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General Description of the Work

Introduction

Since the 90s of the last century, the Nonlinear Schrödinger Equation (NLS)

with additional spatial non-autonomous terms has been an object of thorough stud­

ies. For the one-dimensional case, this equation can be written as follows:

𝑖Ψ𝑡 +Ψ𝑥𝑥 − 𝑈(𝑥)Ψ + 𝑃 (𝑥)|Ψ2|Ψ = 0. (1)

Specific interest to this class of equations has been caused by progress in experimen­

tal study of Bose–Einstein Condensate[1] (BEC) as well as advances in photonics

and its applications.

In the context of BEC, equation (1) is called the Gross–Pitaevskii equation

(GPE). It describes the dynamics of the condensate in so-called mean-field approx­

imation. Here Ψ(𝑡, 𝑥) is the dimensionless wave function of the condensate cloud,

that is assumed to be elongated along the axis 𝑥. The function 𝑈(𝑥) describes

the trap potential that is used to confine BEC, and 𝑃 (𝑥) corresponds to nonlin­

ear potential (also called pseudopotential). The pseudopotential describes the spa­

tial dependence of scattering length that may be non-constant due to various rea­

sons. Intervals with positive values of pseudopotential, 𝑃 (𝑥) > 0, correspond to the

case of attraction of the condensate particles, while intervals with negative values,

𝑃 (𝑥) < 0, correspond to the interatomic repulsion. The prototypical examples of

𝑈(𝑥) are the harmonic potential 𝑈(𝑥) = 𝐴𝑥2 (the magnetic trap), periodic potential

𝑈(𝑥) = 𝐴 cos 2𝑥 (the optical trap), and various types of potential wells. As examples

of the pseudopotential 𝑃 (𝑥), different functions has been used, including periodic

ones. The prototypical example is the cosine pseudopotential, 𝑃 (𝑥) = 𝐴+𝐵 cosΩ𝑥.

In the latter case one says that there exists a nonlinear lattice[2] interacting with the

condensate cloud.
[1] A. Einstein, “Quantentheorie des einatomigen idealen Gases”, Preussische Akademie der Wissenschaften,

Berlin, 1924.
[2] H. Sakaguchi, B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices”, Phys. Rev. E, Vol.

72, P. 046610, 2005.
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In optical applications, equation (1) describes the propagation of a light beam

in an optical fiber. In this case the function Ψ(𝑡, 𝑥) corresponds to the amplitude of

the electromagnetic wave, where 𝑡 is the propagation distance and 𝑥 is a transverse

spatial coordinate. Function 𝑈(𝑥) corresponds to a local perturbation of the refrac­

tive index, which accounts for the optical inhomogenity of the medium[3]. Function

𝑃 (𝑥) describes the spatial modulation of the Kerr coefficient, that can be achieved

by adding resonant dopants into the fiber[4]. Also, periodical dependence of 𝑃 (𝑥)

naturally arises while considering a multilayer periodic system of thin film nonlinear

waveguides[5]. Such dependence of the Kerr coefficient implies the presence of a

nonlinear lattice in the inhomogeneous optical medium.

For different physical applications the solutions of equation (1) of the special

form, so-called stationary localized solutions (stationary localized modes, SLMs), play

an important role. Such solutions can be obtained by putting into (1) an ansatz

Ψ(𝑡, 𝑥) = 𝑢(𝑥)𝑒−𝑖𝜔𝑡, (2)

where the function 𝑢(𝑥) satisfies the localization conditions of the form:

lim
𝑥→∞

𝑢(𝑥) = 0. (3)

Here 𝜔 is a real parameter that stands for a chemical potential of the condensate.

The profile 𝑢(𝑥) of the stationary localized solution is a real-valued function[6], sat­

isfying the equation

𝑢𝑥𝑥 +𝑄(𝑥)𝑢+ 𝑃 (𝑥)𝑢3 = 0; 𝑄(𝑥) = 𝜔 − 𝑈(𝑥). (4)

It should be noted that not all localized solutions of Eq. (4) are equally inter­

esting from a physical point of view. The stability is a critically important property
[3] Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices”, Rev. Mod. Phys. Vol.

83, P. 247, 2011.
[4] J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium

niobate channel waveguides”, J. Phys. D, Vol. 36, R1, 2003.
[5] Y. S. Kivshar, G. P. Agrawal, “Optical Solitons”, Academic Press, P. 386–424, 2003.
[6] G. L. Alfimov, V. V. Konotop, and M. Salerno, “Matter solitons in Bose–Einstein condensates with optical

lattices”, Europhys. Lett., Vol. 58, P. 7–13, 2002
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of the localized solutions. If SLM is unstable, a small perturbation leads to its de­

struction during the temporal evolution. Therefore, stable localized solutions are

especially valuable from the perspective of physical applications. So, the analysis of

stability is an essential part of the theoretical study of SLMs.

