Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики"

Факультет математики

На правах рукописи

Болбачан Василий Сергеевич

О структуре K-групп эллиптических кривых

Резюме диссертации на сосискание ученой степени кандидата математических наук

> Научный руководитель: д. мат. н., профессор Левин Андрей Михайлович

Москва – 2023

Введение

Одна из ключевых гипотез в ариметическиой геометрии — это гипотеза А. Бейлинсона, описывающая связь между значениями регулятора, определенного на мотивных когомолгиях арифметического многообразия и значениями его L-функции в целых точках. Простейший случай когда многообразие состоит из одной точки составляет содержание известной теоремы А. Бореля. С другой стороны Д. Загье высказал гипотезу, что значения L-функции (которая в данном случае называется ζ -функцией) числового поля в целых точках выражаются через так называемые *полилогарифмы*. На данные момент эта гипотеза доказана только в случае $2 \le n \le 4$ (где n — число в котором берется значение ζ -функции). Более того случай n=4 был доказан только в этом году, и, в этом доказательстве были использованы результаты данной диссертации.

Указанные результаты мотивируют следующий вопрос: что можно сказать о значениях регультора произвольного арифметического многообразия и можно ли эти значения описать явным образом? Согласно С. Блоху, про мотивные когомолгии можно думать как про симплициальные группы Чжоу. На этом языке явная формула для отображения регулятора была построена в [6]. Первый нетривиальный случай этой конструкции (соответствующий ситуации когда многообразие является спектром поля, а так называемый мотивный вес равен 2) приводит к понятию дилогарифма Чжоу. Мотивируясь аналитическими свойствами дилогарифма Чжоу, А. Гончаров сформулировал гипотезу, обощающую так называемый строгий закон взаимности А. Суслина. Частичное продвижение в доказательстве этой гипотезы было получено [9]. Основным результатом данной диссертации является доказательство указанной гипотезы в полном объеме. Кроме этого, попутно доказывается новый закон взаимности, который формулируется для 4 ненулевых функций на алгебраической поверхности. Также в диссертации доказывается результат описывающий функциональные соотношения для так называемого эллиптического дилогарифма.

Диссертация состоит из 3 разделов. В первом разделе я даю необходимые определения. Во втором разделе я формулирую результаты связанные с гипотезой А. Гончарова, обощающий усиленный закон взаимности А. Суслина. Эти результаты были получены в статьях [3], [4]. В третьем разделе я формулирую результаты, относящиеся к описанию функциональных соотношений для эллиптического дилогарифма. Эти результаты были получены в [2].

1 Определения

Пусть k — алгебраически замкнутое поле характеристики ноль. Все многообразия предполагаются гладкими и опрделенными над k. Для каждой абелевой группы A определена ее рационализация $A_{\mathbb{Q}} := A \otimes_{\mathbb{Z}} \mathbb{Q}$. Мы всюду заменяем каждую абелеву группу на ее рационализацию. Все внешние и тензорные степени берутся над \mathbb{Q} .

Определим функцию $Li_n(z)$ по следующей формуле:

$$Li_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}.$$

Этот ряд сходится при |z| < 1, но может быть аналитически продолжен до многозначной мероморфной функции на всем $\mathbb{P}^1(\mathbb{C})$. Эта функция называется *классическим полилогарифмом* и изначально была введена Л. Эйлером. В [10] дается определение однозначной версии \mathcal{L}_n функции Li_n . Функция \mathcal{L}_n является непрерывной вещественно значной функцией на всем $\mathbb{P}^1(\mathbb{C})$. Можно показать, что эта функция является вещественно аналитичекой на дополнении к конечному числу точек, в которых она имеет логарифмические особен-

ности. Пусть F произвольное поле. Определим $\mathbb{Z}[\mathbb{P}^1(F)]_n$ как свободную абаелеву группу порожденную символами $\{x\}_n$ где $x \in \mathbb{P}^1(F)$. (Эта группа фактически не зависит от n, но я ввожу это определение для дальнейншега удобства). В случае $F = \mathbb{C}$, полилогарифм \mathcal{L}_n задает линейное отображение $\widetilde{\mathcal{L}}_n \colon \mathbb{Z}[\mathbb{P}^1(\mathbb{C})] \to \mathbb{R}$, заданное на образующих по следующей формуле:

$$\widetilde{\mathcal{L}}_n(\{z\}_n) = \mathcal{L}_n(z).$$

На всю группу $\mathbb{Z}[\mathbb{P}^1(\mathbb{C})]_n$ это отображение продолжается по линейности. В [8] А. Гончаров определил подгруппу $\mathcal{R}_n(F)$ группы $\mathbb{Z}[\mathbb{P}^1(F)]_n$ так что в случае $F = \mathbb{C}$ эта подгруппа лежит в ядре отображения $\widetilde{\mathcal{L}}_n$. Интуитивно, эта подгруппа описывает "универсальные" функциональные соотношения для функции \mathcal{L}_n .

