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1 Introduction

In order to obtain reliable results in many machine learning and data analysis problems in-
cluding image sequence processing tasks such as video data and three-dimensional voxel data,
training datasets of a significant volume are required. However, a sufficient amount of data is
not always feasible to get [27; 1]. In such situations, the training datasets can be enriched with
synthetic data, artificially generated by a generative model.

The generation of image sequences has a number of other applications like, for example,
video content synthesis, which is important in cartoon creation [2] and video production. One
can also mention 3D voxel data, which is also an image sequence. 3D voxel texture synthesis
application is helpful in digital rocks physics [23] for new oil fields development.

In many applications, such as Porous Media generation [23], MRI data augmentation [27],
there is an additional requirement for properties of generated data to be similar to those of
real data. For example, in porous media modeling, it is important to have similar permeability
and porosity properties of generated and real objects. For video generation, it is important to
preserve pixel distribution. Even though there are several methods for image-based sequence
generation, they are not capable of saving such properties or they are not able to save prop-
erties with sufficient quality [23; 28; 27]. Moreover, the existing solutions can generate image
sequences of low resolution only [31; 23]. Some generative methods for video frame sequences
[5; 31; 22] require up to 500 Tensor Processing Units for training, which is computationally in-
feasible for most users.

The present dissertation is focused on the problem of properties preserving image sequence
generation. As stated above, this topic is of great value to the scientific community.

TheGoal of this work is to develop generative models for a sequence of images capable of i)
property preservation, ii) high resolution objects generation, and iii) computationally feasible.
This goal leads to the following objectives:

1. to develop amethod for generation of three-dimensional voxel data from two-dimensional
slices with preservation of physical characteristics of objects;

2. to develop a method for generation of high-resolution three-dimensional voxel data with
preservation of the physical characteristics of objects;

3. to develop a method for generation of sequences of video frames with preservation of the
video pixels distribution;

4. to develop a method for removal of the background and artifacts of images, which would
allow one to preserve semantically important information.
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2 Key results and conclusions

The novelty of this work can be summarized as follows:

1. We proposed a new method for generation of three-dimensional voxel data from a two-
dimensional slice. This method is capable of preserving two-dimensional input slices and
properties such as physical characteristics of objects.

2. We proposed a new method for generation of high-resolution three-dimensional voxel
data, trained only on low-resolution data. Our method outperforms existing methods in
terms of quality and preserves physical characteristics of objects.

3. We proposed a new method for generation of a video sequence of images that uses much
fewer computational resources than modern methods and has a similar quality. Our
method can be trained on 8 Graphical Processing Units (GPUs), whereas the existing
methods for video generation require up to 512 Tensor Processing Units (TPUs). Our
method also saves the distribution of video pixels.

4. We proposed a newmethodwhich removes the background and artifacts from images but
preserves the semantically important information of the images. Ourmethod outperforms
the existing cleaning methods and allows inpainting holes in semantically important in-
formation.

Theoretical and practical significance.
The theoretical significance of the newly developed methods is as follows:

• the new method for generation of three-dimensional voxel data from two-dimensional
slices with preservation of physical characteristics of objects;

• the new method for generation of high-resolution three-dimensional voxel data with
preservation of physical characteristics of objects;

• the new method for generation of sequences of video frames with preservation of video
pixels distribution;

• the new method for removing the background and artifacts of images, with preservation
of semantically important information.

These methods can be used by scientists and developers when creating new methods in
generative modeling and solving new applied problems of image processing and analysis.

The practical significance was verified by application of our methods to porous media gen-
eration for speeding-up oil field development. Other applications, which are also demonstrated
in this work, are video generation and raster-scan cleaning. The potential applications also in-
clude generation of medical, geological, or seismic data for data augmentation and analysis.

Key aspects/ideas to be defended.
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1. The new method for generation of three-dimensional voxel data from a two-dimensional
slice;

2. The new method for generation of high-resolution three-dimensional voxel data;
3. The new method for video generation with reduced computational requirements;
4. The new method for removing the background and artifacts from images.