Formulation of the problem

While studying the dynamics described by equation (1) the following questions

naturally arise:

1. Is it possible to describe completely all stationary localized solutions of equa­

tion (1) that coexist for under given parameters?

2. How to identify stable solutions among them?

A survey of the current state of the field

It’s worth noting that in the majority of works devoted to this topic the problem

of finding / describing of all SLMs has not been raised. Instead, only specific classes

of solutions corresponding to particular physical structures has been described, see

the comprehensive review??. At the same time, despite the questions above seem a

little bit “challenging”, the combination of rigorous analytical methods with numer­

ical computations makes it possible to achieve significant progress in this direction.

Let us note some related results.

For equation (4) with potential 𝑈(𝑥) of the form of infinite potential well,

in the case of repulsive interparticle interactions, 𝑃 (𝑥) ≡ −1, the computational

descriptive procedure has been proposed[7]. This procedure provides a computational

evidence and can guarantee the complete description of all bounded solutions of

equation for the given set of parameters. The proposed method was afterwards

generalized to systems of several coupled Gross–Pitaevskii equation, in which the

corresponding pseudopotential do not depend on the spatial coordinate[8].
[7] G. L. Alfimov, D. A. Zezyulin, “Nonlinear modes for the Gross–Pitaevskii equation — a demonstrative

computational approach”, Nonlinearity, Vol. 20, P. 2075–2092, 2007.
[8] G. L. Alfimov, I. V. Barashenkov, A. P. Fedotov, V. V. Smirnov, D. A. Zezyulin, “Global search for

localised modes in scalar and vector nonlinear Schrödinger-type equations”, Physica D, Vol. 397, P. 39–53, 2019.
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It was shown, that for the periodic potential 𝑈(𝑥) in the case of repulsive in­

teractions of the condensate particles, 𝑃 (𝑥) ≡ −1, there exist sufficient conditions

that allow to describe exhaustively all bounded solutions of equation (4). Moreover,

it was shown that under these conditions there exist one-to-one correspondence be­

tween the bounded solutions and all possible bi-infinite sequences of symbols of some

finite alphabet[9]. Such sequences are called codes of solutions, and the algorithm of

assigning of such codes can be called coding of solutions. In the above mentioned

paper, the verification of the sufficient conditions was performed by means of nu­

merical computations. Results of this paper were further extended[10], specifically:

there has been proposed an algorithm that allows to reconstruct numerically the

profile of the solution by its symbolic code.

It’s also worth to mention the mathematical works of F. Zanolin and co-au­

thors[11],[12], in which the existence of some types of solutions in related problems

is proved. Such solutions also can be classified by means of methods of nonlin­

ear dynamics. Authors of these works use an approach that relies on topological

argumentation and differs from the one presented in the dissertation.

Relevance of the research topic

Generalization of the above mentioned results to the case of non-constant pseu­

dopotential, 𝑃 (𝑥) ̸= const, is an important actual problem. Application of the “cod­

ing approach” to the Gross-Pitaevskii equation with periodic pseudopotential yields

a classification of nonlinear stationary states in BEC in nonlinear lattice. This classi­

fication opens up the possibility of experimental finding of new, previously unknown
[9] G. L. Alfimov, A. I. Avramenko, “Coding of nonlinear states for the Gross–Pitaevskii equation with

periodic potential”, Physica D, Vol. 254, P. 29–45, 2013.
[10] G. L. Alfimov, P. P. Kizin, D. A. Zezyulin, “Gap solitons for the repulsive Gross-Pitaevskii equation with

periodic potential: Coding and method for computation”, Discrete and Continuous Dynamical Systems — Series

B, Vol. 22, P. 1207–1229, 2017.
[11] Ch. Zanini, F. Zanolin, “Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with

Stepwise Potential”, Complexity, Vol. 2018, Article ID 2101482, 2018.
[12] Ch. Zanini, F. Zanolin, “An Example of Chaos for a Cubic Nonlinear Schrödinger Equation with Periodic

Inhomogeneous Nonlinearity”, Advanced Nonlinear Studies, Vol. 12, No. 3, P. 481–499, 2012.
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stable stationary states.

Tasks and objectives of the study

The main object of the study in the dissertation is the set of stationary solutions

of one-dimensional Gross – Pitaevskii equation (1) with periodic pseudopotential.

Tasks and objectives of the study can be formulated as follows:

1. To formulate sufficient conditions that allow to generalize the method of coding

of SLMs[9] to the case of periodic pseudopotential; to specify the ways of

verification of these conditions (analytically or with numerical computations).

2. To study the set of stationary solutions of equation (1) with periodic pseudopo­

tential in the case when the trapping potential can be neglected, 𝑈(𝑥) ≡ 0.

