minimum parameterized entropies for small values of 

parameterization coefficients correspond to the human mark-up of text collections. 

 

2.9. Experiments on application of Renyi entropy to the analysis of hierarchical topic models  

As it was noted, in the field of topics modeling, in addition to the problem of determining 

the optimal number of topics, the problem of determining ‘flat’ or hierarchical topical structure 

exists. This chapter presents the results of an experimental analysis of the behavior of three 

hierarchical models for marked-up datasets in different languages. In the experiments, the 

possibility of application of parameterized Renyi entropy as a marker of topical structure and for 

determining the optimal number of topics on different hierarchical levels is demonstrated.  

To test the theoretical concept described in paragraph 2.5, the following experiments were 

conducted. First, the following models were used in computer experiments on the application of 

Renyi entropy for analysis of hierarchical topic models: 1. HLDA (model of hierarchical latent 
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Dirichlet allocation) [61]. 2. HPAM (model of hierarchical Pachinko allocation) [62]. 3. hARTM 

(hierarchical additive regularization of topic models) [63]. These models were tested by means of 

six marked-up datasets, two of which have a flat structure and the other four have a two-level 

structure. 

Description of datasets: 1. Russian-language dataset (‘Lenta_ru’) (custom mark-up on 10 

topics). 2. English-language dataset ’20 newsgroups’ [58] (custom mark-up on 20 topics). 3. 

‘WoS’ has a hierarchical mark-up with two levels. It contains 46.985 annotations of published 

articles (Web of Science) and 80.337 unique words. The first level of mark-up contains 7 topics 

(computer science, electrical engineering, psychology, mechanical engineering, civil engineering, 

medical science, and biochemistry), and the second level contains 134 topics. Let us note that this 

dataset is highly unbalanced in terms of the distribution of documents by topics on the second 

level; therefore, in this work, we also consider its balanced subset. To balance this dataset, topics 

with less than 260 documents were removed. The balanced ‘WoS’ dataset contains 11.967 

annotations of articles and 36.488 unique words, 7 topics on the first level and 33 topics on the 

second level. 4. ‘Amazon’ dataset (https://data.mendeley.com/datasets/9rw3vkcfy4/1) has a 

hierarchical mark-up with three levels, containing 6, 64, and 510 topics correspondingly. It 

contains 40.000 reviews on products from online shop Amazon and 31.486 unique words. The third 

level contains empty labels; therefore, in this work, only the first two levels of hierarchical mark-

up are considered. Also, its balance version, which contains 6 topics on the first level and 27 topics 

on the second level, is considered.  The total number of documents is 32.774, and the number of 

unique words is 28.422.  

 

2.9.1. HPAM model 

Hierarchical model HPAM depends on the following parameters: 1. The number of topics 

on the second level. 2. The number of topics on the third level. 3. Parameter ‘eta’ (η is the 

parameter characterizing the Dirichlet function). 4. Parameter ‘alpha’ (α). Let us note that the 

number of topics on the first level is always equal to one in HPAM model. Moreover, parameter 

α is set in the form of the initial value, which is further tuned by the algorithm. The investigation 

demonstrated that variation of the initial value of parameter α does not influence the modeling 

results; therefore, parameter α was not used in this work. Parameters of HPAM model for datasets 

with the flat topical structure were tuned in two stages. In the first stage, the number of topics on 

the third level was fixed; the number of topics on the second level and parameter η were varied. 

In the second stage, the number of topics on the second level and the value of η were chosen and 

fixed in such a way that led to minimum Renyi entropy at the first stage, and the number of topics 

on the third level was varied. According to the model's authors, the first level has one topic.  

 

2.9.1.1.  ‘Lenta’ dataset  

For this dataset, the following experiments were conducted. In the first stage, the number 

of topics on the first and the third level were set to one, the number of topics on the second level 

was varied in the range [2-200]. The value of η was varied in the range [0.001-1]. Since topic 

modeling possesses a certain level of instability, all calculations were carried out 6 times (for a 

given combination of parameters), and Renyi entropy was averaged. Then for analysis of topic 

model behavior of the third hierarchical level, the best combinations of parameters that correspond 

to minimal values of Renyi entropy on the second level were selected. For these parameters, Renyi 

entropy on the third hierarchical level was calculated.  

https://data.mendeley.com/datasets/9rw3vkcfy4/1
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The results of Renyi entropy calculations as a function of the number of topics and 

parameter η on the second hierarchical level for HPAM model are given in figure (21). 

   
Fig. 21. Renyi entropy.                 Fig. 22 Log-likelihood. 

Dependence of Renyi entropy minimum and log-likelihood on parameter η and the number of 

topics (Lenta) on the second hierarchical level of HPAM model. 

Figure (22) demonstrates curves of log-likelihood for HPAM model. One can see that they 

are not suitable for analysis since this measure has very large fluctuations that do not allow us to 

determine the number of topics in the dataset nor to find the optimal value of parameter η. 

Moreover, since perplexity is an inverse value of log-likelihood, it is also unsuitable for the actual 

tuning of HPAM model. 

 

 
Fig. 23. Dependence of Renyi entropy on the number of topics on the third level under fixed 

number of topics on the second level and specified parameter η. HPAM model (Lenta). 

Calculation of entropy on the third level demonstrates that variation of the number of topics 

leads to the presence of one global minimum in the region of 6 topics and sharp fluctuations of the 

entropy when increasing the number of topics above 50. Sharp changes in entropy are replaced by 

almost straight lines.  This is related to the fact that in the region of strong fluctuations the model 

deteriorates: the number of words with high probabilities and the sum of probabilities becomes 

constant, and entropy increasing is explained only by the fact that the formula of entropy 

calculation contains the number of topics. Thus, the number of topics is increasing, but the 
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statistical features of the model do not change. Therefore, HPAM model can see one global 

minimum for a small number of topics. 

2.9.1.2.  ’20 Newsgroups’ dataset 
HPAM model for ‘20Newsgroups’ was investigated in the same way as for the Russian-

language dataset. Renyi entropy curves as functions of the number of topics on the second 

hierarchical level for different values of parameter η are presented in figure (24). In general, their 

behavior under variation of the number of topics and parameter η is analogous to Renyi entropy 

curves for ‘Lenta’ dataset.  

     
 

Fig. 24. Renyi entropy.                                       Fig. 25 Log-likelihood  

Dependence of Renyi entropy minimum and log-likelihood on parameter η and the number of 

topics (’20 Newsgroups’) on the second hierarchical level of HPAM model. 

Figure (25) demonstrates that log-likelihood is also unsuitable for tuning HPAM model for the 

English-language dataset ’20 Newsgroups’.    

2.9.1.3.  Balanced and unbalanced datasets WoS 

For these datasets, at the first stage, calculations of HPAM model were implemented for 

the following range of parameters: 1. The number of topics was varied in the region [2-60] with 

the increments in two topics, 2. Parameter η was varied as follows: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 1]. The number of topics in the first and third hierarchical levels was fixed equal 

to one. HPAM model was run 6 times for each combination of parameters. After that, the average 

value of Renyi entropy was calculated. Figures (26) and (27) demonstrate averaged curves of 

Renyi entropy for different values of parameter η under variation of the number of topics.  

 

   
Fig. 26. Renyi entropy.                       Fig. 27 Log-likelihood  

Renyi entropy on the second hierarchical level (balanced and unbalanced ‘WoS’). 
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The last two figures demonstrate that dataset balancing leads to the appearance of brightly 

expressed Renyi entropy minimum, i.e, dataset balancing improves topic modeling. Moreover, in 

this case, the accuracy of determining the number of topics us significantly higher. 

Calculations on the third level were implemented under the fixed number of topics and the 

corresponding value of η from the second hierarchical level. Then, on the third level, the number 

of topics was varied for several values of η. The results of Renyi entropy calculations are given in 

figures (28), (29).  

