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Introduction
Stochastic optimal control problems are very often encountered in various practical ar-
eas: from finance [28, 64] to engineering [9]. Recently they have got a new attention
and new challenges in the light of developing Reinforcement Learning (RL), in some sense
presenting itself as the intersection of optimal control, statistics and machine learning [58].

Such class of problems can be defined as follows. Let (Ω,F ,P, (Ft)t≥0) be a filtered
probability space with filtration (Ft)t≥0. Assume some set U of progressively measurable
stochastic processes U : R≥0 × Ω → Rn called controls and set of controlled processes

X =
{
XU

t : U ∈ U
}

where for every control U each (XU
t )t≥0 is anRd-valued (Ft)t≥0-adapted stochastic process.

We also set functional J : X → R and call it gain functional.

Definition 1. The problem of searching U∗ ∈ ArgmaxU∈U J(XU) is called stochastic
optimal control problem.

Also in practice (especially in reinforcement learning, see [58]) as a technical module
of some algorithms it is needed to evaluate the given decision rule and so one gets an
evaluation problem.

Definition 2. The problem of evaluating J(XU) given a control U in some form is called
control evaluation problem.

Of course, with such abstract formulation we cannot claim anything about the exis-
tence of the solutions or their qualities. The question becomes much more clear when
we consider more specific formulations. In the thesis the two more specific problems
are considered: optimal stopping for a stochastic differential equation(SDE) and Markov
Decision Problem (MDP).

Problem 1. (Optimal stopping problem for an SDE, [64, 28] ) Assume T > 0 and let
process Xt be set with an Ito SDE for t ∈ [0, T )

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

with initial condition XU
0 = x0 ∈ Rd, where functions

b : [0, T )×Rd × U → Rd, σ : [0, T )×Rd × U → Rd×n

are two continuous functions satisfying Lipschitz condition in the second argument and
linear growth condition with constant K:

∥b(t, x, u)∥2 + ∥σ(t, x, u)∥2 ≤ K(1 + ∥x∥2 + ∥u∥2)

with ∥·∥2 denoting the appropriate Euclidean 2-norm. With such assumption we may
ensure that the unique strong solution exists. Let gt : R→ R for every t ∈ [0, T ] be some
function called payoff. Consider an agent observing the process, at time t′ ∈ [0, T ] he
knows the values of Xt for all t ≤ t′. His goal is to choose the time τ when to take one
particular decision (stop the process, as it is often called) which gives him payoff gτ (Xτ ).
Formally, we are interested in choosing a stopping time τ taking values in [0, T ] from the
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set of admissible stopping times T maximizing the expected discounted reward of the
agent:

τ∗ = argmax
τ∈T

E [gτ (Xτ )] .

The most adopted by practitioners methods are invented with the ideas of Longstaff-
Schwarz(LS)[44] and Tsitsiklis-Van Roy [67] algorithms in mind. They exploit dynamic
programming principle and approximate conditional expectations using least-squares re-
gression on a given basis of functions on each backward induction step. Longstaff and
Schwarz demonstrated the efficiency of their approach through a number of numerical
examples and in [18] and [75] general convergence properties of the method were estab-
lished.

Problem 2. (Markov Decision Process, MDP, [58]) Assume some sets S,A called state
and action spaces (they have to be measurable spaces) and define discrete-time time-
homogenuous Markov chain St as follows. Let there be Π, the set of stochastic decision
rules (also called policies) π : S → P(A), i.e. each policy takes the state s ∈ S and returns
probability distribution over the action space denoted as π(·|s). Let us set transition
kernel P (·|s, a) as a probability distribution over the state space given the current state
and action. Set S0 = s0 almost surely and then iteratively update St to St+1 using the
following scheme:

At ∼ π(·|St),

St+1 ∼ P (·|St, At).

Consider a deterministic uniformly bounded reward function R : S × A → R. The
natural illustration of MDP is that we have an agent in the environment with state
descriptions from S; the agent at each time t must make a decision At using his policy,
after that he receives a reward R(St, At) and the environment changes its state as shown
above. The optimal control problem is to maximize with respect to policy the expected
sum of discounted rewards

J(π) = E

[
T∑
t=0

γtR(St, At)

]
,

where γ ∈ (0, 1) plays the role of the discounting factor and horizon T can be finite
(finite-horizon problem) or infinite (infinite-horizon problem), or even random (episodic
problem). MDP is a fundamental model in Reinforcement Learning(RL) being currently
a fast-developing area with promising and existing applications in numerous innovative
areas of the society: starting from AI for games [69, 8, 55] and going to energy manage-
ment systems [41, 26], manufacturing and robotics [2] to name a few. Naturally, RL gives
the practitioners new sets of control tools for any kind of automatization [27].

Policy evaluation is a vital part of the model-free algorithms based on policy iter-
ation and it is normally based on Stochastic Approximation(SA) schemes, invented in
[51]. SA itself currently became a well-studied technique [7, 39, 12], however RL gives
new challenges and new assumptions. Among others, linear SA schemes are popular in
reinforcement learning (RL) as they lead to policy evaluation methods with linear func-
tion approximation, of particular importance is temporal difference (TD) learning [57] for
which finite time analysis has been reported in [56, 40, 10, 20].
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Aim of the Work

The aim of our research is to investigate the problems above in several ways.

1. Regarding the optimal stopping problem discussed in Section 1.1, we are aiming at
presenting the complexity analysis of Weighted Stochastic Mesh(WSM) algorithm
similar to the method of [13] for discrete- and continuous-time optimal stopping
problem and compare it to other popular methods via new complexity metric since
with respect to classic complexity metric all algorithms for optimal stopping are
intractable and there is no way to compare them taking the complexity into account.

2. In Section 1.2 we aimed at obtaining finite-time convergence analysis for two-
timescale linear Stochastic Approximation(SA) scheme under Markov noise assump-
tions. Such setting is exactly the setting of classic policy evaluation algorithms for
MDP: temporal difference learning (TD(0) of [57]) and gradient temporal difference
algorithms (GTD[59],GTD2 and TDC [60]). The problem with existing analysis is
that it does not consider the Markov nature of the data (which is a natural thing
since practitioners work in MDP setting) or the assumptions are too restrictive.

3. Finally, in Section 1.3 we set up to propose a new method for variance reduction
based on empirical variance minimization of [5] in policy-gradient algorithms. The
goal is, firstly, to obtain an algorithm able to give the improvement over the clas-
sic optimization goal for control variates in Advantage Actor-Critic(A2C) schemes
[61] and, secondly, give some theoretical guarantees regarding the actual variance
reduction.

Key Results

1. To address the first aim, we present for the first time the complexity analysis of WSM
algorithm based on [13] and consider also the case when the transition density p(x|y)
is not known but can be approximated. We propose a new metric for comparison
of the algorithms for optimal stopping problems called semitractability index and
compare with it several algorithms popular in the community of practitioners: LS-
algorithm [44] and QTM [4].

