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Introduction

The problem of pattern recognition in large datasets have recently attracted huge attention.
The problem of statistical learning finds more and more applications in the era of big data. The
diversity of areas of utilization is also impressive: from bioinformatics (e.g., protein fold prediction
[1]) and finance (credit rating [2] and bankruptcy [3] prediction) to speech recognition [4] and image
analysis [5, 6] and restoration [7, 8]. Such an interest caused a substantial progress in theoretical
investigation of the existing methods of machine learning and motivated researches develop new,
more efficient ones. Analysis of learning algorithms usually relies on the tools from probability
theory and mathematical statistics. That is, a learner assumes that the data he possesses is
generated from a statistical model, and he must perform an inference based on this model.

Speaking of statistical learning problems, one can distinguish between three major groups:
supervised, semi-supervised, and unsupervised learning. In supervised learning problems, each
instance of a given sample has a label, also referred to as a response or a target variable (usually,
it is a real number). The goal of the learner is to predict a label of a newly arrived instance,
which is not presented in the training sample. The most popular examples of supervised learning
problems are classification and regression. In opposite, in an unsupervised learning problem, the
learner has to recognize patterns in unlabelled data. The most common examples of unsupervised
learning problems include clustering and manifold learning. Finally, in the semi-supervised setup
the learner has to perform an inference based on a small portion of labelled instances and a large
number of unlabelled ones.

The present thesis pursues methological and theoretical purposes. It aims at developing new
adaptive algorithms for supervised and unsupervised learning problems with strong theoretical
guarantees on their performance. Chapter 1 is devoted multiclass classification. We suggest an
adaptive multiclass nearest neighbor classifier, Algorithm 1. Though the statisticians are familiar
with k-nearest neighbor rules for a long time, their nonasymptotic analysis was performed quite
recently. In [9], the author proved a minimax optimal upper bound on the excess risk of a
weighted nearest neighbor classifier. Unfortunately, the approach of [9] requires quite restrictive
assumptions. For instance, the author assumed that the distribution of feature vectors satisfies
the so-called strong density assumption. This issue was partially addressed in [10] and [11],
where the authors introduced a novel variant of smoothness of the target function, connecting the
distribution of feature vectors and labels. Major steps towards understanding the limitations of
k-nearest neighbor rules were made in [12] and [13]. In particular, in [12] the authors showed that
a universal choice of k in the nearest neighbor classifier leads to strictly suboptimal performance
under quite realistic assumptions. In [13], the authors suggested to use auxiliary unlabelled data
for the point-dependent choice of k. However, this approach is not always applicable, since the
unlabelled data may be unavailable to the statistician. In the present thesis, we develop the ideas of
spatial stagewise aggregation [3] and suggest an adaptive weights method based on combination
of nearest neighbor estimates. Though the extension of the algorithm in [3] to the multiclass
case is rather straightforward, its theoretical analysis is much more involved. In contrast to [3],
we impose much weaker assumptions and show that, under the same conditions as in [12], our
procedure attains minimax optimal rates of convergence up to a logarithmic factor (see Theorem
1). Unlike [13], our procedure does not involve any auxiliary data. To our knowledge, this is the
first such estimator in the literature.

Chapter 2 is devoted to a manifold learning problem, that is, estimation of a smooth low-di
mensional submanifold in R𝐷 from noisy observations. This problem was extensively studied in
the literature. Unfortunately, the existing methods of manifold estimation either require the noise
magnitude be extremely small (e.g., [8, 14–16]) or assume the noise distribution is known (e.g.
[17, 18]). In the present thesis, we focus on a setup, which was not previously considered in the
literature. Namely, in contrast to [17, 18], we impose mild assumptions on the noise distribution
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and we allow the noise magnitude be much larger than in [8, 14–16, 19]. Though our assumptions
are quite realistic, they significantly differ from the usual ones. Hence, it is not surprising that
the existing algorithms either have no theoretical guarantees in our setup or show suboptimal
performance. We faced a challenging problem of suggesting an optimal manifold estimate under
mild conditions on the noise distribution. In the present thesis, we extend the idea of structural
adaptation [20, 21] and suggest a novel algorithm (Algorithm 2) for manifold denoising. The algo
rithm allows us to construct a manifold estimate with strong theoretical guarantees (see Theorem
4). We also prove a new minimax lower bound on the accuracy of manifold estimation (Theorem
5), which yields the optimality of our method.

The problems considered in Chapters 1 and 2 are very different, but the methods we proposed
for these problems, Algorithm 1 and Algorithm 2, share similar ideas. The core of the algorithms
is the so called adaptive weights approach, properly tailored to the problems of multiclass clas
sification and manifold denoising. The fact that the suggested procedures are adaptive (that is,
they implicitly perform a partial parameter tuning, simplifying the model selection) increase their
practical value. We also would like to note that one may combine Algorithm 1 and Algorithm 2
and apply them to semi-supervised learning problems.

The contribution of the present thesis is as follows.

1. We propose an algorithm for multiclass classification, Algorithm 1, which is based on ag
gregation of nearest neighbor estimates. The procedure automatically chooses an almost
optimal number of neighbors for each test point and each class. Besides, it adapts to the
smoothness of the target function.

2. We prove a large deviation bound on the excess risk of the estimate, returned by Algorithm
1, under mild assumptions. The obtained theoretical results are new in the literature and
claim optimal accuracy of classification with only a logarithmic payment for adaptation.

3. We suggest a novel algorithm for manifold denoising, Algorithm 2, based on the idea of
structural adaptation.

4. Based on Algorithm 2, we construct a new manifold estimate and prove a new upper bound
on the accuracy of manifold estimation.

5. We provide a new minimax lower bound on the accuracy of manifold estimation, claiming
the optimality of our procedure.

Main results of the thesis were presented at the following conferences, workshops, schools,
and seminars.

1. Workshop “New frontiers in high-dimensional probability and statistics”, Moscow, February
23–24, 2018. Talk: “Pointwise adaptation via stagewise aggregation of local estimates for
multiclass classification”.

2. 12th International Vilnius Conference on Probability Theory and Mathematical Statistics
and 2018 IMS Annual Meeting on Probability and Statistics, Vilnius, Lithuania, July 2–6,
2018. Poster: “Pointwise adaptation via stagewise aggregation of local estimates for multi
class classification”

3. Research seminar “Structural Learning”, Moscow, October 11, 2018. Talk: “Manifold Learn
ing”.

4. Winter school “New frontiers in high-dimensional probability and statistics 2”, Moscow,
February 22–23, 2019. Talk: “Manifold estimation from noisy observations”.
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5. 49th Saint-Flour Summer School, Saint-Flour, France, July 7–19, 2019. Talk: “Manifold
estimation from noisy observations”.

6. Conference “Structural Inference in High-Dimensional Models 2”, Pushkin, Saint-Petersburg,
August 26–30, 2019. Poster: “Structure-adaptive manifold estimation”.

7. HSE-Yandex Autumn School on Generative Models, Moscow, November 26–29, 2019. Talk:
“Structure-adaptive manifold estimation”.

8. Research seminar “Structural Learning”, Moscow, December 3, 2019. Talk: “Sample com
plexity of learning a manifold with an unknown dimension”.

9. Conference “Mathematical Methods of Statistics”, Luminy, France, December 16–20, 2019.
Talk: “Structure-adaptive manifold estimation”.

10. HSE Faculty of Computer Science conference on Machine Learning, Fundamental Research
track, Moscow, November 18–20, 2020. Talk: “Structure-adaptive manifold estimation”.

Main results of the thesis were published in two papers in peer-reviewed journals [22, 23].
The thesis contents and the presented main results reflect the author’s personal contribution.

The author prepared the results for publication in collaboration with the scientific advisor. The
author’s contribution is primary. All the presented results were obtained personally by the author.

The thesis consists of introduction, 2 chapters, conclusion, and bibliography. Each chapter
starts with the literature review on the relevant topic. The thesis is 100 pages long, including
95 pages of the text, 5 tables, and 5 figures. The bibliography is 5 pages long and it includes 83
items.
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Chapter 1
Multiclass classification

1.1. Problem statement

Multiclass classification is a natural generalization of the well-studied problem of binary
classification. It is a problem of supervised learning when one observes a sample 𝑆𝑛 =
{(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, where 𝑋𝑖 ∈ 𝒳 ⊆ R𝑑, 𝑌𝑖 ∈ 𝒴 = {1, . . . ,𝑀}, 1 6 𝑖 6 𝑛, 𝑀 > 2. The pairs
(𝑋𝑖, 𝑌𝑖) are generated independently according to an unknown distribution 𝒟 over 𝒳 ×𝒴 . Given
a test pair (𝑋, 𝑌 ), which is generated from 𝒟 independently of 𝑆𝑛, the learner’s task is to propose
a rule 𝑓 : 𝒳 → {1, . . . ,𝑀} in order to make a probability of misclassification

𝑅(𝑓) = P(𝑋,𝑌 )∼𝒟 (𝑌 ̸= 𝑓(𝑋))

as small as possible. In practice, it is a common situation when one has to discern between more
than two classes, so multiclass classification has a wide range of applications and arises in such
areas as bioinformatics, when one tries to predict a protein’s fold [1] or when one wants to classify
DNA microarrays [24], finance when one predicts a corporate credit rating [2], image analysis [5]
when one tries to classify an object on an image, speech recognition [4], and others.