 

                    Fig. 28. Renyi entropy curves                         Fig. 29. Renyi entropy curves 

                     (balanced ‘WoS’ dataset).                               (unbalanced ‘WoS’ dataset) 

Renyi entropy curves under variation of the number of topics and parameter η on the third 

hierarchical level (balanced and unbalanced ‘WoS’ dataset) 

2.9.1.4.  Balanced and unbalanced ‘Amazon’ datasets 

For these two datasets, the calculations were implemented analogously to calculations for 

‘WoS’ datasets. The results are presented in figures (30), (31) (variation of the number of topics 

and parameter η on the second level). The results of Renyi entropy calculations on the third level 

are demonstrated in figures (32), (33).  

 

 
 

Fig. 30. Renyi entropy curves           Fig 31. Renyi entropy curves 

      (balanced ‘Amazon’ dataset).             (unbalanced ‘Amazon’ dataset) 

Renyi entropy curves on the second hierarchical level (balanced and unbalanced ‘Amazon’ 

datasets) under variation of the number of topics and parameter η. 
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Fig. 32. Renyi entropy curves       Fig. 33. Renyi entropy curves 

          (balanced ‘Amazon’ dataset).      (unbalanced ‘Amazon’ dataset). 

Renyi entropy on the third level of HPAM model (balanced and unbalanced ‘Amazon’ datasetsс) 

under variation of the number of topics and parameter η. 

One can see that HPAM model gives sharp jumps of entropy both for ‘flat’ datasets and 

for datasets with hierarchical mark-up for a large number of topics. Therefore, one can conclude 

that HPAM model cannot differentiate between flat and hierarchical structures of datasets and can 

be used only for determining one level of hierarchy. 

 

2.9.2. HLDA model 

The authors of this model claim that their model finds the number of topics for a dataset 

automatically based on a hierarchical Chinese restaurant process [61]. However, as investigations 

demonstrate, this model significantly depends on the concentration parameter and leads to a large 

spread in the number of topics when this parameter is varied [2]. Since there is no possibility of 

correctly determining the concentration parameter, this model was not considered in this work. A 

complete investigation of this model is given in work [2]. 

 

2.9.3. hARTM model 

hARTM model, proposed by the authors of work [63], has the following parameters: 1. 

The number of topics on each level. 2. Seed is a parameter characterizing the initialization 

procedure (setting random numbers generator). This model was investigated for four considered 

datasets. The results of Renyi entropy calculations for ‘flat’ datasets are presented in figures (34), 

and (35).  

   

            Fig. 34. Renyi entropy curves                         Fig. 35. Renyi entropy curves 

(‘Lenta’ dataset).        (’20 Newsgroups’ dataset). 

Dependence of Renyi entropy on the number of topics on the first hierarchical level in hARTM 

model (‘Lenta’, ’20 Newsgroups’). 
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The calculations demonstrate that hARTM model determines well the flat structure and 

does not possess fluctuations for large numbers of topics. The results of calculations for ‘WoS’ 

dataset are demonstrated in figures (36), (37). These curves demonstrate that, first, balancing the 

dataset leads to entropy decreasing in topic model; second, balancing leads to changing the location 

of the second entropy minimum. Moreover, the first minimum is almost not changed. It means that 

removing documents, which compose small topics, does not influence the set of words with high 

probabilities on the first level. The existence of the second hierarchical level is demonstrated by 

the presence of the second local minimum. Moreover, the balancing procedure impacts the 

minimum location for the second hierarchical level.  

   

Fig. 36. Renyi entropy curves  Fig. 37. Renyi entropy curves  

(‘WoS’ dataset).      (‘Amazon’ dataset).  

Renyi entropy curves for balanced and unbalanced ‘WoS’ and ‘Amazon’ datasets on the first 

hierarchical level. Black: balanced dataset, red: unbalanced dataset. 

However, let us note that the second hierarchical level is determined with a smaller 

accuracy than the first one. This is related to the fact that words on the second level have smaller 

values of probabilities; therefore, determining the difference between words on the second level 

and words below the threshold 
1

𝑊
 is complicated due to the instability of topic models. 

Thus, one can conclude the following based on the implemented investigations of entropic 

topic models. First, models based on Renyi and Sharma-Mittal entropy, namely, LDA (Gibbs 

sampling algorithm), pLSA (E-M algorithm), VLDA (E-M algorithm), GLDA (Gibbs sampling 

algorithm), and ARTM with sparsing regularizers for matrices Φ and Θ (E-M algorithm) allow us 

to determine optimal hyperparameters of topics models. The optimal number of topics in topic 

models is determined by searching the minimum of parameterized entropies. Variation of 

regularization parameters leads to shifting the whole entropy curve. Along with that, the best value 

of the regularization parameter corresponds to the lowest entropy curve (among all curves obtained 

under variation of the parameter). Second, the application of two-parametric entropy allows us to 

estimate the semantic stability of topics models under variation of model hyperparameters 

including the number of topics. Third, a hierarchical topic model based on hARTM makes it 

possible to determine the presence of a hierarchical or ‘flat’ structure in datasets in different 

languages and correctly set the optimal number of topics at two levels of the hierarchy. 

 

3. Fractal model for estimating results of topic models 

The behavior of an information statistical system can be investigated using a fractal model. 

This is because Renyi entropy describes fractal statistical systems well [50]. This mathematical 
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formalism is based on the scaling procedure, that is, changing the scale. The fractal model can be 

described as follows [64]. Topic solution for a fixed number of topics is represented with matrix 

𝛷, where the total number of cells is  𝑇 ∗𝑊, where⁡𝑇⁡ is the number of topics (columns in the 

matrix), 𝑊 is the number of unique words (number of rows). Each cell of the matrix contains 

probability 𝑝𝑖𝑗 of belonging of word 𝑤𝑖 to topic 𝑇𝑗, and the size of a cell equals 𝜀⁡~⁡1/(𝑊𝑇). For 

a fixed vocabulary size (𝑊 = 𝑐𝑜𝑛𝑠𝑡), the size of the cell is determined only by the number of 

topics, and for 𝑇 → ∞, cell size tends to zero. Density-of-states function is 𝜌̌ =
𝑁𝑖

𝑊Т
 , where 𝑁𝑖 is 

the number of cells in the topic solution with probabilities (𝑝𝑖𝑗) above 
1

𝑊
, i.e., this function 

estimates the cloud of highly probable words and is a function of the number of topics. During the 

process of topic modeling, this function changes from 0 up to some value 𝜌̌𝑖(𝐸)<1, which depends 

on the number of topics. Correspondingly, density 𝜌̌(𝐸)depends on cell size and degree 𝐷(𝜀) [64]: 

𝜌̌(𝐸) ⁡≅ 𝜀−𝐷(𝜀). The distribution of fractal dimensions D(ε) was determined by means of ‘box 

counting’ algorithm [65]. Its application for calculations of fractal dimensions in TM consists of 

the following steps. 1. The space of words is covered with a grid of fixed size, that is matrix 𝛷 =
𝜙𝑤𝑡. 2. The number of cells containing probabilities above the threshold 𝑝𝑤𝑡 > 1/𝑊 is calculated. 

3. Value ρ𝑤𝑡is calculated for the given number of topics 𝑇𝑡. 4. Steps 1, 2, 3 are repeated under 

variation of cell size, i.e., under variation of the number of topics. 5. Figure of function 𝜌̌(𝐸) is 

plotted in bi-logarithmic coordinates. 6. Function slope is estimated by means of least square 

method, and this slope represents fractal dimension taken with the opposite sign: 𝐷(𝐸) =

−
ln⁡(𝑝(𝐸))

ln⁡(𝜀)
. Linear parts of function 𝜌̌(𝐸in bi-logarithmic coordinates characterize the process of 

self-reproduction of the density-of-states function in topic models. 

