Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»

На правах рукописи

Лебедев Михаил Евгеньевич

Стационарные состояния нелинейного уравнения Шрёдингера с периодически модулированной нелинейностью: математическое и численное исследование

РЕЗЮМЕ ДИССЕРТАЦИИ

на соискание ученой степени кандидата наук по прикладной математике

> Научный руководитель: доктор физико-математических наук, профессор Алфимов Георгий Леонидович

Общая характеристика работы

Введение

Начиная с 90-х годов прошлого века, *нелинейное уравнение Шрёдингера* (НУШ) с дополнительной пространственной неавтономностью продолжает оставаться объектом пристального изучения. Для одномерного случая данное уравнение может быть записано в виде

$$i\Psi_t + \Psi_{xx} - U(x)\Psi + P(x)|\Psi^2|\Psi = 0.$$
 (1)

Интерес к этому классу уравнений во многом обусловлен экспериментальными успехами в исследовании конденсата Бозе—Эйнштейна^[1] (БЭК), а также развитием нелинейной оптики и связанных с ней практических приложений.

В контексте теории БЭК уравнение типа (1) носит название уравнения Гросса-Питаевского и описывает динамику конденсата в приближении среднего поля. Здесь $\Psi(t,x)$ представляет волновую функцию облака конденсата, которое предполагается вытянутым вдоль оси x. Функция U(x) описывает потенциал ловушки, удерживающей конденсат, а P(x) соответствует нелинейному потенциалу, называемому также nceedonomenuuaлом. Псевдопотенциал P(x)описывает зависимость длины рассеяния частиц конденсата от пространственной координаты. Интервалы с положительным значением псевдопотенциала P(x) > 0 соответствуют случаю межатомного притяжения, в то время как интервалы с отрицательным значением, P(x) < 0, — межатомному отталкиванию частиц конденсата. Классическими модельными примерами потенциала U(x)является гармонический потенциал $U(x) = Ax^2$ (магнитная ловушка), периодический потенциал $U(x) = A\cos 2x$ (оптическая ловушка), а также потенциальные ямы различных типов. В качестве модельных примеров псевдопотенциала P(x) используются различные функции, в том числе периодические, как, например, косинусный псевдопотенциал $P(x) = A + B\cos\Omega x$. В таком случае

^[1] A. Einstein, "Quantentheorie des einatomigen idealen Gases", Preussische Akademie der Wissenschaften, Berlin, 1924.

говорят о воздействии на конденсат $нелинейной \ pewemma \ [2]$.

В задачах нелинейной оптики уравнение (1) описывает распространение светового пучка в оптическом волокие. В этом случае функция $\Psi(t,x)$ соответствует амплитуде огибающей светового пучка, где t есть направление его распространения, а x есть поперечная пространственная координата. Функция U(x) связана с диэлектрической проницаемостью оптической среды и описывает её неоднородность. Другими словами, U(x) описывает линейную решетку, привнесенную в среду для контроля над линейным пропусканием электромагнитного излучения^[3]. Функция P(x) представляет собой керровский коэффициент, пространственная модуляция которого может быть достигнута путём добавлением в волокно резонантных примесей^[4]. Периодическая зависимость P(x) естественным образом возникает при рассмотрении многослойной периодической системы тонкоплёночных нелинейных волноводов, где P(x) характеризует керровский нелинейный отклик тонких слоёв^[5]. В этом случае также говорят о наличии нелинейной решётки, но уже в оптической системе.

Для физических приложений важную роль играют решения уравнения (1) специального вида — так называемые *стационарные локализованные решения* (*стационарные локализованные моды*, СЛМ). Они получаются в результате подстановки в соответствующее уравнение (1) выражения

$$\Psi(t,x) = u(x)e^{-i\omega t},\tag{2}$$

где функция u(x) удовлетворяет условию локализации:

$$\lim_{x \to \infty} u(x) = 0,\tag{3}$$

^[2] H. Sakaguchi, B. A. Malomed, "Matter-wave solitons in nonlinear optical lattices", Phys. Rev. E, Vol. 72, P. 046610, 2005.

^[3] Y. V. Kartashov, B. A. Malomed, and L. Torner, "Solitons in nonlinear lattices", Rev. Mod. Phys. Vol. 83, P. 247, 2011.

^[4] J. Hukriede, D. Runde, and D. Kip, "Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides", J. Phys. D, Vol. 36, R1, 2003.

^[5] Y. S. Kivshar, G. P. Agrawal, "Optical Solitons", Academic Press, P. 386–424, 2003.

а ω есть вещественный параметр, имеющий смысл химического потенциала конденсата. Профиль стационарного локализованного решения u(x) есть действительнозначная функция^[6], которая удовлетворяет уравнению

$$u_{xx} + Q(x)u + P(x)u^3 = 0; \quad Q(x) = \omega - U(x).$$
 (4)

Стоит отметить, что далеко не все локализованные решения уравнения (4) одинаково интересны с физической точки зрения. В частности, особо важным свойством является устойчивость локализованных решений. Если СЛМ неустойчива, малые возмущения такого решения приводят к его разрушению при эволюции, описываемой уравнением (1). Поэтому именно устойчивые локализованные решения особенно ценны для различных физических приложений, а сама проверка СЛМ на устойчивость является существенной частью их теоретического исследования.