Определение 1.1 (Высшая группа Блоха). Определим группу $\mathcal{B}_n(F)$ как следующую фактор-группу:

$$\mathcal{B}_n(F) := \mathbb{Z}[\mathbb{P}^1(F)]_n / \mathcal{R}_n(F).$$

Эта группа называется n-ой группой Блоха.

Так как группа $\mathcal{B}_2(F)$ будет играть важную роль на протяжении всей диссертации, дадим явное поределение группы $\mathcal{R}_2(F)$. Как было замечено в Разделе 4.2 статьи [8], эта группа порождается следующими элементами:

$$\sum_{i=1}^{5} (-1)^{i} \{c.r.(x_{1}, \dots, \widehat{x}_{i}, \dots, x_{5})\}_{2}, \{0\}_{2}, \{1\}_{2}, \{\infty\}_{2}.$$

В этой формуле x_i — это 5 различных точек на \mathbb{P}^1 и $c.r.(\cdot,\cdot,\cdot,\cdot)$ — это двойное отношение четырех точек на проективной прямой.

Замечание 1.2. Не известно совпадает ли подгруппа $\mathcal{R}_n(F)$ из статьи [5] с аналогичной подгруппой, определенной в [8]. Утверждение

об их совпадении тесно связанно с так называемой гипотезой А. Суслина о жесткости. В этой диссертации мы придерживаемся определения группы $\mathcal{R}_n(F)$ взятой из [8].

Определение 1.3 (Полилогарифмический комплекс). Определим комплекс $\Gamma(F,n)$ следующим образом:

$$\Gamma(F,n)\colon \mathcal{B}_n(F)\xrightarrow{\delta_n} \mathcal{B}_{n-1}(F)\otimes F^{\times}\xrightarrow{\delta_n} \dots \xrightarrow{\delta_n} \mathcal{B}_2(F)\otimes \Lambda^{n-2}F^{\times}\xrightarrow{\delta_n} \Lambda^n F^{\times}.$$

Этот комплекс сосредоточен в степнях от 1 до n. Дифференциал определяется следующим образом: $\delta_n(\{x\}_k \otimes y_{k+1} \wedge \cdots \wedge y_n) = \{x\}_{k-1} \otimes x \wedge y_{k+1} \wedge \cdots \wedge y_n$ для k > 2 и $\delta_n(\{x\}_2 \otimes y_3 \wedge \ldots y_n) = x \wedge (1-x) \wedge y_3 \wedge \cdots \wedge y_n$.

Полилогарифмические комплексы комплексы были определены A. Гончаровым в статье [5]. В этой же статье была высказана гипотеза, что эти комплексы вычисляют мотивные когомологии поля F.

Пусть (F, ν) — это поле дисретного нормирования. Обозначим $\mathcal{O}_{\nu} = \{x \in F | \nu(x) \geq 0\}, m_{\nu} = \{x \in F | \nu(x) > 0\}$ and $\overline{F}_{\nu} = \mathcal{O}_{\nu}/m_{\nu}$. Напомним, что элемент $a \in F^{\times}$ із называется униформизающим если $\nu(a) = 1$ и называется единицей если $\nu(a) = 0$. Для $u \in \mathcal{O}_{\nu}$ обозначим через \overline{u} его класс в поле вычетов \overline{F}_{ν} .

Доказательство следующего предложения может быть найдено в [5]:

Предложение 1.4. Пусть (F, ν) — поле дискретного нормирования $u \ n \ge 3$. Существует единиственный морфизм комплексов

$$\partial_{\nu}^{(n)} \colon \Gamma(F,n) \to \Gamma(\overline{F}_{\nu},n-1)[-1]$$

удовлетворяющий следующим условиям:

1. Для любого униформизующего π и едениц $u_2, \dots u_n \in F$, выполнена следующая формула: $\partial_{\nu}^{(n)}(\pi \wedge u_2 \wedge \dots \wedge u_n) = \overline{u_2} \wedge \dots \wedge \overline{u_n}$.