Personal contribution. The author of the present dissertation obtained all the stated results. In
all cases mentioned, both text and experimental results presented in the papers are the results
of collaboration between authors.

Result 1 was developed in “Generative adversarial networks for reconstruction of three-
dimensional porous media from two-dimensional slices”, the author designed and imple-
mented the training algorithm and conducted all the experiments.

Result 2 was developed in “User-Controllable Multi-Texture Synthesis with Generative Ad-
versarial Networks”, the author developed the method for three-dimensional data and con-
ducted all the 3D experiments.

Result 3 was developed in “Latent Video Transformer”, the author implemented the Trans-
former part of the algorithm and contributed to the experiments.

Result 4 was developed in “Deep Vectorization of Technical Drawings”, the author devel-
oped the method for cleaning raster-scan images and contributed to the cleaning experiments.

3 Publications and approbation of research

First-tier publications

1. Denis Volkhonskiy, Oleg Sudakov, Ekaterina Muravleva, Denis Orlov, Boris Belozerov, Evgeny
Burnaev, Dmitry Koroteev Generative adversarial networks for reconstruction of three-
dimensional porous media from two-dimensional slices. Physical Review E, Q2 Journal.
Indexed by SCOPUS, Web of Science.

2. Egiazarian Vage∗ , Oleg Voynov∗, Alexey Artemov, Denis Volkhonskiy, Aleksandr Safin, Maria
Taktasheva, Denis Zorin, Evgeny Burnaev Deep Vectorization of Technical Drawings. ECCV
2020, CORE A. Indexed by SCOPUS.

Second-tier publications

1. Rakhimov Ruslan∗, Denis Volkhonskiy∗, Alexey Artemov, Denis Zorin, Evgeny Burnaev Latent
Video Transformer. VISAPP 2021, CORE B. Indexed by SCOPUS.

∗— Equal Contribution
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2. Aibek Alanov∗ , Max Kochurov∗, Denis Volkhonskiy, Daniil Yashkov, Evgeny Burnaev, Dmitry
Vetrov User-Controllable Multi-Texture Synthesis with Generative Adversarial Networks.
VISAPP 2020, CORE B. Indexed by SCOPUS.

Reports at conferences and seminars

1. "Latent Video Transformer" talk at the VISAPP conference, Online, 2021;
2. "Steganographic generative adversarial networks" talk at the ICMV conference, Amster-

dam, 2019;
3. "Reconstruction of 3D PorousMedia from 2D Slices" talk at theMultiscale methods and high

performance scientific computing conference, Moscow, 2018;
4. "Inductive Venn-Abers Predictive Distribution" talk at the COPA 2018 conference, Maas-

tricht, 2018;
5. "Inductive ConformalMartingales for Change-Point Detection" talk at theCOPA 2017 con-

ference, Stockholm, 2017.
6. Poster presentation, Skoltech & MIT Conference: Shaping the Future: Big Data,

Biomedicine and Frontier Technologies, Russia, 2017

Patents

1. Denis Volkhonskiy, Oleg Sudakov, Dmitry Koroteev, EkaterinaMuravleva, Evgeny Burnaev, Leyla
Ismailova, Denis Orlov System for recovery of rock sample three-dimensional structure.
RU2718409C1

The author has also contributed to the following publications

1. Denis Volkhonskiy, Ivan Nazarov, and Evgeny Burnaev Steganographic generative adversarial
networks. ICMV 2019, CORE C. Indexed by SCOPUS.

2. Denis Orlov, Mohammad Ebadi, Ekaterina Muravleva, Denis Volkhonskiy, Andrei Erofeev,
Evgeny Savenkov, Vladislav Balashov, Boris Belozerov, Vladislav Krutko, Ivan Yakimchuk, Niko-
lay Evseev, Dmitry Koroteev Different methods of permeability calculation in digital twins
of tight sandstones. Journal of Natural Gas Science and Engineering, Q1. Indexed by
SCOPUS.