Постановка проблемы

Итак, при изучении динамики, описываемой уравнением (1), естественным образом возникают следующие вопросы:

- 1. Возможно ли перечислить *полностью все* стационарные локализованные решения уравнения (1), одновременно существующие при заданных параметрах уравнения?
- 2. Возможно ли эффективно выделить из этих решений те, которые являются устойчивыми?

Степень разработанности темы исследования

Стоит отметить, что в большинстве работ, посвящённых данной тематике вопрос о поиске / описании всеx СЛМ не ставился. Вместо него, как правило, рассматривался вопрос об отдельных классах СЛМ, соответствующих той или

^[6] G. L. Alfimov, V. V. Konotop, and M. Salerno, "Matter solitons in Bose–Einstein condensates with optical lattices", Europhys. Lett., Vol. 58, P. 7–13, 2002

иной физической структуре, см. обзор^[3]. В то же время, несмотря на некоторую «амбициозность» поставленных выше вопросов, сочетание строгих аналитических утверждений с численным счётом позволяет добиться существенных результатов в этом направлении. Отметим некоторые важные результаты.

Для уравнения (4) с потенциалом U(x), имеющего вид бесконечной потенциальной ямы, $U(x) = Ax^2$, в случае отталкивающих взаимодействий, $P(x) \equiv -1$, был предложен метод «доказательных вычислений», позволяющий гарантировать нахождение ecex ограниченных решений при заданных значениях параметров задачи^[7]. Разработанный метод впоследствии был обобщён на системы из нескольких связанных уравнений Гросса — Питаевского, в которых соответствующие псевдопотенциалу коэффициенты также не зависят от пространственной координаты^[8].

Для периодического потенциала U(x) в случае отталкивающих взаимодействий частиц конденсата $P(x) \equiv -1$ предложены достаточные условия, опять же допускающие исчерпывающее описание accineta ограниченных решений уравнения (4). При этом показано, что выполнение этих условий позволяет установить взаимно-однозначное соответствие между ограниченными решениями и всевозможными бесконечными в обе стороны последовательностями символов из некоторого конечного алфавита [9]. Последовательности такого рода названы accineta процесс присвоения кодов — accineta проверка достаточных условий проводилась авторами работы с помощью численного счёта. Результаты предыдущей работы получили свое продолжение [10],

^[7] G. L. Alfimov, D. A. Zezyulin, "Nonlinear modes for the Gross-Pitaevskii equation — a demonstrative computational approach", Nonlinearity, Vol. 20, P. 2075–2092, 2007.

^[8] G. L. Alfimov, I. V. Barashenkov, A. P. Fedotov, V. V. Smirnov, D. A. Zezyulin, "Global search for localised modes in scalar and vector nonlinear Schrödinger-type equations", Physica D, Vol. 397, P. 39–53, 2019.

^[9] G. L. Alfimov, A. I. Avramenko, "Coding of nonlinear states for the Gross–Pitaevskii equation with periodic potential", Physica D, Vol. 254, P. 29–45, 2013.

^[10] G. L. Alfimov, P. P. Kizin, D. A. Zezyulin, "Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation", Discrete and Continuous Dynamical Systems — Series B, Vol. 22, P. 1207–1229, 2017.

а именно: был разработан алгоритм, позволяющий по коду решения численно построить его профиль.

Стоит также отметить математические работы Ф. Занолина (F. Zanolin) и соавторов^{[11],[12]}, в которых доказывается существование некоторых типов решений в близких задачах. Эти решения также могут быть полностью описаны в терминах нелинейной динамики. Авторы цитированных работ используют подход, отличающийся от представленного в данной работе и основывающийся на топологических аргументах.

Актуальность темы исследования

Актуальной задачей является обобщение результатов приведенных выше работ на случай переменного псевдопотенциала $P(x) \neq \text{const.}$ В частности, перспективным направлением исследования является обобщение аппарата кодирования решений на случай периодических потенциала и псевдопотенциала. Детальная классификация решений уравнения (1) открывает возможность экспериментального обнаружения новых, ранее неизвестных устойчивых СЛМ.

Цели и задачи диссертационной работы

Основным объектом исследования данной диссертационной работы являются стационарные решения одномерного уравнения Гросса—Питаевского (1) с периодическим псевдопотенциалом. Цели и задачи работы можно сформулировать следующим образом:

- 1. Сформулировать достаточные условия, дающие возможность обобщить метод кодировки СЛМ^[9] на случай периодического потенциала и периодического псевдопотенциала; указать способ проверки этих условий (аналитически или с помощью численного счета).
- 2. Исследовать множество стационарных решений уравнения (1) с периоди-

^[11] Ch. Zanini, F. Zanolin, "Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with Stepwise Potential", Complexity, Vol. 2018, Article ID 2101482, 2018.

^[12] Ch. Zanini, F. Zanolin, "An Example of Chaos for a Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity", Advanced Nonlinear Studies, Vol. 12, No. 3, P. 481–499, 2012.

ческим псевдопотенциалом в случае принципиально нелинейных взаимодействий, когда линейным потенциалом можно пренебречь, $U(x) \equiv 0$.

3. Для случая бесконечной потенциальной ямы, $U(x) = Ax^2$, исследовать влияние периодического псевдопотенциала на структуру множества стационарных локализованных решений и их устойчивость.