2. We provide improved convergence rates for the linear two-timescale SA in both
martingale and Markovian noise settings. Our analysis allow for general step sizes
schedules, including constant, piecewise constant, and diminishing step sizes ex-
plored in the prior works [33, 19, 74, 22]. Unlike the prior works [42, 19, 74], our
convergence results are obtained without requiring a projection step throughout the
SA iterations. Finally, with an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected squared error to show the tightness
of our upper bounds.

3. We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to
A2C-criterion. Also theoretical variance bounds for EV-methods are provided us-
ing the ideas of [5], this the first result concerning the variance bounds with high
probability with the help of the tools of statistical learning in the setting of RL.
Measurements of the variance of the gradient estimates present several somewhat
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surprising observations. Firstly, EV-methods are able to solve variance reduction
problem considerably better than A2C. Secondly, we see some confirmations of the
hypothesis of [68]: variance reduction has its effect but some environments are not so
responsive to this. We present the first experimental investigation of EV-criterion of
policy-gradient methods in classic benchmark problems and the first implementation
of it in the framework of PyTorch.

Author contribution. Some part of the analysis for discrete-time case, transfer from
discrete to continuous case, implementations and numerical experiments in paper 1 are
done by the Author. In paper 2 the Author has done substantial work in preparing the
literature review and writing the proofs for the martingale case and presented numerical
results and illustrations. In the last direction the Author has done the main steps of the
proof of the probabilistic bound, verification of the assumptions, literature review and has
taken part in the implementation of the algorithms and experiment design.
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noise. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty Third
Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pages 2144–2203. PMLR, 09–12 Jul 2020
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policy-gradient methods via empirical variance minimization. arXiv:2206.06827v2,
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Russia, December 21 2020 .

4. Kaledin M. Variance Reduction for policy-gradient methods in Reinforcement Learn-
ing, summer school "Modern methods of Information Theory, Optimization and
Control" , Sirius, Sochi, Russia, August 2-23 2020.

5. Kaledin M. Convergence of Linear Two-Timescale Stochastic Approximation, Win-
ter School "Math of Machine Learning" , Sirius, Sochi, Russia, February 20-23 2019.

6. Kaledin M. Approximate Dynamic Programming for American Options, poster ses-
sion, "Data Science Summer School" (DS3), l’École Polytechnique, Paris, June 24-
28th 2019.

7. Kaledin M. Approximate Dynamic Programming with Approximation of Transition
Density, Winter School "New Frontiers in High-Dimensional Probability and Statis-
tics 2" , HSE, Moscow, February 22-23 2019.

1 Contents

1.1 Semitractability of Optimal Stopping Problem via Weighted
Stochastic Mesh Algorithm

The results of this section are published in [6].

1.1.1 Introduction

Optimal stopping problem consists in constructing a decision rule saying when to take one
particular decision ("stop" the process). Being a classic problem in mathematical finance,
it is in the core of pricing various types of options, the most popular are American and
European [28]. We consider two types of problems.

1. (Continuous-time optimal stopping) Assume set of stopping opportunities [0, T ] and
let (Xt)t∈[0,T ] be, as set in Problem 1, an Ito diffusion process set by (1) The problem
is the same as above but with gt being a payoff function for each t ∈ [0, T ] and T
being the set of stopping times taking values in range [0, T ].

2. (Discrete-time optimal stopping) Assume a time-discretized version of the problem
above with some finite set of stopping opportunities L = {0, .., L} for some L ∈ Z>0

and let (Zl)l∈L be a Markov chain in Rd obtained after the discretization. The
problem is to find stopping time τ ∗ giving

E [gτ∗(Zτ∗) | Z0] = sup
τ∈T

E [gτ (Zτ ) | Z0] ,

where gl are payoff functions Rd → R≥0 at times l ∈ L and T is set of stopping times
taking values in L. For simplicity and without loss of generality we assume that
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Markov chain (Zl)l∈L is time-homogeneous with one-step transition density denoted
by p(y|x) so that

P (Zk+1 ∈ dy | Zk = x) = p(y|x)dy
for all x, y ∈ Rd.

Despite existing convergence results, it turns out that comparing different algorithms
for optimal stopping problem based solely on their convergence rates is not possible since
these algorithms may be significantly different from a computational standpoint. The
core approaches to complexity analysis in numerical algorithms can be found in [49] and
the references therein. The main problem studied in this literature is the computation of
integrals via deterministic and stochastic algorithms. Optimal stopping problems, in fact,
present computations of several nested integrals since the dynamic programming principle
is used. Hence, the existing results from standard complexity theory cannot be directly
transferred to the complexity analysis of optimal stopping problem. In particular, for LS
algorithm [75, Cor. 3.10] results in costs

CL(ε, d) ∼ κ1
L5(κ2+L)(2+3d/α)

ε2+3d/α

with κ1, κ2 being certain constants. If the problem is in continuous time, then by tuning
time discretization we arrive at complexity of LS algorithm possibly growing even faster
than exp(ε−1/β) for some β > 0. The similar bound holds for other simulation based
regression algorithms, including the one by Tsitsiklis and Van Roy [67]. In [24] the more
general regression scheme is considered with similar type of results. The main problem
with these complexity estimates is that the dimensionality of the process d enters the de-
gree of ε resulting in so-called curse of dimensionality still appearing even in such Monte
Carlo schemes. There exists, however, work of [29] where the novel Monte-Carlo-type
scheme is developed with complexity independent of d but, unfortunately, it is exponen-
tial in ε−1.

Tractability is an important notion in the analysis of numerical algorithms and one
of the ways to define it is as follows. A d-dimensional numerical problem, for example,
computation of an integral like

∫
[0,1]d

f(x)dx, is called tractable [49], if there is an algorithm
to solve it with complexity C(ε, d) satisfying

lim
d+ε−1→∞

ln C(ε, d)
d+ ε−1

= 0. (2)

In the case of optimal stopping problems, however, such a definition is not very meaningful:
in all regression-type algorithms already in the case of discrete-time problem one has

lim sup
d+ε→∞

ln C(ε, d)
d+ ε−1

= ∞

due to the exponential dependence of the complexity on d (based on the convergence
rates known in the literature). Thus, even for a discrete-time optimal stopping problem
regression-type algorithms are intractable with respect to this definition. For example,
with the results of [65] it can be shown that the error of the estimation of the value
function in this case has the form

5L

(√
md

N
+ e−θm

)
, θ > 0.

8



However, this observation also applies to Weighted Stochastic Mesh(WSM) algorithm of
Broadie and Glasserman [13], making almost all algorithms intractable. This motivates
the development of more flexible complexity metric for the comparison of the algorithms
for optimal stopping problems.

