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1. Introduction

1.1 Research problem

Most  decisions,  such  as  saying  what  you think to  a  colleague or  keeping it  to

yourself,  or investing your savings in biotech stocks or real  state,  are fraught with

uncertainty  that  is  compounded  by  social  factors.  Understanding  to  what  extent

learning in social contexts is a specialized function is important not only because we

could expedite adaptation to different social contexts, but also because this would shed

light  on  the  source  of  cognitive  biases,  many  of  which  are  grounded  on  social

preferences. 

The  relevance  of  social  cognition  in  evolution  makes  plausible  that  specialized

mechanisms  that  compute  learning  signals  under  uncertainty  of  exclusively  social

origin  operate  in  the  brain.  In  this  investigation,  I  inquire  into  whether  there  are

learning mechanisms specialized in resolving uncertainty of exclusively social origin,

while examining two illustrative examples that are fundamental to social neuroscience

and behavioral economics: bargaining in auctions and consumption of common-pool

resources.

1.2 Dissertation objectives

1 To study the neurocognitive mechanisms of learning  during competitive (bidding)

decisions;

2 To elucidate the functional and computational mechanisms underlying competitive

decisions leading to exploitation behavior when facing scarce resources in social and

non-social environments;

3 To investigate to what extent are learning what extent learning in social contexts is a

specialized function with an anatomical and/or computational specialization, and if

so, to determine their anatomic localization.
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1.3 Theoretical and methodological basis

Theoretical basis

Adaptive behavior rests on appropriately assigning value to states and actions

(Gold & Shadlen,  2007),  which requires  an elaborate  internal  representation  of  the

world that includes conspecifics. Mapping internal states and their values to actions is

in general an intractable task compounded by the need to predict the behavior of others

(Frith & Frith, 2012; Yoshida et al., 2008).  It is plausible that humans evolved specific

mechanisms to approach the problem of efficiently deriving reliable values from social

interactions (Fletcher & Carruthers, 2012). In this dissertation, I attempts to elucidate

such value learning mechanisms in social contexts. 

The studies included in this  dissertation throw light  on how generic learning

processes are deployed and set up for specific complex situations that are not amenable

to working out optimal choice or action policies. 

In Study I, I show, that the learning heuristic based on a binary learning signal

distinct from the conventional reward prediction error (RPE) signal furnishes a solution

to the problem of repeated bidding in double auctions, which are competitive, dynamic,

complex decisions (Martinez-Saito et al., 2019). Study II demonstrates, that the social

context (a shared resource vs a private resource) modulates the neural signatures of the

learning signal in the ventral striatum. This modulation by social factors expedites the

development  of  efficient  policies  and  a  better  understanding  of  global  commons

governance. In Study III, I verify whether learning and reward signals in social contexts

generated by specialized, domain-general, or overlapping circuits. 

Methodology
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I used functional magnetic resonance imaging (fMRI), computational modeling

of behavior and neuromagnetic signals,  and meta-analysis of fMRI studies found in

academic databases. 

Image analysis for both Study I and II was performed with SPM12 (Friston et al.,

1994). Images were were realigned to the first image. Images were then corrected for

differences in slice acquisition time, spatially normalized to the Montreal Neurological

Institute  (MNI)  T1  template,  resampled  to  3  ×  3  ×  3  mm 3  voxels,  and  spatially

smoothed with a Gaussian kernel  of  8 mm full-width at  half-maximum. Data were

high-pass  filtered,  with  cutoff  at  1/128  Hz  (Martinez-Saito  et  al.,  2022).  Separate

regressors were constructed for each predictor of interest, and orthogonalized predictors

where appropriate.

In  Study  I,  six  learning  algorithms  were  implemented,  fitted,  compared  and

simulated. I compared different computational learning models of bidding: directional

learning models (DL), where the model bid is “nudged” depending on whether it was

accepted  or  rejected,  along with standard reinforcement  learning models  (RL).  The

important parameters were the learning rate (a measure of how much weight was given

to  recent  feedback  with  respect  to  older  feedback)  and  the  randomness  of  choice,

embodied in the inverse temperature of the softmax function (a measure of degree of

action selection randomness) for RL algorithms, and in the dispersion parameters for