3. For the case of harmonic potential well, 𝑈(𝑥) = 𝐴𝑥2, to investigate the effect

of periodic pseudopotential on the structure of the set of stationary localized

solutions and their stability.

Methods

In order to study possible types of SLMs the method of excluding of singular

solutions[9] is used. We call a solution of equation (4) singular if it goes to infinity

at a finite point 𝑥 = 𝑥0 of the real axis, i.e.

lim
𝑥→𝑥0

𝑢(𝑥) = ∞. (5)

Obviously, such solutions cannot describe a profile of stationary state, so they should

be excluded from the consideration. The main idea is that under certain conditions,

“the most part” of solutions of Eq. (4) are singular. The set of remaining solutions,

called regular, turns out to be quite “poor” and it can be fully described in terms of

symbolic dynamics.

In order to compute profiles of localized solutions of equation (4) the shooting

method is used involving standard procedures for solving Cauchy problems for ODE.

The obtained solutions are checked for linear stability by solving corresponding
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eigenvalue problem in the Fourier space (Fourier Collocation Method[13]), and also

via simulation of dynamics of (1) with a conservative finite-difference scheme[14].

All the algorithms and numerical methods are implemented in MATLAB using MEX

extension for high performance computing support.

Scientific novelty

In the thesis, a number of exact statements about regular and singular solutions

of equation (4) are proved. The conditions that ensure the existence of singular

solutions, or their absence are formulated. In particular, it was shown that if the

pseudopotential is negative at least at one point 𝑥0, 𝑃 (𝑥0) < 0, then there exist

two one-parametric families of solutions which tend to infinity at this point 𝑥0.

Asymptotic expansions for these families are given.

The method of excluding of singular solutions was further developed. The dis­

sertation proposes sufficient conditions for existence of one-to-one correspondence be­

tween regular solutions of equation (4) and bi-infinite symbolic sequences over some

alphabet. In contrast to the previously obtained results[9], the proposed conditions

admit effective numerical verification. An algorithm of the numerical verification is

provided in the dissertation along with its theoretical justification.

For the case 𝑈(𝑥) ≡ 0 and cosine periodic pseudopotential of the form 𝑃 (𝑥) =

𝐴 + 𝐵 cos 2𝑥 the set of stationary localized solutions has been studied. When

applying the above-mentioned techniques, the set of SLMs was effectively described,

and, eventually, new stable localized solution, named dipole soliton, was found. This

solution has been previously unknown.

Finally, in the case of harmonic trapping potential, 𝑈(𝑥) = 𝐴𝑥2, the effect of

periodic pseudopotential of the form 𝑃 (𝑥) = 𝐴+𝐵 cosΩ𝑥 on the set of SLMs was

studied. It was shown that in comparison with well-studied case 𝑃 (𝑥) = const, the

set of stationary localized solutions is much richer. Namely, there exist essentially
[13] J. Yang, “Nonlinear Waves in Integrable and Nonintegrable Systems”, Philadelphia: SIAM, 2010.
[14] V. Trofimov, N. Peskov Comparison of finite-difference schemes for the Gross-Pi taevskii equation //

Mathematical Modelling and Analysis. — 2009. — Mar. — Vol. 14. — P. 109–126.
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nonlinear solutions which cannot be predicted by low-amplitude approximation. The

dependence of the SLMs stability on the frequency Ω of the pseudopotential was

studied. For the pseudopotential with zero mean, 𝑃 (𝑥) = 𝐵 cosΩ𝑥, it was found

that the increase of frequency Ω allows to stabilize low-amplitude solutions, whose

counterparts in the model with 𝑃 (𝑥) = const are unstable.

The highlights of the thesis are:

1. The statements on the presence and absence of singular solutions of equation

(4) are proved. It is shown that in the case 𝑃 (𝑥) > 0 all solutions of (4) are

regular. If 𝑃 (𝑥) is negative at least at one point 𝑥0, 𝑃 (𝑥0) < 0, then there

exist two one-parametric families of solutions, which tend to infinity at the

point 𝑥0. The asymptotic description of these families are given. In the case

𝑄(𝑥) < 0 and 𝑃 (𝑥) < 0, it is shown that all solutions of equation (4) are

singular.

2. For equation (4) sufficient conditions for coding of regular solutions are formu­

lated. An effective algorithm for their numerical verification is presented.

3. For the case 𝑈(𝑥) ≡ 0, 𝑃 (𝑥) = 𝐴 + cos 2𝑥 the set of SLMs of Eq. (1) are

described. This study reveals new stable localized solution, named dipole

soliton.

4. It is shown that the model that includes both trapping harmonic potential

𝑈(𝑥) = 𝐴𝑥2 and the nonlinear lattice admits new classes of SLMs, in compar­

ison with the case when the nonlinear lattice is not taken into account. For

the periodic pseudopotential with zero mean, it is shown that increasing of the

frequency of pseudopotential can stabilize low-amplitude localized solutions.