In turns out that not much is known about the convergence properties of WSM method
except some preliminary results in discrete case [1]. The authors, however, do not give
the dependence of the errors on the underlying dimension and the number of stopping
times and their analysis is based on a rather restrictive assumption of compact state
space. Similar type of algorithm we present here was also analyzed in the work of Rust
[52] presenting a Monte Carlo scheme which has no exponential dependence on d but just
O(1/ε4). The setting of discrete-time Markov Decision Process and the techniques used,
however, make the transfer to optimal stopping non-trivial. Also the paper considers
very restrictive assumptions of compact state space and Lipshitz continuity of transition
densities with Lipschitz constant independent on the dimension d.

1.1.2 Complexity Metrics

It turns out that the criterion (2) puts too much importance on the dimension d on
the one hand and on the other hand is too relaxed in dependence on ε. With such
definition the algorithm with complexity d2exp (ε−1/ ln ln ... ln ε−1) is tractable while one
with complexity 2d/ε is not despite that running an algorithm with the former complexity
seems to be practically impossible even with d = 1. Therefore, we proposed another
approach to tractability.

Definition 3. For an algorithm with computational complexity C(ε, d) the number

ΓC := lim sup
d→∞

lim sup
ε→0

ln C(ε, d)
d ln(1/ε)

.

is called semitractability index.

Definition 4. The problem is called semitractable if there exists an algorithm solving it
with ΓC = 0.

Note that this definition nicely processes the dependencies of the complexities like
1/εpoly(d) making possible the comparison of various Monte Carlo algorithms for solving
optimal stopping and optimal control problems.

1.1.3 WSM Algorithm

Let us present a Weighted Stochastic Mesh (WSM) algorithm for a discrete-time optimal
stopping problem. The algorithm is inspired by [13] but it differs in special choice of
weights and truncation level. First, let us define the discrete Snell envelope process:

Ul = Ul(Zl) := sup
τ∈Tl,L

E [gτ (Zτ ) | Fl] , l = 0, ..L,

where Tl,L is the set of stopping times taking values in the set {l, .., L}. Snell envelope
satisfies dynamic programming principle, therefore, we can compute Ul using backward
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induction:

UL(ZL) = gL(ZL),

Ul(Zl) = max {gl(Zl), E [Ul+1(Zl+1) | Zl]} , l = 0, .., L− 1.

For technical purposes of the analysis we set truncation level R > 0 and define the
truncated version of this backward induction:

ŨL(ZL) = gL(ZL), (3)

Ũl(Zl) = max
{
gl(Zl), E

[
Ũl+1(Zl+1) | Zl

]}
· 1BR

(Zl), l = 0, .., L− 1, (4)

where 1BR
is the indicator function of the 0-centered euclidean ball of radius R in Rd.

Thus, the values vanish when the process is out of BR. We sample N independent
trajectories (Z

(n)
l )l∈L with Z

(n)
0 = x0, n = 1, .., N with the help of transistion density

p(y|x). To estimate the conditional expectations, we use the following approximation:

E
[
Ũl+1(Zl+1) | Zl = x

]
≈

N∑
n=1

Ũl+1

(
Z

(n)
l+1

) p
(
Z

(n)
l+1 | x

)
∑N

m=1 p
(
Z

(n)
l+1 | Z(m)

l

) . (5)

To sum up, WSM algorithm is as follows:

1. Simulate N independent trajectories (Z
(1)
l )l∈L, .., (Z

(N)
l )l∈L;

2. Set UL(Z
(n)
L ) = gL(Z

(n)
L ) for n = 1, .., N ;

3. For l = L − 1, .., 1 compute U l(Z
(n)
l ) for all n = 1, .., N using (4) and (5) for

approximation of the conditional expectation;

4. Compute

U0(x0) = max

{
g0(x0) ,

1

N

N∑
n=1

U
(n)

1

(
Z

(n)
1

)}
.

One more thing to notice is that one step of backward induction with (4) and (5) takes
N2c∗ with c∗ being the price of multiplication. Thus, the total computational cost of the
algorithms is c∗N

2L and given that c∗ ≪ c
(d)
f , the cost of one computation of transition

density, it is bounded from above by c
(d)
f N2L.

1.1.4 Main Results

Using the bounds from the literature we have computed ΓC for two popular in prac-
tice methods (Longstaff-Schwarz[44] and Quantization Tree [4], see the table below) in
discrete-time and continuous-time optimal stopping. For WSM algorithm we have two
core results presented below.

Theorem 1. (Proposition 2.5 in [6]) Suppose that the following conditions are satisfied:

1.
max
0≤l≤L

gl(x) ≤ cg(1 + ∥x∥2), x ∈ Rd;
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2.
E

[
max
l≤l′≤L

|Zl′ | | Zl = x

]
≤ cZ(1 + ∥x∥2), x ∈ Rd;

3. There exist κ, α > 0 such that for all l = 1, .., L the l-step transition density satisfies

0 < pl (y|x) ≤
κ

(2παL)d/2
e−

∥x−y∥22
2αl .

Then the complexity of WSM algorithm is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2L

d+7ε−4 × lnd+2

L (1 + cZ + cZ ∥x0∥2) e
cZ

√
αL

1+cZ+cZ∥x0∥2 23/4 (cgκ ∨ 1)

ε

 .

Corollary 2. (Corollary 2.6 in [6]) Discrete-time optimal stopping under the assumptions
of Theorem 1 is semitractable if the complexity of the computation of the transition density
at one point c(d)f is at most polynomial in d.

One minor result we have obtained is that if the transition density itself cannot be
computed but we have an approximation which is good enough, then the same result
holds with slightly different constants. In particular, we get finite tractability index if
approximating sequence pn satisfies∣∣∣∣pn (y|z)− p (y|z)

pn (y|z)

∣∣∣∣ ≲ (1 + ∥y − x0∥m2 + ∥z − x0∥m2 )
n

n!
, y, z ∈ BRn

for some m ∈ Z>0 and appropriate sequence Rn → ∞ as n → ∞.

Considering continuous-time optimal stopping, we first build a discretization scheme
based on Euler-Maruyama method with uniform time discretization having step h (for
details see [6]). This essentially gives a discrete-time problem. In fact, the theorem is
proven for more general approximation scheme and Euler-Maruyama scheme is just one
example of the method which works.

Theorem 3. (Proposition 3.4 in [6]) Assume the following conditions:

1.
max
0≤t≤T

gt(x) ≤ cg(1 + ∥x∥2), x ∈ Rd;

2.
E

[
max
l≤l′≤L

∣∣X l′h

∣∣ | X lh = x

]
≤ cX(1 + ∥x∥2), x ∈ Rd;

3. There exist κ, α > 0 such that for all l = 1, .., L the l-step transition density of
(X lh)l∈L satisfies

0 < plh (y|x) ≤
κ

(2παlh)d/2
e−

∥x−y∥22
2αlh .
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Then the cost of computing the solution of obtained discrete-time optimal stopping problem
is is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

hd+5
ε−4 × lnd+2

(T/h) (1 + cX + cX ∥x0∥2) e
c
X

√
αT

1+c
X

+c
X

∥x0∥2 23/4 (cgκ ∨ 1)

ε


and the cost of computing the solution of continuous-time optimal stopping problem is
bounded from above by

C⋆(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

ε2d+14
× lnd+2

T (1 + cX + cX ∥x0∥2) e
c
X

√
αT

1+c
X

+c
X

∥x0∥2 23/4 (cgκ ∨ 1)

ε

 .