DL algorithms. In an fMRI analysis devoted to analysing the relationship between RPE

and DL prediction error signals, two general linear model (GLM) regression matrices

with three regressors each were constructed with the stimulus onset marker and the

parametrically  modulated  regressors  DL  prediction  error  and  RL  prediction  error

orthogonalized  one  with  respect  to  the  other  and  vice  versa,  to  disentangle  their

contributions to neural activity (Martinez-Saito et al., 2019).
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In Study II, to explain the effect of the social and non-social contexts, I used

variations of the reinforcement learning model (Sutton & Barto, 1998). I also tested

these  two  learning  models  against  another  two  competing  models:  a  vanilla

reinforcement learning model (Sutton & Barto, 1998) and a modified inequity aversion

model (Fehr & Schmidt, 1999). I evaluated the learning algorithms by comparing them

to the  null  (baseline)  model,  which assumed a  uniformly random choice  using  the

Bayesian Information Criterion (Schwarz, 1978) which is an approximation to model

log-evidence that accounts for model complexity (Martinez-Saito et al., 2022).

Meta-analysis of fMRI studies allows to operationalize the question of whether

the  social  aspect  of  value  learning  is  functionally  specialized  enough  to  warrant

functional segregation (Zeki & Shipp, 1988) within the neural substrates involved in

general learning. In Study III,  I accomplished a meta-analysis of fMRI studies with

GingerALE 3.0.2 (Eickhoff et al., 2012), which implements the activation likelihood

estimation method (ALE), a type of coordinate-based meta-analysis which uses solely

coordinates of cluster peaks in statistical parametric maps. This is the most widely used

approach for fMRI data meta-analysis (Samartsidis et al., 2017). ALE has shortfalls: it

discards most of the full statistical image information. This can be partly alleviated by

accounting for both activations and deactivations so that contradictory findings cancel

each other (Radua & Mataix-Cols, 2009), and through the use of the peak t-statistics to

estimate effect sizes, thus enabling random and fixed effects modeling, which increases

reliability  and  accuracy  (Bossier  et  al.,  2018).  These  two  features,  together  with

subject-based permutation test to control FWER, feature in the algorithm Seed-based d-

Mapping with Permutation of Subject Images (SDM-PSI; Albajes-Eizagirre, Solanes,

Vieta, & Radua, 2019). Thus, in Study III,  I also employed SDM-PSI to probe the

robustness of ALE results.
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1.4 Scientific novelty

In  Study  I,  we  studied  the  decision  making  mechanism  in  double  auctions.

Perceived market competition influences human bidding (van den Bos et al., 2008) and

even the value of commodities traded by non‐human animals. biological auctions are

used  to  model  competition  between  species  and  individuals  (Reiter  et  al.,  2015).

Despite  its  key  importance  in  social  behavior  and  financial  modeling,  the  neural

mechanisms  of  decision‐making  under  market  competition  are  still  unclear.  In

particular, how do we learn bidding strategies across different market scenarios? Here,

we investigate the neural mechanisms underlying bidding under different conditions of

competition (Martinez-Saito et al., 2019). Previous neuroimaging studies investigated

bargaining  games,  but  focused  on  strategic  deception  and  uncertainty  about

trustworthiness (Bhatt et al., 2010) or examined the influence of loss contemplation

under social contexts in overbidding (Delgado et al., 2008). In Study I, for the first

time,  we  investigated  the  neural  mechanism  of  bidding  behaviour  under  different

conditions of competition (Martinez-Saito et al., 2019).

In Study II,  we  hypothesized that the brain dopaminergic system, a set of brain

areas involved in reward and performance monitoring, not only continuously monitors

our  own  outcomes  (Osten  et  al.,  2017)  during  interactions  but  also  monitors  the

outcomes of others. According to economic theory, non-excludable goods that anyone

can enter and/or harvest are likely to be overharvested and destroyed (Martinez-Saito

et  al.,  2022).  However,  behavioral  economics  also  gives  many examples  in  which

people behave fairly  and cooperatively contrary to  the standard  self-interest  model

(Fehr  and  Schmidt,  1999):  under  some  conditions,  in  particular  in  two-person

interactions, people often show high rates of cooperation (Fehr & Gachter, 2000). It

has  been  shown  that  overharvesting  is  particularly  prevalent  in  social  groups

containing  a  substantial  number  of  ‘free  riders’,  that  is,  people  who take  benefits
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without  paying  any  costs  (Camerer,  2003).  One  explanation  for  the  tendency  to

overharvest common-pool resources refers to people’s social preference for equity and

reciprocal cooperation (Fehr & Schmidt, 1999): if others are cooperative, then people

act cooperatively, but if others free ride, people correspondingly retaliate  (Martinez-