1.2. Nonparametric multiclass classification and literature review

For each class 𝑚, we construct binary labels 1(𝑌𝑖 = 𝑚). We denote a marginal distribution
of 𝑋 by P𝑋 and suppose that P𝑋 has a density 𝑝(𝑋) with respect to the Lebesgue measure 𝜇.
Given 𝑋, we denote the conditional probability P (𝑌 = 𝑚|𝑋), 1 6 𝑚 6 𝑀 by 𝜂𝑚(𝑋). For this
model, the optimal classifier 𝑓 * can be found analytically

𝑓 *(𝑋) = argmax
16𝑚6𝑀

𝜂𝑚(𝑋). (1.1)

Unfortunately, true values 𝜂1(𝑋), . . . , 𝜂𝑀(𝑋) are unknown but can be estimated. Since for any
classifier 𝑓 it holds 𝑅(𝑓) > 𝑅(𝑓 *), then it is reasonable to consider the excess risk

ℰ(𝑓) = 𝑅(𝑓) −𝑅(𝑓 *),

which shows the quantitative difference between the classifier 𝑓 and the best possible one. One
of the most popular approaches to tackle the classification problem is a (weighted) k-nearest
neighbors rule. Given a test point 𝑋 ∈ 𝒳 , this rule constructs nearest neighbor estimateŝ︀𝜂(𝑁𝑁)
1 (𝑋), . . . , ̂︀𝜂(𝑁𝑁)

𝑀 (𝑋) of 𝜂1(𝑋), . . . , 𝜂𝑀(𝑋) and predicts the label 𝑌 at the point 𝑋 by a plug-in
rule: ̂︀𝑓 (𝑁𝑁)(𝑋) = argmax

16𝑚6𝑀
̂︀𝜂(𝑁𝑁)
𝑚 (𝑋),

Although the method is simple and known for a long time, several new finite sample results in
the binary setting were obtained quite recently. In [9], the author considers weighted and bagged
nearest neighbor estimates with smooth function 𝜂1(𝑥) and finds optimal vector of non-negative
weights. Moreover, the author goes further and derives faster rates under additional smoothness
assumptions if the weights are allowed to be negative. However, the analysis in [9] requires
that the marginal distribution of features must have a compact support and its density must
be bounded away from zero (strong density assumption). In [10] and [11], authors address this
issue. In [10], the authors introduce a novel Hölder-like smoothness condition on 𝜂1(𝑥) tailored
to nearest neighbor. This trick allows to avoid the strong density assumption and boundedness
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of features. The disadvantage of the modified smoothness condition in [10] is that it is implicit.
Instead of this condition, in [12], the authors introduce the minimal mass assumption and the
tail assumption, which are proved to be necessary for quantitative analysis of nearest neighbor
estimates and cover the case when marginal distribution of features has an unbounded support
and has a density, which may be arbitrarily close to zero. Note that the nearest neighbor estimatê︀𝜂(𝑁𝑁)
𝑚 (𝑋) strongly depends on the parameter k and its choice determines the performance of the

classifier ̂︀𝑓 (𝑁𝑁). Moreover, as pointed out in [13] and [12], the global nearest neighbor classifier
(i.e. the number of neighbors is the same for all test points) may be suboptimal, while the nearest
neighbor classifier with point-dependent choice of k shows a better performance. In multiclass
setting, the situation is even more difficult, because for each class the optimal number of neighbors
may be different, and it complicates the tuning procedure. To solve this problem, we consider a
sequence of integers 𝑛1, . . . , 𝑛𝐾 , compute weighted nearest neighbor estimates for each of them
and use a plug-in classifier based on a convex combination of these estimates.

An aggregation of the nearest neighbor estimates is a key feature of our procedure. We use
a multiclass spatial stagewise aggregation (SSA), which originates from [3], where an aggregation
of binary classifiers was studied. Unlike many other aggregation procedures, such as exponential
weighting [25–27], mirror averaging [28, 29], empirical risk minimization [30], and Q-aggregation
[31, 32], which perform global aggregation, SSA makes local aggregation yielding a point dependent
aggregation scheme. This means that the aggregating coefficients depend on the point 𝑋 where
the classification rule is applied. The drawback of the original SSA procedure [3] is that it is
tightly related to the Kullback-Leibler aggregation and, therefore, puts some restrictions, which
are usual for such setup and appear in other works on this topic (for instance, [33, 34]) but
are completely unnecessary for the classification task. We show that, in a special case of the
multiclass classification, one can omit those restrictions and obtain the same results under weaker
assumptions.

Finally, it is worth mentioning that nonparametric estimates have slow rates of convergence
especially in the case of high dimension 𝑑. It was shown in [35] and then in [36] that plug-in
classifiers can achieve fast learning rates under certain assumptions in both binary and multiclass
classification problems. We will use a similar technique to derive fast learning rates for the plug-in
classifier based on the aggregated estimate.

1.3. Contribution

Main contributions of the present chapter are the following:

• we propose a computationally efficient algorithm of multiclass classification, which is based
on aggregation of nearest neighbor estimates;

• the procedure automatically chooses an almost optimal number of neighbors for each test
point and each class;

• the procedure adapts to an unknown smoothness of 𝜂1(·), . . . , 𝜂𝑀(·);

• we provide theoretical guarantees on large deviations of the excess risk and on its mean
value as well under mild assumptions; theoretical guarantees claim optimal accuracy of
classification with only a logarithmic payment for adaptation.

7



1.4. Notation and model assumptions

We start with a simple observation. Introduce a function

𝜙(𝑡) =

(︂
1

2𝑀
∨ 𝑡
)︂
∧
(︂

1 − 1

2𝑀

)︂
. (1.2)

It is easy to show that the composition

𝜃𝑚(𝑋) = 𝜙(𝜂𝑚(𝑋)) ≡
(︂

1

2𝑀
∨ 𝜂𝑚(𝑋)

)︂
∧
(︂

1 − 1

2𝑀

)︂
,

satisfies the equality
𝑓 *(𝑋) = argmax

16𝑚6𝑀
𝜂𝑚(𝑋) = argmax

16𝑚6𝑀
𝜃𝑚(𝑋),

where, as before, 𝑓 * stands for the Bayes classifier. Hence, instead of 𝜂𝑚(𝑥), one can estimate
𝜃𝑚(𝑥) at 𝑥 and then use a plug-in classifier

̂︀𝑓(𝑋) = argmax
16𝑚6𝑀

̂︀𝜃𝑚(𝑋), (1.3)

where ̂︀𝜃𝑚(𝑥) is an estimate of 𝜃𝑚(𝑥), 1 6 𝑚 6𝑀 , at the point 𝑥.
The problem is how to construct the estimates of 𝜃𝑚(𝑥), 1 6 𝑚 6 𝑀 . Fix some 𝑚 and

transform the labels into binarized ones: 1 (𝑌𝑖 = 𝑚). It is clear that(︀
1 (𝑌𝑖 = 𝑚) |𝑋𝑖

)︀
∼ Bernoulli(𝜂𝑚(𝑋𝑖)).

This approach is nothing but the One-vs-All procedure for multiclass classification. Then a
weighted k-nearest-neighbor estimate of 𝜃𝑚(𝑥) at the point 𝑥 can be expressed as ̃︀𝜃𝑤𝑚(𝑥) =
𝜙(̃︀𝜂𝑤𝑚(𝑥)), where

̃︀𝜂𝑤𝑚(𝑥) =

𝑛∑︀
𝑖=1

𝑤𝑖(𝑋𝑖, 𝑥)1(𝑌𝑖 = 𝑚)

𝑛∑︀
𝑖=1

𝑤𝑖(𝑋𝑖, 𝑥)
≡ 𝑆𝑤

𝑚(𝑥)

𝑁𝑤(𝑥)
(1.4)

is a weighted nearest neighbor estimate of 𝜂𝑚(𝑥). Here we introduced the notations 𝑆𝑤
𝑚(𝑥) =

𝑛∑︀
𝑖=1

𝑤𝑖(𝑋𝑖, 𝑥)1(𝑌𝑖 = 𝑚), 𝑁𝑤(𝑥) =
𝑛∑︀

𝑖=1

𝑤𝑖(𝑋𝑖, 𝑥). The non-negative weights 𝑤𝑖(𝑋𝑖, 𝑥) depend on the

distance between 𝑋𝑖 and 𝑥 and 𝑤𝑖(𝑋𝑖, 𝑥) > 0 if and only if 𝑋𝑖 is among k nearest neighbors of 𝑥;
otherwise, 𝑤𝑖(𝑋𝑖, 𝑥) = 0. In this chapter, we consider the weights of the following form:

𝑤𝑖 = 𝑤𝑖(𝑋𝑖, 𝑥) = K

(︂
‖𝑋𝑖 − 𝑥‖

ℎ

)︂
, (1.5)

where a bandwidth ℎ = ℎ(k) is a distance to the k-th nearest neighbor and the kernel K(·) fulfills
the following conditions:

∙ K(𝑡) is a non-increasing funciton,
∙ K(0) = 1, (A1)

∙ K(1) >
1

2
,

∙ K(𝑡) = 0, ∀ 𝑡 > 1.

This assumption can be easily satisfied. First, note that the rectangular kernel K(𝑡) =
1 (0 6 𝑡 6 1) meets these requirements and, therefore, (A1) holds for the case of ordinary nearest
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neighbor estimates. There are other examples of such kernels K. For instance, one can easily
check that Epanechnikov-like and Gaussian-like kernels, K(𝑡) = (1 − 𝑡2/2)1(0 6 𝑡 6 1) and
K(𝑡) = 𝑒−𝑡2/2

1(0 6 𝑡 6 1) respectively, fulfill (A1). It is also important to mention that here
and further in this chapter, without loss of generality, we suppose that a tie (i. e. a situation,
when there are several candidates for the k-th nearest neighbor) does not happen almost surely.
Otherwise, one can use the tie-breaking procedure described in [10].