3. Denis Volkhonskiy, Evgeny Burnaev, Ilia Nouretdinov, Alexander Gammerman, and Vladimir
Vovk Inductive conformalmartingales for change-point detection. In Conformal and Prob-
abilistic Prediction and Applications. PMLR 2017. Indexed by SCOPUS.

4. Ilia Nouretdinov, Denis Volkhonskiy, Pitt Lim, Paolo Toccaceli, and Alexander Gammerman In-
ductive venn-abers predictive distribution. PMLR 2018. Indexed by SCOPUS.

∗— Equal Contribution
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4 Contents

The dissertation topic is disclosed in the following chapters, each chapter summarizes the cor-
responding paper.

In 4.1, we proposed a newmethod for generation of three-dimensional voxel data from two-
dimensional slices, with preservation of physical properties. In 4.2, we proposed a newmethod
for the generation of three-dimensional voxel data of high resolution with preservation of phys-
ical properties. In 4.3, we proposed a new method for video generation, which utilizes much
less computational resources than modern methods while having a similar quality. In 4.4, we
proposed a newmethod for image cleaning, with preservation of semantically important infor-
mation.

4.1 Generative adversarial networks for reconstruction of three-dimensional porous
media from two-dimensional slices

Many branches of earth sciences require the solution of the rock study problem on the micro-
level. However, this requires a significant number of representative samples which are not al-
ways feasible. Obtaining new rock samples is complicated: developing a rock deposit with a
subsequent digitization process is required. This makes relevant the problem of generation of
samples with similar properties. Synthetic samples could be used together with real samples
for digital rock study.

One of themost promising techniques for data generation is based on generative adversarial
networks (GANs) [13]. GANs learn complex probability distributions directly from samples.
The first paper on the use ofGANs in the context of 3Dporousmedia generation [23] considered
the task of synthetic images generation. But no additional information (such as 2D slices) was
used in the generation step.

In the present work, we propose a newGANs-based deep neural network architecture capa-
ble of efficiently generating 3D structures a slice of the original image as an input. We achieve
this by introducing an auto-encoder module into the deep neural network architecture.

Model Description

The goal of our method is to generate 3D porous media x̂ of size h × w × d from a given 2D
input slice s of size h× w. We require that the central slice in the x̂ is close to s with respect to
the Euclidean distance.

Our model consists of the following neural networks:

• The encoder Eτ (s) with parameters τ . It transforms the input slice 2D s to a vector repre-
sentation h;

• The generator Gθ(h, z) with parameters θ. It transforms the input noise vector z and the
encoded slice h to a 3D image x;
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• The discriminator Dφ(x)with parameters φ. It predicts the class of input 3D image x. This
is a standard GANs discriminator.

To obtain the central slice from the 3D image, we introduce a mask M. This is a function
that takes a 3D image as an input and returns its central slice. All three neural networks are
trained using the combination of Euclidean slice loss (1) and adversarial loss (2). Our model is
presented in Fig. 1.

L(s) =‖ s−M�Gθ(Eτ (s), z) ‖22→ min
τ,θ

(1)

L(Dφ, Gθ) = Ex∼pdata(x)[logDφ(x)]+Ez∼pnoise(z)[log(1−Dφ(Gθ(Eτ (s), z)))] → min
θ

max
φ

. (2)

Noise 

DiscriminatorEncoder

3D Image

Slice Generator

 Fake

 Real

Figure 1: Architecture of the proposed method. It takes as an input a 2D porous media slice
and a vector of noise. As an output, generator produces 3D porous media. The discriminator is
responsible for the adversarial loss.

Empirical Evaluation

In order to evaluate our method, we compare our generated 3D samples (Fig. 2) with real
3D samples from the dataset. For this purpose, in our paper, we show that the distribution of
porosity, permeability, Minkowski functionals [20], and two-point correlation functions [3] of
real samples are close to the distribution of these metrics on generated samples.

