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Introduction

The development of modern concept of transaction costs has begun in the middle of the

XX century [Coase, 1937], [Marschak, 1950]; for an overview of the history of the concept

see [Klaes, 2000]. Transaction costs are commonly decomposed into implicit and explicit

part [Keim and Madhavan, 1998]. Explicit costs are the direct costs of performing a deal on

the market which include taxes and brokerage commission, usually a �xed fee per deal or a

percent of deal volume, while percent might vary over time. Broker can also charge a percent

of the deal value, i.e. costs are proportional to P · V , where P is the asset price calculated

according to brokerage services agreement, V denotes deal's volume. In practice, commission

formula can vary based on deal's volume or value. Implicit costs, on the other hand, depend

solely on market microstructure and liquidity, and have drawn much attention since the Long

Term Capital Management (LTCM) hedge-fund's severe losses followed by collapse, due to

high transaction costs. The LTCM crisis threatened to create substantial losses for many

Wall Street lenders thus triggering a chain reaction in numerous markets, which made the

Federal Reserve Bank of New York organize a bailout of the fund [Jorion, 2000].

Many key works on portfolio selection and management theory assume that transaction

function is either �xed per deal or directly proportional to deal volume3. While these as-

sumptions are justi�ed for explicit costs in many cases [Keim and Madhavan, 1998], they

must be justi�ed or, better, proved for implicit costs. Otherwise, linearity can only be

considered an approximation. Constant approximation, despite the simplicity, allows to in-

troduce a fee per single deal and to regularize portfolio management problem by making

strategies with high or in�nite trade intensity (number of trades per unit of time) subopti-

mal. Linear approximation allows to incorporate explicit costs and impact of a deal size on

implicit costs value. Absence of zero-degree linear term is a crucial assumption in many clas-

sical portfolio management frameworks, which allows to obtain closed-form analytic solution

to the problem. Direct proportionality assumes missing or negligible �xed fee when com-

pared to other costs. Works with non-linear parametrization include [Constantinides, 1979],

[Constantinides, 1986] for convex cost function; [Vath et al., 2007] which introduces price-

dependent implicit costs C(V, P̃ ) = V ·I(V, P̃ ) and permanent price impact I(V, P̃ ) = P̃ eλV .

The explicit form of impulse strategy for convex transaction costs, including �xed fee, is

3See., for example, [Magill and Constantinides, 1976], [Davis and Norman, 1990],
[Shreve and Soner, 1994], [Framstad et al., 2001], [Ø ksendal and Sulem, 2010].
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obtained in 2007 in [Ma et al., 2013]. [Àíäðååâ et al., 2011] considers polynomial form of

implicit costs with auto-regressive coe�cients when solving the optimal liquidation problem.

We present results of theoretical and empirical research of implicit costs function in order-

driven market. For general-form distribution of limit orders in terms of cumulative volume

as a function of depth, we introduce a de�nition of implicit costs and market liquidity. We

show that linearity of implicit costs is equivalent to absolute market liquidity, while not

identically zero only if agent's estimate of fair price di�ers from best quoted price. This

draws to the conclusion that linearity of implicit costs does not match any real distribution

of orders thus can lead to severe underestimation of losses due to large deals.

Based on empirical study of real distributions of orders at MICEX stock exchange for

the period of 2006-2007, we introduce a parametric model of implicit costs which we believe

to be more adequate to the data observed. We also demonstrate, for a speci�c management

policy, how one can obtain an upper bound of deal volume, for which implicit costs can be

approximated by a linear function.

Order-driven market

In order-driven (ODM) market, market maker's functions are delegated to automatic mech-

anism of order matching. We study a simpli�ed model of the market which demonstrates

its necessary aspects. At any time participants can place one of two types of orders: limit

or market. Market orders trigger immediate trade (or sequence of trades) at available best

prices while limit orders mean just the intent to trade at any price, up to the limit speci�ed

by the order.

De�nition 1. Market order is an order to perform immediate deal, which is characterized

by volume v and direction ζ: ζ = 1 denotes buying, ζ = −1 denotes selling.

De�nition 2. Limit order is speci�ed by all the parameters of market order and limit exe-

cution price P . Limit order can be interpreted as an intent to trade volume V at a price not

worse than P .

Each order also has identi�cation number in the automatic matching system (time

stamp). All participants have access to currently available set of limit orders sorted by

limit price, also known as limit order book. At any point participants can perform the

following actions:
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1. Placement of a limit order. The order is added to the book and remains there until

withdrawn by the owner, liquidated due to a deal or cancelled by the system at the end

of trading period. Execution of a limit order can be partial; execution is performed

immediately after an order of suitable price and opposite direction (market or limit)

appears in the book.