Confidence level and approbation of the results

The Gross – Pitaevskii model is a classical model of physics of ultra-cold tem­

peratures and its confidence is beyond any doubt. SLMs in this model correspond to

localized stationary solutions of the Gross–Pitaevskii equation. In the thesis, SLMs
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are constructed, and their stability is investigated numerically. Numerical computa­

tion of SLMs is performed by means of standard numerical methods for ODEs with

controlled accuracy. The analysis of stability of SLMs is fulfilled by means of the

spectral method which is generally recognized for the similar problems. Results of

the stability analysis are verified by solution of the time-dependent Gross–Pitaevskii

equation employing a conservative finite-difference scheme. The key findings of the

thesis were reported at various scientific seminars and conferences, including:

1. “Фундаментальная математика и ее приложения в естествознании”, BSU,

Ufa, September 2015, talk “Стационарные моды нелинейного уравнения

Шрёдингера в присутствии линейного и нелинейного потенциалов”.

2. “Dynamics, Bifurcations and Chaos III”, Lobachevsky State University of

Nizhni Novgorod, Nizhni Novgorod, July 2016, talk “Stable dipole solitons

and soliton complexes in the nonlinear Schrödinger equation with periodically

modulated nonlinearity”.

3. “Complex Analysis, Mathematical Physics and Nonlinear Equations”, Bashkor­

tostan, Bannoe Lake, March 2018, talk “Steady-states for the Gross-Pitaevskii

equation with nonlinear lattice pseudo- potential”.

4. “Nonlinear Phenomena in Bose Condensates and Optical Systems”, Tashkent,

Uzbekistan, August 2018, talk “Steady-states for the Gross-Pitaevskii equation

with nonlinear lattice pseudopotential”.

5. “Complex Analysis, Mathematical Physics and Nonlinear Equations”, Bashko­

rtostan, Bannoe Lake, March 2019, talk “Coding of solutions for the Duffing

equation with non-homogeneous nonlinearity”.

6. “Complex Analysis, Mathematical Physics and Nonlinear Equations”, Bashko­

rtostan, Bannoe Lake, March 2021, talk “Coding of bounded solutions of equa­

tion 𝑢𝑥𝑥 − 𝑢+ 𝜂(𝑥)𝑢3 = 0 with periodic piecewise constant function 𝜂(𝑥)”.
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Publications

Materials of the thesis were presented in 3 articles of peer-reviewed journals

included in the international citation system Scopus:

1. Alfimov G. L., Lebedev M. E. On regular and singular solutions for equation

𝑢𝑥𝑥+𝑄(𝑥)𝑢+𝑃 (𝑥)𝑢3 = 0 // Ufa Mathematical Journal, 2015, Vol. 7, no. 2,

P. 3–16, DOI: 10.13108/2015-7-2-3 (Scopus Q2).

2. Lebedev M. E., Alfimov G. L., Malomed B. Stable dipole solitons and soliton

complexes in the nonlinear Schrödinger equation with periodically modulated

nonlinearity // Chaos, 2016, Vol. 26, P. 073110, DOI: 10.1063/1.4958710

(Scopus Q1).

3. Alfimov G. L., Gegel L. A., Lebedev M. E., Malomed B. A., Zezyulin D. A.

Localized modes in the Gross-Pitaevskii equation with a parabolic trapping

potential and a nonlinear lattice pseudopotential // Communications in Non­

li-near Science and Numerical Simulation, 2019, Vol. 66, P. 194–207,

DOI: 10.1016/j.cnsns.2018.06.019 (Scopus Q1).

Personal contribution of the author

The main finding of the thesis was obtained either by the applicant in person,

or in collaboration with co-authors where the role of the applicant was dominant.

The numerical implementations of all the algorithms and other computer programs

was fulfilled by the applicant personally.

Structure and volume of the dissertation

The thesis consists of introduction, four chapters, conclusion, three appendices,

and a bibliography. Total volume of the dissertation is 131 page. Among them

there are 115 pages of text, including 35 figures, 4 tables and 1 algorithm scheme.

Bibliography consists of 61 titles.
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The Content of the Work

In Introduction the relevance of the dissertation work is justified. The author

formulates the goals of the research and the problems to be solved. The practical

significance of the obtained results is discussed, and the main findings of the thesis

are announced.

Also in Introduction the main concepts that are related to the object of study

are presented. Stationary localized solutions (or stationary localized modes, SLMs)

are defined as solutions of equation (1) of the form (2) that satisfy the localization

conditions (3). Solutions 𝑢(𝑥) of equation (4) is called singular if for some finite

point 𝑥0 the relation 𝑢(𝑥) → ∞ as 𝑥 → 𝑥0 takes place. Point 𝑥0 is called a collapse

point for the solution 𝑢(𝑥). Alternatively, one can say that such solution collapses

at the point 𝑥0. On the contrary, solution is called regular if there is no such point

𝑥0.