Corollary 4. In the setting of continuous optimal stopping problem, the WSM algorithm
with time discretization satisfying the assumptions of Theorem 3 has semitractability index
ΓC⋆ = 2.

The comparison table with semitractability indices we obtained is reported in our
paper [6] and is placed below.

Setting \ Algorithm LS WSM QTM
Discr. time 3/α 0 2
Cont. time ∞ 2 6

Table 1: Semitractability indices for Longstaff-Schwarz(LS), Weighted Stochastic
Mesh(WSM) and Quantization Tree Method(QTM) computed in the paper.

1.1.5 Numerical Experiments

In the following experiments we illustrate the WSM algorithm in the case of continuous-
time optimal stopping problems. A lower bound for the value function in WSM method is
obtained using a suboptimal stopping rule computed on an independent set of trajectories
(test set). This stopping rule can be constructed using any interpolation algorithm based
on the observations from the training trajectories. The fastest and the simplest way giving
good results is the nearest neighbor interpolation, in our experiments we have chosen the
number of nearest neighbors to be 500.

American put option on a single asset
To illustrate the performance of the WSM algorithm in continuous time, we consider

a problem of pricing American put option on a single asset driven by geometric Brownian
motion

Xt = X0e
σWt+(r−σ/2)t

with r denoting the riskless rate of interest, assumed to be constant, and σ being the
constant volatility. The payoff function is given by

g(x) = max(K − x, 0).
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The fair price of an option is defined as

U0 = sup
τ∈T[0,T ]

E
[
e−rτg(Xτ )

]
for which there is no closed form solution but there exist numerical methods giving accu-
rate approximations to U0. We used parameters r = 0.08, σ = 0.20, K = X0 = 100, T = 3.
An accurate estimate of U0 in this particular case is obtained and reported in [36] to be
6.9320. In Fig. 1 we show the lower bounds obtained by WSM, LS and VF (value func-
tion regression method of [67]) in dependence of the number of stopping opportunities L
setting uniform time discretization on [0, T ] (the larger L the more dense is the grid). As
can be seen, WSM lower bound is much more stable when L increases and LS and VF
needs to use more complex regression basis to compensate for this effect.

Figure 1: Lower bounds for the price of one-dimensional American put option approxi-
mated using different methods and uniform time discretization tk = kT/L, k = 0, .., L of
exercise dates. The numbers of training paths are Ntrain = 1000(a) and Ntrain = 2000(b)
and the number of test trajectories used for constructing the lower bounds Ntest = 20000
and is the same in both cases. In LS and VF a polynomial basis of degrees 2 and 4 is
used (mentioned in the legend).

American max-call option on five assets
The model with d = 5 assets is considered where each underlying asset has dividend

yield δ. The dynamics is set by

dXk
t = (r − δ)Xk

t dt+ σXk
t dW

k
t , k = 1, .., d,

where W k
t are independent one-dimensional Brownian motions. The parameters are set

to be r = 0.05, δ = 0.1, σ = 0.2. As before, the holder may exercise the option at any
time t ∈ [0, T ] with T = 3 and receive the payoff

g(Xt) = max
(
max

(
X1

t , .., X
d
t

)
−K, 0

)
.

We apply WSM and LS (with a basis of degree-2 polynomials) techniques to construct a
lower bound. The results for different L are presented in Fig. 2. The option price must
increase when the number of stopping opportunities increases, therefore LS-algorithm has
clearly deteriorating estimate. WSM, on the other hand has increasing lower bound which
shows that it performs considerably better than LS.
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Figure 2: Lower bounds for the price of a five-dimensional American put option approx-
imated using a uniform grid tk = kT/L, k = 0, .., L of exercise dates. The number of
training paths is Ntrain = 2000 and the number of test trajectories is Ntest = 5000.
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1.2 Finite Time Analysis of Linear Two-Timescale Stochastic Ap-
proximation with Markovian Noise

The results of this section are published in [35].

1.2.1 Introduction

The TD-learning scheme based on classical (linear) SA is known to be inadequate for
the off-policy learning paradigms in RL (data samples are drawn from a behavior policy
different from the policy being evaluated [3, 66]). To circumvent this problem, [59, 60]
have suggested gradient TD (GTD) method and the TD with gradient correction (TDC)
method. These methods are represented as linear two-timescale SA scheme introduced
by [11]:

θk+1 = θk + βk{b̃1(Xk+1)− Ã11(Xk+1)θk − Ã12(Xk+1)wk}, (6)

wk+1 = wk + γk{b̃2(Xk+1)− Ã21(Xk+1)θk − Ã22(Xk+1)wk}. (7)

The above recursion involves two iterates, θk ∈ Rdθ , wk ∈ Rdw , whose updates are coupled
with each other. In the above, b̃i(x), Ãij(x) are measurable vector/matrix valued func-
tions on X and the random sequence (Xk)k≥0, Xk ∈ X forms an ergodic Markov chain.
The scalars γk, βk > 0 are step sizes. The above SA scheme is said to have two timescales
as the step sizes satisfy limk→∞ βk/γk < 1 such that wk is updated at a faster timescale.
In fact, wk is a ‘tracking’ term which seeks solution to a linear system characterized by θk.

Our goal is to characterize the finite-time expected error bound with improved conver-
gence rate for the two-timescale SA (6),(7). The almost-sure convergence of two timescale
SA has been established in [11, 62, 63, 12], among others and [38, 48] characterized the
asymptotic convergence rates. However, finite-time risk bounds for two timescale SA
have not been analyzed until recently. With martingale samples, [42] provided the first
finite time analysis of GTD method, [21, 19] provided improved finite time error bounds.
Unlike our analysis, they analyzed modified two timescale SA with projection and their
bounds hold with high probability. With Markovian noise, [33] studied the finite time
expected error bound with constant step sizes; [74] and [22] provided similar analysis for
general step sizes. It is important to notice that with homogeneous martingale noise,
the asymptotic rate of (6), (7) without a projection step, as shown in [38, Theorem 2.6],
is in the order E

[
|θk − θ⋆|2

]
= O(βk),E

[∣∣wk − A−1
22 (b2 − A21θk)

∣∣2] = O(γk), where θ⋆

is a stationary point of the SA scheme. However, the latter rate is not achieved in the
finite-time error bounds analyzed by the above works except for [19]. It had been an open
problem whether this error bound holds for the Markovian noise setting and for linear
two time-scale SA scheme without projection.