2. Placement of a market order. The order is not added to the book but triggers its

immediate change. Market order can lead to a sequence of deals with available limit

orders of opposite direction, so that cumulative traded volume equals market order's.

In case of partial execution, the rest of market order is cancelled.

3. Cancellation of owned limit order. Removes the order from the book.

At the end of trading period, all unmatched limit orders are automatically cancelled by

the system. Execution of orders is not random, it starts with best price orders, continues

with second-best ones and so on. In case of several orders with the same limit price, execution

starts in order of detection by the system: smaller time stamp means higher priority.

ODM market has the following characteristics related to costs research:

Best prices: at any moment t there are best bid and best o�er price, Pb,t and Pa,t correspon-

dingly4.

Market price is a numeric characteristic of an asset re�ecting its fair value. Market price

might di�er for buy and sell deals or di�er from best prices. It can also coincide

for both types. Market value of a deal is a product of deal volume and its market

price. Note that market price is not directly observable on the market, though its

estimates are often postulated as market price. It is participant's estimate of the as-

set's fair price thus subjective in nature. Participants might have di�erent estimates

of market price, thus di�erent estimates of implicit costs (see below); however, hetero-

geneity does not deny equilibrium and semi-strong e�ciency of the market [Kyle, 1985],

[Glosten and Milgrom, 1985].

Trading volume for a speci�ed price interval is a cumulative volume of available orders with

limit price inside the interval.

4We do not consider degenerate case of empty order book or one of its sides. In that case implicit
transaction costs should be considered in�nite.
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Depth is a modulus of distance from best price. Each limit order has speci�c depth, while

best orders have zero depth. Buy/Sell volume at depthD is cumulative trading volume

of buy/sell limit orders with depth less or equal to D.

It is shown below that implicit costs do not depend on characteristics of speci�c orders

inside the book, what really matters is distribution of trading volume as a function of depth

for each book side. This leads to the study of ODM market and limit order book in terms of

distribution functions. Academic works in this �elds usually assume absolutely continuous

distribution [Obizhaeva and Wang, 2013], [Alfonsi et al., 2010]. Such distributions do not

match any real order book; however, empirical distribution can sometimes be �tted by

simple absolute continuous function [Bouchaud et al., 2002]. This leads to the de�nition of

generalized ODM-market.

By F+(t,D), we denote cumulative buy volume at time t and depth D, i. e. volume

available for buying at prices within D distance from the best price; by analogy, F+(t,D) is

cumulative sell volume. As in [Predoiu et al., 2011], consider general form of distributions

of volume with F+(t,D), F−(t,D) being c�adl�ag, non-negative non-decreasing functions of D

for each t. For absolute continuous distributions, q+(t, p) and q−(t, p) denote corresponding

densities.

De�nition 3. Generalized ODM market (R+, R̄+,T) is a single-asset order-driven market,

where prices take values from R+, order volumes � from R̄+ = R+ ∪ +∞, time values are

from T, and F+(t,D), F−(t,D) are c�adl�ag, non-negative non-decreasing functions of D for

each t.

De�nition 4. Buy (Sell) side of the limit order book in generalized ODM market (R+, R̄+,T)

has absolute liquidity level V at time t if

F+(t, 0) ≥ V (F−(t, 0) ≥ V ).

Absolute liquidity level V means that trades up to volume V can be performed with no

implicit costs.

De�nition 5. Buy (Sell) side of the limit order book in generalized ODM market (R+, R̄+,T)
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is absolutely liquid at time t if

F+(t, 0) = +∞ (F−(t, 0) = +∞).

Absolute liquidity means that trades of any volume can be performed with no implicit

costs. Limit order book is absolutely liquid at time t when its sides are absolutely liquid

at t.

De�nition 6. Limit order book is absolutely liquid (has absolute liquidity level V ) during

interval T ⊆ T if it is absolutely liquid (has absolute liquidity level V ) for each t ∈ T .

It is clear from the de�nitions that absolute liquidity is unachievable in a real market due

to required in�nite volume at best positions. This, in turn, requires in�nite volume of one of

the best orders, or in�nite number of orders which is impossible in reality. However, rather

active market can be considered absolutely liquid by the investor if maximum volume of her

deals is expected to be smaller then cumulative volume of best orders. This is true for modern

markets, where best volumes are so big that a single participant cannot match it with a single

deal, and after execution of the triggered trade sequence, the book is instantly replenished

(see example in [Biais et al., 1995]). Nevertheless, even such markets have limited level of

absolute liquidity, which can become noticeable during �nancial crises like Black Monday in

1987 or Flash Crash in 2010.