In Chapter 1 the propositions about regular and singular solutions of equation

(4) are formulated and proved.

Proposition 1. Let for equation (4) functions 𝑄(𝑥), 𝑃 (𝑥) ∈ 𝐶1(R), and for all

𝑥 ∈ R

(a) 𝑃 (𝑥) ≥ 𝑃0 > 0, |𝑃 ′(𝑥)| ≤ ̃︀𝑃 ;

(b) 𝑄(𝑥) ≥ 𝑄0, |𝑄′(𝑥)| ≤ ̃︀𝑄.

Then a solution of the Cauchy problem for equation (4) with arbitrary initial condi­

tions can be continued to the whole real axis R.

Proposition 1 establishes the conditions for absence of singular solutions. One

of these conditions requires function 𝑃 (𝑥) to be positive. On the other hand, if

function 𝑃 (𝑥) takes a negative value at least at one point 𝑥0, 𝑃 (𝑥0) < 0, then there

exist two families of solutions of equation (4) that collapse at this point. In order to

formulate the corresponding statement it’s convenient to assume that 𝑃 (𝑥0) = −1

(it’s always can be achieved by a suitable renormalization).
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Proposition 2. Let 𝑃 (𝑥0) = −1 and Ω be a neighbourhood of the point 𝑥0, 𝑄(𝑥) ∈

𝐶2(Ω), and 𝑃 (𝑥) ∈ 𝐶4(Ω). Then there exist two 𝐶1-smooth one-parametric families

of solutions for equation (4), collapsing at the point 𝑥 = 𝑥0 (while approaching

from the left, 𝑥 → 𝑥0−0), and connected by a symmetry 𝑢 → −𝑢. Each of these

families can be parametrized by a free variable 𝐶 ∈ R, and, moreover, the following

asymptotic expansions are valid:

±𝑢(𝑥) =

√
2

𝜂
+ 𝐴0 + 𝐴1𝜂 + 𝐴2𝜂

2 + 𝐴3𝜂
3 ln |𝜂|+ 𝐶𝜂3 + 𝐴4𝜂

4 ln |𝜂|+ . . . . (6)

Here 𝜂 = 𝑥 − 𝑥0, and coefficients 𝐴𝑛 can be expressed in terms of coefficients 𝑄𝑛,

𝑃𝑛 of the corresponding expansions for the functions 𝑄(𝑥), 𝑃 (𝑥),

𝑄(𝑥) = 𝑄0 +𝑄1𝜂 +𝑄2𝜂
2 . . . , 𝑃 (𝑥) = −1 + 𝑃1𝜂 + 𝑃2𝜂

2 + . . . . (7)

Similar one-parametric families of collapsing solutions also exist to the right

side of the point 𝑥 = 𝑥0. Finally, the conditions are given that ensure that equation

(4) has no regular non-zero solutions at all.

Proposition 3. Let for all 𝑥 ∈ R the conditions 𝑃 (𝑥) ≤ 𝑃0 < 0, 𝑄(𝑥) ≤ 𝑄0 < 0

take place. Then all solutions of equation (4) are singular except for the zero one.

It follows from Proposition 2 that if pseudopotential 𝑃 (𝑥) is a sign-altering

function then singular behaviour is common for solutions of equation (4). This fact

makes it possible to apply the method of excluding of singular solutions[9].

In Chapter 2 the basic concept of the theory for coding of stationary states is

introduced. It is assumed that the potential and the pseudopotential in Eq. (1) are

𝐿-periodic functions, 𝑈(𝑥+ 𝐿) = 𝑈(𝑥), 𝑃 (𝑥+ 𝐿) = 𝑃 (𝑥). It turns out that under

certain conditions the set of regular solutions of equation (4) can be fully described

by the structure of the so-called coding sets: U +
𝐿 , U −

𝐿 , U𝐿. These sets are defined on

the plane (𝑢, 𝑢′) of initial conditions for equation (4) as follows. The set U +
𝐿 consists

of all initial conditions to the Cauchy problem such that the corresponding solutions

are bounded on the interval [0;𝐿]. Similarly, the set U −
𝐿 consists of such initial

11



conditions that the corresponding solutions are bounded in the interval [−𝐿; 0].

The set U𝐿 represents an intersection of the two sets above, U𝐿 = U +
𝐿 ∩ U −

𝐿 . The

relation between the points of these sets can be described in terms of Poincaré map.