 

3.1. Experiments on determining the fractal dimension in topic models 

In the investigation of fractal properties of topic models, a set of computer experiments 

was conducted. In the calculations, the following datasets were used: 1. ‘Lenta’. 2. ’20 

newsgroups’ dataset. For both collections, a series of calculations were implemented, where the 

number of topics was changed in the range [2-50] with increments in one topic. All models were 

run three times, and the modeling results were averaged. For each averaged solution, value  𝜌̌(𝐸) 
was calculated. The obtained curves were analyzed in bi-logarithmic coordinates. In experiments, 

the following topic models were used: 1. pLSA (E-M algorithm); 2. ARTM (E-M algorithm); 3. 

LDA Gibbs sampling. Examples of modeling and calculations of fractal dimensions are given in 

figures (38), (39), (40), (41). 

Fractal analysis of the behavior of topic models demonstrates that text collections possess 

self-similar regions and a transition region between them. Moreover, this transition region between 

liner regions corresponds to Renyi entropy minimum [64]. Thus, the problem of analyzing the 

evolution of the topic model under variation of the number of topics can be reduced to the problem 

of locating the area that separates regions of self-similarity. The last problem is considered in the 

next chapter and is solved by means of the application of renormalization theory to topic modeling.  
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Fig. 38. Distribution of fractal dimensions               Fig. 39. Distribution of fractal dimensions 

     (pLSA model)                                                 (LDA GB model (α=0.4, β=0.5)) 

 

 
Fig. 40. Distribution of fractal dimensions                Fig. 41. Distribution of fractal dimensions  

        (ARTM (sparse Ф = 0.01)).                               (ARTM (sparse Ф = -10) 

 

4. Aggregation method of topic models based on renormalization procedure.  

4.1. Introduction into renormalization theory  

Renormalization is a mathematical formalism that is widely used in different fields of 

physics such as percolation analysis and analysis of phase transitions. Renormalization consists of 

constructing a procedure for changing the scale of the system, in which the system's behavior 

remains the same. Theoretical foundations of the renormalization procedure were laid in the works 

of Kadanoff [33] and Wilson [34]. Renormalization procedures have been widely developed in the 

theory of fractals since fractal behavior has the property of self-similarity [35, 36]. 

The essence of the renormalization procedure is as follows. Let us consider a grid 

consisting of a set of nodes. We do not consider the physical features of these nodes and give only 

the formulation of the renormalization procedure. Each node is characterized by spin direction.  In 

turn, a spin can take a particular direction, the number of which depends on the task. For example, 

in the Ising model, only two positions of spin are considered. In the Potts model, the number of 

positions can be 3-5 [37]. 

Nodes with the same spin constitute clusters. The scaling procedure or renormalization 

takes place according to the principle of block unification, in which several nearest nodes are 

replaced by one node. The direction of the new spin is taken as the direction of the majority of 

spins in the selected block. The procedure of block unification is carried out over the entire surface. 
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Accordingly, a new configuration of spins appears as a result. The scaling procedure can be 

implemented several times. Based on the principle that the new spin configuration must be 

equivalent to the old one, the possibility of building a procedure for estimating field parameters 

and critical exponent values appears. Let us note that subsequent application of the renormalization 

procedure or coarse-graining of the initial system gives approximate results. However, despite this 

fact, this method is widely used since it allows one to obtain critical exponent values in phase 

transitions, where standard mathematical models are not applicable. The renormalization 

procedure is successfully applied there, where scale invariance is observed. Scale invariance is 

characterized by power-law distributions. The mathematical expression of self-similarity is 

expressed as follows. Let f(x)=cxα, where с, α are constant. In the case of scale transformation in 

the form of 𝑥 →λx we obtain the same type of functional dependence but with another coefficient, 

i.e., f(λx)=βxα. Thus, power-law distribution possesses scale invariance. The power parameter can 

be determined using different algorithms, for example, such as ‘box counting'. 

 

4.2. General statement of the aggregation problem in the form of renormalization procedure 

in topic modeling  

The general task of aggregation of topic models under variation of mixture distribution size 

is to apply renormalization technology. The definition of renormalization is borrowed from 

quantum field theory. It is an iterative renormalization method in which the transition from regions 

with lower energy to regions with higher energy is related to a change in the scale of the system. 

Renormalization is closely related to scale and conformal invariance and symmetries in which the 

system appears to be the same on all scales (so-called self-similarity). Renormalization of topic 

models is implemented as follows [65]. The result of TM is matrix 𝛷 = 𝜙𝑤𝑡, which consists of a 

set of one-dimensional distributions of words by topics. Matrix size is determined by the number 

of words 𝑊 and the number of topics 𝑇. In this work, a fixed vocabulary of unique words is 

considered. Therefore, scale change of topic model depends only on parameter 𝑞 = 1/𝑇.  

Renormalization procedure is procedure of merging topic pair into one topic. After merging two 

topics, a new topic is normalized since the sum of probabilities of all words in a topic always 

equals one. Since calculation of the element of matrix 𝜙𝑤𝑡 depends on the model type, the 

mathematical formulation of the renormalization procedure is specific for each model. Moreover, 

the result of merging depends on the choice of topic pairs to be merged. In this work, three 

principles of merging topics are considered: 

1) Principle of pairwise topic merging based on minimum Kullback-Leibler divergence. 

It assumes that topics with similar probability distributions should be merged. The 

calculation for topic pairs is as follows:  

      𝐷𝐾𝐿(𝑝⁡⎸𝑞) = ∑ 𝑝(𝑥𝑖) · 𝑙𝑛 (
𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
)𝑖=1 ⁡= 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= −∑𝑝(𝑥𝑖) · 𝑙𝑛(𝑞(𝑥𝑖)) +⁡∑𝑝(𝑥𝑖) · 𝑙𝑛(𝑝(𝑥𝑖))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6).

𝑖=1𝑖=1

 

      Topics with the smallest Kullback-Leibler divergence are merged.  

2) Principle of topic merging based on minimum Renyi entropy, calculated for each topic. 

The calculation is according to formula (4), but for summation, only probabilities of 

words in one topic are used. Further, two topics are merged if they have the smallest 

entropy values.  
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3) Merging randomly chosen topics.  

Below we consider three renormalization procedures of topic models based on different 

algorithms of restoring hidden distributions. The first and the third model are based on E-M 

algorithm (VLDA, pLSA), and the second one is based on Gibbs sampling procedure (LDA GB). 

 

4.3. Renormalization procedure for VLDA model based on E-M algorithm  

In VLDA (variational Latent Dirichlet Allocation) [66], the model parameter is the number 

of topics. The results of the model implementation are T-dimensional vector вектор 𝛼, where each 

value 𝛼𝑖 characterizes Dirichlet distribution for each topic, and matrix of distribution of words 𝑤 

by topics 𝑡 ∶ ⁡⁡Φ = (𝜙𝑤𝑡)𝑤∈𝑊,𝑡∈𝑇. Variational E-M algorithm is used for estimating values of 

matrix 𝛷 and Newton-Rapson method is used for estimating values of vector  𝛼. Counter in this 

algorithm is calculated according to the following expression [65]: 

𝜇𝑛𝑡 = 𝜙𝑤𝑛𝑡 exp(𝜓 (𝛼𝑡 +
𝐿

𝑇
)),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)⁡ 

where L is the document length, n is the number of the current words, 𝑤𝑛is the word from the list 

of unique words, corresponding to the current term, 𝜓 is digamma function, 𝜇𝑛𝑡 is an auxiliary 

variable, playing role of a counter, and 𝜙𝑤𝑡 ⁡is expressed through this auxiliary variable taking into 

account normalization during variational E-M algorithm. 