Saito et  al.,  2022). To find a computational  explanation for  resource depletion, we

developed a computational model that posits a reward prediction error that compares a

person’s own outcome with the harvesting behavior of  conspecifics.  Therefore,  we

conducted  the first  fMRI study of  competitive decisions  in  common-pool  resource

(CPR) dilemma. We hypothesize that the social comparison is encoded in the neural

learning  signal  that  facilitates  overharvesting  of  the  common  natural  resources

(Martinez-Saito et al., 2022).

In Study III, we explored whether, mechanisms that compute learning signals under

uncertainty of exclusively social origin operate in the brain. To test this hypothesis, we

conducted the first meta-analysis of brain activation maps that compared learning in

the face of social versus nonsocial uncertainty.

Theoretical novelty

I devised a heuristic algorithm (directional learning or DL) to describe bargaining

behavior in double auction. DL was validated, both on behavioral and neural activity

grounds,  for  double auctions set  in  markets  with different  levels  of  competition in

Study I and in another set of experiments pertaining to another, unpublished, article

(Martinez-Saito et al., 2020).

We also devised learning algorithms for the social and non-social conditions of

Study II. These algorithms enacted exploitation of scarce resources in social and non-

social contexts, respectively. The relevance of these two algorithms is propped up by
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model fits to behavior, by the neural activity in learning regions associated with the

proxy variables derived from the fitted models, and by model recovery analyses. 

Practical significance

In  the  neuroimaging  studies  (Study  I  and  II),  computational  models  were  fit

through a conventional maximum likelihood procedure; however, this procedure was

enhanced by running multiple optimizer subroutines, which increased the chances of

finding better parameter fits. In regard to the behavioral paradigms, for the first time,

we applied a  double action bidding game and  common-pool resource dilemma in

model-based neuroimaging studies (Study I and II).

A large number  of  previous  studies  examined factors  that  favor  natural  shared

resources  preservation,  including  the  best  possible  rules,  institutions  and

communication. Results of our Study II show that the context of a shared resource vs a

private  resource   modulates  the  neural  activity  of  the  ventral  striatum:  relative

deactivation  of  the  ventral  striatum  in  response  to  resource  depletion  correlates

positively  with  participants’  attempts  to  preserve  their  own  private  resources  and

correlates  negatively  with  their  attempts  to  preserve  the  natural  shared  resource.

Overall, the notion of the neurobiological underpinnings of resource overexploitation

could help us to develop efficient boundary rules and a better understanding of global

commons governance (Martinez-Saito et al., 2022). 

We conducted the first the meta-analysis (Study III), that specifically focused on

specialized mechanisms that compute learning signals under uncertainty of exclusively

social origin operate in the brain. In the meta-analysis (Study III), I used the popular

neuroimaging coordinate-based meta-analysis  software GingerALE (Eickhoff  et  al.,

2012). On top of that, I performed the same meta-analysis with another —less popular,

but  newer  and in  theory  more  powerful— meta-analysis  software  called  SDM-PSI
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(Albajes-Eizagirre, Solanes,  Fullana,  Ioannidis,  et  al.,  2019),  which  allowed  us  to

compared  their  performance  on  the  same  dataset.  Furthermore,  our  meta-analysis

employed  a  carefully  selected  set  of  criteria  for  paper  eligibility  that  enabled

examining whether areas  in the brain exist that are functionally specialized to deal

only with the effect of social uncertainty on learning.

1.6 Provisions for the defense: key ideas to be defended

1 The  neural  circuitry  involved  in  learning  is  mostly,  but  not  entirely,  generic  or

independent from the social quality of the learning context, such that social-specialized

frontal modules may tweak and modulate the generic learning scheme;

2 When exploiting a scarce resource, the functional role of the striatum —a prominent

subcortical region involved in learning— is modulated by the social implications of the

learning context, i.e. by whether the resource is public or private;

3 In iterated game playing (auctions) requiring estimation of values (prices) determined

by  the  interactive  action  of  multiple  conspecifics,  humans  deploy  a  policy  that

harnesses generic striatal learning areas modulated by the category of social context via

a signal from the frontopolar cortex.

