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Introduction

In the famous paper [1], A. Beilinson defined the motivic cohomology

of arbitrary variety as well as the regulator map from these cohomology

to the Deligne-Beilinson cohomology. The natural question is: can we

decribe the regulator map explicitly? The positive answer to this question

was given by A. Goncharov in [9]. It is known [11] that the motivic

cohomology can be computed through cubical Bloch’s higher Chow group.

In loc.cit. A. Goncharov gives the explicit construction of the morphism

of complexes, from the cubical Bloch’s higher Chow group to the complex

computing Deligne-Beilinson cohomology, inducing the Beilinson regulator

map.

The simplest non-trivial case of this construction is given by so-

called Chow dilogarithm — a non-trivial generalisation of classical Bloch-

Wigner dilogarithm [13]. Unlike the classical case this function depends

an arbitrary smooth projective curve together with three non-zero rational

functions on it. A. Goncharov [9] formulated the conjecture about strong

Suslin reciprocity law, which, roughly speaking, says that the Chow

dilogarithm can be in a canonical way expressed through Bloch Wigner

dilogarithm.

The main result of this dissertation is the full proof of this conjecture.

Besides, I prove some new results about functional equations for the

elliptic dilogarithm.

The thesis consists of three sections. In Section 1, I give some basic

definitions. In Section 2, I formulate results connected with the conjecture

of A. Goncharov about strong Suslin reciprocity law. This section is

based on results of [4, 5]. In the Section 3, I formulate the results about

functional equations for the elliptic dilogarithm obtained in [3].
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1 Definitions

Let k be an algebraically closed field of characteristic zero. All algebraic

varieties are assumed to be smooth and defined over k. Everywhere we

work over Q. So any abelian group is supposed to be tensored by Q.

For example, when we write Λ2k× this actually means (Λ2k×) ⊗ Q. All

exterior powers and tensor products are over Q.

The classical polylogarithm function

Lin(z) =
∞∑

k=1

zk

kn
.

was defined by L. Euler. This series converges for |z| < 1 and can

be analytically continued to many-valued meromorphic function on the

whole P1(C). The definition of single-valued version Ln of this function

can be found in [13]. This function is continuous real-valued function on

P1(C).

Let F be an arbitrary field. Define the group Z[P1(F )]n as a free

abelian group generated by symbols {x}n where x ∈ P1(F ). In the case

F = C, the polylogarithm Ln gives a linear map L̃n : Z[P
1(C)] → R,

given by the formula

L̃n({z}n) = Ln(z).

In [7], A. Goncharov defined some subgroup Rn(F ) of the group

Z[P1(F )]n such that in the case F = C this group lies in the kernel

of the map L̃n. We can think about the subgroup Rn(F ) as the subgroup

describing “universal” functional equations for the function Ln.

Definition 1.1 (Higher Bloch group). Define the group Bn(F ) as the

following quotient group:

Bn(F ) := Z[P1(F )]n/Rn(F ).

This group is called the n-th Bloch group.
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Remark 1.2. 1. It is not known whether the definitions of the group

Rn(F ) from [8] and [7] are equivalent. While it is believed to be the

case, this statement relies on the so-called Suslin rigidity conjecture.

In this paper we use the later definition, that is the definition from

[7].

2. Everywhere in this paper we can replace the complex Γ(F, n) with

its canonical truncation τ≥n−1Γ(F, n). Therefore, only the definition

of the group R2(F ) is relevant for us. As it was noted in Section

4.2 of [7] this group is generated by the following elements:

5∑

i=1

(−1)i{c.r.(x1, . . . , x̂i, . . . , x5)}2, {1}2, {0}2, {∞}2.

In this formula xi are five different points on P1 and c.r.(·) is the

cross ratio.

Definition 1.3 (Polylogarithmic complex). Define the complex Γ(F, n)

as follows:

Γ(F, n) : Bn(F )
δn−→ Bn−1(F )⊗F× δn−→ . . .

δn−→ B2(F )⊗Λn−2F× δn−→ ΛnF×.

This complex is concentrated in degrees [1, n]. The differential is

defined as follows: δn({x}k⊗yk+1∧· · ·∧yn) = {x}k−1⊗x∧yk+1∧· · ·∧yn

for k > 2 and δn({x}2 ⊗ y3 ∧ . . . yn) = x ∧ (1− x) ∧ y3 ∧ · · · ∧ yn.