De�nition 7. Price response function is denoted by

ρ(t, V ) =

 inf
{
D ≥ 0: F−(t−, D) > |V |

}
, V ≥ 0,

inf
{
D ≥ 0: F+(t−, D) > |V |

}
, V < 0,

where inf{∅} = +∞. ρ(t, V ) is the value of jump of best price due to execution of market

order of volume V at time t. V > 0 means buy, V < 0 means sell.

Market value of a deal of volume V can be expressed as

C∗(t, V ;P ∗
a , P

∗
b ) =

 P ∗
aV, V ≥ 0,

P ∗
b V, V < 0,

(1)
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where P ∗
a and P ∗

b are market buy and o�er prices at time t− correspondingly, with P ∗
a,t ≤ Pa,t,

P ∗
b,t ≥ Pb,t. Real value of a deal can di�er from market value and equals Cr(t, V ).

De�nition 8. Implicit transaction costs from a deal with volume V is denoted by

CI(t, V ;P ∗
a , P

∗
b ) = Cr(t, V )− C∗(t, V ;P ∗

a , P
∗
b ),

where

Cr(t, V ) =



ρ(t,V )∫
0

(Pa,t− +D) dF−(t−, D−)+

+
(
V − F− (t−, ρ(t, V )−)

)
(Pa,t− + ρ(V )) , V ≥ 0,

ρ(V )∫
0

(Pb,t− −D) dF+(t−, D−)+

+
(
V − F+ (t−, ρ(t, V ))

)
(Pb,t− − ρ(V )) , V < 0.

De�nition 9. Explicit transaction costs CE(t, V ) from a deal with volume V is a sum of

taxes and brokerage commission for performing the deal on the market.

We assume that for each t CE(t, V ) is non-negative, non-decreasing convex function of V .

Reason for postulating properties in the de�nition follows from economic interpretation and

will be explained below. In this work, study of explicit costs is not performed because they are

usually known to participants beforehand and rarely change. Besides, the shape of CE(t, V )

is completely de�ned by brokerage services agreement and does not require modelling. The

center of the research is implicit costs function because its shape depends solely on market

microstructure and estimates of the participant; underestimation of implicit costs can lead

to substantial unexpected losses on markets with low liquidity in case of su�ciently large

deals.

De�nition 10. Total transaction costs (also referred to as total costs or transaction costs)

on generalized ODM market (R+, R̄+,T) at time t is

C(t, V ;P ∗
a , P

∗
b ) = CE(t, V ) + CI(t, V ;P ∗

a , P
∗
b ).
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Properties of transaction costs function on a generalized

ODM market

Hereinafter, we consider only buy market orders and sell side of the book. But the results

hold by analogy for the opposite side as well. We also omit the case of in�nite costs and

volumes. Consider total costs function

C(t, V ;P ∗
a , P

∗
b ) = CE(t, V ) + CI(t, V ;P ∗

a , P
∗
b )

for V > 0 on generalized ODM market (R+,R+,T). Let F (t,D) be the distribution function

of volume. Denote C(t, V ;Pa,t, Pb,t) = C(t, V ) henceforth for simplicity of notation. It

follows from De�nition 8 that

C(t, V ;P ∗
a,t, P

∗
b,t) =

 C(t, V ) + (Pa,t − P ∗
a,t)V, V ≥ 0,

C(t, V ) + (P ∗
b,t − Pb,t)V, V < 0.

(2)

To simplify notation, dependence on t and P ∗
b,t is henceforth omitted because only sell side

snapshot is of interest.

Lemma 1. For any absolute continuous distributions F−(D), F+(D), it is true for any V ,

ρ(V ) < +∞, that

CI(V ) =



ρ(V )∫
0

Dq−(Pa +D) dD, V ≥ 0,

−
ρ(V )∫
0

Dq+(Pb −D) dD, V < 0.