The nearest neighbor estimate (1.4) requires a proper choice of the parameter k. Moreover,
an optimal value of k may be different for each test point 𝑥 and each class 𝑚, and the problem of
a fine parameter tuning may become tricky. Instead of using one universal value of the number of
neighbors, we fix an increasing sequence of integers {𝑛𝑘 : 1 6 𝑘 6 𝐾}. We only require that there
exist constants 𝑎, 𝑏 > 0, and 0 < 𝑢0 < 𝑢 < 1 such that

𝑛1 6 𝑎, 𝑛𝐾 > 𝑏𝑛2/(𝑑+2), and 2𝑢0 6
𝑛𝑘−1

𝑛𝑘

6
𝑢

2
, for all 1 6 𝑘 6 𝐾. (A2)

Each 𝑛𝑘 induces a set of weights 𝑤(𝑘)
1 , . . . , 𝑤

(𝑘)
𝑛 with

𝑤
(𝑘)
𝑖 = 𝑤

(𝑘)
𝑖 (𝑋𝑖, 𝑥) = K

(︂
‖𝑋𝑖 − 𝑥‖

ℎ𝑘

)︂
, (1.6)

where ℎ𝑘 stands for the distance to the 𝑛𝑘-th nearest neighbor, and a weighted 𝑛𝑘-NN estimator:

̃︀𝜃(𝑘)𝑚 (𝑥) = 𝜙
(︀̃︀𝜂(𝑘)𝑚 (𝑥)

)︀
≡
(︂

1

2𝑀
∨ ̃︀𝜂(𝑘)𝑚 (𝑥)

)︂
∧
(︂

1 − 1

2𝑀

)︂
, (1.7)

̃︀𝜂(𝑘)𝑚 (𝑥) =
𝑆
(𝑘)
𝑚 (𝑥)

𝑁𝑘(𝑥)
, (1.8)

where 𝑆(𝑘)
𝑚 (𝑥) =

𝑛∑︀
𝑖=1

𝑤
(𝑘)
𝑖 (𝑋𝑖, 𝑥)1(𝑌𝑖 = 𝑚), 𝑁𝑘(𝑥) =

𝑛∑︀
𝑖=1

𝑤
(𝑘)
𝑖 (𝑋𝑖, 𝑥). Then one can use the SSA

procedure [3] to construct aggregated estimates ̂︀𝜃1(𝑥), . . . , ̂︀𝜃𝑀(𝑥). The final prediction of the label
at the point 𝑥 is given by the plug-in rule (1.3). We will refer to the procedure as multiclass
spatial stagewise aggregation (MSSA for short).

To show a consistency of the MSSA procedure, we will derive upper bounds for the gener
alization error P(𝑋,𝑌 )∼𝒟

(︁
𝑌 ̸= ̂︀𝑓(𝑋)

⃒⃒
𝑆𝑛

)︁
of the classifier ̂︀𝑓 , which hold in mean and with high

probability over training samples 𝑆𝑛. As a byproduct, we will provide convergence rates for the
pointwise error max

16𝑚6𝑀
|̂︀𝜃𝑚(𝑥) − 𝜃*𝑚(𝑥)| and obtain a user-friendly bound on the performance of

the nearest neighbor estimates under mild assumptions. Namely, along with (A1) and (A2), we
assume the following. First, the functions 𝜂𝑚(·) are (𝐿, 𝛼)-Hölder continuous, that is, there exist
𝐿 > 0 and 𝛼 > 0 such that for all 𝑥, 𝑥′ ∈ 𝒳 and 1 6 𝑚 6𝑀 it holds that

|𝜂𝑚(𝑥) − 𝜂𝑚(𝑥′)| 6 𝐿‖𝑥− 𝑥′‖𝛼. (A3)

Second, since we deal with the problem of nonparametric classification, even the optimal rule can
show poor performance in the case of a large dimension 𝑑. Low noise assumptions are usually
used to speed up rates of convergence and allow plug-in classifiers to achieve fast rates. We can
rewrite

𝑅(𝑓) = 1 − E(𝑋,𝑌 )∼𝒟1(𝑌 = 𝑓(𝑋))

= 1 − E𝑋P(𝑌 = 𝑓(𝑋)|𝑋) = 1 − E𝑋𝜂𝑓(𝑋)(𝑋). (1.9)

In the case of binary classification, a misclassification often occurs, when 𝜂1(𝑋) ≡ P(𝑌 = 1|𝑋) is
close to 1/2 with high probability. The well-known Mammen-Tsybakov noise condition [37] ensures
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that such a situation appears rarely. More precisely, it assumes that there exist non-negative
constants 𝐵 and 𝛽 such that for all 𝑡 > 0 it holds that

P (|2𝜂1(𝑋) − 1| < 𝑡) 6 𝐵𝑡𝛽.

This assumption can be extended to the multiclass case. For any 𝑥, let 𝜂(1)(𝑥) > 𝜂(2)(𝑥) > . . . >
𝜂(𝑀)(𝑥) be the ordered values of 𝜂1(𝑥), . . . , 𝜂𝑀(𝑥). Then the condition (1.4) for the multiclass
classification can be formulated as follows (see [38, 39]): there exist 𝐵 > 0 and 𝛽 > 0 such that
the following holds for all 𝑡 > 0:

P
(︀
𝜂(1)(𝑋) − 𝜂(2)(𝑋) < 𝑡

)︀
6 𝐵𝑡𝛽 (A4)

We will use this assumption to establish fast rates for the plug-in classifier ̂︀𝑓(𝑋) in Section 1.6.
There are two more requirements we need: the minimal mass assumption and the tail as

sumption introduced in [12]. The first one assumes that there exist κ > 0 and 𝑟0 > 0, such that

P(𝑋 ∈ 𝐵(𝑥, 𝑟)) > κ𝑝(𝑥)𝑟𝑑 for all 𝑟 ∈ (0, 𝑟0] and 𝑥 ∈ supp(P𝑋), (A5)

where 𝐵(𝑥, 𝑟) stands for the Euclidean ball of radius 𝑟 centered at 𝑥 and 𝑝(𝑥) is the density of
the marginal distribution P𝑋 of 𝑋 with respect to the Lebesgue measure 𝜇. The tail assumption
admits that there are positive constants 𝐶, 𝜀0, and 𝑝 such that, for every 𝜀 ∈ (0, 𝜀0], it holds that

P (𝑝(𝑋) < 𝜀) 6 𝐶𝜀𝑝. (A6)

It was discussed in [12] (Theorem 4.1) that the conditions (A5) and (A6) are necessary for quan
titative analysis of classifiers and cannot be removed.

One can highlight a simple case of a bounded away from zero density when for any 𝑥 ∈
supp(P𝑋) it holds that 𝑝(𝑥) > 𝑝0 > 0 with a positive constant 𝑝0. The most difficult points 𝑥
for classification with the nearest neighbor rule are those points, which are close to the decision
boundary or where the density 𝑝(𝑥) approaches zero, because in this case a vicinity of 𝑥 may not
contain the sample points at all. One of the ways to control the misclassification error in the
low-density region is to impose a modified smoothness condition on the regression function 𝜂(·),
as it is done in [10, 11]. In those papers, the authors assume that there are constants 𝐿 > 0 and
𝛼 ∈ (0, 1], such that for all 𝑥, 𝑥′ ∈ 𝒳 it holds that

|𝜂(𝑥) − 𝜂(𝑥′)| 6 𝐿
(︀
P𝑋

{︀
𝐵(𝑥, ‖𝑥− 𝑥′‖)

}︀)︀𝛼/𝑑
.

This assumption ensures that in the regions with a small density 𝑝(𝑥) the function 𝜂(𝑥) is
(𝐿′, 𝛼)-Hölder continuous with a small constant 𝐿′. An approach, considered in [12], relies on
the assumptions (A5) and (A6), instead of the modified smoothness condition. The assumption
(A5) helps to control the minimal probability mass of the ball 𝐵(𝑥, 𝑟) in regions where the density
𝑝(𝑥) is close to zero. A curious reader can ensure that all the results we formulate will also hold
if 𝑝(𝑥) and κ in (A5) are replaced with 𝑝0 and 𝜇(𝐵(0, 1)) respectively in the case of a bounded
away from zero density 𝑝(𝑥). Also, note that, in this case, the assumption (A6) is satisfied with
𝜀0 < min{1, 𝑝0} and the power 𝑝 = ∞.

We proceed with several examples of distributions when the tail assumption (A6) holds. For
instance, the univariate Gaussian 𝒩 (𝜇, 𝜎2), exponential distribution Exp(𝜆), gamma-distribution
Gamma(𝑘, 𝜆), Cauchy and Pareto P(𝑘, 1) distributions meet (A6) with the powers 1, 1, 1+𝜀 (with
arbitrary 𝜀 > 0), 1/2 and 𝑘/(𝑘 + 1) respectively (see [12, Example 4.1] for the details). A special
case, in which one may be interested in, is the case when supp(P𝑋) is compact. In this case,

P (𝑝(𝑋) < 𝜀) =

∫︁
supp(P𝑋)

1 (𝑝(𝑋) < 𝜀) 𝑝(𝑥)𝑑𝑥 6 𝜀

∫︁
supp(P𝑋)

𝑑𝑥 = 𝜀𝜇 (supp(P𝑋)) ,
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so (A6) is satisfied with 𝑝 = 1 and 𝐶 = 𝜇 (supp(P𝑋)), where 𝜇 stands for the Lebesgue measure.
In general, the assumption (A6) admits that P𝑋 has an unbounded support. For this case, we
provide a simple sufficient condition to check (A6).

Proposition 1. Let 𝑋 ∈ R𝑑 be such that E‖𝑋‖𝑟 <∞. Then 𝑋 satisfies (A6) with 𝑝 = 𝑟/(𝑟+ 𝑑)
and

𝐶 =

(︃(︁𝑟
𝑑

)︁ 𝑑
𝑟+𝑑

+

(︂
𝑑

𝑟

)︂ 𝑟
𝑟+𝑑

)︃
𝜔

𝑟
𝑟+𝑑

𝑑 (E‖𝑋‖𝑟)
𝑑

𝑟+𝑑 ,

where 𝜔𝑑 stand for the Lebesgue measure of the unit ball in R𝑑.