Методология и методы исследования

Для исследования возможных типов СЛМ в работе используется так называемый «метод исключения сингулярных решений» [9]. Решение уравнения (4) называется *сингулярным*, если оно уходит на бесконечность в конечной точке числовой прямой $x=x_0$:

$$\lim_{x \to x_0} u(x) = \infty. \tag{5}$$

Очевидно, такие решения не могу описывать профиль волновой функции и должны быть исключены из рассмотрения. При выполнении определенных условий «большая часть» решений уравнения (4) представляет собой сингулярные решения. Множество оставшихся решений, называемых *регулярными*, оказывается достаточно «бедным» и может быть полностью описано в терминах символической динамики.

Решение дифференциального уравнения (4) производится с помощью метода Рунге–Кутта четвертого порядка точности. Для построения локализованных решений уравнения (4) в работе используется метод стрельбы. Построенные решения проверяются на линейную устойчивость путём решения соответствующей задачи на собственные значения в пространстве Фурье (метод коллокаций Фурье^[13]), а также посредством эволюционного моделирования динамики уравнения (1) с помощью консервативной конечно-разностной схемы^[14]. Все алгоритмы и численные методы реализованы в среде МАТLAВ с использованием расширения МЕХ для поддержки высокопроизводительных вычислений.

^[13] J. Yang, "Nonlinear Waves in Integrable and Nonintegrable Systems", Philadelphia: SIAM, 2010.

 $^{^{[14]}}$ V. Trofimov, N. Peskov Comparison of finite-difference schemes for the Gross-Pi taevskii equation // Mathematical Modelling and Analysis. — 2009. — Mar. — Vol. 14. — P. 109–126.

Научная новизна

В диссертационной работе доказан ряд общих утверждение, указывающих, когда уравнение (4) допускает существование сингулярных решений, а также, когда все его решения регулярны. В частности, показано, что если псевдопотенциал принимает отрицательное значение хотя бы в одной точке x_0 , $P(x_0) < 0$, то существуют два однопараметрических семейства решений, уходящих на бесконечность в этой точке, а также получены асимптотические формулы для этих семейств.

Дальнейшее развитие получает метод исключения сингулярных решений. В работе предложены достаточные условия существования взаимно-однозначного соответствия между регулярными решениями уравнения (4) и бесконечными последовательностями символов над некоторым алфавитом. В отличии от ранее полученных результатов^[9], предложенные достаточные условия могут быть эффективно проверены с помощью численного счета. В диссертации приводится алгоритм их численной проверки, а также его теоретическое обоснование.

Для случая $U(x) \equiv 0$ и модельного периодического псевдопотенциала вида $P(x) = A + B\cos 2x$ исследовано множество стационарных локализованных решений. Использование выше упомянутых техник позволило эффективно описать множество СЛМ и в конечном счёте обнаружить новое устойчивое решение, которое ранее не обсуждалось в литературе при рассмотрении задач, связанных с уравнением (1). Найденное новое устойчивое решение получило название $\partial unonbhui conumon$.

Наконец, изучен вопрос о влиянии периодического псевдопотенциала вида $P(x) = A + B\cos\Omega x$ на множество СЛМ в случае бесконечной потенциальной ямы, $U(x) = Ax^2$. Показано, что по сравнению с хорошо изученным случаем $P(x) = {\rm const.}$ множество стационарных локализованных решений оказывается значительно богаче, а именно, появляются существенно нелинейные решения, не существующие в малоамплитудном пределе. Исследована зависимость устойчивости СЛМ от частоты псевдопотенциала Ω . Для псевдопотенциала C нулевым

средним, $P(x) = B\cos\Omega x$, показано, что увеличение частоты Ω позволяет стабилизировать малоамплитудные решения, чьи аналоги в модели с $P(x) = \mathrm{const}$ оказываются неустойчивыми.

Положения, выносимые на защиту:

- 1. Сформулированы и доказаны общие утверждения о наличии и отсутствии сингулярных решений уравнения (4). Показано, что в случае P(x) > 0 все решения уравнения (4) регулярны. Если P(x) принимает отрицательное значение хотя бы в одной точке x_0 , $P(x_0) < 0$, то существуют два однопараметрических семейства решений, уходящих на бесконечность в точке $x = x_0$; построена асимптотика этих решений. В том случае, когда Q(x) < 0 и P(x) < 0, показано, что все решения уравнения (4) сингулярны.
- 2. Сформулированы достаточные условия возможности кодирования регулярных решений уравнения (4) и предложен эффективный алгоритм численной проверки этих условий.
- 3. Для случая $U(x) \equiv 0$, $P(x) = A + \cos 2x$ исследовано множество СЛМ уравнения (1) и обнаружено новое устойчивое локализованное решение $\partial unonbhbu u$ солитон.
- 4. В случае бесконечной потенциальной ямы вида $U(x) = Ax^2$ показано, что присутствие периодического псевдопотенциала приводит к появлению новых классов СЛМ, не имеющих аналогов в моделях с P(x) = const. Для псевдопотенциала с нулевым средним установлено, что частота псевдопотенциала существенным образом влияет на устойчивость СЛМ. Установлено, что увеличение частоты приводит к стабилизации малоамплитудных стационарных локализованных решений.