(3)

Proof. 1. For absolute continuous F−(D), F+(D) we have:

F+(D) =

+∞∫
max{Pb−D,0}

q+(p) dp =

Pb∫
max{Pb−D,0}

q+(p) dp =
{
p = Pb − y

}
=

= −
0∫

min{Pb,D}

q+(Pb − y) dy =

min{Pb,D}∫
0

q+(Pb − y) dy. (4)
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F−(D) =

Pa+D∫
0

q−(p) dp =

Pa+D∫
Pa

q−(p) dp =
{
p = Pa + y

}
=

=

D∫
0

q−(Pa + y) dy. (5)

2. If ρ(V ) < +∞ then, by de�nition of response function, we have: F+(ρ(V )) = V, V < 0,

F−(ρ(V )) = V, V ≥ 0
(6)

3. Substituting (6) into implicit costs de�nition, (4) and (5) yield:

for V ≥ 0,

CI(V ) =

ρ(V )∫
0

(Pa +D) dF−(D)− PaV =

=

ρ(V )∫
0

Dq−(Pa +D) dD + Pa

ρ(V )∫
0

q−(Pa +D) dD − PaV =

=

ρ(V )∫
0

Dq−(Pa +D) dD + PaF
−(ρ(V ))− PaV =

ρ(V )∫
0

Dq−(Pa +D) dD;

for V < 0,

CI(V ) =

ρ(V )∫
0

(Pb −D) dF+(D)− PbV =

= −
ρ(V )∫
0

Dq+(Pb −D) dD + Pb

ρ(V )∫
0

q+(Pb −D) dD − PbV =

= −
ρ(V )∫
0

Dq+(Pb −D) dD + PbF
+(ρ(V ))− PbV = −

ρ(V )∫
0

Dq+(Pb −D) dD.

Transaction costs function must have the following properties according to its economic

interpretation:

1. Cost of buying is not less than market value of the deal.
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2. Deal of larger volume incurs larger costs. This property becomes obvious since deal

with volume V2 > V1 can be decomposed into two consecutive deals with volumes V1

and V2−V1, with implicit costs from both parts being non-negative due to property 1.

3. In generalized ODM market (R+,R+,T) in�nitesimal increase of a deal volume incurs

in�nitesimal increase of costs, i. e. C(t, V ) is continuous in V .

4. Unit costs C(t,V )−C(t,0)
V

are increasing in V . This follows from the automatic system's

attempt to match limits order in order of limit price which leads to a gradual increase

in costs per unit when worse orders are matched, thus increasing unit costs for the

whole deal.

Consistency of introduced de�nition of implicit costs with aforementioned properties is

proven in

Theorem 1. If for any distribution F (D)

C(V ) = CE(V ) +

ρ(V )∫
0

(Pa +D) dF (D−)+

+
(
V − F (ρ(V )−)

)
(Pa + ρ(V ))− PaV, (7)

ρ(V ) = inf
{
D ≥ 0: F (D) > V

}
, V ≥ 0,

then

1. C(V ) ≥ 0 ∀V ≥ 0;

2. C(V1) ≤ C(V2) if V1 ≤ V2;

3. C(V ) is convex in V ;

4. C(V1)−C(0)
V1

≤ C(V2)−C(0)
V2

if V1 ≤ V2.

Proof. Hereinafter, the following statement is used ([Revuz and Yor, 1999, proposal 4.5]):

let f(D), g(D) be functions of bounded variation on R+. Then

D∫
0

f(s−)dg(s) +

D∫
0

g(s)df(s) = f(D)g(D)− f(0)g(0).
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In particular, for f(D) ≡ 1, g(D) = F (D−) we have
ρ(V )∫
0

dF (D−) = F (ρ(V )−) − F (0−) =

F (ρ(V )−).

1) To prove the �rst statement, we use de�nition of ρ(V ), along with c�adl�ag and non-

decreasing properties of F (D), to see that F (ρ(V )−) ≤ F (ρ(V )) ≤ V for all V > 0. Then

C(V ) ≥
ρ(V )∫
0

(Pa +D) dF (D−) + V ρ(V )− F (ρ(V )−) (Pa + ρ(V )) ≥

≥ Pa

ρ(V )∫
0

dF (D−) + V ρ(V )− F (ρ(V )−)Pa − F (ρ(V )−) ρ(V ) =

= PaF (ρ(V )−) + V ρ(V )− F (ρ(V )−)Pa − F (ρ(V )−) ρ(V ) ≥

≥ (V − F (ρ(V )−)) ρ(V ) ≥ 0.