(a) (b) (c)

Figure 2: Generated 3D samples of three different types: Berea (a), Ketton (b), South-Russian
sandstone (c)
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Table 1: Comparison of the Kullback–Leibler divergence between the distribution of porosity
and permeability of real, baseline [23] and our samples.

Sample name Characteristic KL(preal, pbaseline) ↓ KL(preal, pours) ↓
Berea porosity 0.4974 0.2667
Ketton porosity 0.5251 0.1425
Berea permeability 1.0035 0.2487
Ketton permeability 0.2301 0.0646

We also compare our method with the baseline [23]. We use the Kullback–Leibler (KL)
divergence between real and baseline distributions KL(preal, pbaseline), and between real and
our distributionsKL(preal, pours). The results of comparison of the KL divergence are presented
in Table 1. The distribution of both porosity and permeability of our samples is closer to the real
porosity distribution than that provided by the baseline.

Conclusion

We proposed a new method for generation of three-dimensional porous media from two-
dimensional central slices. Our method is shown to outperform the baseline. Moreover, it gen-
erates cubes preserving properties of real cubes. Potentially, amodel of such kind can be applied
to seismic and geological data [24; 6]. Another possible application is texture generation.

4.2 User-Controllable Multi-Texture Synthesis with Generative Adversarial Net-
works

In order to obtain reliable results in analyzing properties of generated image sequences, one
should be able to generate themwith high resolution. However, the existingmodels, when used
for high-resolution objects, face two issues [23; 30]. First, they cannot fit into the computational
memory. Second, there is not enough high-resolution data available for training. Thus the de-
velopment of generative models for high-resolution image sequences is an important problem.

In the present work, we develop a new model for image sequence generation. Our model
can generate high-resolution images while trained on low-resolution images only. In order to
achieve such an effect, we propose a new conditional generation setup. This approach allows us
to use datasets with image sequences of different classes, which increases the dataset size and
leads to a better generation quality.

Model Description

We look for a multi-texture synthesis pipeline that can generate image sequence objects in a
conditionalmanner, ensure full dataset coverage, and is scalablewith respect to dataset size. We

9



use an encoder networkEϕ(x), which maps objects to a latent space and gives low-dimensional
representations. A generator Gθ(z) is used to generate samples from the latent space.

We use three types of adversarial losses:

• the generator matching loss (3) Lx for matching the distribution of both samples Gθ(z) and
reproductions Gθ(zϕ) to the distribution of real objects p∗(x):

Lx(θ) = − 1

st

s,t∑
i,j

[
Ep(z) logDij

ψ (Gθ(z)) + Eqϕ(z) logDij
ψ (Gθ(zϕ))

]
→ min

θ
(3)

• the pair matching loss (4) Lxx for matching the distribution of pairs (x, x′) to that of pairs
(x,Gθ(zϕ(x))), where x and x′ are samples of the same object class. It will ensure that
Gθ(zϕ(x)) has the same object class as x. For a detailed structure of pair matching Dis-
criminator, see Fig. 4:

Lxx(θ, ϕ) = − 1

pq

p,q∑
i,j

Epθ,ϕ(x,y) logDij
τ (x, y) → min

θ,ϕ
(4)

• the encoder matching loss (5) Lz for matching the aggregated distribution qϕ(z) to the prior
distribution p(z):

Lz(ϕ) = −Eqϕ(z) logDζ(z) → min
ϕ

(5)
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Figure 3: Training pipeline of the proposed method.

For both the generator Gθ and the encoder Eϕ we optimize the following objectives:

• the generator Gθ loss

L(θ) = α1Lx(θ) + α2Lxx(θ, ϕ) → min
θ

(6)
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Figure 4: The architecture of the discriminator on pairs Dτ (x, y).