Степень достоверности и апробация результатов

Модель Гросса – Питаевского является классической моделью физики сверхнизких температур и её достоверность не вызывает сомнений. В данной диссертационной работе численно строятся локализованные стационарные решения указанной модели, а также численно исследуется устойчивость таких решений. Построение решений производится при помощи стандартных численных методов с контролируемой точностью. Исследование устойчивости построенных решений производится спектральным методом, который хорошо зарекомендовал себя для решения подобных задач. Результаты исследования устойчивости проверяются численным решением эволюционной задачи при помощи конечно-разностной схемы. Основные результаты диссертационной работы докладывались на различных научных семинарах и конференциях, в числе которых:

- 1. «Фундаментальная математика и ее приложения в естествознании», БашГУ, Уфа, сентябрь 2015 г., доклад «Стационарные моды нелинейного уравнения Шрёдингера в присутствии линейного и нелинейного потенциалов».
- 2. «Динамика, бифуркации и странные аттракторы», Нижегородский государственный университет, Нижний Новгород, июль 2016 г., доклад «Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity».
- 3. «Комплексный анализ, математическая физика и нелинейные уравнения», Башкортостан, оз. Банное, март 2018 г., доклад «Steady-states for the Gross-Pitaevskii equation with nonlinear lattice pseudo- potential».
- 4. «Nonlinear Phenomena in Bose Condensates and Optical Systems», Ташкент, Узбекистан, август 2018 г., доклад «Steady-states for the Gross-Pitaevskii equation with nonlinear lattice pseudopotential».
- 5. «Комплексный анализ, математическая физика и нелинейные уравнения», Башкортостан, оз. Банное, март 2019 г., доклад «Coding of solutions for the

Duffing equation with non-homogeneous nonlinearity».

6. «Комплексный анализ, математическая физика и нелинейные уравнения», Башкортостан, оз. Банное, март 2021 г., доклад «Coding of bounded solutions of equation $u_{xx} - u + \eta(x)u^3 = 0$ with periodic piecewise constant function $\eta(x)$ ».

Публикации

Материалы диссертации опубликованы в 3 печатных работах в рецензируемых журналах, входящих в международную систему цитирования Scopus:

- 1. Alfimov G. L., Lebedev M. E. On regular and singular solutions for equation $u_{xx} + Q(x)u + P(x)u^3 = 0$ // Ufa Mathematical Journal, 2015, Vol. 7, no. 2, P. 3–16, DOI: 10.13108/2015-7-2-3 (Scopus Q2).
- Lebedev M. E., Alfimov G. L., Malomed B. Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity // Chaos, 2016, Vol. 26, P. 073110, DOI: 10.1063/1.4958710 (Scopus Q1).
- 3. Alfimov G. L., Gegel L. A., Lebedev M. E., Malomed B. A., Zezyulin D. A. Localized modes in the Gross-Pitaevskii equation with a parabolic trapping potential and a nonlinear lattice pseudopotential // Communications in Nonlinear Science and Numerical Simulation, 2019, Vol. 66, P. 194–207, DOI: 10.1016/j.cnsns.2018.06.019 (Scopus Q1).

Личный вклад автора

Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором с использованием разработанных методов и компьютерных программ.

Структура и объем диссертации

Диссертация состоит из введения, четырёх глав, заключения, трёх приложений и библиографии. Общий объем диссертации 131 страниц, из них 115 страниц текста, включая 35 рисунков, 4 таблицы и 1 схему алгоритма. Библиография включает 61 наименование.

Содержание работы

Во введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

Вводятся основные понятия, относящиеся к объекту исследования. Стационарные локализованные решения (или стационарные локализованные моды, СЛМ) определяются как решения уравнения (1), имеющие вид (2) и удовлетворяющие условию локализации (3). Решение u(x) уравнения (4) называется сингулярным, если для некоторой конечной точки x_0 выполняется $u(x) \to \infty$ при $x \to x_0$. Точка x_0 называется точкой коллапса решений, а про само решение говорится, что оно коллапсирует в точке x_0 . Решение называется регулярным, если оно не коллапсирует ни в какой точке.

В первой главе сформулированы и доказаны основные утверждения о сингулярных и регулярных решениях уравнения (4).

Утверждение 1. Пусть для всех $x \in \mathbb{R}$, в уравнении (4) функции Q(x), $P(x) \in C^1(\mathbb{R})$, причём

(a)
$$P(x) \ge P_0 > 0$$
, $|P'(x)| \le \widetilde{P}$;

(6)
$$Q(x) \ge Q_0, |Q'(x)| \le \widetilde{Q}.$$

Тогда решение задачи Коши для уравнения (4) с произвольными начальными условиями может быть продолжено на всю действительную ось \mathbb{R} .

Утверждение 1 устанавливает условия отсутствия сингулярных решений. Одним из таких условий является положительность функции P(x) на всей числовой прямой. Если же функция P(x) принимает отрицательное значение хотя бы в одной точке x_0 , $P(x_0) < 0$, это порождает два семейства решений уравнения (4), коллапсирующих в этой точке. Для формулировки следующего утверждения удобно положить $P(x_0) = -1$ (этого всегда можно добиться путём соответствующей перенормировки).