1.2.2 Main Results

We investigate the linear two timescale SA given by the following equivalent form of (6),
(7):

θk+1 = θk + βk(b1 − A11θk − A12wk + Vk+1), (8)
wk+1 = wk + γk(b2 − A21θk − A22wk +Wk+1), (9)
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where the mean fields are defined as bi := limk→∞E
[
b̃i(Xk)

]
, Aij := limk→∞E

[
Ãij(Xk)

]
(these limits exist as we recall that (Xk)k≥0 is an ergodic Markov chain). The noise terms
Vk+1,Wk+1 are given by:

Vk+1 := b̃1(Xk+1)− b1 − (Ã11(Xk+1)− A11)θk − (Ã12(Xk+1)− A12)wk,

Wk+1 := b̃2(Xk+1)− b2 − (Ã21(Xk+1)− A21)θk − (Ã22(Xk+1)− A22)wk.
(10)

The goal of the recursion (8), (9) is to find a stationary solution pair (θ⋆, w⋆) that solves
the system of linear equations:

A11θ + A12w = b1, A21θ + A22w = b2. (11)

We are interested in the scenario when the solution pair (θ⋆, w⋆) is unique and is given by

θ⋆ = ∆−1(b1 − A12A
−1
22 b2), w⋆ = A−1

22 (b2 − A21θ
⋆). (12)

where ∆ := A11 − A12A
−1
22 A21.

To analyze the convergence of (θk, wk)k≥0 in (8), (9) to (θ⋆, w⋆), we require several
assumptions which are common for linear two time-scale SA, see [38].

A 1. Matrices −A22 and −∆ = −
(
A11 − A12A

−1
22 A21

)
are Hurwitz.

A 2. (γk)k≥0, (βk)k≥0 are nonincreasing sequences of positive numbers that satisfy the
following.

1. There exist constant κ such that for all k ∈ N, we have βk/γk ≤ κ.

2. For all k ∈ N, it holds

γk/γk+1 ≤ 1+(a22/8)γk+1, βk/βk+1 ≤ 1+(a∆/16)βk+1, γk/γk+1 ≤ 1+(a∆/16)βk+1.
(13)

Our conditions on step sizes are similar to [38, Assumption 2.3, 2.5]. These condi-
tions encompass diminishing, piecewise constant and constant step sizes schedules which
are common in the literature. For instance, a popular choice of diminishing step sizes
satisfying A2 is

βk = cβ/(k + kβ
0 ), γk = cγ/(k + kγ

0 )
2/3 (14)

with some constants cβ, cγ, kγ
0 , k

β
0 , e.g., as suggested in [21, Remark 9]; or a constant step

size of βk = β, γk = γ; or a piecewise constant step size, e.g., [33].
We present new results on the convergence rate of (8), (9) depending on the types of

noise with Vk+1,Wk+1. To discuss these cases, let us define the σ-field generated by the
two timescale SA scheme and the initial error made by the SA scheme, respectively as:

Fk := σ
{
θ0, w0, X1, X2, ..., Xk

}
, V0 := E

[
∥θ0 − θ⋆∥2 + ∥w0 − w⋆∥2

]
. (15)

Our main results are presented for two sets of noise assumptions.
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Martingale Noise We consider a simple setting where the random elements Xk are
drawn i.i.d. from the distribution such that bi, Aij are the expected values of random vari-
ables b̃i(Xk), Ãij(Xk) which are assumed to have bounded second moment. This implies
that the sequences (Vk+1)k∈N, (Wk+1)k∈N are martingale difference sequences.

A3. The noise terms are zero-mean conditioned on Fk, i.e., EFk [Vk+1] = EFk [Wk+1] = 0.

A 4. There exist constants mW ,mV such that

∥E
[
Vk+1V

⊤
k+1

]
∥ ≤ mV (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥), (16)

∥E
[
Wk+1W

⊤
k+1

]
∥ ≤ mW (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥) .

Theorem 5. Assume A1–4 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βmtg

∞ ] and
κ ∈ [0, κ∞], where γmtg

∞ , βmtg
∞ , κ∞ are defined constants. Then

E
[
∥θk − θ∗∥2

]
≤ dθ

{
Cθ̃,mtg

0

k−1∏
ℓ=0

(
1− βℓ

a∆
4

)
V0 + Cθ̃,mtg

1 βk

}
(17)

E
[∥∥wk − A−1

22 (b2 − A21θk)
∥∥2] ≤ dw

{
Cŵ,mtg

0

k−1∏
ℓ=0

(
1− βℓ

a∆
4

)
V0 + Cŵ,mtg

1 γk

}
(18)

The exact constants are provided in the paper.

Markovian Noise Consider the sequence (Xk)k≥0 to be samples from an exogenous
Markov chain on X with the transition kernel P : X × X → R+. For any measurable
function f , we have

EFk [f(Xk+1)] = P f(Xk) =

∫
X

f(x) P(Xk, dx)

B 1. The Markov kernel P has a unique invariant distribution µ : X → R+. Moreover, it
is irreducible and aperiodic.

Observe that

bi =

∫
X

b̃i(x)µ(dx), Aij =

∫
X

Ãij(x)µ(dx), i, j = 1, 2.

We show that the linear two time-scale SA (6), (7) converges to a unique fixed point
defined by the above mean field vectors/matrices, see (12). An important condition that
enables our analysis is the existence of solutions to the following Poisson equations:

B 2. For any i, j = 1, 2, consider b̃i(x), Ãij(x), there exists vector/matrix valued measur-
able functions b̂i(x), Âij(x) which satisfy

b̃i(x)− bi = b̂i(x)− P b̂i(x), Ãij(x)− Aij = Âij(x)− P Âij(x) (19)

for any x ∈ X and bi, Aij are the mean fields of b̃i(x), Ãij(x) with the stationary distribution
µ.

The above assumption can be guaranteed under B1 together with some regularity
conditions, see [23, Section 21.2]. Moreover,
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B 3. Under B2, the vector/matrix valued functions b̂i(x), Âij(x) are uniformly bounded:
for any i, j = 1, 2, x ∈ X,

∥b̂i(x)∥ ≤ b, ∥Âij(x)∥ ≤ A. (20)

B 4. There exists constant ρ0 such that for any k ≥ 1, we have γ2
k−1 ≤ ρ0βk.

To satisfy B3, we observe that the bounds b,A depend on the mixing time of the chain
(Xk)k≥0 and a uniform bound on b̃i(·), Ãij(·). In the context of reinforcement learning,
the latter can be satisfied when the feature vectors and reward are bounded. In fact,
B3 implies A4. Meanwhile, B4 imposes further restriction on the step size. The latter
can also be satisfied by (14). The challenges of analysis with Markovian noise lie in the
biasedness of the noise term as EFk [Vk+1] ̸= 0, EFk [Wk+1] ̸= 0.