 

For renormalization task, the sum of counters was used. An output of this algorithm is 

matrix (𝜙𝑤𝑡)𝑤∈𝑊,𝑡∈𝑇 and vector 𝛼. Renormalization algorithm consists of the following steps: 

1) Selection of a pair of topics for merging according to one of the methods listed in 4.1. 

Let us denote the chosen topics by 𝑡1 и 𝑡2.  

2) Merging of the selected topics. Values of the distribution of the ‘new’ topic 

𝜙⋅𝑡1obtained in the result of merging 𝑡1 и 𝑡2 are calculated as follows [29]: 

𝜙𝑤𝑡1: = 𝜙𝑤𝑡1 ⋅ exp (𝜓(𝛼𝑡1)) + 𝜙𝑤𝑡2 ⋅ exp⁡(𝜓(𝛼𝑡2)).              (8) 

Further, new column 𝜙⋅𝑡1is normalized so that ∑ 𝜙𝑤𝑡1𝑤∈𝑊 = 1. New value of 𝛼𝑡1 =

𝛼𝑡1 + 𝛼𝑡2corresponding to the ‘new’ topic is also recorded. After that, column 𝜙⋅𝑡2is 

removed from matrix  𝛷, and 𝛼𝑡2is removed from vector 𝛼. At this step, the number of 

topics is reduced by one, i.e., we obtain 𝑇 − 1 topics. Then, the new values of vector  

𝛼 are normalized so that the sum of vector components equals 1. 

3) Calculation of the overall Renyi entropy for the reduced number of topics. After that, 

when the new topic solution is formed, Renyi entropy is calculated for this new solution 

according to equation (4).  

 

Steps 1, 2, 3 are iteratively repeated until there are only two topics left. Based on the results 

of renormalization, Renyi entropy curve is plotted as a function of the renormalization parameter, 

that is, of the number of topics. Then, Renyi entropy curve obtained in the result of renormalization 

is compared to the Renyi entropy curve obtained with the successive implementation of topic 

models under variation of the number of topics. Comparing two curves, one can estimate the effect 

of renormalization for this model. The region of Renyi entropy minimum corresponds to the region 

of the optimal number of topics.  

4.4. Renormalization procedure for LDA model based on Gibbs sampling procedure  
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LDA model (Latent Dirichlet allocation) with Gibbs sampling is based on symmetric 

Dirichlet distributions, where the distribution of words in a topic is characterized by parameter 𝛽, 

and the distribution of topics in documents is characterized by parameter 𝛼. Matrix Φ = (𝜙𝑤𝑡)  is 

calculated by means of Gibbs sampling procedure. Values of 𝛽, 𝛼 and the number of topics are set 

by a user. Calculation of matrix Φ consists of two stages. In the first stage, the sampling procedure 

is carried out, during which the counter 𝑐𝑤𝑡is formed. In the second stage, elements of matrix ϕwt  

are calculated according to the following relation:  
 

𝜙𝑤𝑡 =
𝑐𝑤𝑡 + 𝛽

(∑ 𝑐𝑤𝑡) + 𝛽𝑊𝑤∈𝑊
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

where 𝑐𝑤𝑡⁡equals the number of times word 𝑤 was associated with topic 𝑡. For the task of 

renormalization of this model, we use the counter 𝑐𝑤𝑡 and relation (9). The algorithm’s output is 

matrix (𝜙𝑤𝑡)𝑤∈𝑊,𝑡∈𝑇 and counters 𝑐𝑤𝑡. The input of renormalization procedure is matrix 𝑐𝑤𝑡, 
which undergoes the renormalization procedure, and based on this matrix, the final 

renormalization matrix ϕwt is calculated.  

Renormalization algorithm for Gibbs sampling procedure consists of the following steps: 

1) Selection of a pair of topics for merging according to one of the three described 

methods. Let us denote the selected topics by 𝑡1 and 𝑡2. 

2) Merging of the selected topics. The new topic is obtained by summation of word 

frequencies of the two selected topics. Then, based on the new values of counters, the 

elements of matrix 𝜙𝑤𝑡 are calculated. Renormalization equation is as follows [68]:   

𝜙𝑤𝑡1: =
𝑐𝑤𝑡1+𝑐𝑤𝑡2+𝛽

(∑ 𝑐𝑤𝑡_1+𝑐𝑤𝑡2)+𝛽𝑊𝑤∈𝑊
.              (10) 

New topic 𝜙⋅𝑡1already satisfies the property: ∑ 𝜙𝑤𝑡1𝑤∈𝑊 = 1. Then, column  𝜙⋅𝑡2is 

removed from matrix Φ, i.e., the size of topic solution is reduced.  

Steps 1 and 2 are iteratively repeated until there are only two topics left. Based on the 

results of renormalization, Renyi entropy curve is plotted as a function of the renormalization 

parameter, that is, of the number of topics. 

 

4.5. Renormalization procedure for pLSA model 

pLSA model is the simplest since it does not have regularizers and parameters. The only 

parameter is the number of topics [13]. The renormalization algorithm in this case consists of the 

following steps: 

1) Selection of a pair of topics for merging according to one of the three methods. Let us 

denote the selected topics by 𝑡1 и 𝑡2. 

2) Merging of the selected topics. In this model, the new topic is expressed through a 

simple summation of probabilities:  

𝜙𝑤𝑡1: = 𝜙𝑤𝑡1 + 𝜙𝑤𝑡2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11). 

3) Normalization of the new topic. After summation, normalization of the new topic is 

carried out so that the sum of probabilities in the new topic equals 1. Then, column 

𝜙⋅𝑡2is removed from matrix Φ. 

Steps 1, 2, 3 are iteratively repeated until there are only two topics left. Based on the results 

of renormalization, Renyi entropy curve is plotted as a function of the renormalization parameter, 

that is, of the number of topics.  
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4.6. Experiments on renormalization  

In the framework of investigation of renormalization, three datasets were used: 1. Russian-

language dataset (Lenta.ru). 2. Dataset ’20 newsgroups’. 3. French-language dataset containing 

25000 documents in French and 18749 unique words. The french-language dataset does not have 

a mark-up on topics. Topic modeling was implemented for these datasets with a variation of the 

number of topics 2-100 with increments in one topic. The following parameters were used for 

LDA model with Gibbs sampling:  α=0.1, β=0.1. Investigation on the optimal hyperparameters for 

these datasets was conducted in work [15]; therefore, parameters were not varied in this work. 

Then, for each dataset, a topic solution on 100 topics underwent the renormalization procedure. 

Based on renormalization procedure, Renyi entropy curves as functions of the number of topics 

were plotted. Finally, Renyi entropy curves obtained with renormalization were compared to Renyi 

entropy curves that were obtained by the successive topic modeling (without renormalization).   

 

4.6.1. Renormalization of LDA GB model (‘Lenta’ dataset) 

 The results of calculations for this model are presented in figures (43)-(45). 

 

   
              Fig. 43.                             Fig. 44.                              Fig. 45. 

Renyi entropy curves as functions of the number of topics for the Russian-language dataset. Black: 

successive topic modeling. Fig. (43): merging random topics. Fig. (44): merging based on 

minimum Renyi entropy. Fig. (45): merging based on Kullback-Leibler divergence. 

The last figure demonstrates that the renormalization of the topic model based on minimum 

Kullback-Leibler divergence produces the worst result among the three types of renormalization. 

The best result in terms of determining the optimal number of topics is demonstrated by the 

procedure of merging based on minimum Renyi entropy.  

4.6.2. Renormalization of LDA GB model (’20 newsgroups’ dataset) 

The results of calculations for this model are given in figures (46)-(48).  