Утверждение 2. Пусть Ω — некоторая окрестность точки x_0 , а $Q(x) \in C^2(\Omega)$ и $P(x) \in C^4(\Omega)$. Тогда существуют два C^1 -гладких однопараметрических семейства решений уравнения (4), коллапсирующих в точке $x=x_0$ (при приближении слева, $x \to x_0-0$) и связанных между собой симметрией $u \to -u$. Каждое из этих семейств может быть запараметризовано свободной переменной $C \in \mathbb{R}$, причём для этих семейств справедливы следующие асимптотические разложения:

$$\pm u(x) = \frac{\sqrt{2}}{\eta} + A_0 + A_1 \eta + A_2 \eta^2 + A_3 \eta^3 \ln|\eta| + C \eta^3 + A_4 \eta^4 \ln|\eta| + \dots$$
 (6)

 $3 десь \eta = x - x_0$, а коэффициенты A_n выражаются через коэффициенты Q_n , P_n разложения функций Q(x), P(x)

$$Q(x) = Q_0 + Q_1 \eta + Q_2 \eta^2 \dots, \quad P(x) = -1 + P_1 \eta + P_2 \eta^2 + \dots$$
 (7)

Аналогичные однопараметрические семейства коллапсирующих решений существуют также и справа от точки $x=x_0$. Наконец, в первой главе устанавливаются условия, при которых уравнение (4) вообще не имеет регулярных решений, за исключением нулевого решения $u(x) \equiv 0$.

Утверждение 3. Пусть при $x \in \mathbb{R}$ выполняются условия $P(x) \leq P_0 < 0$, $Q(x) \leq Q_0 < 0$. Тогда все решения уравнения (4) сингулярны, за исключением нулевого решения.

Одним из следствий полученных результатов является то, что в том случае, когда псевдопотенциал P(x) является знакопеременной функцией, сингулярность является характерным свойством большого количества решений уравнения (4), что, в свою очередь, делает возможным применение метода исключения сингулярных решений [9].

Во второй главе представлен аппарат кодирования стационарных состояний уравнения (1) с L-периодическими функциями потенциала, U(x+L) =U(x), и псевдопотенциала, P(x+L) = P(x). Оказывается, что множество регулярных решений уравнения (4) при определенных условиях можно полностью описать исходя из структуры так называемых $\kappa o dupo southux$ множеств: $\mathscr{U}_L^+,$ $\mathscr{U}_L^-,\,\mathscr{U}_L$. Эти множества определяются на плоскости (u,u') начальных условий уравнения (4) следующим образом. Множество \mathscr{U}_L^+ содержит в себе начальные условия для решений, ограниченных на промежутке [0; L], а множество \mathscr{U}_{L}^{-} — начальные условия для решений, ограниченных на промежутке [-L;0].Множество \mathscr{U}_L есть пересечение двух предыдущих множеств, $\mathscr{U}_L = \mathscr{U}_L^+ \cap \mathscr{U}_L^-$. Связь между точками этих множеств удобно описать с помощью отпображения Π уанкаре \mathcal{P} , которое определено следующим образом: пусть $\mathbf{p} \in \mathscr{U}_L^+$, тогда $\mathcal{P}(\mathbf{p})=\mathbf{q}=(u(L),u'(L)),\,\mathbf{q}\in\mathscr{U}_L^-$, где u(x) — решение задачи Коши для уравнения (4) с начальными условиями $u(0)=u_0,\,u'(0)=u'_0.$ Последовательность точек $\{\mathbf{p}_n\}$, связанных отображением Пуанкаре, $\mathcal{P}(\mathbf{p}_n) = \mathbf{p}_{n+1}$, называется *ор*битой.

Ключевым моментом на пути к описанию множества регулярных решения является выполнение $\partial syx\ runomes$ относительно действия отображения \mathcal{P} на множестве \mathscr{U}_L .

(I) Множество \mathcal{U}_L представляет из себя набор компонент связности $\mathcal{U}_L = \bigcup_{k \in S} D_k$, где каждая компонента D_k есть криволинейный четырехугольник с монотонными границами, а также для любых i, j множества $H_{ij} = \mathcal{P}(D_i) \cap D_j$ и $V_{ij} = \mathcal{P}^{-1}(D_j) \cap D_i$ непустые.

(II) Отображения \mathcal{P} , \mathcal{P}^{-1} некоторым образом сохраняют свойства монотонности полос, названных в работе h- u v-nonocamu, соединяющих противоположные стороны D_k , причем ширина этих полос убывает под действием соответствующих отображений.

Поясним гипотезу II. Если она верна, тогда определенные выше множества H_{ij} и V_{ij} представляют из себя h- и v- полосы соответственно. Из гипотезы II следует, что множества $\mathcal{P}(H_{ij}) \cap D_k$ также являются h-полосами, при этом выполняется неравенство $d_{\rm h}(\mathcal{P}(H_{ij}) \cap D_k) < d_{\rm h}(H_{ij})$, где под $d_{\rm h}(\cdot)$ понимается ширина h-полосы, измеряемая вдоль вертикальной прямой. Аналогично множества $\mathcal{P}^{-1}(V_{ij}) \cap D_k$ представляют из себя v-полосы, причём верным оказывается неравенство $d_{\rm v}(\mathcal{P}^{-1}(V_{ij}) \cap D_k) < d_{\rm v}(V_{ij})$, где $d_{\rm v}(\cdot)$ есть ширина v-полосы, измеряемся вдоль горизонтальной прямой.