- 2. Для любого $a \in F \setminus \{0,1\}$ удовлетворяющего $\nu(a) \neq 0$, целого числа k, такого что $2 \leq k \leq n$ и любого $b \in \Lambda^{n-k}F^{\times}$ имеем: $\partial_{\nu}^{(n)}(\{a\}_k \otimes b) = 0$.
- 3. Для любой единицы u, целого числа k, такого что $2 \le k \le n$ u любого $b \in \Lambda^{n-k} F^{\times}$ имеем: $\partial_{\nu}^{(n)}(\{u\}_k \otimes b) = -\{\overline{u}\}_k \otimes \partial_{\nu}^{(n-k)}(b)$.

Мы будем называть морфизм комплексов $\partial_{\nu}^{(n)}$ из предыдущего предложения ручным символом.

Пусть D — это неприводимый дивизор на гладком многообразии X. Обозначим через ν_D соответствующее дискретное нормирование поля k(X). Для произвольного поля F обозначим через $\nu_{\infty,F}$ дискретное нормирование поля F(t), которое соответствует точке $\infty \in \mathbb{P}^1(F)$.

Напомним, что мы зафиксировали алгебраически замкнутое поле k характеристики ноль. Обозначим через \mathbf{Fields}_d категорию конечно порожденных расширений поля k степени трансцендентности d. Каждый морфизм в этой категории — это конечное расширение. Для поля $F \in \mathbf{Fields}_d$, обозначим через $\mathrm{dval}(F)$ множество дискретных нормирований заданных неприводимым девизором на какой-нибудь гладкой модели поля F. В случае когда $F \in \mathbf{Fields}_1$ это множество совпадает с множеством всех дисертных нормирований, которые тривиальны на поле k. В этом случае мы обозначим это множество просто через $\mathrm{val}(F)$. Если X — это гладкое алгебраическое многообразие, вместе с изоморфизмом $k(X) \to F$, обозначим через $\mathrm{dval}(F)_X \subset \mathrm{dval}(F)$ подмножество дивизориальных нормирований, которые происходят из неприводимых дивизоров на X.

Дадим определение дилогарифма Чжоу, который впервые был определен в [6]. Пусть X – это кривая и f_1 , f_2 , f_3 три ненулевые рациональные функции на X. Определим следующее 2-распределение на $X(\mathbb{C})$ (см. [6]):

$$r_2(X; f_1, f_2, f_3) = \frac{1}{6} \sum_{\sigma \in S_3} sgn(\sigma) \widetilde{r}_2(X; f_{\sigma(1)}, f_{\sigma(2)}, f_{\sigma(3)}),$$

 $\widetilde{r}_2(X; g_1, g_2, g_3) = \log|g_1| d\log|g_2| \wedge d\log|g_3| - 3\log|g_1| d\arg(g_2) \wedge d\arg(g_3).$

Дилогарифм Чжоу опрделяется по формуле

$$\mathcal{P}_2(X; f_1, f_2, f_3) = (2\pi i)^{-1} \int_{X(\mathbb{C})} r_2(X; f_1, f_2, f_3).$$

Из определения легко следует, что дилогарифм Чжоу зануляется если две из трех функций являются константами, а тажже что для любого непостоянного регулярного отображения $\varphi \colon X \to Y$ и трех неулевых функций f_1, f_2, f_3 на Y выполняется равенство

$$\mathcal{P}_2(Y; f_1, f_2, f_3) = (\deg \varphi)^{-1} \mathcal{P}_2(X, \varphi^*(f_1), \varphi^*(f_2), \varphi^*(f_3)).$$

Определение 1.5 (Поднятое отображение взаимности). Пусть $F \in$ Fields₁. Поднятое отображение взиимности на поле F — это \mathbb{Q} — линейное отображение $h \colon \Lambda^3 F^{\times} \to \mathcal{B}_2(k)$ удовлетворяющее следующим двум условиям:

1. Следующая диаграмма коммутативна:

$$\mathcal{B}_{3}(F) \xrightarrow{\delta_{3}} \mathcal{B}_{2}(F) \otimes F^{\times} \xrightarrow{\delta_{3}} \Lambda^{3} F^{\times}$$

$$\underset{\nu \in \operatorname{val}(F)}{\sum} \partial_{\nu}^{(3)} \qquad \qquad \underset{\nu \in \operatorname{val}(F)}{\overset{}{\longrightarrow}} \partial_{\nu}^{(3)} \qquad \qquad (1)$$

$$\mathcal{B}_{2}(k) \xrightarrow{-\delta_{2}} \Lambda^{2}(k^{\times}).$$

2. Отображение h зануляется на элементах вида $c \wedge f_2 \wedge f_3, c \in k, f_2, f_3 \in F$.