 

 
           Fig. 46.                             Fig. 47.                              Fig. 48. 

Renyi entropy curves as functions of the number of topics for the English-language dataset. Black: 

successive topic modeling. Fig. 46: merging random topics. Fig. 47: merging based on minimum 

Renyi entropy. Fig. 48: merging based on Kullback-Leibler divergence. 
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These calculations also demonstrate that the best result is demonstrated by the procedure 

of merging based on minimum Renyi entropy. 

 

4.6.3. Renormalization of LDA GB model (French-language dataset) 

The results of renormalization for the French-language dataset are given in the following 

three figures below. 
 

                 
              Fig. 49.                             Fig. 50.                              Fig. 51. 

Renyi entropy curves as functions of the number of topics for the French-language dataset. Black: 

successive topic modeling. Fig. 49: merging random topics. Fig. 50: merging based on minimum 

Renyi entropy. Fig. 51: merging based on Kullback-Leibler divergence. 

 

4.6.4. Renormalization of VLDA model (‘Lenta’ dataset) 

 

 
             Fig. 52.                             Fig. 53.                              Fig. 54. 

Renyi entropy curves as functions of the number of topics for the Russian-language dataset. Black: 

successive topic modeling. Fig. 52: merging random topics. Fig. 53: merging based on minimum 

Renyi entropy. Fig. 54: merging based on Kullback-Leibler divergence. 

 

4.6.5. Renormalization of VLDA model (’20 newsgroups’ dataset) 

 

         
       Fig. 55.                                Fig. 56.                                  Fig. 57. 

Renyi entropy curves as functions of the number of topics for the English-language dataset. Black: 

successive topic modeling. Fig. 55: merging random topics. Fig. 56: merging based on minimum 

Renyi entropy. Fig. 57: merging based on Kullback-Leibler divergence. 
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4.6.6. Renormalization of VLDA model (French-language dataset) 

 

 
             Fig. 58.                             Fig. 59.                              Fig. 60. 

Renyi entropy curves as functions of the number of topics for the French-language dataset. Black: 

successive topic modeling. Fig. 58: merging random topics. Fig. 59: merging based on minimum 

Renyi entropy. Fig. 60: merging based on Kullback-Leibler divergence. 

Renormalization of VLDA model also demonstrates that the best result in terms of 

determining the optimal number of topics is achieved by merging procedure based on minimum 

Renyi entropy, and the worst one corresponds to merging based on minimum Kullback-Leibler 

divergence. However, the renormalization model of VLDA performs worse than LDA GB model. 
  
4.6.7. Renormalization of pLSA model (‘Lenta’ dataset) 

     
             Fig. 61.                                Fig. 62.                              Fig. 63. 

Renyi entropy curves as functions of the number of topics for the Russian-language dataset. Black: 

successive topic modeling. Fig. 61: merging random topics. Fig. 62: merging based on minimum 

Renyi entropy. Fig. 63: merging based on Kullback-Leibler divergence. 

 

4.6.8. Renormalization of pLSA model (’20 newsgroups’ dataset) 

        
         Fig. 64.                                    Fig. 65.                                 Fig. 66. 

Renyi entropy curves as functions of the number of topics for the English-language dataset. Black: 

successive topic modeling. Fig. 64: merging random topics. Fig. 65: merging based in minimum 

Renyi entropy.Fig. 66: merging based on Kullback-Leibler divergence. 
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4.6.9. Renormalization of pLSA model (French-language dataset) 

 

     
      Fig. 67.                                     Fig. 68.                                 Fig. 69. 

Renyi entropy curves as functions of the number of topics for the French-language dataset. Black: 

successive topic modeling. Fig. 67: merging random topics. Fig. 68: merging based on minimum 

Renyi entropy.Fig. 69: merging based in minimum Kullback-Leibler divergence. 

Thus, based on the conducted research, one can conclude the following: 1. The best 

performance is achieved by the renormalization procedure based on minimum Renyi entropy. 2. 

Renormalization based on minimum Kullback-Leibler divergence is not suitable for determining 

the optimal number of topics in text collections. 3. Renormalization is applicable to different 

European languages.  

 

4.7. Comparison of aggregation methods according to the speed of models based on 

renormalization procedure  

Table (4) demonstrates the time costs required for successive runs of topic modeling and 

the time costs of renormalization for marked-up datasets.  

This table demonstrates that the renormalization procedure is performed 10-800 times 

faster than the successive calculation of topic models under variation of the number of topics. 

Calculations according to three renormalization procedures for datasets in different languages 

demonstrate that, first, the fastest procedures are renormalizations based on merging random topics 

and merging topics with minimal values of local Renyi entropy.  Renormalization based on 

Kullback-Leibler divergence is the slowest. Moreover, this type of renormalization provides the 

worst result in terms of similarity of Renyi entropy curve obtained with successive topic modeling 

and Renyi entropy curve obtained with renormalization. The best result is achieved by 

renormalization based on merging topics according to local Renyi entropy. Merging random topics 

leads to significant fluctuations of Renyi entropy minimum. However, if renormalization curves 

are averaged for several runs, then averaged Renyi entropy curve also allows us to determine the 

optimal value of the number of topics.  Thus, the most convenient in terms of speed and accuracy 

of estimation of the optimal number of distributions in the mixture of topics is the renormalization 

procedure based on minimum local Renyi entropy. 
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Table 4: Time costs of different models. 

 

 

5. Granulated variant of a topic model  

As was mentioned, in the field of topics modeling, one of the main problems is the problem 

of stability. At the same time, the central part of scientific works is aimed at measuring stability 

using different quality measures. In this chapter, in contrast to other works, a new model that 

allows us to significantly improve the stability of topic models based on Gibbs sampling procedure 

is proposed.  In this part of the work, we consider a model that is a modification of LDA model 

based on Gibbs sampling, where an explicit form of the local density function of the distribution 

of words by topics within a window of a given size is specified. Parzen–Rosenblatt window is set 

as [69]:  

𝑝(𝑟) =
1

𝑚ℎ
∑ 𝐾(

𝑟−𝑟𝑖

ℎ
)𝑚

𝑖=1 ,     (12), 

where K(w) is an arbitrary even function called a kernel. The kernel K(w) must satisfy the 

normalization condition: ∫𝐾(𝑟)𝑑𝑟 = 1. In practice, the following kernels are frequently used: 1. 

Rectangular kernel. 𝐾𝑟 = 𝑐𝑜𝑛𝑠𝑡 with a given window size h.  2. Epanechnikov kernel [70] 𝐾𝑟 =
𝑐𝑜𝑛𝑠𝑡 · (1 − 𝑟2). 3. Triangular kernel 𝐾𝑟 = 𝑐𝑜𝑛𝑠𝑡 · (1 − |r|). These kernel functions were used 

in this work for the regularization of topic modeling.   

5.1. Regularization of a topic model by specifying local density of distribution of words by 

topics  

In this work, the regularization of a topic model is based on the idea of the existence of a 

topical dependence between a pair of unique words, i.e., on assumption about the existence of a 

local density of distribution of topics, which can be set by the kernel function. We assume that a 

topic consists of words that are not only described by Dirichlet distribution but also often co-occur 

together in a text. Specifying a type of distribution function of words by topics inside a window 

(local density) and window size, one can influence the character of model regularization.  

In general, Gibbs sampling algorithm, taking into account the local density of the distribution of 

words by topic, is as follows: 

 Initialization of matrices 𝛷 = 𝜙𝑤𝑡 and⁡𝛩 = 𝜃𝑡𝑑.  