2) The second statement is proven similarly. Denote ρ(V1) = ρ1, ρ(V2) = ρ2. Since{
D ≥ 0: F (D) > V1

}
⊇

{
D ≥ 0: F (D) > V2

}
, ρ1 ≤ ρ2 and we get

C(V2)− C(V1) = CE(V2)− CE(V1) +

ρ2∫
ρ1

(Pa +D) dF (D−) + V2ρ2 − V1ρ1−

− F (ρ2−)(Pa + ρ2) + F (ρ1−)(Pa + ρ1) ≥

≥ (Pa + ρ1)(F (ρ2−)− F (ρ1−)) + V2ρ2 − V1ρ1 − F (ρ2−)(Pa + ρ2) + F (ρ1−)(Pa + ρ1) ≥

≥ −F (ρ2−)(ρ2 − ρ1) + V2ρ2 − V1ρ1 = −F (ρ2−)(ρ2 − ρ1) + V2(ρ2 − ρ1) + ρ1(V2 − V1) =

= (V2 − F (ρ2−))(ρ2 − ρ1) + ρ1(V2 − V1) ≥ 0.

3) Continuity is derived form convexity of C(V ). For proof of convexity of implicit costs

for general c�adl�ag distribution, see [Predoiu et al., 2011]. Here, we demonstrate the property

for absolute continuous distribution with density q(p) > 0 where p ≥ Pa, ρ ∈ C1, CI ∈ C2.

By de�nition,
ρ(V )∫
0

q(Pa +D)dD ≡ V =⇒ ρ′(V )q(Pa + ρ) ≡ 1.
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Lemma 1 implies

CI(V ) =

ρ(V )∫
0

Dq(Pa +D)dD =⇒

=⇒ C ′
I(V ) = ρ′(V )ρ(V )q(Pa + ρ) = ρ(V ) =⇒

=⇒ C ′′
I (V ) = ρ′(V ) =

1

q(Pa + ρ)
> 0.

Since CE(V ) is postulated convex, C(V ) is also convex.

4) Since the case of V2 = 0 is trivial, assume V2 > 0. Denote α = V1

V2
≤ 1. (1−α)·0+α·V2 =

V1, thus convexity of C(V ) implies C(V1) ≤ (1− α)C(0) + αC(V2). Then

C(V2)− C(0)

V2

− C(V1)− C(0)

V1

=
V1C(V2)− V2C(V1)− V1C(0) + V2C(0)

V1V2

≥

≥ V1C(V2)− V2((1− α)C(0) + αC(V2))− V1C(0) + V2C(0)

V1V2

=

=
(V1 − αV2)C(V2) + (αV2 − V1)C(0)

V1V2

= 0.

Corollary 1. Theorem 1 holds for C(V ;P ∗
a ) for any P ∗

a ≤ Pa.

Proof. Since the statements hold for C(V ;Pa), then (2) implies 1) è 2) due to P ∗
a ≤ Pa; 3)

holds since C(V ;P ∗
a ) is a sum of convex and linear function, hence, convex; 4) follows from

C(V ;P ∗
a )

V
= C(V ;Pa)

V
+ const.

Note that properties in Theorem 1 follow from the de�nition for CI , while postulated

for CE (see De�nition 9), since study of explicit costs is out the scope of the work due to

aforementioned reasons. However, explicit costs should satisfy the same properties due to

economic sense.

Results below shed light on the possibility of popular shapes C(V ) ≡ const and C(V ) =

aV + Cf .

Theorem 2. For any distribution F (D), the following statements are equivalent:

1. CI(V ) ≡ 0, where 0 ≤ V < V ∗;

2. sell side of the limit order book has absolute liquidity level V ∗.
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Proof. According to de�nition, sell side with absolute liquidity level V ∗ means F (0) ≥ V ∗.

2 ⇒ 1 is obtained directly from (7) since F (0−) = 0, ρ(V ) = 0 for all V < V ∗.

1 ⇒ 2 is proven by contradiction. Let F (0) = V0 < V ∗. Consider two possible cases:

1. lim
D→+∞

F (D) = V̄ < V ∗. Then ρ( V̄+V ∗

2
) = +∞ and C( V̄+V ∗

2
) = +∞, which contradicts

the main assumption since V̄+V ∗

2
< V ∗.

2. lim
D→+∞

F (D) ≥ V ∗. Denote V ′ = V0+V ∗

2
> V0. Since F (D) is right-continuous, there

exists ε > 0: F (D) < V ′ for 0 ≤ D < ε. Then ρ′ = ρ(V ′) ≥ ε > 0 and

CI(V
′) =

ρ′∫
0

(Pa +D)dF (D−) + V ′ρ′ − F (ρ′−)(Pa + ρ′) =

=

ρ′∫
0

DdF (D−) + (V ′ρ′ − F (ρ′−))ρ′ ≥

≥ max
{ ρ′∫

0

DdF (D−), (V ′ρ′ − F (ρ′−))ρ′
}
.