• the encoder Eϕ loss

L(ϕ) = β1Lz(ϕ) + β2Lxx(θ, ϕ) → min
ϕ

(7)

The total pipeline of our model is presented in Fig. 3.

Empirical Evaluation

In this section, we demonstrate the applicability of ourmodel to digital rock physics. We trained
our model on 3D Porous Media structures1 (i.e., see Fig. 5a) of five different types: Ketton,
Berea, Doddington, Estaillades and Bentheimer. Each type of rock has an initial size of 10003
binary voxels. As a baseline, we considered Porous Media GANs [23], which are deep convo-
lutional GANs with 3D convolutional layers.

(a) (b) (c) (d)

Figure 5: Berea sample. Real (a, size 1503), sampled with our model (b, size 1503), samples
with the baseline model (c, size 1503), sampled with our model (d, size 4283)

For comparison of our model with real samples and baseline samples, we use permeability
statistics and two Minkowski functionals [20]. The permeability is a measure of the ability of

1All samples were taken from Imperial College database
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a porous material to allow fluids to pass through it. Minkowski functionals describe the mor-
phology and topology of 3D binary structures. In our experiments, we used two functionals:
the Surface area and the Euler characteristic. If the considered measures on synthetic samples
are close to those on real ones, it will guarantee that the synthetic samples are valid for Digital
Rock Physics applications.

We used the following experimental setup. We trained our model on random crops of size
1603 on all types of porous structures. We also trained five baseline models on each type sepa-
rately. Then we generated 500 synthetic samples of size 1603 of each type using our model and
the baseline model. We also cropped 500 samples of size 1603 from the real data. As a result,
for each type of structure, we obtained three sets of objects: real, synthetic and baseline.

The visual result of the synthesis is presented in Fig. 5 for Berea sandstone. In the figure,
there are three samples: real ones (i.e., cropped from the original big sample), ours, and a
sample of the baseline model [23]. Since our model is fully convolutional, we can increase
the generated sample size by expanding the spatial dimensions of the latent embedding z on
inference without retraining the neural network. This is feasible because we know the latent
distribution and can sample from it using the random number generator. We demonstrate the
synthesized 3D porous media of size 4283 in Figure 5d. Then,

1. For each real, synthetic and baseline objects we calculated three statistics: permeability,
Surface Area and Euler characteristics.

2. To measure the distance between distributions of statistics for real, our and baseline sam-
pleswe approximated these distributions bydiscrete ones obtained byusing the histogram
method with 50 bins.

3. For each statistic, we calculated the KLdivergence between the distributions of the statistic
of a) real and our generated samples; b) real and baseline generated samples.

A comparison of the KL divergences for the permeability is presented in Table 2. As we can
see, our model performs better for most types of porous structures.

Table 2: KL divergence between real, our, and the baseline distributions of permeability for size
1603. Standard deviation was computed using the bootstrap method with 1000 resamples.

KL(preal, pours) KL(preal, pbaseline)

Ketton 5.06 ± 0.35 4.68 ± 0.56
Berea 0.49 ± 0.07 0.50 ± 0.12

Doddington 0.42 ± 0.10 3.41 ± 1.68
Estaillades 0.80 ± 0.24 3.41 ± 0.46
Bentheimer 0.47 ± 0.08 1.38 ± 0.49
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Conclusion

In this chapter, we proposed a novel model for 3D voxel data synthesis. We showed its appli-
cability to digital rock physics. Our model is capable of generating samples of high-resolution
while trained on low-resolution samples only. Moreover, it outperforms the baseline in most
cases which verifies its usefulness for real-world problems.

4.3 Latent Video Transformer

Video prediction and generation is an important problem with a lot of down-stream applica-
tions: self-driving, anomaly detection, timelapse generation [25], animating landscape [11] etc.
The task is to generate the most probable future frames given several initial ones.

Recent advances in generative learning make it possible to generate realistic objects with
high quality: images, text, and speech. However, video generation is still a very challenging
task. Even for short videos (16 frames) of low resolution, neural networks require up to 512

Tensor Processing Units (TPUs) [22] for parallel training. Despite this, the quality of the gen-
erated video remains low.

