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DISSERTATION TOPIC

The dissertation is devoted to the exploration of magnetic fields in turbulent gas
and diffusion of charged particles in a stochastic magnetic fields.

Relevance of the given topic

The standard theory of cosmic rays (CR) formation suggests that primary CR consist
mainly of protons and do not contain antimatter. During their propagation in the
Galaxy primary CR interact with protons of Galactic gas, resulting in production of

secondary CR, including antiprotons and positrons. The secondary particles energy
spectrum, calculated in the framework of this theory, falls down with energy by as

a power-law. The antiparticles to particles ratio should behave in the same way [1].
However, recent antimatter observations by PAMELA satellite detected an excess

of positrons with energies 10− 100 GeV in cosmic rays [2]. These results were later
extended [3] and confirmed by satellite Fermi [4] and AMS [5]. According to the
latest AMS data, an excess of positrons is observed up to energy 500 GeV.

These data attracted much attention. Several theoretical explanations for this
effect were proposed, among them the positrons generation in pulsars and in the

annihilation of dark matter particles. However another mechanism for the positrons
generation in the Galaxy is also possible, that is acceleration of charged particles in

giant molecular clouds and secondary CR production there. This mechanism was
discussed by Dogiel V. A., Gurevich A. V., Istomin Ya. N. and Zybin K. P. [6, 7, 8]

long before the launch of the PAMELA satellite in 2006. However, in these works,
a simplified model of particle propagation in the magnetic fields of molecular clouds
was used. New data of positrons excess require a thorough study of cosmic rays in

molecular clouds.
Molecular clouds are composed of neutral hydrogen. The gas in molecular

clouds is weakly ionized, and its motion is turbulent. In such a system, a stochastic
magnetic field arises. This process is called the turbulent dynamo. The propaga-

tion of charged particles in stochastic magnetic field has the form of diffusion. To
calculate the distribution of cosmic rays inside a cloud, it is required to know the
diffusion coefficient for particles with different energies. The diffusion coefficient is

determined by the spectrum of the magnetic field. Because experimental data are
scarce, the magnetic field spectrum in molecular clouds can only be calculated using

theoretical models.
One of the popular analytical approaches to the dynamo problem in a tur-

bulent medium is the Kazantsev-Kraichnan model [9], [10] . The mean field model
(see for example [11]) and the method of Lagrangian deformations [12] are also used.

The equations of single-fluid magnetohydrodynamics are generally used in the lit-
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erature [13, 14, 15, 16, 17, 18]. Weakly ionized gas in molecular clouds should be

described by two-fluid magnetohydrodynamics. The dynamo in such a system has
been studied in a few papers, see [19].

Despite many years of research into the magnetic dynamo, many questions

in this field remain open. For example, it is known that molecular clouds in the
Galactic center are surrounded by a uniform magnetic field. However in theoretical

models the role of the mean field is poorly studied. On the other hand, in the
Kazantsev-Kraichnan model, the velocity field is considered to be Gaussian random

process with zero mean, so all odd-degree correlators are zero. However, this is
not true in real turbulence. Kolmogorov’s "four-fifths" law states that the third
correlator is non-zero. For a better understanding of the magnetic dynamo process,

we should take into account the mean magnetic field and the non-Gaussianity of the
velocity field in theoretical models.

The structure of the magnetic field determines the diffusion coefficients of
charged particles in molecular clouds. However, the calculation of the diffusion

coefficient is a non-trivial problem.
The most developed approach for calculation of diffusion coefficients for mag-

netized particles is the quasilinear theory [20], and its generalizations. In the quasi-
linear theory magnetic field is assumed to be a sum of the mean homogeneous field
and small random fluctuations. It allows one to use the perturbation theory and

find the diffusion coefficient analytically. However in many astrophysical objects
magnetic fluctuations are comparable with the mean field or even exceed it. So the

problem of particle diffusion in the magnetic field with large fluctuations has many
applications in CR astrophysics. Among them are problems of propagation of CR in

Galactic molecular clouds [21], in the Galaxy as a whole, in clusters of galaxies [22],
as well as the problem of CR acceleration on shock waves in supernova remnants
[23].

Goals and objectives

The goal of this work is to calculate the diffusion coefficient of charged particles in
a stochastic magnetic field.