If F (D) ≡ V0 for allD < ρ′, then V ′−F (ρ′−) = V ′−V0 > 0. Otherwise,
ρ′∫
0

DdF (D−) >

0 since F (D−) is non-decreasing thus cannot have a discontinuity at zero. Hence,

CI(V
′) > 0 which leads to contradiction.

Lemma 2. Assume 0 < D1 < D2 such that 0 < F (D1) = V1 < F (D2) = V2. Then CI(V )

cannot be a linear function of V in the interval 0 ≤ V ≤ V2.

Proof. Denote ρ1 = ρ(V1), ρ2 = ρ(V2), F1 = F (ρ(V1)−), F2 = F (ρ(V2)−). Since F (D) is

right-continuous, there exists ε > 0: F (D) < V2 for D ∈ [D1, D1 + ε). Hence, ρ2 ≥ ρ1 + ε.

Due to CI(0) = 0 it is su�cient to show that CI(V2)−CI(V1)
V2−V1

> CI(V1)
V1

. Indeed,

CI(V2) =

ρ2∫
0

(Pa +D)dF (D−) + V2ρ2 − F2(Pa + ρ2) =

14



=

ρ1∫
0

(Pa +D)dF (D−) + V1ρ1 − F1(Pa + ρ1)+

+

ρ2∫
ρ1

(Pa +D)dF (D−) + V2ρ2 − V1ρ1 + F1(Pa + ρ1)− F2(Pa + ρ2) =

= CI(V1) +

ρ2∫
ρ1

(Pa + D)dF (D−) + V2ρ2 − V1ρ1 + F1(Pa + ρ1) − F2(Pa + ρ2).

1) Let F (D) ≡ V1 for D < D2. Then V2 > F2 = V1 and

CI(V2) ≥ CI(V1) + (Pa + ρ1)(F2 − F1)+

+ V2ρ2 − V1ρ1 − (F2 − F1)Pa − F2ρ2 + F1ρ1 =

= CI(V1) + V2ρ2 − V1ρ1 − F2(ρ2 − ρ1) = CI(V1) + (V2 − V1)ρ1 + (V2 − F2)(ρ2 − ρ1).

Hence,
CI(V2)− CI(V1)

V2 − V1

≥ ρ1 +
(V2 − F2)(ρ2 − ρ1)

V2 − V1

> ρ1.

2) Assume F (D) is not identically constant for D < D2. Since F (D) is non-decreasing,
ρ2∫
ρ1

(Pa +D)dF (D−) > Pa(F2 − F1), and we similarly obtain

CI(V2) > CI(V1) + (Pa + ρ1)(F2 − F1)+

+ V2ρ2 − V1ρ1 − (F2 − F1)Pa − F2ρ2 + F1ρ1 =

= CI(V1) + (V2 − V1)ρ1 + (V2 − F2)(ρ2 − ρ1).

Therefore
CI(V2)− CI(V1)

V2 − V1

> ρ1 +
(V2 − F2)(ρ2 − ρ1)

V2 − V1

≥ ρ1.

In both cases we have CI(V2)−CI(V1)
V2−V1

> ρ1.

De�nition of CI(V ) yields

CI(V ) =

ρ∫
0

(Pa +D)dF (D−) + V ρ− F (ρ−)(Pa + ρ) ≤
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≤
ρ∫

0

(Pa + ρ)dF (D−) + V ρ− F (ρ−)(Pa + ρ) = V ρ.

Therefore CI(V2)−CI(V1)
V2−V1

> ρ1 ≥ CI(V1)
V1

.

Theorem 3. For any distribution F (D) the following statements are equivalent:

1. CI(V ) is linear for 0 ≤ V < V ∗;

2. sell side of the limit order book has absolute liquidity level V ∗;

3. CI(V ) ≡ 0 for 0 ≤ V < V ∗.

Proof. 2 ⇔ 3 is proven in Theorem 2.

2 ⇒ 1 since 2 ⇒ 3, and constant is a special case of linear function.

1 ⇒ 2: continuity of CI(V ) and linearity for 0 ≤ V < V ∗ yield linearity for 0 ≤ V ≤ V ∗.

Then Lemma 2 implies that F (D) cannot accept more than one value in (0, V ∗]. Hence,

there are two possible choices for F (D):

1. F (0) ≥ V ∗ which is equivalent to 2).

2. F (D) =

 0, D < D∗,

≥ V ∗, D ≥ D∗.
This behavior contradicts de�nition of F (D) since if sell

side is not empty than at least one order is denoted the best, therefore, F (0) > 0. This

completes the proof.