In the present work, we introduce a Latent Video Transformer. We combine the idea of
representation learning and recurrent video generation. Instead of working in the pixel space,
we conduct the generation process in the latent space. Our model tends to significantly relax
the computational requirements without significant deterioration in quality.

The key novelty in ourmodel is the usage of a discrete latent space [29]. It allows us to repre-
sent each frame as a set of indices. Thanks to discrete representation, we can use autoregressive
generative models and other approaches from natural language processing.

Method

Consider a video X to be a sequence of T frames {xt}Tt=1. Each frame xt ∈ RH×W×3 has
height H , width W and 3 RGB channels. Given the first T0 frames, the goal is to generate the
remaining T − T0 frames.

We use the frame autoencoder to learn a compact latent representation so that we can trans-
fer the task of video modeling from the pixel space to the discrete latent space. The recurrent
model is then used for generation of new frames. We train the frame autoencoder to trans-
fer individual images (frames) to the latent space. The particular choice of the autoencoder is
VQ-VAE [29] — a variational autoencoder with discrete latent space.

The autoencoder (see Fig. 6) learns to encode an input image x ∈ RH×W×3 using a code-
book e ∈ RK×D, whereK denotes the codebook size (i.e., the latent space is K-way categorical)
and D represents the size of an embedding in the codebook.

Our autoencoder consists of an encoder, which encodes the image into more compact repre-
sentation E(x) = ze(x) ∈ Rh×w×D; a bottleneck, that discretizes each pixel by mapping it to its
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nearest embedding ei from the codebook and produces z(x) ∈ [K]h×w×1; a decoder D receives
discrete latent codes z(x), maps the indexes to corresponding embeddings, and decodes the
result of the mapping zq(x) ∈ Rh×w×D back to the input pixel space. The autoencoder is trained
with the following objective:

L = ‖x−D(zq(x))‖2 + ‖ze(x)− sg[e]‖2, (8)
where sg[·] is the stop gradient operator, which returns its argument during the forward

pass and zero gradients during the backward pass. The first term is a reconstruction loss, and
the second term is a regularization term tomake the encodings less volatile. We use exponential
moving average updates over the codebook variables.

Copy gradients

... ... ... ...

NNE D

Figure 6: Frame autoencoder architecture. An input image is passed through the encoder and
split along the channel dimension into nc = 4 parts. Then we map pixels in each part to the
corresponding nearest embeddings in the codebook. These nearest embeddings are then passed
as an input to the decoder.

The frame encoder transforms the first T0 frames to a discrete representation Z0 ∈
[K]T0×h×w×nc . The autoregressive model is used to generate new T − T0 frames conditioned
on Z0. As such model, we use the Video Transformer [31], an autoregressive video generative
model, but apply it in the latent space in contrast to the pixel space in the original paper. Next,
we describe the architecture of a video transformer. We refer to a latent representation of a video
as a latent video and individual elements of it as latent frames and pixels.

The model takes as input a tensor Z ∈ [K]T×h×w×nc and primes the generation process on
first T0 given latent frames, i.e., Z:T0,:,:,: = Z0. The generation process proceeds from a slice to a
slice, from a pixel to a pixel inside one slice, and from a channel to a channel for one pixel:

p(Z) =

Thw−1∏
i=0

nc−1∏
k=0

p
(
Zkπ(i)|Zπ(<i), Z

<k
π(i)

)
(9)

The model consists of an encoder and a decoder. To generate a new pixel value inside a slice
Z(a,b,c), the encoder outputs the representation of already generated slices Z<(a,b,c). This repre-
sentation goes to the decoder, which mixes it with a representation of already generated pixels
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Figure 7: Video Transformer adapted to latent codes. Numbers represent generation order.
Pixels are colored if they are already generated. White-colored pixels are zero-padded. Pixels
with the same color belong to the same slice. The example represents the generation of the last
pixel of slice Z(1,0,1) for a latent video of size (t, h, w) = (4, 4, 4) and (st, sh, sw) = (2, 2, 2).

inside the current slice Z(a,b,c). This autoregressive order is preserved by padding input latent
video inside the encoder, and masking used in convolutions and attention inside the decoder.
After generating a new pixel value, we replace the respective padding with the generated out-
put and repeat the generation process recursively. The generation process for a spatiotemporal
(st > 0, sh > 0, sw > 0) subscaling is illustrated in Fig. 7.