Theorem 6. Assume A1–2, B1–4 hold and for all k ∈ N, we have βk ∈ (0, βmark
∞ ],

γk ∈ (0, γmark
∞ ], κ ≤ κ∞, where βmark

∞ , γmark
∞ , κ∞ are defined constants. Then

E
[
∥θk − θ⋆∥2

]
≤ dθ

{
Cθ̃,mark

0

k−1∏
ℓ=0

(
1− βℓ

a∆
8

)
(1 + V0) + Cθ̃,mark

1 βk

}
, (21)

E
[
∥wk − A−1

22 (b2 − A21θk)∥2
]
≤ dw

{
Cŵ,mark

0

k−1∏
ℓ=0

(
1− βℓ

a∆
8

)
(1 + V0) + Cŵ,mark

1 γk

}
. (22)

The exact constants are given in the paper.

While Theorem 6 relaxes the martingale difference assumption A4 in Theorem 5, we
remark that the results here do not generalize that in Theorem 5 due to the additional
B3, B4. Particularly, with martingale noise, the convergence of linear two timescale SA
only requires the noise to have bounded second order moment, yet the Markovian noise
needs to be uniformly bounded.

The upper bounds in Theorem 5 and 6 consist of two terms – the first term is a
‘transient’ error with product such as

∏k−1
i=0 (1−βia∆/8) decays to zero at the rate o(1/kc)

for some c > 1 under an appropriate choice of step sizes such as (14); the second term is a
‘steady-state’ error. We observe that the ‘steady-state’ error of the iterates θk, wk exhibit
different behaviors. Taking the step size choices in (14) as an example, the steady-state
error of the slow-update iterates θk is O(1/k) while the error of fast-update iterates wk is
O(1/k

2
3 ). Furthermore, similar bounds hold for both martingale and Markovian noise.

Comparison to Related Works Our results improve the convergence rate analysis
of linear two timescale SA in a number of recent works. In the martingale noise setting
(Theorem 5), the closest work to ours is [19] which analyzed the linear two timescale SA
with martingale samples and diminishing step sizes. The authors improved on [21] and
obtained the same convergence rate (in high probability) as our Theorem 5, furthermore
it is demonstrated that the obtained rates are tight. Their bounds also exhibit a sublin-
ear dependence on the dimensions dθ, dw. However, their algorithm involves a sparsely
executed projection step and the error bound holds only for a sufficiently large k. These
restrictions are lifted in our analysis.

In the Markovian noise setting (Theorem 6), the closest works to ours are [22, 33, 74].
In particular, [33] analyzed the linear two timescale SA with constant step sizes and
showed that the steady-state error for both θk, wk is O(γ2/β). [74] analyzed the TDC
algorithm with a projection step and showed that the steady-state error for θk is O(1/k

2
3 )
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if the step sizes in (14) is used. [22] analyzed the linear two timescale SA with diminishing
step size and showed that the steady state error for both θk, wk is O(1/k

2
3 ). Interestingly,

the above works do not obtain the fast rate in Theorem 6, i.e., E [∥θk − θ⋆∥2] = O(1/k).
One of the reasons for the sub-optimality in their rates is that their analysis are based on
building a single Lyapunov function that controls both errors in θk and wk. In contrast,
our analysis relies on a set of coupled inequalities to obtain tight bounds for each of the
iterates θk, wk.

Our last result is the lower bound constructed to demonstrate the tightness of our
analysis in Theorem 5, 6 writing the explicit expression for squared error E [∥θk − θ⋆∥2].
We consider the following technical assumption:

A5. There exist matrices Σ11,Σ12,Σ22, and a constant mexp
VW ≥ 0 such that for all j ∈ N,

it holds

∥E
[
VjV

⊤
j

]
− Σ11∥ ∨ ∥E

[
WjW

⊤
j

]
− Σ22∥ ∨ ∥E

[
VjW

⊤
j

]
− Σ12∥ ≤ mexp

VW (∥E
[
θ̃kθ̃

⊤
k

]
∥ + ∥E

[
w̃kw̃

⊤
k

]
∥).

Note that A5 implies A4 and therefore poses a stronger assumption. We have

Theorem 7. Assume A1–3, A5 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βexp

∞ ]
and κ ∈ [0, κexp

∞ ], where γmtg
∞ , βexp

∞ , κexp
∞ are constants defined in the paper. Then for any

k ≥ kexp
0 := min{ℓ :

∑ℓ−1
j=0 βj ≥ log(2)/(2∥∆∥)}, the following expansion holds

E
[
∥θk − θ⋆∥2

]
= Ik + Jk. (23)

The leading term Ik is given by the following explicit formula

Ik :=
∑k

j=0 β
2
j Tr

(∏k
ℓ=j+1(I−βℓ∆)Σ

{∏k
ℓ=j+1(I−βℓ∆)

}⊤
)
,

where Σ := Σ11+A12A
−1
22 Σ

22A−⊤
22 A⊤

12+Σ12A−⊤
22 A⊤

12+A12A
−1
22 Σ

21. Meanwhile, the following
two-sided inequality holds

Cexp
3 Tr(Σ) ≤ Ik

βk

≤ Cexp
4 Tr(Σ), (24)

and Jk is bounded by

|Jk| ≤ Cexp
0

k−1∏
ℓ=0

(
1− a∆

4
βℓ

)
V0 + Cexp

1 βk

(
γk +

βk

γk

)
, (25)

where V0 was defined in (15). All constants Cexp
0 ,Cexp

1 ,Cexp
3 , Cexp

4 are given in the paper
and they are independent of βk, γk.

Observe that from (25), the dominant term for Jk is given by O(βkγk +
β2
k

γk
). As such,

using (24), we observe that
|Jk|/Ik = O (γk + βk/γk)

If limk→∞ βk/γk = 0, we have limk→∞ |Jk|/Ik = 0. Combining (23), (24) shows that the
expected error E [∥θk − θ⋆∥2] is lower bounded by Ω(βk).

We note that the assumptions A1–3, A5 imposed by the theorem imply A1–A4 re-
quired by Theorem 5. Hence, together with (17) in Theorem 5, the above observations
constitute a matching lower bound on the convergence rate of linear two timescale SA
with martingale noise.

19



1.3 Variance Reduction for Policy-Gradient Methods via Empir-
ical Variance Minimization

The results of this section are published in [34].

1.4 Introduction

In RL policy-gradient methods constitute the family of gradient algorithms directly mod-
elling the policy and exploiting various formulas to approximate the gradient of expected
reward with respect to the policy parameters [71, 61]. The straightforward way to tackle
gradient estimation is Monte Carlo scheme resulting in the algorithm called REINFORCE
[71]. Assume a Markov Decision Problem (MDP) (S,A, R,P,Π, µ0, γ) with a finite
horizon T and given a class of policies Π = {πθ : S → P(A) | θ ∈ Θ} parametrized by
θ ∈ Θ ⊂ RD where P(A) is the set of probability distributions over the action set A.
We will omit the subscript in πθ wherever possible for shorter notation, in all occurrences
π ∈ Π. The optimization problem for MDP reads as

maximize J(θ) = E

[
T−1∑
t=0

γtR(St, At)

]
w.r.t. θ ∈ Θ,

where we have assumed that the horizon T is fixed. Note that any sequence of states,
actions, and rewards can be represented as an element X of the product space

(S ×A×R)T .