1.7 Author contributions

Study I: Data collection, computational modeling, data analysis and interpretation,

manuscript draft and revision.

Study  II:  Data  collection,  computational  modeling,  data  analyses  and

interpretation, manuscript draft and revision.

Study  III:  Study  conception  and  design,  data  collection,  data  analysis  and

interpretation, manuscript draft and revision.
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1.8 Validation of the research

The dissertation was prepared at the Centre for Cognition and Decision Making,

Institute of Cognitive Neuroscience,  National  Research University Higher School of

Economics.

Peer-reviewed journals

The Ph.D. thesis consists of three studies that correspond to the following papers in

first-tier journals1:

 Study I  (fMRI experiment):  Martinez-Saito,  M.,  Konovalov,  R.,  Piradov,  M.  A.,

Shestakova, A., Gutkin, B., & Klucharev, V. (2019). Action in auctions: neural and

computational  mechanisms  of  bidding  behaviour.  European  Journal  of

Neuroscience, 50(8), 3327-3348.

 Study II (fMRI experiment):  Martinez-Saito, M., Andraszewicz, S., Klucharev, V.,

& Rieskamp, J. (2022) Mine or Ours? Neural Basis of the Exploitation of Common-

Pool Resources. Social Cognitive and Affective Neuroscience,  17(9):837-849

 Study III (meta-analysis): Martinez-Saito M, Gorina E (2022) Learning under social

versus nonsocial uncertainty: A meta-analytic approach. Human Brain Mapping

Conference presentations

The results were presented at the following conferences:

1 First-tier  publications  include  papers  indexed in  the  Web  of  Science  (Q1 or  Q2)  or  Scopus  (Q1  or  Q2)
databases, as well as peer- reviewed collections of conferences that appear in CORE rankings (ranks A and A*). 
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1 Society  for  Neuroeconomics  (Sep  2015,  Miami).  Poster.  The  effect  of  economic

competition on the neural mechanisms of decision-making. Martinez-Saito M, Gutkin

B, Shestakova A, Klucharev V.

2 Society  for  Neuroscience  (Oct  2015,  Chicago).  Poster.  The  effect  of  economic

competition on the neural mechanisms of decision-making. Martinez-Saito M, Gutkin

B, Shestakova A, Klucharev V.   

3 Cognition,  Computation,  Communication  and  Perception  (CCCP)  Conference  2:

“Theoretical and Neurobiological Bases of Higher Cognitive Functions” (Sep 2015,

Moscow). The effect of economic competition on the neural mechanisms of decision-

making. M. Martinez-Saito, A. Shestakova, V. Klucharev, B. Gutkin. 

4 CCCP19:  Russian-French  Symposium  on  Neuroeconomics  (Sep  2019,  Moscow).

Presentation.  Neural  Underpinnings  of  Exploitation  of  Common Goods.  Martinez-

Saito  M, Shestakova A, Klucharev V.
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2. Scientific content synopsis 

In total, 79 participants took part in the fMRI experiments of Study I and Study II.

All subjects were queried to exclude histories of neurological pathologies; none of the

participants reported a history of drug abuse, head trauma, neurological or psychiatric

illness. After a briefing, all subjects gave informed written consent; subjects were paid

upon  completion  of  the  task.  All  protocols  was  performed  in  accordance  with  the

Declaration of Helsinki with approval of the University Review Board of Higher School

of Economics (Martinez-Saito et al., 2019). For Study III, I selected 50 neuroimaging

studies, which included 28 social experiments and 31 non-social experiments, and that

satisfied all eligibility criteria for the meta-analysis of Study III.

2.1 Study I. Neural and computational mechanisms of bidding behaviour 

People often exchange goods at  prices determined by fluctuations in  supply and

demand. Perceived market competition influences human bidding and even the value of

commodities  traded  by  non-human  animals.  Despite  its  key  importance  in  social

behaviour, the neural mechanisms of decision-making under social competition are still

unclear (Martinez-Saito et al., 2019). In particular, how do we learn bidding strategies

across different market scenarios? To probe neural mechanisms of bid learning, I used a

modified version of the double auction, a standard paradigm in multiplayer game theory

where  players  try  to  maximize  their  respective  benefit  by  means  of  a  single‐shot

transaction (Fudenberg & Tirole, 1991). Subjects played the role of buyers in a double

auction with first‐price sealed bids and with opponents assigned by repeated random

matching, in three different market types. The game paradigm required buyers to fix

their bids in advance (Martinez-Saito et al.,  2019). Their task was to buy fish on a

market using a 10‐point Likert scale. 