Finally, when the generation process is done, the latent frame decoder takes as an input
Z ∈ [K]T×h×w×nc (now all values are valid), maps it to the already learned embeddings Zq ∈
RT×h×w×D and decodes it back frame by frame to an original pixel space X ∈ RT×H×W×3.

Empirical Results

We model the videos of length T = 16 and spatial size 64 × 64 similarly to the setup of prior
works in this field [5; 31]. We compare the video generation quality on the BAIR Robot Pushing
[9] dataset and the Kinetics-600 [4] dataset.

As main measures of quality, we use the Fréchet Video Distance (FVD) [14] and the bits
per dimension (bits/dim), which is the negative log2-probability averaged across all generated
(latent) pixels and channels.

We report the FVD and bits/dim for the BAIR Robot Pushing dataset in Table 3 and for
the Kinetics-600 dataset in Table 4. We also provide samples from our model for qualitative
assessment (see Fig. 8).

We achieve comparable performance in comparison with other methods for the BAIR robot
pushing dataset. Our results are inferior to others on Kinetics-600. We conclude that it is caused
by error accumulation inside the Transformer model. We link it to the high complexity and
diversity of the Kinetics-600 dataset.
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Table 3: Comparison of different methods for video prediction on BAIR Robot Pushing dataset.

Method bits/dim(↓) FVD(↓)
Baseline - 320.90

VideoFlow [18] 1.87 -
SVP-FP [7] - 315.5

CDNA [12] - 296.5

LVT (ours, nc = 1) 1.25 275.71± 5.41

SV2P [8] - 262.5

LVT (ours, nc = 4) 1.53 125.8± 2.9

SAVP [19] - 116.4

DVD-GAN-FP [5] - 109.8

TriVD-GAN-FP [22] - 103.3

Axial Transformer [15] 1.29 -
Video Transformer [31] 1.35 94 ± 2

Table 4: Comparison of different methods for video prediction on Kinetics-600 dataset.

Method Bits/dim(↓) FVD(↓)
Baseline - 271.00

LVT (ours) 2.14 224.73

Video Transformer [31] 1.19 170± 5

DVD-GAN-FP [5] - 69.15± 1.16

TriVD-GAN-FP [22] - 25.74± 0.66

Figure 8: Samples from the Kinetics-600 dataset. Each row represents a single video with first
five frames being real and others generated.

Conclusion

In this chapter, we tackled the video generation problem. Given several first frames, the goal
was to predict the continuation of a video. Modern methods for video generation require up
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to 512 Tensor Processing Units for parallel training. We were focused on the reduction of the
computational requirements for model training. We showed that one could achieve comparable
results on video prediction by training a model using the usual research setup— 8 V100 GPUs.
We demonstrated decent results on the BAIR Robot Pushing dataset. In the meantime, in some
cases, we observe visual artifacts on the Kinetics-600 dataset.

4.4 Deep Vectorization of Technical Drawings

Vector images have a number of advantages over raster images. They include lossless upscaling
and small representation size. Furthermore, vector images allow one to independently modify
its primitives. However, many technical images are available in raster format only. Thus, it is
important to be able to vectorize them.

In [10] thewhole newvectorization pipelinewas proposed. It consists of the following steps.
First, the original raster image is cleaned from noise and artifacts (cleaning part). Then the se-
mantically important parts are approximated with primitives. Finally, the number of primitives
is minimized where possible.