Let ∇̃J |θ′ : (S × A × R)T → RD be an unbiased estimator of the gradient ∇θJ at point
θ = θ′. With this notation the gradient descent algorithm for maxmization of J(θ) using
the estimate ∇̃J reads as follows:

θn+1 = θn + ηn
1

K

K∑
k=1

∇̃J |θn(X(k)
n ), n = 1, 2, . . . (26)

with ηn being a positive sequence of step sizes. We will omit the subscript θn in the
gradient estimate if it is clear from the context at which point the gradient is computed.
REINFORCE [71] is one example of this estimator:

∇̃reinfJ : X 7→
T−1∑
t=0

γtGt(X)∇θ log π(At|St)

with

Gt(X) :=
T−1∑
t′=t

γt′−tRt,

where Rt = R(St, At) and

X = [(S0, A0, R0), .., (ST−1, AT−1, RT−1)]
⊤ .

Unavoidably, there is the variance emerging from the estimation of the high-dimensional
gradient [70]. This makes the problem of gradient estimation quite challenging. Variance
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reduction is necessarily required to construct modifications with gradient estimates of
lower variance and lower computational cost than increasing the sample size.

The main developments in this direction include actor-critic by [37] and advantage
actor-critic: A2C [61] and asynchronous version of it, A3C [46]. Generally, it can be
considered as a modification of REINFORCE with additional use of control variate set
by state-action-dependent baseline bϕ : S × A → R (SA-baselines) or state-dependent
baselines bϕ : S → R (S-baselines) parametrized by ϕ. The estimator becomes

∇̃bϕ
θ J : X 7→

T−1∑
t=0

γt(Gt − bϕ(St, At))∇θ log π(At|St),

the gradient scheme becomes two-timescale and baseline parameters are tuned so that the
baseline models the state value function:

θn+1 = θn + αn
1

K

K∑
k=1

∇̃bϕJ(X(k)
n ), (27)

ϕn+1 = ϕn − βn∇ϕV
A2C
K,n (ϕ)|ϕn , (28)

where

V A2C
K,n (ϕ) :=

1

K

K∑
k=1

T−1∑
t=0

(Gt(X
(k)
n )− bϕ(S

(k)
t ))2 (29)

is A2C goal reflecting our desire to approximate the corresponding value function from
its noisy estimates (Gt(X

(k)
n )) via least squares. The motivation behind it is that if one

chooses the value function as baseline, the variance will be minimized. This strategy
works well in practical problems [46].

Recently a new interest in such methods has emerged due to the introduction of deep
reinforcement learning [47], a very comprehensive review is done in [27]. During several
decades a large number of new variance reduction methods were proposed, including sub-
sampling methods like SVRPG [50, 73] and various control variate approaches of [53], [32],
[43], [68], [72]. There are also approaches of a bit different nature: trajectory-wise control
variates [15] using the control variate based on future rewards and variance reduction in
input-driven environments [45]. Apart from that, in ergodic case there were both theoretic
[31] and also some practical advancements [17]. The importance of the criteria for variance
reduction is well-known in Monte-Carlo and MCMC [54] and recently was also addressed
in RL by [25], where the Actor with Variance Estimated Critic (AVEC) was proposed.

Going to theory, it remains unclear how the procedure used in A2C is related to the
variance of the gradient estimator. Moreover, the empirical studies of the variance of the
gradient estimator are still very rare and available mostly for artificial problems. In the
community there is still an ongoing discussion about the actual role of the variance of
the gradient in the performance of the algorithms [68]. In our study we try to answer
some of these questions and suggest a more direct approach inspired by the Empirical
Variance(EV) Minimization recently studied by [5]. We show that the proposed EV-
algorithm is not only theoretically justifiable but can also perform better than the classic
A2C algorithm. It should be noted that the idea of using some kind of empirical variance
functional is not new: some hints appeared, for instance, in [43]. Despite that, the
implementation and theoretical studies of this approach are still missing in the literature.
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1.4.1 Main Theoretical Results

The main object of our study is the use of empirical variance instead of A2C goal. Starting
from this we could formulate two optimization goals for baseline tuning:

V EV v
n,K (θ, ϕ) :=

1

K

K∑
k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥2
2
− 1

K2

∥∥∥∥∥
K∑
k=1

∇̃bϕJ(X(k)
n )|θ

∥∥∥∥∥
2

2

, (30)

V EVm
K (θ, ϕ) :=

1

K

K∑
k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥2
2
; (31)

both can be shown to be an unbiased estimate of the true variance of the gradient estimator
and true variance is defined for a random vector Y as

V (Y ) := E
[
∥Y − E [Y ]∥22

]
.

The corresponding gradient algorithms can be described as

θn+1 = θn + αn
1

K

K∑
k=1

∇̃bϕJ(X(k)
n ), (32)

ϕn+1 = ϕn − βn∇ϕV
EV
K (ϕ, θ)|ϕn,θn . (33)

We got two methods. The first one uses the full variance V EV v
K and is called EVv, the sec-

ond one is titled EVm and exploits V EVm
K , the same variance functional but without the

second term. The important fact to note is that EVv routine would work only if K ≥ 2,
otherwise we try to estimate the variance with one observation. We can note several quick
facts about these methods. Firstly, it turns out that under some technical assumptions
A2C goal is an upper bound (up to a constant) of EV goals (Prop.5 in [34]). Secondly,
we show that if the scheme converges to a local optimum, then EVm and EVv methods
are asymptotically equivalent since the second term of the variance is the squared norm
of the true gradient which converges to 0.

The main theoretical result is high-probability bound for excess risk on step n of the
algorithm. For this we first simplify the notation for more clarity. Let us further notate
the gradient estimator as h : Rd → RD, fix some set of such estimators H and define
E = E[h(X)] = ∇θJ since the estimate is assumed to be unbiased. In order to reduce the
variance in the gradient estimator we would like to pick on each epoch n the best possible
estimator

h∗ = argmin
h∈H

V (h)

where variance functional V is defined for any h ∈ H via

V (h) := E
[
∥h(X)− E∥2

]
where X is random vector of concatenated states, actions and rewards described before.
To solve the above optimization problem, we use empirical analogue of the variance and
define

ĥ := argmin
h∈H

VK(h)
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with the empirical variance functional of the form:

VK(h) :=
1

K − 1

K∑
k=1

∥h(X(k))− PKh∥2

with PK being the empirical measure, so with the given sample we could notate sample
mean as

PKh :=
1

K

K∑
k=1

h(X(k)).

Let us pose several key assumptions.

A 6. Class H consists of bounded functions:

sup
x∈X

∥h(x)∥ ≤ b, ∀h ∈ H.

A 7. The solution h∗ is unique and H is star-shaped around h∗:

αh+ (1− α)h∗ ∈ H, ∀h ∈ H, α ∈ [0, 1].