It’s defined as follows. Let p ∈ U +
𝐿 , then 𝒫(p) = q = (𝑢(𝐿), 𝑢′(𝐿)), q ∈ U −

𝐿

where 𝑢(𝑥) is a solution of Cauchy problem for equation (4) with initial conditions

𝑢(0) = 𝑢0, 𝑢′(0) = 𝑢′0. The sequence of points {p𝑛} constructed by iterating the

Poincaré map is called an orbit.

The approach is based on two hypotheses about the action of the map 𝒫 on

the set U𝐿.

(I) The set U𝐿 is a union of finite or infinite number of connected components,

U𝐿 =
⋃︀

𝑘∈𝑆 𝐷𝑘, where 𝑆 is a set of indices, and each component 𝐷𝑘 is a

curvilinear quadrangle with monotonic boundaries. Moreover, for any 𝑖, 𝑗,

sets 𝐻𝑖𝑗 = 𝒫(𝐷𝑖) ∩𝐷𝑗 and 𝑉𝑖𝑗 = 𝒫−1(𝐷𝑗) ∩𝐷𝑖 are non-empty.

(II) Maps 𝒫 , 𝒫−1 in some way preserve the monotonicity properties of strips,

called h- and v-strips, connecting the opposite sides of 𝐷𝑘, and the width of

these strips decreases under the action of corresponding maps.

Let’s clarify Hypothesis II. If it’s valid, then the above defined sets 𝐻𝑖𝑗 and 𝑉𝑖𝑗

represent h- and v-strips correspondingly. It follows from Hypothesis II that the

set 𝒫(𝐻𝑖𝑗) ∩𝐷𝑘 is also an h-strip, and 𝑑h(𝒫(𝐻𝑖𝑗) ∩𝐷𝑘) < 𝑑h(𝐻𝑖𝑗), where 𝑑h(·) is

the h-strip width measured along the vertical line. Similarly, the set 𝒫−1(𝑉𝑖𝑗) ∩𝐷𝑘

represents a v-strip, and 𝑑v(𝒫−1(𝑉𝑖𝑗)∩𝐷𝑘) < 𝑑v(𝑉𝑖𝑗). Here 𝑑v(·) is the v-strip width

measured along the horizontal line.

It was shown in this chapter that under Hypotheses I and II, the action of 𝒫

on U𝐿 is of the Smale horseshoe type[15], and there exists a one-to-one correspon­

dence between orbits of regular solutions of equation (4) and bi-infinite sequences of

symbols of some alphabet (the number of symbols is equal to the number of com­
[15] S. Wiggins, “Introduction to Applied Nonlinear Dynamical Systems and Chaos”, New York: Springer-Ver­

lag, 2003.
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ponents 𝐷𝑘 of the set U𝐿). In this part of the study, author follows the approach

that goes back to 60-70-es, the works of L. P. Shilnikov and V. M. Alekseev. In the

seminal papers[16],[17] the symbolic dynamics approach was applied for description

of behaviour of trajectories near a homoclinic loop and for three-body problem. In

this thesis, the horseshoe dynamics approach is used for the mapping of sets U ±
𝐿

that is a new application of this theory.

Verification of the hypotheses is performed numerically. Hypothesis I is ver­

ified by direct scanning of properly chosen area of the plane of initial conditions.

Verification of Hypothesis II requires more sophisticated approach. In this chapter

two theorems (called Theorems on h- and v-strips mapping) are formulated. These

theorems allow to reduce verification of Hypothesis II to an effective numerical pro­

cedure. The procedure consists in estimating of some constants at the points p

belonging to special subsets of the set U𝐿. The algorithm is as follows.
[16] Л. П. Шильников, «Об одной задаче Пуанкаре-Биркгофа», Математический сборник, Т. 74, №4,

С. 378–397, 1967.
[17] В. М. Алексеев, «Финальные движения в задаче трех тел и символическая динамика», Успехи

математических наук, Т. 36, Вып. 4, С. 161, 1981.
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Algorithm 1. Numerical Check of Hypothesis II
Input: Hypothesis I takes place for equation (4); U𝐿 =

⋃︀
𝑘∈𝑆 𝐷𝑘.

Step (1). Set up a numerical grid for computations. For all 𝑖, 𝑗 ∈ 𝑆 construct

sets 𝐻𝑖𝑗 = 𝒫(𝐷𝑖)∩𝐷𝑗 and 𝑉𝑖𝑗 = 𝒫−1(𝐷𝑗)∩𝐷𝑖 numerically on the defined grid.

Step (2). Checking the signs of elements in Jacobi matrices 𝐷𝒫p, 𝐷𝒫−1
q for

maps 𝒫 , 𝒫−1.

(a) For each point p ∈ 𝑉𝑖𝑗 compute 2×2 matrix of the operator 𝐷𝒫p = (𝑎𝑚𝑛)

and check that ∀p ∈ 𝑉𝑖𝑗 the sings of matrix elements match exactly one of

the configuration specified in Theorem on h-strips mapping.