In the present dissertation, we are mainly focused on the cleaning part. The goal of the
present work is to propose a method, that would transform a raster image with artifacts and
missing parts of line segments into a clean raster image with infilled holes. To be more precise,
the goal of the cleaning part is to solve the following problems:

• clean the input raster image from artifacts;
• make the background to be white if its color is different (i.e., gray or brown);
• detect and inpaint holes in lines if they exist.

Method

The goal of the cleaning step is to convert the raw input data into a raster image with clear line
structure by eliminating noise, infilling missing parts of lines, and setting all background/non-
ink areas to white. This task can be viewed as semantic image segmentation in that the pixels
are assigned the background or foreground class.

Inspired by [21; 28], our cleaning network has the U-NET [26] structure and consists of two
parts: downsampling and upsampling. The Downsampling part is a sequence of convolutional
layers with non-linearities between them. The Upsampling part utilize transposed convolu-
tions, which increases the size of the input image. After each convolutional and transposed
convolutional layer, we use Batch Normalization [16] and Rectified Linear Units layers. The
distinguishing feature of our architecture is skip-connections, which connect layers from the
downsampling part to layers of the upsampling part. The full model structure is presented in
Fig. 9.
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Figure 9: Cleaning pipeline. Input raster-scan image is processed via our model. The output of
the model is a binary image. Pixel-wise binary cross-entropy is used as a loss function.

IoU,% PSNR
MS [28] 49 15.7
Our 92 25.5

Table 5: Quantitative evaluation of the preprocessing step.

In order to train such a neural network, we minimize the binary cross-entropy loss using
Adam [17] algorithm. For a pixel xi,j at a location i, j and a ground truth value at the same
location yi,j the loss for this particular pixel is computed as li,j = yi,j ·logxij+(1−yi,j)·log(1−xij ).
The full loss for the image with height H and widthW is the average of all pixel losses:

L =
1

H ·W

H∑
i=1

W∑
j=1

li,j .

Empirical Evaluation

We evaluate our cleaning network by comparing it with public pre-trained implementation of
Mastering Sketching (MS, [28]). We show the quantitative results of this evaluation in Table 5
and the qualitative results in Figure 10.

Our preprocessing network keeps straight and repeated lines commonly found in technical
drawings, while MS produces wavy strokes and tends to join repeated straight lines, thereby
harming the structure of the drawing.

Conclusion

In this chapter, we propose a method for cleaning raster images from artifacts and removing
holes in primitives. This method is a part of the whole vectorization pipeline in [10]. It al-
lows one to increase further the vectorization quality and reduce the number of final vectorized
primitives.
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Figure 10: Example of preprocessing results: (a) raw input image, (b) output of MS [28], (c)
output of our preprocessing network. Note the tendency of MS to combine close parallel lines.

5 Conclusion

In the final section, we summarize the main contributions of the work.

1. We developed a new method for generation of three-dimensional voxel data from a two-
dimensional slice. We applied this method to porous media generation. With numerous
numerical experiments with porous media, we demonstrated the robustness of the pro-
posed model. We showed that our approach preserves physical characteristics such as
porosity, permeability, and the two-point correlation function better than existing meth-
ods. Our model generates 3D voxel data of good visual quality.

2. We developed a method for the generation of three-dimensional voxel data, which is ca-
pable of generating samples of a high resolution being trained on low-resolution images
only. With numerical experiments on porous media data, we demonstrated its ability to
preserve physical characteristics better than the existing methods.

3. We developed a new video generation method, that reduces computational requirements
from state-of-the-art 512 Tensor Processing Units to 8 Graphical Processing Units with
preservation of similar quality.

4. We developed a generative model for image cleaning. It is capable of removing back-
ground and artifacts from an image with preservation of semantically important infor-
mation. Our method outperforms the existing methods and inpaints missing holes in the
image. This method was developed as a part of the raster-scan vectorization pipeline.
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