В данной главе показано, что при выполнении гипотез I и II отображение \mathcal{P} действует на множестве \mathcal{U}_L по схеме подковы Смейла^[15], и существует взаимнооднозначное соответствие между *орбитами* регулярных решений уравнения (4) и *множеством бесконечных последовательностей*, в которых каждый символ соответствует компоненте связности множества \mathcal{U}_L . В этой части работы автор следует подходу, описанному в работах Л. П. Шильникова и В. М. Алексеева в 60-70-е годы прошлого века. В основных статьях^{[16],[17]} подход, основанный на символической динамике, был успешно применен к описанию поведения траекторий вблизи гомоклинической орбиты, а также для задачи трёх тел. В данной работе такой подход применяется к динамике отображений \mathcal{P} , \mathcal{P}^{-1} , действующих на множествах \mathcal{U}_L^{\pm} , что является новым приложением этой теории.

Проверка гипотез осуществляется численно. При этом гипотеза I может

^[15] S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos", New York: Springer-Verlag, 2003.

 $^{^{[16]}}$ Л. П. Шильников, «Об одной задаче Пуанкаре-Биркгофа», Математический сборник, Т. 74, №4, С. 378—397, 1967.

^[17] В. М. Алексеев, «Финальные движения в задаче трех тел и символическая динамика», Успехи математических наук, Т. 36, Вып. 4, С. 161, 1981.

быть легко проверена методом сканирования плоскости начальных условий. Проверка же гипотезы II не столь проста и требует более обстоятельного подхода. В данной главе сформулированы две теоремы (теоремы об отображении h- u v-noлоc), которые позволяют свести проверку гипотезы II к эффективной численной процедуре. Данная процедура заключается в вычислении значений элементов матрицы Якоби, а также оценке некоторых констант в точках \mathbf{p} , принадлежащих специальным подмножествам множества \mathcal{U}_L . Сам алгоритм проверки выглядит следующим образом.

Алгоритм 1. Проверка гипотезы II

Дано: Гипотеза I верна для уравнения (4); $\mathscr{U}_L = \bigcup_{k \in S} D_k$.

Шаг (1). Задать расчётную сетку. Для всех $i, j \in S$ численно построить множества $H_{ij} = \mathcal{P}(D_i) \cap D_j$, и $V_{ij} = \mathcal{P}^{-1}(D_j) \cap D_i$ на заданной расчётной сетке.

Шаг (2). Проверка знаков элементов в матрицах Якоби $D\mathcal{P}_{\mathbf{p}}$, $D\mathcal{P}_{\mathbf{q}}^{-1}$ для отображений \mathcal{P} , \mathcal{P}^{-1} .

- (a) Для $\mathbf{p} \in V_{ij}$ вычислить матрицу 2×2 оператора $D\mathcal{P}_{\mathbf{p}} = (a_{mn})$ и проверить, что знаки её элементов $\forall \mathbf{p} \in V_{ij}$ соответствуют в точности одной из конфигураций, указанных в теореме об отображении h-полос.
- (б) Для $\mathbf{q} \in H_{ij}$ вычислить матрицу 2×2 оператора $D\mathcal{P}_{\mathbf{q}}^{-1} = (b_{mn})$ и проверить, что знаки её элементов $\forall \mathbf{q} \in H_{ij}$ соответствуют в точности одной из конфигураций, указанных в теореме об отображении v-полос.

Шаг (3). Оценка сжатия h- и v-полос.

- (а) Используя расчётную сетку, оценить значение $\mu_* = \min_{\mathbf{p} \in V_{ij}} a_{11}(\mathbf{p});$ проверить, что $\mu_* > 1.$
- (б) Используя расчётную сетку, оценить значение $\nu_* = \min_{\mathbf{q} \in H_{ij}} b_{22}(\mathbf{q});$ проверить, что $\nu_* > 1$.

Работа алгоритма (см. рисунок 1) проиллюстрирована на примере уравнения (4) с $Q(x) \equiv -1$ и $P(x) = \eta(x)$, где $\eta(x)$ — кусочно-постоянная периодиче-

ская функция с периодом $L = L_* + L_0$, определенная следующим образом:

$$\eta(x) = \begin{cases}
-1, & x \in [0; L_*); \\
+1, & x \in [L_*; L_* + L_0).
\end{cases}$$
(8)

Оказывается (доказано строгое утверждение), что множество \mathscr{U}_L на плоскости начальных условий для такого уравнения неограниченно. Тем не менее можно ограничиться рассмотрением некоторого ограниченного подмножества $\mathcal{D} \subset \mathscr{U}_L$. Если гипотезы I и II верны для \mathcal{D} , тогда можно описать подмножество регулярных решений, чьи орбиты не выходят за пределы рассмотренного подмножества \mathcal{D} на плоскости начальных условий. На рисунке 1 показан пример множества \mathcal{D} , состоящего из трёх компонент связности. Гипотезы I и II верны для \mathcal{D} , а значит существует подмножество регулярных решений, которое может быть кодировано тремя символами $\{-1,0,+1\}$.

В **третьей главе** исследуется множество стационарных решения уравнения (1), в котором потенциал ловушки отсутствует, $U(x) \equiv 0$, а псевдопотенциал имеет вид косинуса, $P(x) = A + \cos 2x$. Такая задача ранее рассматривалась в литературе^[2]. Было установлено, что она допускает стационарное локализованное решение колоколообразной формы, называемое фундаментальный солитон, которое является устойчивым при определенных параметрах уравнения.