The scanned images were processed using SPM12 (Friston et al., 1994; Wellcome

Department of Imaging Neuroscience, Institute of Neurology, London, UK).  The first
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four  EPI  volumes  were  discarded  to  allow for  T1  equilibration,  and the  remaining

images were realigned to the first volume (Martinez-Saito et al., 2019). Preprocessing

of  T2*‐weighted  volumes  consisted  of  rigid‐body  model  realignment  within  each

session  to  a  mean  volume  for  head‐motion  correction,  unwarping  of  the  residual

variance  using  the  field  map,  slice  timing  correction  centred  at  TR/2,  bias‐field

correction,  coregistration  of  T2*‐weighted  volumes  to  the  corresponding  structural

image and segmentation and spatial normalization to a standard T2*‐weighted template

(Montreal Neurological Institute, MNI) for group analysis, spatial smoothing with an 8

mm Gaussian  kernel  and  high‐pass  temporal  (128s)  filtering  (Martinez-Saito  et  al.,

2019). 

We  compared  different  computational  learning  models  of  bidding:  DL  models,

where the model bid is “nudged” depending on whether it was accepted or rejected,

along with standard reinforcement learning models (Figure 1). In total, I implemented,

fitted, tested and simulated six flavors learning algorithms, including model‐free and

model‐based RL and DL algorithms, with ad hoc parameters  (Martinez-Saito et  al.,

2019).
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Figure 1 |  RL‐ and DL‐type algorithms comparison. Normal form (top centre) of a

one seller versus one buyer (NC market) game: matrix cell colours represent the buyer's

payoff.  The  buyer  holds  an  estimate  of  the  (possibly  varying)  seller's  ask  price

(horizontal  fuzzy white  stripe)  and tries  to  maximize  profit  by choosing the lowest

possible bid that does not fall in a cell of the zero‐profit yielding upper right triangle

(adapted from Martinez-Saito et al., 2019).

The ability to recognize market types is also critical for successful bidding. At the

beginning of each trial, activity in the bilateral superior posterior parietal cortex was

stronger  in  trials  with  higher  social  competition  (Martinez-Saito  et  al.,  2019).  This

activation could reflect neural activity monitoring the competitiveness in the current

trial or retrieving relevant information (Vilberg & Rugg, 2008) about the current market
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type (i.e., the preferred bid). We found that a reward-prediction error-like signal was

observed in the anterior and ventral  striatal  areas,  whereas the DL error  signal  was

represented in the dorsal posterior striatal areas, particularly in the posterior putamen

(Figure 3). According to the Bayesian model comparison analysis, the variability of the

striatal activity was explained by DL better than by RL, supporting the pertinence of

DL‐based bidding (Martinez-Saito et  al.,  2019).  This  finding concurs with previous

suggestions  that  neural  learning  signals  in  motivated  decision‐making  are  not

necessarily always reward prediction error-like (Behrens et  al., 2008, supplement) and

that  a region of  striatum is  involved in learning stimulus–response  associations and

action selection (Jessup & O'Doherty, 2011). The DL‐type learning strategy requires a

representation  of  an  internal  number  line  where  the  preferred  bids  are  stored  and

actively updated.  Our  results  indicate  that  this  representation  is  implemented in  the

parietal cortex (Martinez-Saito et al., 2019).

In summary, we found that DL fit the behaviour best and resulted in higher payoffs.

We found the binary learning signal associated with DL to be represented by neural

activity in the striatum distinctly posterior to a weaker reward prediction error signal.

Consistent with the proposal that DL is an efficient heuristic for valuation when the

action  or  bid  space  is  continuous,  the  posterior  parietal  cortex  represented  the

continuous action space of the task, and the frontopolar prefrontal cortex distinguishes

among conditions of social competition (Martinez-Saito et al., 2019). Therefore, we can

conclude that in the iterated game requiring estimation of values (prices) determined by

the interactive action of multiple conspecifics, humans deploy a policy that harnesses

generic striatal learning areas modulated by the category of social context via a signal

from the frontopolar cortex.
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2.2 Study II.  Neural basis of the exploitation of common-pool resources

To investigate why people often exhaust unregulated common natural resources but

manage to preserve similar private resources, we combined a neurobiological, economic

and cognitive modeling approach.