 Outer loop on the number of iterations  

o Loop on documents  

 Loop on words in a current document. 
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In the internal loop, random sampling according to Dirichlet distribution [21] is implemented. For 

a randomly selected anchor word (central word in a window), belonging to a topic is calculated, 

and topics of the other words inside the window are determined by local density function: 𝑇(𝑤𝑖) =
𝑇0 · 𝐾(𝑤0), where 𝑇0 is the topic of the anchor word, obtained from Dirichlet distribution, 𝐾(𝑤0) 
is the local density function, 𝑤𝑖 are words inside the window. 

 End of the loop on words 

o End of the loop on documents 

 End of the outer loop (on the number of iterations) 

At the final stage of topic modeling, after the end of sampling, the final calculation of matrices 

𝜙𝑤𝑡,⁡𝜃𝑡𝑑 ⁡of distributions of words and documents by topics is implemented based on the counters. 

Thus, specifying the type of local density function of distribution of words by topics and window 

size, we perform regularization of a topic model [72]. 

5.1.1. Rectangular kernel of regularization (granulated sampling, GLDA) 

The stepwise function is considered the first kernel in this work. Its essence is that all words 

inside a given window have the same topic K(T)=T(anchor word), i.e., the topic of the anchor 

word. The second regularization parameter is the window size. Thus, each document is considered 

a granulated surface consisting of granules (topics). An example of granulated text is given in 

figure (70). Since initially a combination of words that often occur inside one granule is not known, 

a granulated sampling variant forms a statistical dependence between closely located words. The 

results of the calculation of the stability of the topic model with a rectangular kernel are presented 

in table 5 (GLDA model).  

 

5.1.2. Epanechnikov kermel (ELDA) 

Epanechnikov kernel is a symmetric function that demonstrates that topics inside a given 

window are distributed as follows: 

𝐾(𝑤) = 𝑇(𝑎𝑛𝑐ℎ𝑜𝑟⁡𝑤𝑜𝑟𝑑) · (1 − 𝑟2),   (13), 

where 𝑟 = 1 corresponds to the rightmost word in the window, 𝑟 = ⁡−1 corresponds to the leftmost 

word in the window. This means that the farther the word is from the anchor word, the more the 

topic of the word differs from the topic of the central word (the difference goes in the direction of 

decreasing the topic number). The results of the calculation of the stability of the topic model with 

Epanechnikov kernel are given in table 5 (ELDA model).  
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Fig. 70. Example of a granulated surface in physics, and text presented in form of a granulated 

surface.  

5.1.3. Triangular kernel (TLDA) 

In this case, the local density function is set in form of a triangle: 

𝐾(𝑤) = 𝑇(𝑎𝑛𝑐ℎ𝑜𝑟⁡𝑤𝑜𝑟𝑑) · (1 − |𝑟|)      14. 

This model is almost analogous to ELDA model. The difference is that decreasing the topic number 

for words at the edges of the window is faster than in ELDA model. The results on the stability of 

the topic model with the triangular kernel are presented in table 5 (LDA model).  

 

5.2. Investigation of stability of ARTM, GLDA, pLSA, SLDA models 

In general, in the framework of topic modeling, models based on LDA dominate. However, 

the addition of regularizers in LDA model is related to the complexity of Bayesian inference, which 

in turn, complicates the construction of multi-purpose topic models satisfying simultaneously a 

large number of regularizers. In work [16], the authors propose an alternative to the Bayesian 

approach, namely, additive regularization of topic models, ARTM. It has several fundamental 

differences from the Bayesian approach.  

In this case, the construction of multi-purpose topic models is significantly simplified due 

to additive regularizers. The addition of a regularizer demands a slight modification of M-step in 

a ready E-M-like algorithm. In the framework of this work, the stability of ARTM model with two 

regularizers was investigated: 1. Sparsing regularizer of matrix 𝛷. 2. Sparsing regularizer of matrix 

𝛩. 

 

5.2.1. Experiments on stability of topic models 

Nine topic models were investigated: 1.  pLSA. 2. ARTM sparse Ф. 3. ARTM sparse Θ. 4. 

VLDA, 5. LDA GB. 6. Semi-supervised LDA GB. 7. GLDA. 8. ELDA 9. TLDA. For testing 

models, documents from the social network ‘’Live Journal’ were used. The total number of 
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documents is 101481. In each modeling, 200 topics were used. The results of model calculations 

are presented in table (7). Each model was run three times under variation of the number of topics. 

The stability of topic models was calculated for three runs by means of Kullback-Leibler 

divergence.  

Table 7. 

Topic model The number of stable 

topics 

Average value of Jaccard 

distance 

PLSA 54 0.47 

PLSA+sparsing 

regularizer of matrix 

φ(w,t), regularization 

coefficient α=0.5 

9 0.44 

PLSA+ sparsing 

regularizer of matrix 

Θ(t,d), 

regularization coefficient 

β=0.2 

87 0.47 

 

Variational Latent 

Dirichlet Allocation 

(VLDA) 

111 0.53 

LDA (Gibbs sampling) 77 0.56 

SLDA (Gibbs sampling) 84 0.62 

GLDA (window size: ±1) 195 0.64 

GLDA (window size: ±2) 195 0.71 

GLDA (window size: ±3) 197 0.73 

ELDA (window size: ±1) 184 0.23 

ELDA (window size: ±2) 192 0.33 

ELDA (window size: ±3) 199 0.20 

TLDA (window size: ±1) 162 0.63 

TLDA (window size: ±2) 200 0.3 

TLDA (window size: ±3) 200 0.68 

The calculations demonstrate that setting regularizers may both increase and decrease 

model stability. At the same time, adding information about local relations between words can 

significantly improve the stability of the topic model The proposed variant of the sampling 

procedure is significantly more stable than such models as pLSA, VLDA, ARTM.  
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Conclusion. 

As it was noted, there are three significant problems in topic modeling: 1. Determining the 

number of components in a mixture of distributions, including determining the presence of flat and 

hierarchical structures in datasets. 2. Problem of tuning hyperparameters and regularization 

coefficients. 3. Problem of stability (reproducibility of topic solution). Correspondingly, in the 

framework of the research of this dissertation, ways to solve these problems have been proposed.  

First, the entropic topic model (based on Renyi entropy) was implemented to determine the 

optimal number of distributions in the mixture for generative topic models. This model allows us 

to estimate the number of topics in datasets in European languages and to determine the optimal 

hyperparameters of topic models.  Second, the hierarchical entropic topic model, which allows us 

to estimate the number of hierarchical levels and to determine a type of hierarchy in a dataset, was 

implemented. The number of Renyi entropy minima corresponds to the number of hierarchical 

levels in datasets. Third, an entropic topic model based on two-parametric Sharma-Mittal entropy 

was implemented. In this model, one entropy parameter is expressed in terms of the inverse number 

of topics, the second parameter is expressed through Jaccard distance, which allows us to take into 

account semantic similarity between topic solutions under variation of the size of the mixture of 

distributions. Fourth, the fractal model for estimating the performance of generative topic models 

was implemented. This model allows us to identify the linear regions of the word distribution 

density function and the transition regions corresponding to the minima of Renyi entropy. Fifth, 

the method of aggregation of topic models based on the renormalization procedure, which allows 

us to speed up searching the optimal size of distribution mixture for a dataset in hundreds of times, 

was implemented. In this part of the work, it was demonstrated that the most effective 

renormalization procedure in terms of searching the correct number of topics and in terms of 

calculation speed is renormalization based on merging topics with minimal values of Renyi 

entropy. Six, a granulated topic model based on Gibbs sampling procedure, where the 

regularization procedure of the topic model is set with a local density function of topic distribution, 

was implemented. The proposed model demonstrates a high level of stability in comparison to 

other topic models.  