Proof. The proof of the proposition is straightforward:

P (𝑝(𝑋) < 𝜀) =

∫︁
R𝑑

1 (𝑝(𝑋) < 𝜀) 𝑝(𝑥)𝑑𝑥

=

∫︁
𝑥∈𝐵(0,𝑅)

1 (𝑝(𝑋) < 𝜀) 𝑝(𝑥)𝑑𝑥+

∫︁
𝑥/∈𝐵(0,𝑅)

1 (𝑝(𝑋) < 𝜀) 𝑝(𝑥)𝑑𝑥

6 𝜀𝑅𝑑𝜔𝑑 +

∫︁
𝑥/∈𝐵(0,𝑅)

‖𝑥‖𝑟

𝑅𝑟
𝑝(𝑥)𝑑𝑥 6 𝜀𝑅𝑑𝜔𝑑 +

E‖𝑋‖𝑟

𝑅𝑟
.

Taking 𝑅𝑟+𝑑 = 𝑟E‖𝑋‖𝑟/(𝑑𝜀𝜔𝑑) to minimize the expression in the right hand side, we obtain that

P (𝑝(𝑋) < 𝜀) 6

(︃(︁𝑟
𝑑

)︁ 𝑑
𝑟+𝑑

+

(︂
𝑑

𝑟

)︂ 𝑟
𝑟+𝑑

)︃
(𝜔𝑑𝜀)

𝑟
𝑟+𝑑 (E‖𝑋‖𝑟)

𝑑
𝑟+𝑑 .

In what is going further, we require 𝑝 in (A6) to be larger than 𝛼/(2𝛼 + 𝑑). By Proposition
1, any P𝑋 , such that E‖𝑋‖𝑟 <∞ for some 𝑟 > 𝛼𝑑/(𝛼+𝑑), satisfies (A6) with 𝑝 > 𝛼/(2𝛼+𝑑).

1.5. An adaptive weights method for multiclass classification

In this section, we present the multiclass spatial stagewise aggregation (MSSA) procedure,
which is formulated in Algorithm 1. The procedure takes a sequence of integers {𝑛𝑘 : 1 6 𝑘 6 𝐾},
which fulfills (A2), a training sample 𝑆𝑛 = {(𝑋𝑖, 𝑌𝑖) : 1 6 𝑖 6 𝑛}, a test point 𝑥 ∈ 𝒳 and a set of
positive numbers {𝑧𝑘 : 1 6 𝑘 6 𝐾}. The numbers 𝑧1, . . . , 𝑧𝐾 will be referred to as critical values.

We also emphasize that, by construction, ̃︀𝜃(𝑘)𝑚 (𝑥) ∈ [1/(2𝑀), 1 − 1/(2𝑀)] and, therefore,̂︀𝜃(𝑘)𝑚 (𝑥) also belongs to [1/(2𝑀), 1 − 1/(2𝑀)] and 𝒦
(︁̃︀𝜃(𝑘)𝑚 (𝑥), ̂︀𝜃(𝑘−1)

𝑚 (𝑥)
)︁

is defined correctly. In

fact, 𝒦
(︁̃︀𝜃(𝑘)𝑚 (𝑥), ̂︀𝜃(𝑘−1)

𝑚 (𝑥)
)︁

is nothing but the Kullback-Leibler divergence between two Bernoulli

distributions with parameters ̃︀𝜃(𝑘)𝑚 (𝑥) and ̂︀𝜃(𝑘−1)
𝑚 (𝑥), respectively.

Concerning the computational time of the MSSA procedure, the assumption (A2) ensures that
𝐾 = 𝑂(log 𝑛) and then it requires 𝑂 (𝑀𝑛 log 𝑛) operations to compute nearest neighbor estimates
for all classes and 𝑂(log 𝑛) operations to aggregate them. As a result, the computational time of
the procedure, consumed for a prediction of the label of one test point, is 𝑂 (𝑀𝑛 log 𝑛). If there
are several test points, then the computations can be done in parallel.
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Algorithm 1 Multiclass Spatial Stagewise Aggregation (MSSA)
1: Given a sequence of integers {𝑛𝑘 : 1 6 𝑘 6 𝐾} fulfilling (A2), a set of critical

values{𝑧𝑘 : 1 6 𝑘 6 𝐾} , a training sample 𝑆𝑛 = {(𝑋𝑖, 𝑌𝑖) : 1 6 𝑖 6 𝑛} and a test point
𝑥 ∈ 𝒳 , do the following:

2: for 𝑚 from 1 to 𝑀 do
3: For each 𝑘 from 1 to 𝐾, compute the weights 𝑤(𝑘)

𝑖 = 𝑤
(𝑘)
𝑖 (𝑋𝑖, 𝑥), 1 6 𝑖 6 𝑛, according to

the formula (1.6) with a kernel K satisfying (A1) and calculate ̃︀𝜃(𝑘)𝑚 (𝑥) according to (1.7) and
(1.8).

4: Put ̂︀𝜃(1)𝑚 (𝑥) = ̃︀𝜃(1)𝑚 (𝑥).
5: for 𝑘 from 2 to 𝐾 do
6: Compute 𝑁𝑘(𝑥) =

𝑛∑︀
𝑖=1

𝑤
(𝑘)
𝑖 (𝑋𝑖, 𝑥) and

𝒦
(︁̃︀𝜃(𝑘)𝑚 (𝑥), ̂︀𝜃(𝑘−1)

𝑚 (𝑥)
)︁

= ̃︀𝜃(𝑘)𝑚 (𝑥) log
̃︀𝜃(𝑘)𝑚 (𝑥)̂︀𝜃(𝑘−1)
𝑚 (𝑥)

+
(︁

1 − ̃︀𝜃(𝑘)𝑚 (𝑥)
)︁

log
1 − ̃︀𝜃(𝑘)𝑚 (𝑥)

1 − ̂︀𝜃(𝑘−1)
𝑚 (𝑥)

.

7: Find 𝛾𝑘 = 1

(︁
𝑁𝑘(𝑥)𝒦

(︁̃︀𝜃(𝑘)𝑚 (𝑥), ̂︀𝜃(𝑘−1)
𝑚 (𝑥)

)︁
6 𝑧𝑘

)︁
.

8: Update the estimate ̂︀𝜃(𝑘)𝑚 (𝑥) = 𝛾𝑘̃︀𝜃(𝑘)𝑚 (𝑥) + (1 − 𝛾𝑘)̂︀𝜃(𝑘−1)
𝑚 (𝑥).

9: Put the final estimate ̂︀𝜃𝑚(𝑥) = ̂︀𝜃(𝐾)
𝑚 (𝑥).

10: return the predicted label ̂︀𝑓(𝑥) = argmax
16𝑚6𝑚

{︁̂︀𝜃𝑚(𝑥)
}︁

.

1.6. Theoretical properties of the MSSA procedure

1.6.1. Main result

Theorem 1. Grant the assumptions (A1) – (A5) and let (A6) hold with 𝑝 > 𝛼/(2𝛼+ 𝑑). Choose
the parameters 𝑧1, . . . , 𝑧𝐾 according to the formula

𝑧𝑘 =
8𝑀2

𝑢0
log

12𝐾𝑀

𝛿*
, 1 6 𝑘 6 𝐾, (1.10)

where

𝛿* =

⎧⎨⎩
(︁

𝑀3 log𝑛
𝑛𝑝0

)︁𝛼(2+𝛽)
2𝛼+𝑑

, if ∃ 𝑝0 : 𝑝(𝑥) > 𝑝0 ∀𝑥 ∈ supp(P𝑋),

𝜓𝑟*
* , otherwise,

(1.11)

with 𝑟* = log𝜓−1
* and

𝜓* =

(︂
𝑀3 log2 𝑛

𝑛

)︂ 𝛼
𝛼𝛽/𝑝+2𝛼+𝑑

.

Let ̂︀𝜃1(·), . . . , ̂︀𝜃𝑀(·) be the corresponding MSSA estimates. Then, if the sample size 𝑛 is sufficiently
large, the excess risk of the plug-in classifier ̂︀𝑓(𝑋) = argmax

16𝑚6𝑀

̂︀𝜃𝑚(𝑋) is bounded by

E𝑆𝑛ℰ( ̂︀𝑓) .

⎧⎪⎨⎪⎩
(︁

𝑀3 log𝑛
𝑛𝑝0

)︁𝛼(1+𝛽)
2𝛼+𝑑

, if ∃ 𝑝0 : 𝑝(𝑥) > 𝑝0 ∀𝑥 ∈ supp(P𝑋),(︁
𝑀3 log2 𝑛

𝑛

)︁ 𝛼(1+𝛽)
𝛼𝛽/𝑝+2𝛼+𝑑

, otherwise.
(1.12)
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Moreover, for any 𝛿 ∈ (0, 1), if

𝑧𝑘 =
8𝑀2

𝑢0
log

12𝐾𝑀

𝛿
, 1 6 𝑘 6 𝐾,

then, on with probability at least (1 − 𝛿) over 𝑆𝑛 ∼ 𝒟⊗𝑛, it holds that

ℰ( ̂︀𝑓) 6 P( ̂︀𝑓(𝑋) ̸= 𝑓 *(𝑋)) . 𝛿 +

(︂
𝑀3 log(12𝐾𝑀/𝛿)

𝑛

)︂ 𝛼𝛽
𝛼𝛽/𝑝+(2𝛼+𝑑)

. (1.13)

Here and further in the paper the relation 𝑔(𝑛) . ℎ(𝑛) means that there exists a universal
constant 𝑐 > 0 such that 𝑔(𝑛) 6 𝑐ℎ(𝑛) for all 𝑛 ∈ N.

There are some comments we have. First, the rates (1.12) are optimal up to a logarithmic
factor (see [35, Theorem 3.2] for the case of bounded away from zero density, [35, Theorem 4.1]
for the case of bounded support (i.e. 𝑝 = 1 in (A6)), and [12, Theorem 4.5] for the general case).
Second, in the case of a bounded away from zero density, one can take 𝑝 = ∞. Then the inequality
(1.13) transforms into

P( ̂︀𝑓(𝑋) ̸= 𝑓 *(𝑋)) . 𝛿 +

(︂
𝑀3 log(12𝐾𝑀/𝛿)

𝑛

)︂ 𝛼𝛽
2𝛼+𝑑

,

recovering the result of Theorem 7 in [10].