A 8. The class H has covering of polynomial size: there are α ≥ 2 and c > 0 such that
for all u ∈ (0, b],

N (H, ∥ · ∥L2(PK), u) ≤
( c
u

)α
a.s.

where
∥h∥L2(PK) =

√
PK∥h∥22

The following result holds.

Theorem 8. Under Assumptions 6-8 it holds with probability at least 1− 4e−t,

V (hK)− V (h∗) ≤ max
j=1,...,4

βj(t)

with

β1 ≤ C1
logK

K
, β2 ≤ C2

logK

K
,

β3(t) =
C3(t+ 1)

3K
, β4(t) =

C4t

K
,

where C1, C2, C3, C4 are constants not depending on the dimension D or the sample size
K and are defined in the paper.

This allows to conclude that as sample size K grows, the variance reduces to that of h∗.
From practical perspective, Theorem 8 firstly gives some reliability guarantee. Secondly,
it also shows that if we have K large enough, we can reduce the variance even more.
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1.4.2 Numerical Experiments

We empirically investigate the behavior of EV-algorithms on several benchmark problems:

• Gym Minigrid [16] (Unlock-v0, GoToDoor-5x5-v0);

• Gym Classic Control [14] (CartPole-v1, LunarLander-v2, Acrobot-v1).

For each of these we provide charts with mean rewards illustrating the training process,
the study of gradient variance and reward variance and time complexity discussions. Here
because of small amount of space we present the most important results but the reader is
welcome in the Supplementary materials where more experiments and investigations are
presented together with all the implementation details. The code and config-files can be
found on GitHub page [30].

Overview. Below we show the discussions about several key indicators of the algo-
rithms.

1. Mean rewards. They are computed at each epoch based on the rewards obtained
during the training in 40 runs and characterize how good is the algorithm in inter-
action with the environment.

2. Standard deviation of the rewards. These are computed in the same way but
standard deviation is computed instead of mean. This values show how stable the
training goes: high values indicate that there are frequent drops or increases in
rewards.

3. Gradient variance. It is measured every 200 epochs using (31) with separate set
of 50 sampled trajectories with relevant policy. This is the key indicator in the
discussion of variance reduction. Surprisingly, as far as we know, we are the first
in the RL community presenting such results for classic benchmarks. The resulting
curves are averaged over 40 runs.

4. Variance Reduction Ratio. Together with Gradient Variance itself we also mea-
sure reduction ratio computed as sample variance of the estimator with baseline
divided by the sample variance without baseline (assuming bϕ = 0) in the compu-
tations of Gradient Variance. The reduction ratio is the main value of interest in
variance reduction research in Monte Carlo and MCMC.

Algorithm Performance. While observing mean rewards during the training we may
notice immediately that EV-algorithms are at least as good as A2C. In CartPole envi-
ronment (Fig. 3 ) we conducted several experiments and present here two policy con-
figurations: one with simpler neural network (config5, see Fig. 3(a,b,c) ) and one with
more complex network (config8, see Fig. 3(d,e,f) ). In the first case both A2C and EV
have very similar performance but in the second case the agent learns considerably faster
with EV-based variance reduction and we get approximately 50% improvement over A2C
agent and 75% over Reinforce agent in the end and even more during the training. The
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Figure 3: The charts representing the results for CartPole environment: (a,b,c) represent
mean rewards, standard deviation of the rewards and gradient variance reduction ratio
for config5 and (d,e,f) show the same information about config8.

phenomenon of better performance of EV in CartPole with more complex policies is ob-
served often, more detailed discussion is placed in Supplementary. As to Acrobot (see
Fig. 4(a)), we see EV-algorithms giving better speed-up in the training. In the beginning
EVm allows to learn faster but in the end the performance is the same as A2C. One of the
reasons of such behavior can be the fact that learning rate becomes small and the agent
already reaches the ceiling. Unlock (Fig. 5(a)) is the example of the environments where
all algorithms work similarly: in terms of rewards we cannot see significant improvement
even over Reinforce.
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Figure 4: The charts representing the results for Acrobot environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

Stability of Training. When we study the charts for standard deviation of the rewards
(Fig. 3(b,e),4(b),5(b)), we can see that EV-methods are better in terms of stability of the
training, the algorithm more rarely has drops than that of A2C. This is greatly illustrated
by CartPole in Fig. 3(b,e) where the standard deviation is about 2 times less than in
case of A2C. This holds for both configurations. Fig. 4 illustrating the experiments with
Acrobot show that until the ceiling is reached EV methods still can have lower variance.
In Unlock presented in Fig. 5(b) we have not observed a significant difference in reward
variance.
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Figure 5: The charts representing the results for Unlock environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

Gradient Variance and its Influence. The first thing we can notice reviewing the
gradient variance is that A2C and EV reduce the variance similarly in Unlock. CartPole
(see Fig. 3(c,f)), however, gives an example of the case where EV works completely differ-
ently to A2C, it reduces the variance almost 100-1000 times in both policy configurations.
Similar picture we can observe in all CartPole experiments. We can see that in Unlock
shown in Fig. 5 the variance can also be reduced approximately 10-100 times, however,
we see very little gain in rewards. It shows that in some environments training does not
respond to the variance reduction; as a reason, it can be just not enough to give the
improvement. The last thing we would like to note is that reward variance measured in
previous sub-section is not an indicator of variance reduction since we have shown gradi-
ent variance reduction in all cases. Reward variance is decreased in relation to Reinforce,
however, only in CartPole environement. Therefore, it cannot be used as a key metric for
studying variance reduction in RL. The connection between reward variance and gradient
variance seems to be an unanswered question in the literature.

Conclusion
Considering the first goal, for discrete-time optimal stopping problems we have established
semitractability for the proposed WSM algorithm under weak assumption of Markov chain
with transition kernel possessing a density. In the most common case of infinitely smooth
continuation functions many regression based algorithms, including LS, are also semi-
tractable for discrete-time optimal stopping problems. However, as we have shown, when
going to continuous optimal stopping problem, regression method gives infinite semi-
tractability index while WSM’s index remains bounded, the experiments have clearly
shown the practical consequences of it.

In the second direction we have achieved an improved finite time convergence analysis
of the linear two timescale SA on both martingale and Markovian noises with relaxed con-
ditions. Our analysis show that a tight analysis is possible through deriving and solving
a sequence of recursive error bounds.

As to the third goal, we suggested to use empirical variance which in turn resulted in
EV-methods. The motivation of EV-algorithms is more about actual variance reduction
than in case of A2C and their performance is at least as good as A2C in terms of variance
reduction and rewards. For them we also have suggested the first in the literature prob-
abilistic bound for the variance of the gradient estimate under some mild assumptions.
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EV-algorithms can be more stable in training which can allow to make sudden drops
during the training less frequent. We also have for the first time presented the study
of actual gradient variance reduction in classic benchmark problems. Our results have
shown that variance reduction can help in the training but sometimes the environment’s
specific features do not allow to achieve gain in rewards. Therefore, variance reduction
technique needs to be used during the training but the exact circumstances in which it
helps are yet to be discovered.
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