Theorem 3 implies that linear implicit costs model cannot be used if market price coin-

cides with best quoted price. The only exception is zero implicit costs for absolutely liquid

book side. Should market and best prices di�er, linearity is possible:

Theorem 4. For any distribution F (D) the following statements are equivalent:

1. CI(V ;P ∗
a ) is linear in V for 0 ≤ V < V ∗;

2. sell side of the limit order book has absolute liquidity level V ∗;

3. CI(V ;P ∗
a ) = V (Pa − P ∗

a ) for 0 ≤ V < V ∗.
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Proof. Proof is obvious from Theorem 3 applied to CI(V ;Pa), and formula (2).

Corollary 2. For any distribution F (D), if C(V ;P ∗
a ) is linear in V for 0 ≤ V < V ∗ then

sell side of the limit order book has absolute liquidity level V ∗.

Proof. Since C(V ;P ∗
a ) = CE(V )+CI(V ;P ∗

a ), we use convexity and non-decreasing property

of CE(V ), CI(V ;P ∗
a ) to derive that linearity of C(V ;P ∗

a ) is equivalent to linearity of both

CE(V ) and CI(V ;P ∗
a ) on the same interval. Thus, by virtue of Theorem 4, we derive the

main statement.

Theorem 4 implies that linear approximation of implicit costs function CI(V ) does not

match any c�adl�ag distribution function, hence, no real non-empty limit order book. In this

regard, a more appropriate parametric form of CI(V ) is required to asses costs of large deals

adequately. It is noteworthy that linear form might be appropriate if CI(V ) can be considered

linear within allowed tolerance, for example, for small-volume deals. For more substantial

deals that match in-depth limit orders, costs can be underestimated due to linearity. This

fact has been noticed, for example, in [Àíäðååâ et al., 2011] for high-frequency MICEX

data: polynomial interpolation CI(t, V ) = a(t)V 2+ b(t)V 3 was introduced since it contained

a minimal set of parameters while providing acceptable �tting.

Transaction costs function on MICEX stock market

In this section, we introduce a parametric form of the implicit costs function based on

empirical properties of MICEX data for the blue chip stocks of Lukoil (LKOH), Rostelecom

(RTKM) and Gazprom (GAZP) through the period of 2006-2007. The chosen stocks were

among the most actively traded during the period (judging by average number of market

events per trading day) and provide particularly good statistics. Empirical studies show that

in most cases the distribution is quite well �tted by a scaled gamma-distribution function

which coincides with the �ndings of [Bouchaud et al., 2002] for Paris Bourse. This is an

example of how empirical function can be approximated by a well-known absolute continuous

distribution. Fig. 1 - 4 demonstrate �tting results for LKOH and RTKM. Figures show good

�tting results, with precision decreasing for large depth values. This is systematic error

which occurs due to the in-depth �inactive� limit orders � orders which will be matched

with very small probability but at great price for the seller. A participant places such

orders to make use of a sudden market movement or an arrival of extremely large market
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order (for example, during restructures of large portfolios). Should considerable volume at

better prices be matched, some part of the order might reach the �inactive area�. We do not

consider �inactive� area in this work, aiming for average-sized portfolio and assuming that

market order's trades never reach such depth. Besides, placement of �inactive� orders is a

rare event on MICEX which renders useless any statistical methods for estimation.
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Figure 1: Approximation of trading volume distribution function by a scaled gamma-
distribution function for LKOH. Dots denote empirical values, solid line denotes approx-
imation curve.

To derive costs function in this case, denote distribution function of the sell side F (D) =

VmaxFγ(D) where Vmax < +∞ is available sell volume on the market, and Fγ(D) is gamma-
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(a) Distribution of residuals and normal approxi-
mation (solid line).
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(b) Distribution of residuals on normal quantile
plot. Dots denote quantiles of empirical distri-
bution.

Figure 2: Statistical properties of residuals during approximation of LKOH trading volume
distribution.

distribution function. Denote gamma-density

qγ(D) =
1

Γ(k)θk
Dk−1e−

D
θ , k > 0, θ > 0.