1.6.2. Comparison with the nearest neighbor rule

Theorem 2. Assume (A1), (A3), and (A5). Fix any 𝑚 from {1, . . . ,𝑀}, and a test point 𝑥 ∈ 𝒳 .
Then, for the weighted nearest neighbor estimate ̃︀𝜂𝑤𝑚(𝑥) defined by (1.4) and (1.5), with probability
at least (1 − 𝛿) over 𝑆𝑛 ∼ 𝒟⊗𝑛, it holds that

|𝜂𝑚(𝑥) − ̃︀𝜂𝑤𝑚(𝑥)| 6 𝐿

(𝑛κ𝑝(𝑥))𝛼/𝑑
(︀
2k + 4 log(2/𝛿)

)︀𝛼/𝑑
+

√︂
log(4/𝛿)

k
,

for any k and 𝛿 ∈ (0, 1), satisfying (︂
2k + 4 log(1/𝛿)

𝑛κ𝑝(𝑥)

)︂𝛼/𝑑

6 𝑟0.

The bound in Theorem 2 improves the result for the nearest neighbor regression obtained in
[11] since it controls large deviations of |𝜂𝑚(𝑥) − ̃︀𝜂𝑤𝑚(𝑥)| rather than its mean value. For the case
of a bounded away from zero density, Theorem 2 and the union bound immediately yield

E𝑆𝑛E𝑋 max
16𝑚6𝑀

|𝜂𝑚(𝑋) − ̃︀𝜂𝑤𝑚(𝑋)|𝑟 .
(︂
k log𝑀

𝑛

)︂𝛼𝑟/𝑑

+

(︂
log𝑀

k

)︂𝑟/2

for any 𝑟 > 0. This implies a bound for the k-nearest neighbors classifier ̂︀𝑓 (k−𝑁𝑁)(𝑥) =
argmax
16𝑚6𝑀

̃︀𝜂𝑤𝑚(𝑥):

E𝑆𝑛ℰ
(︁ ̂︀𝑓 (k−𝑁𝑁)(𝑥)

)︁
.

(︂
log𝑀

𝑛

)︂𝛼(1+𝛽)
2𝛼+𝑑

,

provided that k ≍ 𝑛2𝛼/(2𝛼+𝑑).
In the case of the bounded away from zero density, the nearest neighbor rule attains the

minimax rate of convergence 𝑂(𝑛−(1+𝛽)/(2𝛼+𝑑)), while the MSSA classifier has an additional loga
rithmic factor. It can be easily explained by the fact that in the case 𝑝(𝑥) > 𝑝0, it is enough to
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take only one number of neighbors k ≍ 𝑛𝑑/(2𝛼+𝑑) for all points 𝑥 ∈ 𝒳 . At the same time, the MSSA
procedure aggregates several nearest neighbor estimates and the factor log 𝑛 can be considered as
a payment for adaptation. Nevertheless, MSSA is capable to adapt to an unknown smoothness
parameter 𝛼 ∈ (0, 1] from the condition (A3), while the optimal choice of the smoothing parameter
k of the classifier ̂︀𝑓 (k−𝑁𝑁) is based on the knowledge of 𝛼.

The situation is completely different in the case of a general density, fulfilling (A5) and
(A6). In [12, Theorems 4.3 and 4.5], it was shown that a universal choice of k for all points
𝑥 ∈ 𝒳 leads to a suboptimal rate 𝑂(𝑛− 𝛼(1+𝛽)

𝛼(1+𝛽)/𝑝+2𝛼+𝑑 ), while Theorem 1 guarantees that the MSSA
classifier has a minimax rate of convergence up to a logarithmic factor. It was also shown in [12,
Theorems 4.4 and 4.5] that a point-dependent choice k(𝑥) ≍ (𝑛𝑝(𝑥))2𝛼/(2𝛼+𝑑) leads to the same

rate 𝑂
(︂[︀

(log 𝑛)/𝑛
]︀ 𝛼(1+𝛽)

𝛼𝛽/𝑝+2𝛼+𝑑

)︂
as for the MSSA classifier (up to a logarithmic factor). However, it

is not clear how to implement such a choice of k in practice, since a prior knowledge of the density
𝑝(𝑥) is required. Of course, one can try to estimate 𝑝(𝑥) but the density estimates are susceptible
to the curse of dimensionality. On the other hand, there is a simple way to tune the parameters
of MSSA. Moreover, by Theorem 3.1, the choice of critical values is the same for all test points,
while the estimate of 𝑝(𝑥) must be recomputed at each test point 𝑥.

14



Chapter 2
Manifold learning

2.1. Literature review

We consider a problem of manifold learning, that is, to recover a smooth low dimensional
manifold from a cloud of points in a high dimensional space. This problem is of great theoretical
and practical interest. For instance, if one deals with a problem of supervised or semi-supervised
regression, the feature vectors, though lying in a very high-dimensional space, may occupy only a
low-dimensional subset. In this case, one can hope to obtain a rate of prediction which depends
on the intrinsic dimension of the data rather than on the ambient one and escape the curse of
dimensionality. At the beginning of the century, the popularity of manifold learning gave rise
to several novel nonlinear dimension reduction procedures, such as Isomap [40], locally linear
embedding [41, LLE] and its modification [42], Laplacian eigenmaps [43], and t-SNE [44]. More
recent works include interpolation on manifolds via geometric multi-resolution analysis [15], local
polynomial estimators [16] and numerical solution of PDE [45]. It is worth mentioning that all
these works assume that the data points either lie exactly on the manifold or in its very small
vicinity (which shrinks as the sample size 𝑛 tends to infinity), so the noise 𝜀 is so negligible that it
may be ignored and put into a remainder term in Taylor’s expansion. However, in practice, this
assumption can be too resrictive. and the observed data do not exactly lie on a manifold. One may
think of this situation as there are unobserved “true” features that lie exactly on the manifold and
the learner observes its corrupted versions. Such noise corruption leads to a dramatic decrease in
the quality of manifold reconstruction for those algorithms which misspecify the model and assume
that the data lies exactly on the manifold. Therefore, one has to do a preliminary step, which is
called manifold denoising (see e.g. [14, 46, 47]), to first project the data onto the manifold. Such
methods usually act locally, i.e. consider a set of small neighborhoods, determined by a smoothing
parameter (e.g. a number of neighbors or a radius ℎ), and construct local approximations based
on these neighborhoods. The problem of this approach is that the size of the neighborhood
must be large compared to the noise magnitude 𝑀 , which may lead to a non-optimal choice of the
smoothing parameter. The exclusion is the class of procedures, based on an optimization problem,
such as mean-shift [48, 49] and its variants [46, 50, 51]. The mean-shift algorithm may be viewed
as a generalized EM algorithm applied to the kernel density estimate (see [52]). However, since
the mean shift algorithm and its variants approximate the true density of 𝑌1, . . . , 𝑌𝑛 by the kernel
density estimate, they may suffer from the curse of dimensionality and the rates of convergence
we found in the literature depend on the ambient dimension rather than on the intrinsic one in
the noisy case. To our best knowledge, only papers [17, 18] consider the case, when the noise
magnitude does not tend to zero as 𝑛 grows. However, the approach in [17, 18] assumes that
the noise distribution is known and has a very special structure. For instance, considered in
[17], the noise has a uniform distribution in the direction orthogonal to the manifold tangent
space. Without belittling a significant impact of this paper, the assumption about the uniform
distribution is unlikely to hold in practice. Thus, there are two well studied extremal situations in
manifold learning. The first one corresponds to the case of totally unknown noise distribution but
extremely small noise magnitude, and the other one corresponds to the case of large noise, which
distribution is completely known. This thesis aims at studying the problem of manifold recovery
under weak and realistic assumptions on the noise.
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2.2. Manifold learning and structural adaptation

Below we focus on a model with additive noise. Suppose we are given an i.i.d. sample
Y𝑛 = (𝑌1, . . . , 𝑌𝑛), where 𝑌𝑖 are independent copies of a random vector 𝑌 in R𝐷, generated from
the model

𝑌 = 𝑋 + 𝜀. (2.1)

Here 𝑋 is a random element whose distribution is supported on a low-dimensional manifold
ℳ* ⊂ R𝐷, dim(ℳ*) = 𝑑 < 𝐷, and 𝜀 is a full dimensional noise. The goal of a statistician is
to recover the corresponding unobserved variables X𝑛 = {𝑋1, . . . , 𝑋𝑛}, which lie on the manifold
ℳ*, and estimate ℳ* itself. Assumptions on the noise are crucial for the quality of estimation.
One usually assumes that the noise is not too large, that is, ‖𝜀‖ 6 𝑀 almost surely for some
relatively small noise magnitude 𝑀 . If the value 𝑀 is smaller than the reach1 of the manifold
then the noise can be naturally decomposed in a component aligned with the manifold tangent
space and another component describing the departure from the manifold. It is clear that the
impact of these two components is different, and it is natural to consider an anisotropic noise. For
this purpose, we introduce a free parameter 𝑏 which controls the norm of the tangent component
of the noise; see (A3) for the precise definition. The pair of parameters (𝑀, 𝑏) characterizes the
noise structure more precisely than just the noise magnitude 𝑀 and allows us to understand the
influence of the noise anisotropy on the rates of convergence.

As already mentioned, most of the existing manifold denoising procedures involve some non
parametric local smoothing methods with a corresponding bandwidth. The use of isotropic smooth
ing leads to the constraint that the noise magnitude is significantly smaller than the width of local
neighborhoods; see e.g. [8, 14–16]. Similar problem arises even the case of effective dimension
reduction in regression corresponding to the case of linear manifolds. The use of anisotropic
smoothing helps to overcome this difficulty and to build efficient and asymptotically optimal es
timation procedures; see e.g. [53] or [21]. The thesis extends the idea of structural adaptation
proposed in [20, 21]. In our method, we construct cylindric neighborhoods, which are stretched in
a normal direction to the manifold. However, our result is not a formal generalization of [20] and
[21]. Those papers considered a regression setup, while our study focuses on a special unsupervised
learning problem. This requires to develop essentially different technique and use different math
ematical tools for theoretical study and substantially modify of the procedure. Also to mention
that a general manifold learning is much more involved than just linear dimension reduction, and
a straightforward extension from the linear case is not possible.