Participants had to manage a common-pool resource in the form of fish stock, by

imagining that they were fishing by a lake together with two other fishermen. Their task

was to collect as much fish as possible and each collected fish led to a monetary payoff.

In every trial, participants decided between three possible net sizes for fishing: one, two

or three (Martinez-Saito et al., 2022). Depletion of the resource (fishing out the lake)

was caused by their own behavior and the behavior of two other anonymous players

present in the room (see Figure 2 for the stages comprised in one trial).
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Figure 2 | Neural correlates of pseudo-RPE and DS signals based on the best-fitting

DL algorithm in anterior putamen and nucleus accumbens area and posterior putamen

during  the  outcome  of  the  game.  Correlated  activity  in  the  anterior  (y  =  16)  and

posterior (y = −10) putamen was stronger for pseudo-RPE and DS, respectively, during

feedback. Here a pseudo-RPE signal is a RPE where the expected value is assumed to

be the currently preferred bid (adapted from Martinez-Saito et al., 2019). From left to

right columns: pseudo-RPE (p < 0.05, FWER), DS (p < 0.05, FWER), pseudo-RPE

orthogonalized with respect to DS (p < 0.001, unc) and DS orthogonalized with respect

to pseudo-RPE (p < 0.001, unc). From Martinez-Saito et al. (2022).

Image analysis was performed with SPM12 and in the same manner as in Study I. 

We focused on the ventral striatum and the ventromedial prefrontal cortex because

they belong to the brain’s valuation system through their essential role in valuation and

reward-based learning (Levy and Glimcher,  2012;  Bartra  et  al.,  2013).  Similarly to

(Bartra  et  al.,  2013),  I  built  ventromedial  prefrontal  cortex  (vmPFC)  and  striatum

regions  of  interest  (ROI)  with  labels  from  the  1  mm  anatomic  atlas  parcellation

resolution of (Rolls et al., 2015) by taking the bilateral union of gyrus rectus, medial

orbitofrontal, anterior orbitofrontal and posterior orbitofrontal regions for vmPFC.

A sharp decrease of common and private resources was associated with deactivation

of the ventral striatum, a brain region involved in the valuation of outcomes (Martinez-

Saito et al., 2022). Across individuals, when facing a common resource, ventral striatal

activity  is  anticorrelated  with  resource  preservation  (less  harvesting),  whereas  with

private resources the opposite pattern is observed (Martinez-Saito et al.,  2022). The

goodness of fit of computational models suggested that on average participants learned

less in the nonsocial condition, which is in agreement with the stronger modulation of

ventral striatum activity in response to perceived decreases of common resources, in the
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social  condition  than in  the nonsocial  condition (Figure  3).  Thus,  the  social  model

predicts  the  enhanced  selfish  behavior  of  humans  under  a  scarcity  of  resources

(Martinez-Saito et al., 2022). Our fMRI results indicate that the striatum is involved in

social comparisons and generates a negative prediction error when a person receives

less than the competitors and a positive prediction error when she receives more than

the competitors (Martinez-Saito et al., 2022). Thus, ventral striatum activity not only

monitors outcomes (resource depletion) but also integrates outcomes into the specific

social context. 

Figure 3 |  Neural activity involved in monitoring and managing CPR exploitation.

Left: neural deactivations associated with the size of the remaining CPR, indicating that

activity was parametrically modulated by the change of the CPR size trial-by-trial in

social  (red)  and  nonsocial  (blue)  groups.  Right:  activity  associated  with  learning

signals: social (red) and nonsocial (blue) reward prediction errors; ventral striatum ROI

(translucent green) and vmPFC ROI (translucent light blue)  (adapted from Martinez-

Saito et al., 2022).

19



In summary, neural value signals distinctly modulated behavior in response to the

depletion of common vs private resources and computational modeling suggested that

overharvesting of common resources was facilitated by the modulatory effect of social

comparison on value signals (Martinez-Saito et al., 2022). We can also conclude, that

when exploiting a scarce resource, the functional role of the striatum —a prominent

subcortical region involved in learning— is modulated by the social implications of the

learning context, i.e. by whether the resource is public or private.