To achieve this goal, the following objectives were gained:

1. Explore the spatial structure of the magnetic field in Galactic molecular clouds.
Derive the evolution equation for the pair correlator of the magnetic field, taking

into account the mean magnetic field. Investigate the tensor structure of the
anisotropic correlators of the magnetic field in this case. Find the relation

between mean magnetic field and the amplitude of magnetic fluctuations.

2. Calculate the correlation length of the magnetic field in the molecular cloud
Sgr B2.
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3. Construct a generalization of the Kazantsev-Kraichnan model for a non-Gaussian

fluid velocity field taking into account third velocity correlator. Derive the
evolution equation for the magnetic field pair correlator and investigate its
exponential modes. Find the conditions when the magnetic field increases.

4. Calculate the diffusion coefficient of charged particles in a stochastic magnetic
field with a small mean field. Find a configuration of a regular magnetic field

in which the equations of particle motion are integrated analytically. Average
particle motion over the spectrum of the magnetic field and find the dependence

of the diffusion coefficient on their energy.

KEY RESULTS

The key results of the work are as follows:

1. The problem of the evolution of a magnetic field in a weakly ionized turbulent

gas is solved. Evolution equations of the magnetic field pair correlator are
obtained. In the isotropic case with zero mean field, this is one equation of

the second order in r. Taking into account mean magnetic field a system of
anisotropic equations is obtained. This system is solved in two limit cases. For
large mean field anisotropic solution is found analytically. For small mean field

the equations are solved in the approximation of isotropic correlators. The
unique stationary solution is found for any value of mean field. The amplitude

of fluctuations and the correlation length of the magnetic field is calculated as
a function of mean field.

2. The correlation length of the magnetic field in Sgr B2 molecular cloud is cal-
culated.

3. Generalization of the Kazantsev-Kraichnan model for non-Gaussian velocity
field is developed. The contribution of the three-point velocity correlator to
the magnetic field evolution equation is obtained. The exponential modes of

this equation are studied numerically. There is a continuous transition from
our generalized model to the Kazantsev-Kraichnan model. It is shown that

taking into account the three-point velocity correlator reduces the growth rate
of the magnetic field.

4. The problem of charged particles diffusion in a random force-free magnetic
field is solved. The equations of particle motion are reduced to the pendulum
equation. The transition from trapped to untrapped particles is continuously

traced. For small Larmor radius rL of the particle the diffusion coefficient turns
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out to be proportional to the Larmor radius for all reasonable magnetic field

spectra.

Author’s personal contribution

All main results of the dissertation are original and received for the first time. All
the results presented in the dissertation were obtained by the author personally or
with his direct participation.

The evolution equations of the magnetic field correlators in weakly ionized
gas with mean field were obtained by the author personally. The analysis of this

equations was carried out personally by the author.
The author worked on the problem of a non-Gaussian velocity field as part of

the group of K.P. Zybin. Autor derived evolution equation in the inertial interval.
Autor perform the numerical study of exponential modes of this equation.

The idea to explore the diffision in a force-free magnetic field belongs to

Ya.N. Istomin. The diffusion coefficient was calculated personally by the author.
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The results of the work were reported by the author at Russian and international
scientific conferences:
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St. Petersburg, Ioffe Institute

2. Russian Astronomical Conference «Many Faces of the Universe», September
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The obtained results were also presented by the author at the Astrophysical
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CONTENTS

This dissertation contains an introduction, three main chapters, conclusion and two
appendices. The volume of dissertation is 123 pages with 20 figures and one table.
The reference list contains 63 items.

Chapter 1 is devoted to the study of magnetic field generation by turbu-
lent weakly ionized gas in the presence of mean magnetic field. The motion of a
neutral and ionized gas should be described by the two-fluid magnetohydrodynamic

equations. The equation for the magnetic field is

∂B

∂t
= ∇× (v ×B) + η∆B − a∇× (B× (∇×B)×B). (1)

where a = (4πρiµin)
−1. To investigate the dependence of the magnetic field on time,

we will study the two-point correlator 〈B(r)B(r′)〉.
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In the first chapter, we use the Kazantsev-Kraichnan model and assume that

the neutral gas velocity is a delta-correlated Gaussian stochastic process. We also
assume the magnetic field to be a Gaussian stochastic process. In the isotropic
case, the tensor structure of the magnetic field correlator is described by one scalar

function Q(t, r)