 Although this work is complete, the proposed models can be used for further 

development of the field of machine learning as follows: 1. Renyi and Sharma-Mittal entropies are 

variants of the parameterized logarithmic function, where parameters significantly change its 

behavior. Based on the above, one can formulate a class of mathematical models in the field of 

machine learning on the basis of searching for the maximum of parameterized log-likelihood (one 

or two-parameterized variants of logarithm). 2. Renormalization procedure can be incorporated 

inside the existing algorithms of topic models, that in turn, may significantly speed up the 

performance of topic models. 3. Principle of searching for a minimum of parameterized entropy 

can be used for the optimization of the existing clustering algorithms (including the hierarchical 

clustering procedure). 4. The principle of searching for parameterized entropy minimum can be 

used to determine the optimal number of layers in neural networks.  Preliminary experiments on 

networks of bounded and deep Boltzmann machines show that the behavior of Renyi entropy as a 

function of the number of layers in such networks is similar to the behavior of Renyi entropy in 

topic models as a function of the number of topics. 5. Granulated variant of the sampling procedure 

can be used for the development of topic models, where the granulated sampling procedure will 

take into account not the nearest words in a document, but the nearest words according to their 

word embeddings.  
 



46 
 
 

Funding 

The research included in the dissertation, as well as the preparation of the dissertation, were 

supported by HSE grants in 2014-2021: 

 2014 Social and Political Processes Online: The Structure and Content of Social 

Interactions  

 2015 Interdisciplinary internet studies 

 2016 Internet use and Internet users: cross-country and cross-regional comparisons  

 2017 Internet as sociotechnical phenomenon  

 2018 Social and textual measurement of social network user profiles  

 2019 Social networks as a socio-psychological and textual phenomenon  

 2020 Online communication: cognitive limits and methods of automatic analysis  

 2021 Modeling individuals behavior and socio-psychological characteristics based on 

multimodal digital traces  

 

References 

1. Chauhan, Uttam and Apurva Shah. “Topic Modeling Using Latent Dirichlet 

allocation.” ACM Computing Surveys (CSUR) 54 (2022): 1 - 35.  

2. Koltsov, Sergei, Vera Ignatenko, Maxim Terpilovskii and Paolo Rosso. “Analysis and 

tuning of hierarchical topic models based on Renyi entropy approach.” PeerJ Computer 

Science 7 (2021): n. pag. 

3. Catherine, Ş A. and Ugar. “Finding the number of clusters in a data set : An information 

theoretic approach C.” (2003).  

4. Stephens, Greg J., Thierry Mora, Gašper Tkačik and William Bialek. “Statistical 

thermodynamics of natural images.” Physical review letters 110 1 (2013): 018701 .  

5. Mirkin, Boris G.. “Clustering for data mining - a data recovery approach.” Computer 

science and data analysis series (2005).  

6. Tibshirani, Robert, Guenther Walther and Trevor J. Hastie. “Estimating the number of 

clusters in a data set via the gap statistic.” Journal of the Royal Statistical Society: Series 

B (Statistical Methodology) 63 (2000): n. pag.  

7. Fujita, André, Daniel Y. Takahashi and Alexandre Galvão Patriota. “A non-parametric 

method to estimate the number of clusters.” Comput. Stat. Data Anal. 73 (2014): 27-39.  

8. Aldana-Bobadilla, Edwin and Ángel Fernando Kuri Morales. “A Clustering Method Based 

on the Maximum Entropy Principle.” Entropy 17 (2015): 151-180. 

9. Ramírez-Reyes, Abdiel, Alejandro Raúl Hernández-Montoya, Gerardo Herrera-Corral and 

Ismael Domínguez-Jiménez. “Determining the Entropic Index q of Tsallis Entropy in 

Images through Redundancy.” Entropy 18 (2016): 299.  

10. Milligan, Glenn W. and Martha Cooper. “An examination of procedures for determining 

the number of clusters in a data set.” Psychometrika 50 (1985): 159-179.  

11. SH Cha, Taxonomy of nominal type histogram distance measures, Proceedings of the 

American conference on applied mathematics, 325-330, 2008. 

12. Rose, Gurewitz and Fox. “Statistical mechanics and phase transitions in 

clustering.” Physical review letters 65 8 (1990): 945-948 .  

13. Hofmann, Thomas. “Probabilistic Latent Semantic Indexing.” ACM SIGIR Forum 51 

(2017): 211 - 218.  



47 
 
 

14. Blei, David M., A. Ng and Michael I. Jordan. “Latent Dirichlet Allocation.” J. Mach. 

Learn. Res. 3 (2003): 993-1022. 

15. Griffiths, Thomas L. and Mark Steyvers. “Finding scientific topics.” Proceedings of the 

National Academy of Sciences of the United States of America 101 (2004): 5228 - 5235.  

16. Vorontsov, Konstantin V., Anna Potapenko and Alexander Plavin. “Additive 

Regularization of Topic Models for Topic Selection and Sparse 

Factorization.” SLDS (2015).  

17. Teh, Yee Whye, Michael I. Jordan, Matthew J. Beal and David M. Blei. “Hierarchical 

Dirichlet Processes.” Journal of the American Statistical Association 101 (2006): 1566 - 

1581. 

18. Teh, Yee Whye, Michael I. Jordan, Matthew J. Beal and David M. Blei. “Sharing Clusters 

among Related Groups: Hierarchical Dirichlet Processes.” NIPS (2004).  

19. Mimno, David, Wei Li and Andrew McCallum. “Mixtures of hierarchical topics with 

Pachinko allocation.” ICML '07 (2007).  

20. Belyy A. V., Seleznova M. S., Sholokhov A. K., Vorontsov K. V. Quality Evaluation and 

Improvement for Hierarchical Topic Modeling, Computational Linguistics and Intellectual 

Technologies. Dialogue 2018. pp. 110-123  

21. Dieng, Adji B., Francisco J. R. Ruiz and David M. Blei. “Topic Modeling in Embedding 

Spaces.” Transactions of the Association for Computational Linguistics 8 (2020): 439-453.  

22. Miao, Yishu, Edward Grefenstette and Phil Blunsom. “Discovering Discrete Latent Topics 

with Neural Variational Inference.” ArXiv abs/1706.00359 (2017): n. pag.  

23. Daud, Ali, Juan-Zi Li, Lizhu Zhou and Faqir Muhammad. “Knowledge discovery through 

directed probabilistic topic models: a survey.” Frontiers of Computer Science in China 4 

(2009): 280-301. 

24. Asuncion, Arthur U., Max Welling, Padhraic Smyth and Yee Whye Teh. “On Smoothing 

and Inference for Topic Models.” UAI (2009).  

25. Cao, Juan, Tian Xia, Jintao Li, Yongdong Zhang and Sheng Tang. “A density-based 

method for adaptive LDA model selection.” Neurocomputing 72 (2009): 1775-1781.  

26. Arun, R., V. Suresh, C. E. Veni Madhavan and M. Narasimha Murty. “On Finding the 

Natural Number of Topics with Latent Dirichlet Allocation: Some 

Observations.” PAKDD (2010).  

27. Roberts, Margaret E., Brandon M Stewart and Dustin Tingley. “Navigating the Local 

Modes of Big Data: The Case of Topic Models.” Computational Social Science (2016).  

28. Koltsov, Sergei, Sergei I. Nikolenko, Olessia Koltsova and Svetlana Bodrunova. “Stable 

topic modeling for web science: granulated LDA.” Proceedings of the 8th ACM 

Conference on Web Science (2016): n. pag.  

29. Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov and David Mimno. “Evaluation 

methods for topic models.” ICML '09 (2009).  

30. Foulds, James R. and Padhraic Smyth. “Annealing Paths for the Evaluation of Topic 

Models.” UAI (2014).  

31. Zhu, Jun, Amr Ahmed and Eric P. Xing. “MedLDA: maximum margin supervised topic 

models.” J. Mach. Learn. Res. 13 (2012): 2237-2278.  