2.3. Contribution

Let us briefly describe our procedure and the main contributions of the present chapter.
Many manifold denoising procedures (see, for instance, [8, 14, 19, 51]) act in an iterative man
ner and our procedure is not an exception. We start with some guesses ̂︀Π(0)

1 , . . . , ̂︀Π(0)
𝑛 of the

projectors onto the tangent spaces of ℳ* at the points 𝑋1, . . . , 𝑋𝑛, respectively. These guesses
may be very poor, in fact. Nevertheless, they give a bit of information, which can be used to
construct initial estimates ̂︀𝑋(0)

1 , . . . , ̂︀𝑋(0)
𝑛 . On the other hand, the estimates ̂︀𝑋(0)

1 , . . . , ̂︀𝑋(0)
𝑛 help

to construct the estimates ̂︀Π(1)
1 , . . . , ̂︀Π(1)

𝑛 of the projectors onto the tangent spaces of ℳ* at the
points 𝑋1, . . . , 𝑋𝑛, respectively, which are better than ̂︀Π(0)

1 , . . . , ̂︀Π(0)
𝑛 . One can repeat these two

steps to iteratively refine the estimates of 𝑋1, . . . , 𝑋𝑛 and of the manifold ℳ* itself. We call this
approach a structure-adaptive manifold estimation (SAME). We show that SAME constructs such

1 A reader is referred to Section 2.4 for the definition.
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estimates ̂︀𝑋1, . . . , ̂︀𝑋𝑛 of 𝑋1, . . . , 𝑋𝑛 and a manifold estimate ̂︁ℳ of ℳ*, such that

max
16𝑖6𝑛

‖ ̂︀𝑋𝑖 −𝑋𝑖‖ .
𝑀𝑏 ∨𝑀ℎ ∨ ℎ2

κ
+

√︂
𝐷(ℎ2 ∨𝑀2) log 𝑛

𝑛ℎ𝑑
, (Theorem 3)

𝑑𝐻(̂︁ℳ,ℳ*) .

(︂
𝑀2𝑏2

κ3
∨ ℎ2

κ

)︂
+

√︂
𝐷(ℎ4/κ2 ∨𝑀2) log 𝑛

𝑛ℎ𝑑
, (Theorem 4)

provided that ℎ &
(︀
(𝐷 log 𝑛/𝑛)1/𝑑 ∨ (𝐷𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
and 𝑀 and, possibly, 𝑏 degrade to

zero fast enough, and both inequalities hold with an overwhelming probability. Here ℎ is the
width of a cylindrical neighborhood, which we are able to control, κ is a lower bound for the reach
of ℳ* (see Section 2.4 for the definition of reach). Moreover, our algorithm estimates projectors
Π(𝑋1), . . . ,Π(𝑋𝑛) onto tangent spaces at 𝑋1, . . . , 𝑋𝑛. It produces estimates ̂︀Π1, . . . , ̂︀Π𝑛, such
that

max
16𝑖6𝑛

‖̂︀Π𝑖 −Π(𝑋𝑖)‖ .
ℎ

κ
+ ℎ−1

√︂
𝐷(ℎ4/κ2 ∨𝑀2) log 𝑛

𝑛ℎ𝑑
(Theorem 3)

with high probability. Here, for any matrix 𝐴, ‖𝐴‖ denotes its spectral norm. The notation
𝑓(𝑛) . 𝑔(𝑛) means that there exists a constant 𝑐 > 0, which does not depend on 𝑛, such that
𝑓(𝑛) 6 𝑐𝑔(𝑛). 𝑑𝐻(·, ·) denotes the Hausdorff distance and it is defined as follows:

𝑑𝐻(ℳ1,ℳ2) = inf {𝜀 > 0 : ℳ1 ⊆ ℳ2 ⊕ ℬ(0, 𝜀), ℳ2 ⊆ ℳ1 ⊕ ℬ(0, 𝜀)} ,

where ⊕ stands for the Minkowski sum and ℬ(0, 𝑟) is a Euclidean ball in R𝐷 of radius 𝑟.
The optimal choice of ℎ yields

max
16𝑖6𝑛

‖ ̂︀𝑋𝑖 −𝑋𝑖‖ .
𝑀𝑏

κ
∨ 1

κ

(︂
𝐷κ2 log 𝑛

𝑛

)︂ 2
𝑑+2

∨ 𝑀

κ

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 1
𝑑+4

,

𝑑𝐻(̂︁ℳ,ℳ*) .
𝑀2𝑏2

κ3
∨ 1

κ

(︂
𝐷 log 𝑛

𝑛

)︂ 2
𝑑

∨ 1

κ

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 2
𝑑+4

and

max
16𝑖6𝑛

‖̂︀Π𝑖 −Π(𝑋𝑖)‖ .
1

κ

(︂
𝐷 log 𝑛

𝑛

)︂ 1
𝑑

∨ 1

κ

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 1
𝑑+4

.

Note that the optimal choice of ℎ is much smaller than a possible value 𝑛−2/(3𝑑+8) of the noise
magnitude 𝑀 . Besides, we prove a lower bound

inf̂︁ℳ sup
ℳ*

E𝑑𝐻(̂︁ℳ,ℳ*) &
𝑀2𝑏2

κ3
∨ κ−1

(︂
𝑀2κ2 log 𝑛

𝑛

)︂ 2
𝑑+4

(Theorem 5)

which has never appeared in the manifold learning literature. Here ̂︁ℳ is an arbitrary estimate
of ℳ* and ℳ* fulfills some regularity conditions, which are precisely specified in Theorem 5.
Theorem 5, together with Theorem 1 from [54], where the authors managed to obtain the lower
bound inf̂︁ℳ sup

ℳ*
E𝑑𝐻(̂︁ℳ,ℳ*) & (log 𝑛/𝑛)2/𝑑, claims optimality of our method.

2.4. Model assumptions

Let us remind that we consider the model (2.1), where 𝑋 belongs to the manifold ℳ* and
the distribution of the error vector 𝜀 will be described a bit later in this section. First, we require
regularity of the underlying manifold ℳ*. We assume that it belongs to a class M𝑑

κ of twice
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differentiable, compact, connected manifolds without a boundary, contained in a ball ℬ(0, 𝑅),
with a reach, bounded below by κ, and dimension 𝑑:

ℳ* ∈ M𝑑
κ =

{︀
ℳ ⊂ R𝐷 : ℳ is a compact, connected manifold

without a boundary,ℳ ∈ 𝒞2,ℳ ⊆ ℬ(0, 𝑅), (A1)
reach (ℳ) > κ, dim(ℳ) = 𝑑 < 𝐷

}︀
.

The reach of a manifold ℳ is defined as a supremum of such 𝑟 that any point in ℳ ⊕ ℬ(0, 𝑟)
has a unique (Euclidean) projection onto ℳ. Here ⊕ stands for the Minkowski sum and ℬ(0, 𝑟)
is a Euclidean ball in R𝐷 of radius 𝑟. The requirement that the reach is bounded away from zero
prevents ℳ* from having a large curvature. In fact, if the reach of ℳ* is at least κ, then the
curvature of any geodesic on ℳ* is bounded by 1/κ (see [17, Lemma 3]).

Second, the density 𝑝(𝑥) of 𝑋 (with respect to the 𝑑-dimensional Hausdorff measure on ℳ*)
meets the following condition:

∃ 𝑝1 > 𝑝0 > 0 : ∀𝑥 ∈ ℳ* 𝑝0 6 𝑝(𝑥) 6 𝑝1, (A2)

∃𝐿 > 0 : ∀𝑥, 𝑥′ ∈ ℳ* |𝑝(𝑥) − 𝑝(𝑥′)| 6 𝐿‖𝑥− 𝑥′‖
κ

.

Besides the aforementioned conditions on ℳ* and 𝑋, we require some properties of the
noise 𝜀. We suppose that, given 𝑋 ∈ ℳ*, the conditional distribution (𝜀

⃒⃒
𝑋) fulfils the following

assumption: there exist 0 6𝑀 < κ and 0 6 𝑏 6 κ, such that

E(𝜀
⃒⃒
𝑋) = 0, ‖𝜀‖ 6𝑀 < κ, (A3)

‖Π(𝑋)𝜀‖ 6
𝑀𝑏

κ
P(·
⃒⃒
𝑋)-almost surely,

where Π(𝑋) is the projector onto the tangent space 𝒯𝑋ℳ* of ℳ* at 𝑋. The model with manifold
ℳ* ∈ M𝑑

κ and the bounded noise has been extensively studied in literature (see [15–17, 19, 55]).
In [56], the authors consider the Gaussian noise, which is unbounded, but they restrict themselves
on the event max

16𝑖6𝑛
‖𝜀𝑖‖ 6 κ, which is essentially similar to the case of bounded noise. In our work,

we introduce an additional parameter 𝑏 ∈ [0,κ], which characterises maximal deviation in tangent
direction.