〈Bi(x,t)Bj(x+ r,t)〉 = 2Q(t, r)δij + rQ′(t, r)(δij −
rirj
r2

). (2)

To split the 〈vB2〉 correlator, we use the Furutsu-Novikov formula, see [24]. The

correlator 〈B4〉 is expressed in terms of the product of pair correlators.
In the case of small mean field H ≪ L0v0ρiµin, we obtain the evolution

equation

1

2τc

∂Q(r)

∂t
= (V (0)− V (r) + λ′) (Q′′+

4Q′

r
)−V ′Q′−

1

r
(4V ′+rV ′′)(Q+

1

6
H2), (3)

where we introduce the notation

λ′ =
η + 4a(Q(0) +H2/6)

τc
. (4)

The equation (3) is nonlinear. In this chapter, we search for stationary solutions

only. It turns out that there is unique stationary solution for any value of H.
We numerically solved this equation for the Kolmogorov spectrum and found both

the amplitude b0 and the correlation length lcorr of magnetic field fluctuations as a
function of H.

For an arbitrary value of the mean field, we derive a system of anisotropic
evolution equations. In the case of large mean field H2 ≫ L0v0ρiµin, the system of
stationary equations has been solved analytically and the anisotropy of the correla-

tors is found.
At the end of the first chapter, I apply the obtained results to molecular

cloud Sgr B2, which is located near the Galactic center. I calculate the correlation
length of the magnetic field lcorr = 0.4 pc. From this correlation length we calculate

diffusion coefficient of cosmic rays in the cloud [30].

When studying the dynamo, the velocity field v(r,t) is generally considered
to be a Gaussian random process. But this is not the case in real turbulence. In

Chapter 2 we takes into account the first non-Gaussian correction, namely the
three-point (cubic) velocity field correlator. Thus, a generalization of the turbulent
dynamo theory for a non-Guassian velocity field has been constructed.

In the second chapter, I work in the framework of single-fluid MHD. The
equation for the magnetic field has the form

∂B

∂t
= ∇× (v ×B) + η∆B, (5)
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therefore, the correlator evolution equations will be linear. We do not take into

account mean magnetic field. Therefore, the system is isotropic, and the pair corre-
lator of the magnetic field has the form (2). We consider the three-point correlator
to be rather small.

To split the correlators, it is required to study the three-point velocity corre-
lator. In general, it is unknown. Suppose it is also delta-correlated

〈vi(r1,t1)vj(r2,t2)vk(r3,t3)〉 = βτ 2c · Y (t1,t2,t3) · 〈vi(r1)vj(r2)vk(r3)〉,

where the function Y (t1,t2,t3) is normalized to 1. My colleague A. Kopyev obtaine
two important results for this correlator in the viscous scale [31] and in the inertial
interval [27]. The viscous correlator is defined up to a common factor F . By equating

the convolutions of the three-point correlators at r = rν, I get a relation between F
and the normalization factor β. The sign of β is related to the direction of the energy

flow in the turbulent cascade [28], in real three-dimensional turbulence β > 0.
After rather lengthy calculations, I derive the evolution equation of the pair

correlator in the inertial interval rν < r < L0

1

2τc

∂Q(t, r)

∂t
=

(

V (0)− V (r) +
η

τc

)

(Q′′ +
4Q′

r
)− V ′Q′ − (V ′′ +

4V ′

r
)Q+

+
βετc
30

(

2rQ′′′ + 15Q′′ +
4Q′

r
−

24Q

r2

)

. (6)

The last term is the contribution of the three-point velocity correlator. This equation

is one of the main results of this work.
Similar equation for the viscous scale r < rν was derived by A. Kopyev. It

should be noted that we use a special program in Wolfram Mathematica. I wrote
it for calculations of tensor convolutions. It allows to perform tensor operations
symbolically, so these calculations are exact.

In Chapter 2 we investigate exponential modes of the evolution equation

Q(t,r) = eγDtQ(r). (7)

I numerically found the maximum positive γ depending on the parameters of the

problem, including the value of the cubic correction f (figure 1). In some limit cases
this problem was solved analytically [31]. Analytical predictions were confirmed by
numerical results.