2.3  Study  III.   Meta-analysis  on  learning  under  social  versus  nonsocial

uncertainty

Understanding to what extent learning in social contexts is a specialized function is

important to facilitate adaptation to different social contexts. In Study III, we further

explored whether there are learning mechanisms specialized in resolving uncertainty of

exclusively  social  origin.  The  real-life  social  contexts  may  dramatically  modulate

learning  processes.  We  hypothesized  that  since  the  ventral  striatum,  not  only

continuously monitors our own outcomes, but also monitors the outcomes of others,

ventral striatum activity might facilitate competitive behavior that may lead negative

outcomes  (Martinez-Saito  &  Gorina,  2022).  We  searched  for  studies  through  the

websites PubMed and Web of Science, which aggregate multiple academic databases.

The keywords used to filter results were:  [“fmri” AND “learning” AND “social”]. We

selected  all  accessible  articles  that  satisfied  the  inclusion  criteria.  The  selection

consisted of two stages: identification, or abstract-based culling, and screening, where

studies  lain  aside  during identification  are  perused to  checked  all  inclusion criteria

(Figure  4).  We  also  found  studies  by  tracing  citations  of  discovered  articles  and

references in the bibliography of reviews. If whole-brain maps were not included in an

article that satisfied the remaining requirements, we selected it in case we could retrieve
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the maps by contacting the authors. When the statistical significance level reported in a

study was unclear, we followed the recommendations of Albajes-Eizagirre et al. (2019).

Figure 4 | Scheme of the process used to identify and cull  articles  that met the

criteria of the two groups used in meta-analyses, in PRISMA flowchart format (Moher

et al., 2009). Some studies count as both social and nonsocial (adapted from Martinez-

Saito et al., 2022).
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This investigation showed that most of the neural circuitry in value learning and

representation regions was not segregated into distinct modules processing uncertainty

(noise)  of  social  versus  nonsocial  origin,  which  suggests  that  most  behavioral

adaptations  to  navigate  social  environments  are  reused from frontal  and subcortical

areas  along  the  mesolimbic  pathway  processing  generic  value  representation  and

learning (Figure 5).  Although most of the brain activations associated with learning

error signals were shared between social and non-social  conditions,  there was some

evidence for functional segregation of error signals of exclusively social origin during

learning in limited regions of ventrolateral prefrontal cortex and insula (Martinez-Saito

& Gorina,  2022).  This  has implications  for  social,  developmental,  and evolutionary

neuroscience, because it suggests that the mesolimbic pathway could have been reused

and deployed, with little modification, to serve the mounting computational needs of

human ancestors'  brains in an increasingly complex social environment. Overall, our

results suggest, that the neural circuitry involved in learning is at least partially generic,

such  that  social-specialized  frontal  modules  may  tweak  and  modulate  the  generic

learning scheme (Martinez-Saito & Gorina, 2022).
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Figure 5 | Results for the metanalysis for social (red) and nonsocial (blue) error

signal  studies.  Activation  likelihood  estimation  maps  were  thresholded  at  p  <.05

(adapted from Martinez-Saito & Gorina., 2022).
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3. Conclusion

The  three  studies’  joint  results  portray  a  fuzzy  yet  suggestive  account  where

evolutionarily old, subcortical brain structures, in particular the striatum, are involved in

learning processes are recruited independently of the context, but modulated from brain

regions elsewhere. 

In  Study  I,  neural  correlates  of  learning  signals  where  elicited  in  the  striatum,

whereas the posterior  parietal  cortex represented the continuous action space of  the

task,  and the frontopolar  prefrontal  cortex distinguished among conditions of  social

competition (Martinez-Saito et al., 2019). This hints at a scheme where the joint effects

from  frontopolar  cortex  (which  determines  context),   and  parietal  cortex  (which

executes numerical computations) modulated learning signals in striatum. In Study II,

computational  modeling  suggested  that  competitive  decisions   ̶  over-harvesting  of

common resources  ̶  were facilitated by the modulatory effect  of social  comparison

(presumably  from  prefrontal  regions)  on  value  signals.  These  results  furnish  an

explanation of people’s tendency to over-exploit unregulated common natural resources

(Martinez-Saito et al., 2022). Finally and congruously, the results of meta-analysis of

Study III suggested that most behavioral adaptations to navigate social environments

are reused from frontal and subcortical areas processing generic value representation

and learning, but that a specialized circuitry might have evolved in the prefrontal cortex

to deal with social context representation (Martinez-Saito & Gorina, 2019).
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