The pair of parameters (𝑀, 𝑏) determines the noise structure more precisely than just the
noise magnitude 𝑀 . If 𝑏 = 0, we deal with perpendicular noise, which was studied in [16, 17]. The
case 𝑏 = κ corresponds to the bounded noise, which is not constrained to be orthogonal. Such
model was considered, for instance, in [19]. In our work, we provide upper bounds on accuracy of
manifold estimation for all pairs (𝑀, 𝑏) satisfying the following conditions:⎧⎨⎩𝑀 6 𝐴𝑛− 2

3𝑑+8 ,

𝑀3𝑏2 6 𝛼κ
[︂(︀

𝐷 log𝑛
𝑛

)︀ 4
𝑑 ∨
(︁

𝐷𝑀2κ2 log𝑛
𝑛

)︁ 4
𝑑+4

]︂
,

(A4)

where 𝐴 and 𝛼 are some positive constants. Among all the pairs (𝑀, 𝑏), satisfying (A4), we can
highlight two cases. The first one is the case of maximal admissible magnitude:

𝑀 = 𝑀(𝑛) 6 𝐴𝑛− 2
3𝑑+8 , (A4.1)

𝑏 = 𝑏(𝑛) 6

√
𝛼κ

𝐴3/2

[︃(︂
𝐷 log 𝑛

𝑛

)︂ 1
𝑑

∨
(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 1
𝑑+4

]︃
.
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The second one is the case of maximal admissible angle:

𝑏 = κ, 𝑀 = 𝑀(𝑛) 6

(︂
𝐷4𝛼𝑑+4

κ𝑑−4

)︂ 1
3𝑑+4

𝑛− 4
3𝑑+4 . (A4.2)

If (A4.1) holds, we deal with almost perpendicular noise. Note that in this case the condition
(A3) ensures that 𝑋 is very close to the projection 𝜋ℳ*(𝑌 ) of 𝑌 onto ℳ*. Here and further in this
thesis, for a closed set ℳ and a point 𝑥, 𝜋ℳ(𝑥) stands for a Euclidean projection of 𝑥 onto ℳ.
Thus, estimating 𝑋1, . . . , 𝑋𝑛, we also estimate the projections of 𝑌1, . . . , 𝑌𝑛 onto ℳ*. Also, we
admit that the noise magnitude 𝑀 may decrease as slow as 𝑛−2/(3𝑑+8). We discuss this condition
in details in Section 2.6 after Theorem 3 and compare it with other papers to convince the reader
that the assumption 𝑀 6 𝐴𝑛−2/(3𝑑+8) is mild. In fact, to the best of our knowledge, only in
[17, 18] the authors impose weaker assumptions on the noise magnitude. At the first glance, the
condition (A4.1) looks very similar to the case of orthogonal noise 𝑏 = 0. However, our theoretical
study reveals a surprising effect: the existing lower bounds for manifold estimation in the case
of perpendicular noise are different from the rates we prove for the case of almost perpendicular
noise satisfying (A4.1). We provide the detailed discussion in Section 2.6 below.

Finally, if (A4.2) holds, the noise is not constrained to be orthogonal. However, in this case,
we must impose more restrictive condition on the noise magnitude than in (A4.1). Nevertheless,
under the condition (A4.2), we show that the result of [19], Theorem 2.7, where the authors also
consider bounded noise, can be improved if one additionally assumes that the log-density log 𝑝(𝑥)
is Lipschitz. A more detailed discussion is provided in Section 2.6.

2.5. An adaptive weights method for manifold denoising

In this section we propose a novel manifold estimation procedure based on a nonparamet
ric smoothing technique and structural adaptation idea. One of the most popular methods in
nonparametric estimation is weighted averaging:

̂︀𝑋(𝑙𝑜𝑐)
𝑖 =

𝑛∑︀
𝑗=1

𝑤
(𝑙𝑜𝑐)
𝑖𝑗 𝑌𝑗

𝑛∑︀
𝑗=1

𝑤
(𝑙𝑜𝑐)
𝑖𝑗

, 1 6 𝑖 6 𝑛, (2.2)

and 𝑤(𝑙𝑜𝑐)
𝑖𝑗 are the localizing weights defined by

𝑤
(𝑙𝑜𝑐)
𝑖𝑗 = 𝒦

(︂
‖𝑌𝑖 − 𝑌𝑗‖2

ℎ2

)︂
, 1 6 𝑖, 𝑗 6 𝑛,

where 𝒦(·) is a smoothing kernel and the bandwidth ℎ = ℎ(𝑛) is a tuning parameter. In this
paper, we consider the kernel 𝒦(𝑡) = 𝑒−𝑡.

Remark 1. Instead of 𝒦(𝑡) = 𝑒−𝑡, one can take any two times differentiable, monotonously
decreasing on R+ function such that it and its first and second derivatives have either exponential
decay or finite support. We use 𝒦(𝑡) = 𝑒−𝑡 to avoid further complications of the proofs.

The estimate (2.2) has an obvious limitation. Consider a pair on indices (𝑖, 𝑗) such that
‖𝑋𝑖 −𝑋𝑗‖ < ℎ and ℎ = ℎ(𝑛) is of order (log 𝑛/𝑛)1/𝑑, which is known to be the optimal choice in
the presence of small noise (see [19, Proposition 5.1] and [16, Theorem 6]). If the noise magnitude
𝑀 is much larger than (log 𝑛/𝑛)1/𝑑 (which is the case we also consider), then 𝑀 > ℎ and the
weights 𝑤(𝑙𝑜𝑐)

𝑖𝑗 carry wrong information about the neighborhood of 𝑋𝑖, i.e. 𝑤(𝑙𝑜𝑐)
𝑖𝑗 can be very small
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even if the distance ‖𝑋𝑖 − 𝑋𝑗‖ is smaller than ℎ. This leads to a large variance of the estimate
(2.2) when ℎ is of order (log 𝑛/𝑛)1/𝑑, and one has to increase the bandwidth ℎ, inevitably making
the bias of the estimate larger.

The argument in the previous paragraph leads to the conclusion that the weights 𝑤(𝑙𝑜𝑐)
𝑖𝑗 must

be adjusted. Let us fix any 𝑖 from 1 to n. “Ideal” localizing weights 𝑤𝑖𝑗 are such that they take
into account only those indices 𝑗, for which the norm ‖𝑋𝑖 −𝑋𝑗‖ does not exceed the bandwidth
ℎ too much. Of course, we do not have access to compute the norms ‖𝑋𝑖 −𝑋𝑗‖ for all pairs but
assume for a second that the projector Π(𝑋𝑖) onto the tangent space 𝒯𝑋𝑖

ℳ* was known. Then,
instead of the weights 𝑤(𝑙𝑜𝑐)

𝑖𝑗 , one would rather use the ones of the form

𝑤𝑖𝑗(Π(𝑋𝑖)) = 𝒦
(︂
‖Π(𝑋𝑖)(𝑌𝑖 − 𝑌𝑗)‖2

ℎ2

)︂
, 1 6 𝑗 6 𝑛,

to remove a large orthogonal component of the noise. The norm ‖Π(𝑋𝑖)(𝑌𝑖−𝑌𝑗)‖ turns out to be
closer to ‖𝑋𝑖 −𝑋𝑗‖ than ‖𝑌𝑖 − 𝑌𝑗‖, especially if the ambient dimension is large. Thus, instead of
the ball {𝑌 : ‖𝑌 − 𝑌𝑖‖ 6 ℎ} around 𝑌𝑖, we consider a cylinder {𝑌 : ‖Π𝑖(𝑌𝑖 − 𝑌 )‖ 6 ℎ}, where Π𝑖

is a projector, which is assumed to be close to Π(𝑋𝑖). One just has to ensure that the cylinder
does not intersect ℳ* several times. For this purpose, we introduce the weights

𝑤𝑖𝑗(Π𝑖) = 𝒦
(︂
‖Π𝑖(𝑌𝑖 − 𝑌𝑗)‖2

ℎ2

)︂
1 (‖𝑌𝑖 − 𝑌𝑗‖ 6 𝜏) , 1 6 𝑗 6 𝑛, (2.3)

with a constant 𝜏 < κ.
The adjusted weights (2.3) require a “good” guess Π𝑖 of the projector Π(𝑋𝑖). The question is

how to find this guess. We use the following strategy. We start with poor estimates ̂︀Π1
(0), . . . , ̂︀Π(0)

𝑛

of Π(𝑋1), . . . ,Π(𝑋𝑛) and take a large bandwidth ℎ0. Then we compute the weighted average
estimates ̂︀𝑋(1)

1 , . . . , ̂︀𝑋(1)
𝑛 with the adjusted weights (2.3) and the bandwidth ℎ0. These estimates

can be then used to construct estimates ̂︀Π(1)
1 , . . . , ̂︀Π(1)

𝑛 of Π(𝑋1), . . . ,Π(𝑋𝑛), which are better
than ̂︀Π(0)

1 , . . . , ̂︀Π(0)
𝑛 . After that, we repeat the described steps with a bandwidth ℎ1 < ℎ0. This

leads us to an iterative procedure, which is given by Algorithm 2.
The computational complexity of Algorithm 2 is 𝑂(𝑛2𝐷2𝐾+𝑛𝐷3𝐾). This includes 𝑂(𝑛2𝐷2)

operations to update the weights 𝑤(𝑘)
𝑖𝑗 , 1 6 𝑖, 𝑗 6 𝑛, and the estimates ̂︀𝑋(𝑘)

𝑖 and ̂︀Σ(𝑘)
𝑖 , 1 6 𝑖 6 𝑛,

on each iteration and 𝑂(𝑛𝐷3) operations to update the projectors ̂︀Π(𝑘)
𝑖 , 1 6 𝑖 6 𝑛, on each

iteration.

2.6. Theoretical properties of SAME

This section states the main results. Here and everywhere in this thesis, for any matrix 𝐴,
‖𝐴‖ denotes its spectral norm. The notation 𝑓(𝑛) ≍ 𝑔(𝑛) means 𝑓(𝑛) . 𝑔(𝑛) . 𝑓(𝑛).