The most interesting question for astrophysical applications is the generation
range, that is, the range of parameters for which there exists solutions with γ > 0.

I found the boundary of the generation range numerically.
It turns out that non-Gaussian term reduces the growth rate and reduces the

generation range. Thus, it reduces the generation of the magnetic field.
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Figure 1 — The growth rate of the magnetic field γ as a function of amplitude of cubic velocity correlator f .

Chapter 3 is dedicated to the motion of charged particles in a stochastic

magnetic field with zero mean. It is known that at long times such motion can be
described by the diffusion equation.

We consider a motion of a particle with charge q and velocity v0 in a stationary
magnetic B(r). We assume that there is no electric field in the system, then the
absolute value of the particle’s velocity is conserved. We study the case when the

mean magnetic field is equal to zero 〈B〉 = 0. Let us denote by L0 the correlation
length of the magnetic field, by BLS the magnitude of the large-scale field. Now we

consider L0 to be a known parameter of the problem. We introduce the notation

rL =
mcγv0
qBLS

, where γ =
1

√

1− v2
0
/c2

(8)

for the Larmor radius in a large-scale magnetic field BLS. Depending on the energy,

particles can be divided into magnetized rL < L0 and non-magnetized rL > L0.
The diffusion coefficient of non-magnetized particles is quite easy to calculate, see,

for example, [29], 〈D〉 ∼
v0r

2

L

L0

.

To describe the motion of magnetized particles is much more difficult. We
assume that the particle motion has a diffusive character at large times, so 〈r2(t)〉 =

2Dt. The angle brackets denote averaging over realizations of a random magnetic
field. Consequently,

〈D〉 =
1

2

d〈r2〉

dt
= 〈rivi〉. (9)

It is known that the electric current in plasma is created by electrons. The mass

of an electron is small. Then, in the absence of an electric field, the Ampere force
acting on electrons must be zero, j × B = 0. In MHD approximation j ∼ rotB.

Therefore, the magnetic field satisfies the relation

rotB = kB. (10)

We name such field "force-free". From the equation divB = 0, one can see that
k(r) is constant along the magnetic field lines.
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We assume that the magnetic field in the whole system is a superposition of

individual magnetic cells, in each cell k is constant. Different cells have different
values of k, various directions ∇k and different values of the magnetic field mag-
nitude B0. First we determine the motion of the charged particle in one magnetic

cell. We choose the coordinate axis z so that Bz = 0. The magnetic field has the
following configuration

B(r) = B0 (sin kz, cos kz,0) . (11)

In such magnetic field, two equations of motion of the particle are integrated and

the system is reduces to one equation on z(t). By substitution, this equation is
reduced to the equation of a mathematical pendulum

d2ψ

dt2
= −ω2 sinψ, (12)

where the value of ω depends on the initial velocity of the particle. Now, using

(9), the diffusion coefficient can be represented as a sum of elliptic integrals. By
averaging over the initial velocities and coordinates of the particle, I calculated

diffusion coefficient in one cell. It depends on parameters k, B0 of the magnetic
field.

Next, I averaged the diffusion coefficient 〈D〉 over the spectrum of magnetic
fluctuations B0(r), assuming the spectrum to be a power law with exponent α. For

rL ≪ L0 I found the asymptotics analytically

〈D(A)〉 ≃
2π

3(2− α)
v0rL. (13)

I also computed 〈D(A)〉 numerically for arbitrary A < 1 and different values of α.

The mean diffusion coefficient weakly depends on the exponent α.
Particles with A > 1 are non-magnetized, the diffusion coefficient for them is

given above. So, for the Kolmogorov spectrum α = 2/3 the diffusion coefficient is

approximately equal to

〈D〉 ≃

{

(π/2)v0rL, rL < L0/2π

(5π2/8)(v0r
2

L/L0), rL > L0/2π.
(14)

Note that the two asymptotics practically equial at the point rL = L0/2π. The

diffusion coefficient weakly depends on the spectrum of magnetic fluctuations.
For relativistic particles, the Larmor radius is proportional to the energy.

Therefore, at low energies the diffusion coefficient is proportional to the energy, and
at high energies energies – to the the particle’s energy squared.

At the end of Chapter 3 we study the application of our results to the cosmic
rays diffusion in the Galaxy.
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