By de�nition, q(Pa + D)
a.s.
= qγ(D), q(D) > 0 where D > 0. For absolute continuous

distribution we have
ρ(V )∫
0

qγ(D)dD ≡ V, V ≥ 0 ⇔

⇔ ρ(V ) ≡ 1

qγ(ρ(V ))
;

ρ′′(V )qγ(ρ) + ρ′
2
(V )q′γ(ρ) ≡ 0, V ≥ 0. (8)

Lemma 1 yields

CI(V ) =

ρ(V )∫
0

Dqγ(D) dD ⇒
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Figure 3: Approximation of trading volume distribution function by a scaled gamma-
distribution function for RTKM. Dots denote empirical values, solid line denotes approx-
imation curve.

⇒ C ′
I(V ) = ρ′(V )ρ(V )qγ(ρ(V )) = ρ(V ). (9)

The study of cost function properties can be conducted through the properties of ρ(V ).

In view of (8), we can see that ρ′′(V ) > 0 is equivalent to qγ(ρ(V )) < 0, and ρ′′(V ) = 0 is

equivalent to qγ(ρ(V )) = 0. Since

q′(ρ) =
Vmax

Γ(k)θk

[
(k − 1)ρk−2 − 1

θ
ρk−1

]
e−

ρ
θ ,

for all k ≤ 1 we have q′ < 0 for all D > 0, therefore, ρ(V ) is strictly monotonically increasing
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(a) Distribution of residuals and normal approxi-
mation (solid line).
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(b) Distribution of residuals on normal quantile
plot. Dots denote quantiles of empirical distri-
bution.

Figure 4: Statistical properties of residuals during approximation of RTKM trading volume
distribution.

with no in�ection points. For k > 1

q′γ(ρ(V
∗)) = 0 ⇔ ρ(V ∗) = (k − 1)θ.

θρ(V ) = F−1
γ (

V

Vmax

) ⇒ V ∗

Vmax

= Fγ((k − 1)θ).

Thus, ρ(V ) has exactly one in�ection point. Therefore, polynomial approximation of ρ(V )

on MICEX is adequate to the data only for polynomials of third or higher degree, while (9)

implies forth or higher degree polynomials for CI(V ). By virtue of (9), we obtain feasible

parametric form of total cost function on MICEX stock market:

C(V ;P ∗
a ) = CE(V ) + V (Pa − P ∗

a ) +

V∫
0

F−1
γ (

V

Vmax

; θ, k) dV. (10)

As shown in previous chapter, cost function can be considered both non-zero and linear
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only in the market with absolutely liquidity level greater than the market order's size. In

practice, one can use linear approximation if underestimation of costs due to incorrect model

is negligible. We illustrate this for MICEX market with cost function (10). Denote market

price by P ∗
a . Assume that investment strategy neglects implicit costs for volume V if they

do not exceed αP ∗
aV , 0 < α < 1, i. e. prede�ned fraction of the deal's market value. Denote

by V ∗ a non-zero solution of

V∫
0

F−1
γ (

V

Vmax

; θ, k) dV = αP ∗
aV. (11)

Since F−1
γ (0; θ, k) = 0 and continuous, then there is V ′ such that

V∫
0

F−1
γ (

V

Vmax

; θ, k) dV ≤ αP ∗
aV for V ≤ V ′.

Should the inequality hold for all V ≤ Vmax, non-linear part in (10) is negligible according

to strategy's policy, and cost function can be considered linear. If the inequality is violated,

there is V ∗ > 0 � minimal non-zero solution of (11). Therefore, costs function can be

considered linear for the deal with volume V ≤ V ∗. For example, for θ = 4, k = 2, P ∗
a = 1,

Vmax = 100, 000, α = 0.02, we have V ∗ ≈ 678 � non-linear part of total costs value does

not overcome 2% of market value for deals with this volume or less. Note that the result

depends on the accuracy of estimates for θ and k.

Conclusion

The collapse of LTCM in 1998 and �nancial crisis of 2008 drew attention to the problem

of liquidity risk in portfolio management, de�ned via transaction costs as a function of deal

volume. Many contemporary works in optimal portfolio selection and management theory

assume linearity of the cost function due to both the possibility of a closed-form solution in

many theoretical frameworks and estimation of parameters by common econometric methods

during practical use. While justi�ed for explicit costs, for implicit part, which depends on

market properties, the assumption needs veri�cation or theoretical explanation. We show

that linearity of costs is equivalent to the introduced form of absolute liquidity thus valid

only for small deal volumes. Meanwhile, assumption of linearity for any volume does not

22



match any real limit order book and can yield severe underestimation of liquidity risk. For

MICEX stock market, we present a more adequate form of transaction costs function and

provide an example of estimating an upper bound of deal's volume for which costs can be

considered linear within tolerance.
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