The polylogarithmic complexes was defined by A. Goncharov in [8].

The cohomology of these complexes hypothetically computes motivic

cohomology of an arbitrary field.

The proof of the following proposition can be found in [8]:

Proposition 1.4. Let (F, ν) be a discrete valuation field and n ≥ 3.

There is a unique morphism of complexes ∂
(n)
ν : Γ(F, n) → Γ(F ν , n −

1)[−1] satisfying the following conditions:
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1. For any uniformiser π and units u2, . . . un ∈ F we have ∂
(n)
ν (π ∧

u2 ∧ · · · ∧ un) = u2 ∧ · · · ∧ un.

2. For any a ∈ F\{0, 1} with ν(a) 6= 0, an integer k satisfying 2 ≤

k ≤ n and any b ∈ Λn−kF× we have ∂
(n)
ν ({a}k ⊗ b) = 0.

3. For any unit u, an integer k satisfying 2 ≤ k ≤ n and b ∈ Λn−kF×

we have ∂
(n)
ν ({u}k ⊗ b) = −{u}k ⊗ ∂

(n−k)
ν (b).

We will call the map ∂
(n)
ν from the previous proposition the tame

symbol map.

When D is an irreducible divisor on a smooth variety X, we denote

by νD the corresponding discrete valuation of the field k(X). For any

field F denote by ν∞,F the discrete valuation of F (t) given by the point

∞ ∈ P1(F ).

We recall that we have fixed some algebraically closed field k of

characteristic zero. Denote by Fieldsd the category of finitely generated

extensions of k of transcendence degree d. Any morphism in this category

is a finite extension. For F ∈ Fieldsd, denote by dval(F ) the set of

discrete valuations given by an irreducible Cartier divisor on some birational

model of F . When F ∈ Fields1 this set is equal to the set of all 1-

dimensional valuations that are trivial on k. In this case, we denote this

set simply by val(F ).

Let us define so-called Chow dilogarithm [9]. Let X be a curve over

k and f1, f2, f3 be three non-zero rational function on X. Define the

following 2-distribution on X(C) (see [9]):

r2(X; f1, f2, f3) =
1

6

∑

σ∈S3

sgn(σ)r̃2(X; fσ(1), fσ(2), fσ(3)),

r̃2(X; g1, g2, g3) = log |g1|d log |g2|∧d log |g3|−3 log |g1|d arg(g2)∧d arg(g3).

The Chow dilogarithm is defined by the formula

P2(X; f1, f2, f3) = (2πi)−1

∫

X(C)

r2(X; f1, f2, f3).

5



This definition easily implies that Chow dilogarithm vanishes if one of

the functions fi is constant and that for any non-constant map ϕ : X →

Y , the following formula holds:

P2(Y ; f1, f2, f3) = (degϕ)−1P2(X,ϕ∗(f1), ϕ
∗(f2), ϕ

∗(f3)).

Definition 1.5. Let F ∈ Fields1. A lifted reciprocity map on the field F

is a Q-linear map h : Λ3F× → B2(k) satisfying the following conditions:

1. The following diagram is commutative:

B3(F ) B2(F )⊗ F× Λ3F×

B2(k) Λ2(k×).

δ3 δ3

h

−δ2

∑

ν∈val(F )

∂
(3)
ν

∑

ν∈val(F )

∂
(3)
ν (1)

2. The map h vanishes on the image of the multiplication map Λ2F×⊗

k× → Λ3F×.

2 Lifted reciprocity maps and Chow dilogarithm

Motivated by the analytic properties of Chow dilogarithm, A. Goncharov

[9] formulated the following conjecture:

Conjecture 2.1. For any field F ∈ Fields1 one can choose a lifted

reciprocity map HF on the field F such that for any embedding j : F1 →

F2 we have RecMaps(j)(HF2) = HF1. Such a collection of lifted reciprocity

maps is unique.

Some partial results towards the solution of this conjecture was obtained

in [12]. The main result of this thesis is the proof of the following conjecture:

Theorem 2.2. Conjecture 2.1 is true.
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The ideas of the proof of this theorem was published in [4]. The

detailed proof will be published in [5].