(b) For each point q ∈ 𝐻𝑖𝑗 compute 2×2 matrix of the operator 𝐷𝒫−1
q = (𝑏𝑚𝑛)

and check that ∀q ∈ 𝐻𝑖𝑗 the signs of matrix elements match exactly one of

the configurations specified in Theorem on v-strips mapping.

Step (3). Estimation of the width decrease for h- and v-strips.

(а) Estimate value 𝜇* = min
p∈𝑉𝑖𝑗

𝑎11(p) on the numerical grid; check that 𝜇* > 1.

(б) Estimate value 𝜈* = min
q∈𝐻𝑖𝑗

𝑏22(q) on the numerical grid; check that 𝜈* > 1.

The result of the work of the algorithm above is illustrated (see Figure 1) by

the example of equation (4) with 𝑄(𝑥) ≡ −1 and 𝑃 (𝑥) = 𝜂(𝑥), where 𝜂(𝑥) is a

piecewise constant periodic function of the period 𝐿 = 𝐿*+𝐿0, defined in a following

way:

𝜂(𝑥) =

⎧⎨⎩ −1, 𝑥 ∈ [0;𝐿*);

+1, 𝑥 ∈ [𝐿*;𝐿* + 𝐿0).
(8)

It turns out (see Proposition 6 in the thesis) that the set U𝐿 on the plane of initial

conditions for such equation is unbounded. Nevertheless, one can restrict the con­

sideration to some bounded subset 𝒟 ⊂ U𝐿. If Hypotheses I and II are valid for 𝒟,

then it’s possible to describe completely a subset of regular solutions, whose orbits

do not leave the considered subset 𝒟 on the plane of initial conditions. In Figure 1

example of the set 𝒟 is shown. This set consists of three connected components.

Hypotheses I and II are valid for 𝒟, hence, there exists a subset of regular solutions

14



which can be exhaustively coded with three symbols {−1, 0,+1}.

Figure 1: Verification of hypotheses for equation (4) for the case 𝑄(𝑥) ≡ −1,

𝑃 (𝑥) = 𝜂(𝑥) with parameters (𝐿*, 𝐿0) = (2, 1). Set U +
𝐿 (light gray), U −

𝐿 (darks

gray), and their intersection 𝒟 = {𝐷−1, 𝐷0, 𝐷+1} ⊂ U𝐿 (black) are depicted. For

the sets 𝑉𝑖𝑗 (blue) and 𝐻𝑖𝑗 (yellow) the sings of elements in corresponding operators

𝐷𝒫p, 𝐷𝒫−1
q are shown.

In Chapter 3 the set of stationary localized solutions has been studied for

the case of equation (1) in which the trapping potential is absent, 𝑈(𝑥) ≡ 0, and

the pseudopotential has a cosine form, 𝑃 (𝑥) = 𝐴 + cos 2𝑥. Such model has been

previously considered in literature. It was reported[2] that this model admits a

stationary localized bell-shaped solution, called fundamental soliton, which is stable

for certain parameters of the equation.

In Chapter III the coding approach is applied to this model. Structure of

the coding sets is shown in Figure 2. In turns out that the sets U ±
𝜋 (𝐿 = 𝜋) are

infinite spirals. Their intersection U𝜋 is unbounded and consists of infinite number

of connected components.
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Figure 2: Set 𝒟 ⊂ U𝜋 consisting of seven connected components

{𝐷−2, 𝐷−1i, 𝐷−1, 𝐷0, 𝐷+1, 𝐷+1i, 𝐷+2} (black), formed by intersection of the sets U ±
𝜋

for equation (4) with 𝑄(𝑥) = −1.5, 𝑃 (𝑥) = cos 2𝑥.

Verification of Hypotheses I and II was performed numerically for a subset

𝒟 ⊂ U𝜋 consisting of seven central connected components. The numerical procedure

allowed to conclude that both of the hypotheses take place. Hence, there is a

one-to-one correspondence between solutions of equation (4) and symbolic codes

derived from the structure of coding set. Existence of such correspondence allows

to conclude that the set of stationary localized solutions of the considered equation

is extremely rich. In Figure 3 different solutions along with their symbolic codes are

shown.

Analysis of the linear stability by means of spectral method showed that the

majority of solutions are unstable. However, there is a number of stable solutions,

and some of them were previously unknown. One of these new stable solutions is

the so-called dipole soliton. Its profile is depicted in Figure 3 (e).