В данной главе к такому уравнению применяется подход, основанный на методике кодирования решений. Структура кодировочных множеств приведена на рисунке 2. Оказывается, что множества \mathscr{U}_{π}^{\pm} ($L=\pi$) представляют из себя бесконечные спирали, которые образуют неограниченное пересечение \mathscr{U}_{π} , состоящее из бесконечного количества компонент связности.

Проверка гипотез I и II осуществляется для подмножества $\mathcal{D} \subset \mathscr{U}_{\pi}$, состоящего из семи центральных компонент связности. Численная процедура проверки гипотез позволила заключить, что обе гипотезы верны. Следовательно, существует взаимно-однозначное соответствие между решениями уравнения (4) и кодами, построенными исходя из структуры кодировочного множества. Нали-

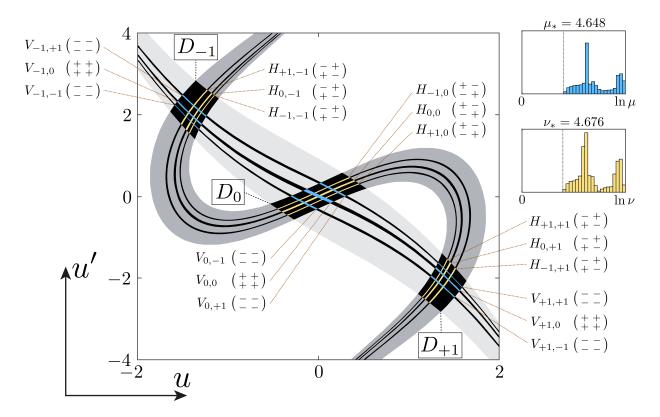


Рис. 1: Проверка гипотез для уравнения (4) для случая $Q(x) \equiv -1$, $P(x) = \eta(x)$ с параметрами $(L_*, L_0) = (2, 1)$. Множество \mathscr{U}_L^+ (светло-серый), \mathscr{U}_L^- (тёмносерый), их пересечение $\mathcal{D} = \{D_{-1}, D_0, D_{+1}\} \subset \mathscr{U}_L$ (чёрный); для множеств V_{ij} (синий) и H_{ij} (жёлтый) указаны знаки элементов соответствующих операторов.

чие такого соответствия показывает, что множество стационарных локализованных решения рассматриваемого уравнения чрезвычайно богато. На рисунке 3 представлены различные решения и соответствующие им символьные коды.

Анализ линейно устойчивости спектральным методом показал, что большинство решений являются неустойчивыми, однако в задаче существует некоторое количество устойчивых решений, часть из которых ранее не была известна. Одним из таких новых устойчивых решений является так называемый дипольный солитон, профиль которого изображен на рисунке 3 (е).

В четвертой главе исследуются СЛМ уравнения (1), в котором наряду с периодическим потенциалом также присутствует удерживающий потенциал, имеющий вид бесконечной потенциальной ямы. После перенормировки функции потенциала и псевдопотенциала принимают вид $U(x) = x^2$, P(x) =

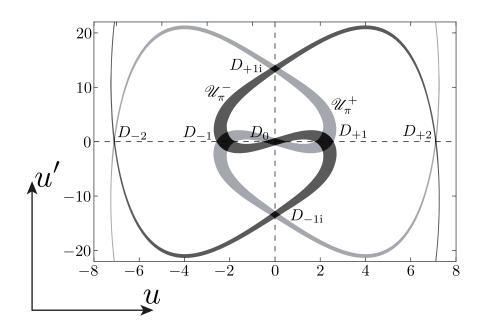


Рис. 2: Множество $\mathcal{D} \subset \mathcal{U}_{\pi}$, состоящее из семи компонент связности $\{D_{-2}, D_{-1i}, D_{-1}, D_0, D_{+1}, D_{+1i}, D_{+2}\}$ (чёрный), сформированное пересечением множеств \mathcal{U}_{π}^{\pm} для уравнения (4); Q(x) = -1.5, $P(x) = \cos 2x$.

$A + B \cos \Omega x$ соответственно.

Особое место в анализе такого уравнения занимают *стационарные решения с линейным аналогом*. Такие решения возникают из рассмотрения случая малых амплитуд $|u(x)| \ll 1$. В этом случае в уравнении (4) можно отбросить нелинейное слагаемое, так что уравнение принимает вид обыкновенного гармонического осциллятора

$$u_{xx} + (\omega - x^2)u = 0. (9)$$

Его решением является следующий набор собственных значений и собственных функций:

$$\tilde{\omega}_n = 2n + 1; \quad \tilde{u}_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x) e^{-\frac{1}{2}x^2}; \quad n = 0, 1, \dots,$$
 (10)

где функции $H_n(x)$ представляют собой многочлены Эрмита. Под действием нелинейности каждое собственное значение $\tilde{\omega}_n$ бифурцирует и порождает однопараметрическое семейство $\Gamma_n = (\omega_n, u_n(x))$ — семейство решений с линейным аналогом.