32. Sristy, Nagesh Bhattu and Durvasula V. L. N. Somayajulu. “Entropy Regularization for 

Topic Modelling.” I-CARE 2014 (2014).  

33. Kadanoff, Leo P.. “Statistical Physics: Statics, Dynamics and Renormalization.” (2000).  



48 
 
 

34. Wilson, Kenneth G.. “Renormalization Group and Critical Phenomena. I. Renormalization 

Group and the Kadanoff Scaling Picture.” Physical Review B 4 (1971): 3174-3183.  

35. Olemskoi, A. Synergetics of Complex Systems: Phenomenology and Statistical Theory, 

KRASAND Publ. House, Moscow, 2009, 384 p. (in Russian). 

36. Carpinteri, Alberto, Bernardino Chiaia and Giuseppe Andrea Ferro. “Size effects on 

nominal tensile strength of concrete structures: multifractality of material ligaments and 

dimensional transition from order to disorder.” Materials and Structures 28 (1995): 311-

317. 

37. Essam, John W.. “Potts models, percolation, and duality.” Journal of Mathematical 

Physics 20 (1979): 1769-1773.  

38. Tikhonov, A.N. and Arsenin, V.Y. Solutions of Ill-Posed Problems. Winston, New York, 

(1977). 

39. Belford, Mark, Brian Mac Namee and Derek Greene. “Stability of topic modeling via 

matrix factorization.” Expert Syst. Appl. 91 (2018): 159-169. 

40. Greene, Derek, Derek O'Callaghan and Pádraig Cunningham. “How Many Topics? 

Stability Analysis for Topic Models.” ECML/PKDD (2014).  

41. De Waal, A., Barnard, E.: Evaluating topic models with stability. In: 19th Annual 

Symposium of the Pattern Recognition Association of South Africa (2008). 

42. Koltsov, Sergei, Sergei I. Nikolenko, Olessia Koltsova, Vladimir Filippov and Svetlana 

Bodrunova. “Stable Topic Modeling with Local Density Regularization.” INSCI (2016). 

Lecture Notes in Computer Science series Vol. 9934. Switzerland : Springer, (2016)  

43. Derbanosov, R. Stability of topic modeling via modality regularization [Текст] / R. 

Derbanosov, M. Bakhanova // Computational Linguistics and Intellectual Technologies: 

Papers from the Annual International Conference Dialogue. (2020) 

44. Agrawal, Amritanshu, Wei Fu and Tim Menzies. “What is wrong with topic modeling? 

And how to fix it using search-based software engineering.” Inf. Softw. Technol. 98 (2018): 

74-88.  

45. Koltsov, Sergei. “A thermodynamic approach to selecting a number of clusters based on 

topic modeling.” Technical Physics Letters 43 (2017): 584-586.  

46. Koltcov, Sergei. “Application of Rényi and Tsallis entropies to topic modeling 

optimization.” Physica A: Statistical Mechanics and its Applications (2018): n. pag. 

47. Tsallis, Constantino. “Introduction to Nonextensive Statistical Mechanics: Approaching a 

Complex World.” (2009).  

48. Beck, Christian. “Generalised information and entropy measures in 

physics.” Contemporary Physics 50 (2009): 495 - 510. 

49. Mora, Thierry and Aleksandra M. Walczak. “Rényi entropy, abundance distribution, and 

the equivalence of ensembles.” Physical review. E 93 5 (2016): 052418 .  

50. Beck, Christian and Friedrich Schögl. “Thermodynamics of chaotic systems.” (1993).  

51. Klimontovich, Yu. L. Statistical Theory of Open Systems (Yanus, Moscow, 1995; 

Springer, Dordrecht, 1995). 

52. Sharma, Bhu Dev and Asha Garg. “Nonadditive Measures of Average Charge for 

Heterogeneous Questionnaires.” Inf. Control. 41 (1979): 232-242. 

53. Nielsen, Frank and Richard Nock. “A closed-form expression for the Sharma–Mittal 

entropy of exponential families.” Journal of Physics A: Mathematical and Theoretical 45 

(2011): n. pag.  

54. Jaccard, P.. “The distribution of the flora in the alpine zone 1.” New Phytologist 11: 37-50. 



49 
 
 

55. Parker, Austin J., Kelly B. Yancey and Matthew P. Yancey. “Regular Language Distance 

and Entropy.” MFCS (2017). 

56. Koltsov, Sergei, Vera Ignatenko and Olessia Koltsova. “Estimating Topic Modeling 

Performance with Sharma–Mittal Entropy.” Entropy 21 (2019): n. pag. 

57. Koltsov, Sergei, Vera Ignatenko and Sergei Pashakhin. “How Many Clusters? An Entropic 

Approach to Hierarchical Cluster Analysis.” SAI (2020).  

58. News Dataset from Usenet. Available online: http://qwone.com/~jason/20Newsgroups/ 

(accessed on 31 October 2019). 

59. Basu, Sugato, Ian Davidson and Kiri L. Wagstaff. “Constrained Clustering: Advances in 

Algorithms, Theory, and Applications.” (2008). 

60. Lesche, Bernhard. “Instabilities of Rényi entropies.” Journal of Statistical Physics 27 

(1982): 419-422. 

61. Blei, David M., Thomas L. Griffiths, Michael I. Jordan and Joshua B. Tenenbaum. 

“Hierarchical Topic Models and the Nested Chinese Restaurant Process.” NIPS (2003). 

62. Mimno, David, Wei Li and Andrew McCallum. “Mixtures of hierarchical topics with 

Pachinko allocation.” ICML '07 (2007). 

63. Chirkova, Nadezhda. “Additive Regularization for Hierarchical Multimodal Topic 

Modeling.”. Machine Learning and Data Analysis, 2:187–200. (2016) 

64. Ignatenko, Vera, Sergei Koltsov, Steffen Staab and Zeyd Boukhers. “Fractal approach for 

determining the optimal number of topics in the field of topic modeling.” Journal of 

Physics: Conference Series (2019): n. pag. 

65. Schroeder, Manfred. “Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise.” 

(1991).  

66. Koltcov, Sergei and Vera Ignatenko. “Renormalization Analysis of Topic 

Models.” Entropy 22 (2020): n. pag.  

67. Mimno, David, Hanna M. Wallach, Edmund M. Talley, Miriam Leenders and Andrew 

McCallum. “Optimizing Semantic Coherence in Topic Models.” EMNLP (2011). 

68. Koltsov, Sergei and Vera Ignatenko. 2020. "Renormalization Analysis of Topic 

Models" Entropy 22, no. 5: 556. https://doi.org/10.3390/e22050556.  

69. Rosenblatt, Murray. “Remarks on Some Nonparametric Estimates of a Density 

Function.” Annals of Mathematical Statistics 27 (1956): 832-837. 

70. Epanechnikov, V. A. Nonparametric estimation of multidimensional probability density. 

Theory Probab. Appl. 14, 153–158, 1973. 

71. Koltsov, Sergei, Sergei I. Nikolenko and E. Y. Koltsova. “Gibbs sampler optimization for 

analysis of a granulated medium.” Technical Physics Letters 42 (2016): 837-839. 

72. Newman, David, Edwin V. Bonilla and Wray L. Buntine. “Improving Topic Coherence 

with Regularized Topic Models.” NIPS (2011).  

73. Andrzejewski, David and Xiaojin Zhu. “Latent Dirichlet Allocation with Topic-in-Set 

Knowledge.” HLT-NAACL 2009 (2009).  

74. Tsallis, Constantino and Daniel A. Stariolo. “Generalized simulated annealing.” Physica 

A-statistical Mechanics and Its Applications 233 (1996): 395-406. 