The proof of Theorem 2.2 has the following corollary interesting by

its own:

Corollary 2.3. Let L ∈ Fields2. For any b ∈ Λ4L× and all but finitely

many ν ∈ dval(L) we have HLν
∂
(4)
ν (b) = 0. Moreover, the following sum

is equal to zero: ∑

ν∈dval(L)

HLν
∂(4)
ν (b) = 0. (2)

Applying L̃2 to both sides of (2) we recover the functional equation

for Chow dilogarithm proved by A. Goncharov in [9, Section 1.4], see also

[6].

3 Elliptic dilogarithm

Let E = C/ 〈1, τ〉 be an elliptic curve over C. The elliptic dilogarithm was

defined by Spencer Bloch ([2], see also [13]). The equivalent representation

is given by the following formula:

Dτ (ξ) =
∞∑

n=−∞

D(e2πiξ+2πiτn).

Denote by Z[E] a free abelian group generated by the points of E. For

a point z ∈ E we denote by [z] the corresponding element in the group

Z[E]. The elliptic dilogarithm gives a well-defined map D̃τ : Z[E] → C

defined by the formula D̃τ ([z]) = Dτ (z).

For a rational function g on some smooth algebraic curve, denote by

(g) its divisor. Let us formulate the so-called elliptic Bloch relations ([2,

Theorem 9.2.1], see also [13]). Let f be a rational function on E of degree

n such that

(f) =
n∑

i=1

([αi]− [γi]), (1− f) =
n∑

i=1

([βi]− [γi]).
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Define the element ηf ∈ Z[E] by the following formula:

ηf =
n∑

i,j=1

([αi − βj] + [βi − γj] + [γi − αj]) . (3)

The following definition is taken from [10]:

Definition 3.1. Define a subgroup R(E) of the group Z[E] generated

by the following elements:

1. ηf , where f ∈ k(E),

2. [z] + [−z], where z ∈ E,

3. 2 · (z −
∑

2z′=z

[z′]), where z ∈ E.

The elliptic Bloch group B3(E) is defined as the quotient Z[E]/R(E).

According to [10], the map D̃τ is zero on R(E). The main result of

[3] is the following theorem:

Theorem 3.2. Let E be an elliptic curve over C. For any rational

function f on E the element ηf can be represented as a linear combination

with integer coefficient of the elements of the form ηf with deg f ≤ 3 and

[z] + [−z].

This implies that when we defining the elliptic Bloch group, we can

omit the elements ηf with deg f > 3.

This theorem gives a solution of Conjecture 3.30 from [10].

This statement can be easily deduced from the following result interesting

in itself:

Theorem 3.3. Let E be an elliptic curve over algebraically closed field k

of characteristic 0. The group B2(k(E)) can be generated by elements of

the form {f}2, where f is a rational function on E of degree not higher

than 3.
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The results of the thesis are published in three articles:

1. V. Bolbachan. Chow dilogarithm and strong suslin reciprocity law.

Journal of algebraic geometry, 32(3):to appear, 2023

2. V. Bolbachan. Strong suslin reciprocity law and the norm map.

Mathematical Notes, 112(1):309–312, 2022

3. V. Bolbachan. On functional equations for the elliptic dilogarithm.

European Journal of Mathematics, 8(2):625–633, 2022

Список литературы

[1] A. Beilinson. Higher regulators and values of L-functions. Journal

of Soviet Mathematics, 30(2):2036–2070, 1985.

[2] S. Bloch. Higher Regulators, Algebraic K-theory, and Zeta Functions

of Elliptic Curves, volume 11 of CRM monograph series. American

Mathematical Society, Providence, 2000.

[3] V. Bolbachan. On functional equations for the elliptic dilogarithm.

European Journal of Mathematics, 8(2):625–633, 2022.

[4] V. Bolbachan. Strong suslin reciprocity law and the norm map.

Mathematical Notes, 112(1):309–312, 2022.

[5] V. Bolbachan. Chow dilogarithm and strong suslin reciprocity law.

Journal of algebraic geometry, 32(3):to appear, 2023.

[6] J. Burgos-Gil, M. Kerr, J. Lewis, and P. Lopatto. Simplicial Abel-

Jacobi maps and reciprocity laws. With an appendix by José Ignacio
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