Известно $^{[7]}$, что решения с линейным аналогом полностью исчерпывают

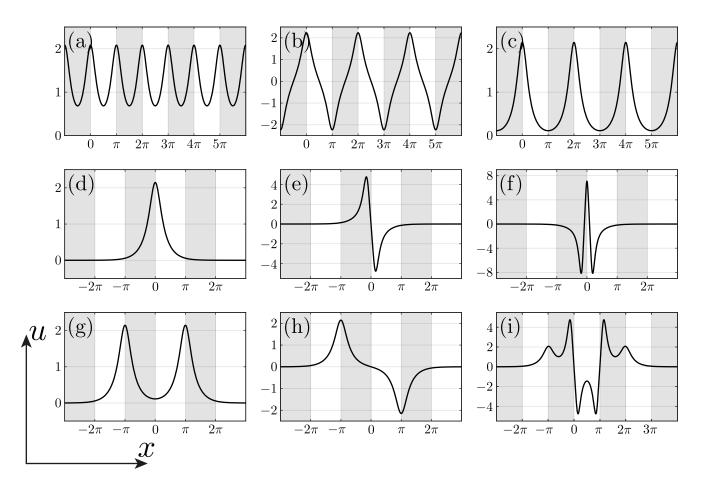


Рис. 3: Различные решения уравнения (4) для Q(x) = -1.5, $P(x) = \cos 2x$. Каждому решению соответствует символьный код, который однозначно идентифицирует решение. Периодические решения: (a) π -перидическое решение $\{\ldots, +1, +1, +1, \ldots\}$; (b) 2π -периодическое решение $\{\ldots, +1, -1, +1, -1, \ldots\}$; (c) 2π -периодическое решение $\{\ldots, +1, 0, +1, 0, \ldots\}$. Локализованные решения: (d) фундаментальный солитон $\{\ldots, 0, +1, 0, \ldots\}$; (e) дипольный солитон $\{\ldots, 0, -1i, 0, \ldots\}$ (f) элементарный солитон с кодом $\{\ldots, 0, +2, 0, \ldots\}$ (g) $\{\ldots, 0, +1, 0, +1, 0, \ldots\}$ (h) $\{\ldots, 0, +1, 0, -1, 0, \ldots\}$ (i) $\{\ldots, 0, +1, -1i, +1i, +1, \ldots\}$.

все множество СЛМ для случая $P(x) \equiv -1$. Однако в случае периодического псевдопотенциала также существуют решения, не имеющие линейного аналога. В данной главе ветви таких решений строятся численно, см. рисунок 4. Анализ устойчивости показал, что почти все они оказываются неустойчивыми.

Вторая часть четвёртой главы посвящена анализу устойчивости малоам-

плитудных решений. Аналитически показано, что в случае псевдопотенциала с нулевой средней, $P(x) = B\cos\Omega x$, увеличение частоты приводит к стабилизации малоамплитудных решений с линейным аналогом. То есть для каждой ветви Γ_n существует пороговое значение частоты Ω_n , что для $\Omega > \Omega_n$ соответствующая ветвь решений устойчива в окрестности точки бифуркации $N \ll 1$, $\omega_n \approx \tilde{\omega}_n$.

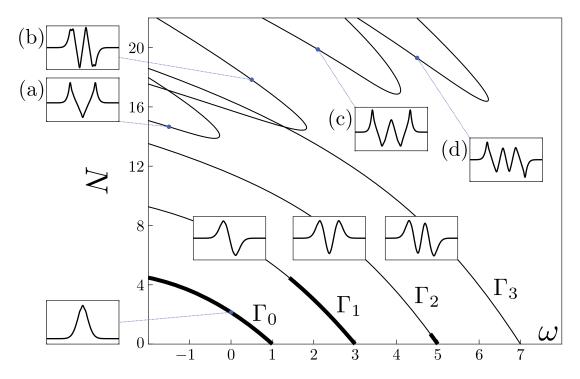


Рис. 4: Диаграммы зависимости нормы решений N от химического потенциала ω , для уравнения (4); $Q(x) = \omega - x^2$, $P(x) = 1 + 2\cos(12x)$. Сегменты кривых $N(\omega)$, соответствующие устойчивым решениям, выделены толстыми линями. Ветви Γ_n , n=0,1,2,3 соответствуют семействам решений с линейным аналогом.

В заключении подводятся итоги диссертационной работы. Основные результаты могут быть представлены следующим образом.

- 1. Сформулированы и доказаны общие утверждения о наличии и отсутствии сингулярных решений уравнения (4).
- 2. Сформулированы достаточные условия возможности кодирования регу-

лярных решений уравнения (4) и предложен эффективный алгоритм численной проверки этих условий.

- 3. Для случая $U(x) \equiv 0$, $P(x) = A + \cos 2x$ исследовано множество СЛМ уравнения (1) и обнаружено новое устойчивое локализованное решение $\partial unon bh bi \ddot{u}$ солитон.
- 4. В случае бесконечной потенциально ямы показано, что присутствие периодического псевдопотенциала приводит к появлению новых классов СЛМ, не имеющих линейных аналогов. Для псевдопотенциала с нулевым средним установлено, что увеличение частоты псевдопотенциала приводит к стабилизации малоамплитудных стационарных локализованных решений.

В приложении А доказывается лемма об ограниченных решениях, использующаяся в первой главе.

В **приложении В** в явном виде выписаны решения для двух уравнений типа осциллятора Дуффинга:

$$u_{xx} - u + u^3 = 0; \quad u_{xx} - u - u^3 = 0,$$
 (11)

использующиеся в секции 2.3.

В приложении С приведено доказательство теорем об отображении h- и v-полос, использующихся во второй главе.