In Chapter 4 the set of SLMs is studied for equation (1) where, along with the

periodic pseudopotential, the trapping potential in the form of harmonic potential

well is included. After the suitable renormalization, the functions of potential and

pseudopotential take the forms 𝑈(𝑥) = 𝑥2, 𝑃 (𝑥) = 𝐴 + 𝐵 cosΩ𝑥. The equation
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Figure 3: Different solutions of equation (4) for 𝑄(𝑥) = −1.5, 𝑃 (𝑥) =

cos 2𝑥. Each solution has its own symbolic code that identify the solution

uniquely. Periodic solutions: (a) 𝜋-periodic solution {. . . ,+1,+1,+1, . . . };

(b) 2𝜋-periodic solution {. . . ,+1,−1,+1,−1, . . . }; (c) 2𝜋-periodic solution

{. . . ,+1, 0,+1, 0, . . . }. Localized solutions (solitons): (d) fundamental soliton

{. . . , 0,+1, 0, . . . }; (e) dipole soliton {. . . , 0,−1i, 0, . . . } (f) elementary soliton of

code {. . . , 0,+2, 0, . . . } (g) {. . . , 0,+1, 0,+1, 0, . . . } (h) {. . . , 0,+1, 0,−1, 0, . . . }

(i) {. . . , 0,+1,−1i,+1i,+1, . . . }.

admits so-called stationary solutions with linear counterpart. These solutions arise

from small-amplitude limit, |𝑢(𝑥)| ≪ 1. In this case one can omit nonlinear part in

equation (4) and obtain the harmonic oscillator equation,

𝑢𝑥𝑥 + (𝜔 − 𝑥2)𝑢 = 0, (9)
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that is an eigenvalue problem for the values 𝜔. Its solutions are well-known:

𝜔̃𝑛 = 2𝑛+ 1; 𝑢̃𝑛(𝑥) =
1√︀

2𝑛𝑛!
√
𝜋
𝐻𝑛(𝑥)𝑒

− 1
2𝑥

2

; 𝑛 = 0, 1, . . . , (10)

where functions 𝐻𝑛(𝑥) are Hermite polynomials. When the nonlinearity is turned

on, each eigenvalue 𝜔̃𝑛 bifurcates and originates one-parametric family of solutions

Γ𝑛 = (𝜔𝑛, 𝑢𝑛(𝑥)) for the nonlinear problem. Such families are called families of

solutions with linear counterpart.

It’s known[7] that solutions with linear counterpart exhaust the set of SLMs for

the case 𝑃 (𝑥) ≡ −1. However, in the case of periodic pseudopotential, there exist

solutions without linear counterpart. In Chapter IV the branches of such solutions

are constructed numerically, see Figure 4. Linear stability analysis showed that

almost all of them are unstable.

The second part of the fourth chapter is devoted to the analysis of the stability

for low-amplitude solutions with linear counterpart. It is shown that in the case

of pseudopotential with zero-mean, 𝑃 (𝑥) = 𝐵 cosΩ𝑥, increase of the frequency Ω

leads to stabilization of low-amplitude solutions with linear counterpart. That is, for

each branch Γ𝑛 there exists a threshold Ω𝑛, such that for Ω > Ω𝑛 the corresponding

branch of solutions is stable in the vicinity of its bifurcation point 𝑁 ≪ 1, 𝜔𝑛 ≈ 𝜔̃𝑛.

In Conclusion the results of the thesis are summarized. The main outputs

can be presented in brief as follows:

1. The statements about the presence and absence of singular solutions of equa­

tion (4) are formulated and proved.

2. The sufficient conditions for coding of regular solutions for equation (4) are for­

mulated. An efficient algorithm for numerical verification of these conditions

is proposed.

3. For the case 𝑈(𝑥) ≡ 0, 𝑃 (𝑥) = 𝐴 + cos 2𝑥 the set of SLMs for equation (1)

has been studied. A new stable solution, called dipole soliton, is found.
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Figure 4: Diagrams of the dependence of the norm of solutions 𝑁 on the chemical

potential 𝜔 for equation (4); 𝑄(𝑥) = 𝜔 − 𝑥2, 𝑃 (𝑥) = 1 + 2 cos(12𝑥). Segments of

curves 𝑁(𝜔) that correspond to stable solutions are marked with bold black lines.

Branches Γ𝑛, 𝑛 = 0, 1, 2, 3 correspond to families of solutions with linear counterart.

4. In the case of harmonic potential well it is shown that including of periodic

pseudopotential results in new classes of SLMs without linear counterpart.

For the pseudopotential with zero mean, it is concluded that the increase of

pseudopotential frequency stabilize low-amplitude solutions.

In Appendix A Lemma on bounded solutions is proved. This lemma is used

in Chapter I.

Appendix B contains explicit solutions for two equations of the Duffing oscil­

lator type:

𝑢𝑥𝑥 − 𝑢+ 𝑢3 = 0; 𝑢𝑥𝑥 − 𝑢− 𝑢3 = 0, (11)

that are used in Section 2.3.

In Appendix C Theorems on h- and v-strips mapping are proved. These

theorems are used in Chapter II.
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