Поднятые отображения взаимности и дилогарифм Чжоу

Мотивируясь аналитическими свойствами дилогарифма Чжоу, А. Гончаров высказал следующую гипотезу:

Гипотеза 2.1. На каждом поле $F \in \mathbf{Fields}_1$ можно выбрать поднятое отображение взаимности \mathcal{H}_F так что выполняются следующие свойства:

1. Для любого вложения $j\colon F_1\to F_2$ выполнена формула

$$\operatorname{RecMaps}(j)(\mathcal{H}_{F_2}) = \mathcal{H}_{F_1}.$$

2. В случае когда $k = \mathbb{C}$ выполнена следующая формула:

$$\mathcal{P}_2(X; f_1, f_2, f_3) = -\widetilde{\mathcal{L}}_2(\mathcal{H}_{\mathbb{C}(X)}(f_1 \wedge f_2 \wedge f_3)).$$

Более того семейство поднятых отображений взаимности $\mathcal{H}_F, F \in \mathbf{Fields}_1$ однозначно определяется свойством 1.

Частичное продвижение в доказательстве этой гипотезы было получено Д. Руденко [9]. Основным результатом диссертации является следующая теорема:

Теорема 2.2. Гипотеза 2.1 верна.

Неформально эта гипотеза означает, что дилогарифм Чжоу может быть ϕ ункториальным образом выражен через классический дилогарифм \mathcal{L}_2 . Доказательство этой гипотезы было анонсировано в [3]. Там же была представлена идея доказательства. Доказательство со всеми деталями будет опубликовано в [4] (статья принята к печати).

При доказательстве этой теоремы был получен следующий результат, который представляет самостаятельный интерес.

Теорема 2.3. Пусть $L \in \mathbf{Fields}_2$. Для любого $b \in \Lambda^4 L^{\times}$ и всех кроме конечного числа $\nu \in \operatorname{dval}(L)$, имеем $\mathcal{H}_{\overline{L}_{\nu}} \partial_{\nu}^{(4)}(b) = 0$. Более того следующая сумма равна нулю:

$$\sum_{\nu \in \text{dval}(L)} \mathcal{H}_{\overline{L}_{\nu}} \partial_{\nu}^{(4)}(b) = 0.$$
 (2)

Применяя к обоим частям отображение $\widetilde{\mathcal{L}}_2$, мы восстанавливаем соотношение для дилогарифма Чжоу, полученного А. Гончаровым в [6, Section 1.4].

3 Эллиптический дилогарифм

Пусть $E = \mathbb{C}/\langle 1, \tau \rangle$ — эллиптическая кривая над \mathbb{C} . Эллиптический дилогарифм был определен С. Блохом [1] (см. также [10]). Эквивалентное представление задается следующей формулой:

$$D_{\tau}(\xi) = \sum_{n=-\infty}^{\infty} D(e^{2\pi i \xi + 2\pi i \tau n}).$$

Обозначим через $\mathbb{Z}[E]$ свободную абелеву группу, порожденную точками E. Для точки $z \in E$ обозначим через [z] соответствующий элемент в группе $\mathbb{Z}[E]$. Эллиптический дилогарифм задает линейное отображение $\widetilde{D}_{\tau} \colon \mathbb{Z}[E] \to \mathbb{C}$, определенное по формуле $\widetilde{D}_{\tau}([z]) = D_{\tau}(z)$.

Для рациональной функции f на E, обозначим через (f) ее девизор. Для некоторых $\alpha_i, \beta_i, \gamma_i$ мы имеем:

$$(f) = \sum_{i=1}^{n} ([\alpha_i] - [\gamma_i]), (1 - f) = \sum_{i=1}^{n} ([\beta_i] - [\gamma_i]).$$

Определим элемент $\eta_f \in \mathbb{Z}[E]$ с помощью следующей формулы

$$\eta_f = \sum_{i,j=1}^n \left(\left[\alpha_i - \beta_j \right] + \left[\beta_i - \gamma_j \right] + \left[\gamma_i - \alpha_j \right] \right). \tag{3}$$

Следующее определение взято из [7]:

Определение 3.1. Определим подгруппу $\mathcal{R}(E)$ группы $\mathbb{Z}[E]$ как группу порожденню следующими элементами:

- 1. η_f , где $f \in k(E)$,
- 2. [z] + [-z], где $z \in E$,
- 3. $2 \cdot (z \sum_{2z'=z} [z'])$, где $z \in E$.

Эллиптическая группа Блоха $B_3(E)$ определяется как фактор группа $\mathbb{Z}[E]/\mathcal{R}(E)$.

Согласно [1, Theorem 9.2.1], (см. также [10], [7]) отображение \widetilde{D}_{τ} зануляется на подгруппе $\mathcal{R}(E)$.

Основной результат статьи [2] заключается в следующей теореме:

Теорема 3.2. Пусть E — эллиптическая кривая над \mathbb{C} . Для любой рациональной функции f на E, элемент $\eta_f \in \mathbb{Z}[E]$ может быть представлен как линейная комбинация c целыми коэффициентами элементов вида η_f для функций f степени 3 и элементов вида [z] + [-z].

Эта теорема показывает что при определнии эллиптической группы Блоха достаточно брать элементы вида η_f для функций f степени 3.

Указанное утверждение было высказано в [7] в качетсве гипотезы. Фактически в [2] это утверждение было выведено из следующей теоремы, которая представляет самостоятельный интерес:

Теорема 3.3. Пусть E — это эллиптическая кривая над k. Группа $\mathcal{B}_2(k(E))$ порэкдается элементами вида $\{f\}_2$, где $f \in k(E)$ функция степени не выше 3. (Мы считаем что степень константы равна нулю).

Результаты диссертации опубликованы в следующих трёх статьях:

- 1. V. Bolbachan. Chow dilogarithm and strong suslin reciprocity law (Дилогарифм Чжоу и усиленный закон взаимности Суслина). Journal of algebraic geometry, 32(3):to appear, 2023
- 2. V. Bolbachan. Strong suslin reciprocity law and the norm map (Усиленный закон взаимности Суслина и оображение нормы). Mathematical Notes, 112(1):309–312, 2022

3. V. Bolbachan. On functional equations for the elliptic dilogarithm (О функциональных соотношениях для эллиптического дилогарифма). European Journal of Mathematics, 8(2):625–633, 2022

Список литературы

- [1] S. Bloch. Higher Regulators, Algebraic K-theory, and Zeta Functions of Elliptic Curves, volume 11 of CRM monograph series. American Mathematical Society, Providence, 2000.
- [2] V. Bolbachan. On functional equations for the elliptic dilogarithm (О функциональных соотношениях для эллиптического дилогарифма). European Journal of Mathematics, 8(2):625–633, 2022.
- [3] V. Bolbachan. Strong suslin reciprocity law and the norm map (Усиленный закон взаимности Суслина и оображение нормы). *Mathematical Notes*, 112(1):309–312, 2022.
- [4] V. Bolbachan. Chow dilogarithm and strong suslin reciprocity law (Дилогарифм Чжоу и усиленный закон взаимности Суслина). Journal of algebraic geometry, 32(3):to appear, 2023.
- [5] A. B. Goncharov. Geometry of configurations, polylogarithms and motivic cohomology. Advances in Mathematics, 114(2):197–318, 1995.
- [6] A. B. Goncharov. Polylogarithms, regulators and Arakelov motivic complexes. *Journal of the American Mathematical Society*, 18(1):1– 60, 2005.
- [7] A. B. Goncharov and A. M. Levin. Zagier's conjecture on L(E, 2). Inventiones mathematicae, 132(2):393-432, 1998.

- [8] Alexander B Goncharov. Polylogarithms and motivic galois groups. Motives (Seattle, WA, 1991), 55:43–96, 1994.
- [9] D. Rudenko. The strong suslin reciprocity law. *Compositio Mathematica*, 157(4):649–676, 2021.
- [10] Don Zagier and Herbert Gangl. Classical and elliptic polylogarithms and special values of L-series. In *The arithmetic and geometry of algebraic cycles*, pages 561–615. Springer, 2000.