Theorem 3. Assume (A1), (A2), (A3), and (A4) . Let the initial guesses ̂︀Π(0)
1 , . . . , ̂︀Π(0)

𝑛 of
Π(𝑋1), . . . ,Π(𝑋𝑛) be such that on an event with probability at least 1 − 𝑛−1 it holds

max
16𝑖6𝑛

‖̂︀Π(0)

𝑖 −Π(𝑋𝑖)‖ 6
∆ℎ0
κ

with a constant ∆, such that ∆ℎ0 6 κ/4, and ℎ0 = 𝐶0/ log 𝑛, where 𝐶0 > 0 is an absolute constant.
Choose 𝜏 = 2𝐶0/

√
log 𝑛 and set any 𝑎 ∈ (1, 2]. If 𝑛 is larger than a constant 𝑁Δ, depending on

∆, and ℎ𝐾 &
(︀
(𝐷 log 𝑛/𝑛)1/𝑑 ∨ (𝐷𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
(with a sufficiently large hidden constant,

which is greater than 1) then there exists a choice of 𝛾, such that after 𝐾 iterations Algorithm 2
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Algorithm 2 Structure-adaptive manifold estimator (SAME)

1: The sample of noisy observations Y𝑛 = (𝑌1, . . . , 𝑌𝑛), the initial guesses ̂︀Π(0)
1 , . . . , ̂︀Π(0)

𝑛 of
Π(𝑋1), . . . ,Π(𝑋𝑛), the number of iterations 𝐾 + 1, an initial bandwidth ℎ0, the threshold 𝜏
and constants 𝑎 > 1 and 𝛾 > 0 are given.

2: for 𝑘 from 0 to 𝐾 do
3: Compute the weights 𝑤(𝑘)

𝑖𝑗 according to the formula

𝑤
(𝑘)
𝑖𝑗 = 𝒦

(︃
‖̂︀Π(𝑘)

𝑖 (𝑌𝑖 − 𝑌𝑗)‖2

ℎ2𝑘

)︃
1 (‖𝑌𝑖 − 𝑌𝑗‖ 6 𝜏) , 1 6 𝑖, 𝑗 6 𝑛 .

4: Compute the estimates

̂︀𝑋(𝑘)
𝑖 =

𝑛∑︁
𝑗=1

𝑤
(𝑘)
𝑖𝑗 𝑌𝑗

⧸︁(︂ 𝑛∑︁
𝑗=1

𝑤
(𝑘)
𝑖𝑗

)︂
, 1 6 𝑖 6 𝑛 . (2.4)

5: If 𝑘 < 𝐾, for each 𝑖 from 1 to n, define a set 𝒥 (𝑘)
𝑖 = {𝑗 : ‖ ̂︀𝑋(𝑘)

𝑗 − ̂︀𝑋(𝑘)
𝑖 ‖ 6 𝛾ℎ𝑘} and compute

the matrices ̂︀Σ(𝑘)

𝑖 =
∑︁

𝑗∈𝒥 (𝑘)
𝑖

( ̂︀𝑋(𝑘)
𝑗 − ̂︀𝑋(𝑘)

𝑖 )( ̂︀𝑋(𝑘)
𝑗 − ̂︀𝑋(𝑘)

𝑖 )𝑇 , 1 6 𝑖 6 𝑛 .

6: If 𝑘 < 𝐾, for each 𝑖 from 1 to n, define ̂︀Π(𝑘+1)
𝑖 as a projector onto a linear span of

eigenvectors of ̂︀Σ(𝑘)
𝑖 , corresponding to the largest 𝑑 eigenvalues.

7: If 𝑘 < 𝐾, set ℎ𝑘+1 = 𝑎−1ℎ𝑘.
return the estimates ̂︀𝑋1 = ̂︀𝑋(𝐾)

1 , . . . , ̂︀𝑋𝑛 = ̂︀𝑋(𝐾)
𝑛 .

produces estimates ̂︀𝑋1, . . . , ̂︀𝑋𝑛, such that, with probability at least 1 − (5𝐾 + 4)/𝑛, it holds

max
16𝑖6𝑛

‖ ̂︀𝑋𝑖 −𝑋𝑖‖ .
𝑀𝑏 ∨𝑀ℎ𝐾 ∨ (1 + Φ𝑀,𝑏,ℎ𝐾 ,κ)ℎ2𝐾

κ
+

√︃
𝐷(ℎ2𝐾 ∨𝑀2) log 𝑛

𝑛ℎ𝑑𝐾
,

max
16𝑖6𝑛

‖̂︀Π(𝐾)

𝑖 −Π(𝑋𝑖)‖ . Ψ𝑀,𝑏,ℎ𝐾 ,κ

(︃
ℎ𝐾
κ

+ ℎ−1
𝐾

√︃
𝐷(ℎ4𝐾/κ2 ∨𝑀2) log 𝑛

𝑛ℎ𝑑𝐾

)︃
,

where

Φ𝑀,𝑏,ℎ𝐾 ,κ =
𝑀3(1 + 𝑏/ℎ𝐾)2

ℎ2𝐾κ
+
𝑀2(1 + 𝑏/ℎ𝐾 +

√︁
log ℎ−1

𝐾 )

κℎ𝐾
+
𝑀ℎ2𝐾
κ3

. 𝛼 + 𝑜(1), 𝑛→ ∞,

Ψ𝑀,𝑏,ℎ𝐾 ,κ =

(︂
1 +

𝑀(1 + 𝑏/ℎ𝐾) ∨ (1 + Φ𝑀,𝑏,ℎ𝐾 ,κ)ℎ𝐾
κ

)︂𝑑+1

(1 + Φ𝑀,𝑏,ℎ𝐾 ,κ) (2.5)

6 (1 + 𝛼)
(︀
4𝑑+1 + (2

√
𝛼)𝑑+1

)︀
.

In particular, if one chooses the parameter 𝑎 and the number of iterations 𝐾 in such a way that
ℎ𝐾 ≍

(︀
(𝐷κ2 log 𝑛/𝑛)1/(𝑑+2) ∨(𝐷𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
then

max
16𝑖6𝑛

‖ ̂︀𝑋𝑖 −𝑋𝑖‖ .
𝑀𝑏

κ
+

1

κ

(︂
𝐷κ2 log 𝑛

𝑛

)︂ 2
𝑑+2

∨ 𝑀

κ

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 1
𝑑+4

.
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If ℎ𝐾 ≍
(︀
(𝐷 log 𝑛/𝑛)1/𝑑 ∨ (𝐷𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
then

max
16𝑖6𝑛

‖̂︀Π(𝐾)

𝑖 −Π(𝑋𝑖)‖ .
1

κ

(︂
𝐷 log 𝑛

𝑛

)︂ 1
𝑑

∨ 1

κ

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 1
𝑑+4

.

Note that one has to take the number of iterations 𝐾 of order log 𝑛 since the sequence of
bandwidths ℎ1, . . . , ℎ𝐾 decreases exponentially.

In Theorem 3, we assume that ̂︀Π(0)
1 , . . . , ̂︀Π(0)

𝑛 may depend on 𝑌1, . . . , 𝑌𝑛. The natural question
is how to construct the initial guesses ̂︀Π(0)

1 , . . . , ̂︀Π(0)
𝑛 of the projectors Π(𝑋1), . . . ,Π(𝑋𝑛). We

propose a strategy for initialization of our procedure. One can use [19, Proposition 5.1] to get the
estimates ̂︀Π(0)

1 , . . . , ̂︀Π(0)
𝑛 . For each 𝑖 from 1 to 𝑛 introduce

̂︀Σ(0)

𝑖 =
1

𝑛− 1

∑︁
𝑗 ̸=𝑖

(𝑌𝑗 − 𝑌 𝑖)(𝑌𝑗 − 𝑌 𝑖)
𝑇
1(𝑌𝑗 ∈ ℬ(𝑌𝑖, ℎ0)),

where 𝑌 𝑖 = 1
𝑁𝑖

∑︀
𝑗 ̸=𝑖 𝑌𝑗1(𝑌𝑗 ∈ ℬ(𝑌𝑖, ℎ0)), 𝑁𝑖 = |{𝑗 : 𝑌𝑗 ∈ ℬ(𝑌𝑖, ℎ)}|. Let ̂︀Π(0)

𝑖 be the projector
onto the linear span of the 𝑑 largest eigenvectors of ̂︀Σ(0)

𝑖 . Following the lines of the proof of [19,
Proposition 5.1], one can show that, with probability larger than 1 − 𝑛−1, it holds

max
16𝑖6𝑛

‖̂︀Π(0)

𝑖 −Π(𝑋𝑖)‖ .
ℎ0
κ

+
𝑀

ℎ0
,

provided that ℎ0 & (log 𝑛/𝑛)1/𝑑, ℎ0 = ℎ0(𝑛) = 𝑜(1) as 𝑛→ ∞, and 𝑛 is sufficiently large.
Condition (A4) and the choice of ℎ𝐾 in Theorem 3 yield that 𝑀 = 𝑀(𝑛) can decrease

almost as slow as ℎ2/3𝐾 = ℎ
2/3
𝐾 (𝑛). Thus, we admit the situation when the noise magnitude 𝑀

is much larger than the smoothing parameter ℎ𝐾 . For instance, in [16], the authors use local
polynomial estimates and require 𝑀 = 𝑂(ℎ2) and ℎ = ℎ(𝑛) ≍ 𝑛−1/𝑑. In [19], the authors assume
𝑀 . 𝜆(log 𝑛/𝑛)1/𝑑. In [56], the authors deal with Gaussian noise 𝒩 (0, 𝜎2𝐼𝐷) and get the accuracy
of manifold estimation 𝑂(𝜎

√
𝐷) using 𝑂(𝜎−𝑑) samples. This means that 𝜎 = 𝑂(𝑛−1/𝑑), which

yields that
max
16𝑖6𝑛

‖𝜀𝑖‖ . 𝑛−1/𝑑
√︀
𝐷 log 𝑛

with overwhelming probability. A similar situation is observed in [51], where the authors also
consider the Gaussian noise N(0, 𝜎2𝐼𝐷) and, using the kernel density estimate with bandwidth ℎ,
obtain the upper bound

𝑂

(︃
𝜎2 log 𝜎−1 + ℎ2 +

√︂
log 𝑛

𝑛ℎ𝐷

)︃
on the Hausdorff distance between ℳ* and their estimate. In order to balance the first and the
second terms, one must take 𝜎 = 𝑂(ℎ/

√︀
log ℎ−1), which means that

max
16𝑖6𝑛

‖𝜀𝑖‖ . ℎ

√︃
𝐷 log 𝑛

log ℎ−1
,

while we allow max16𝑖6𝑛 ‖𝜀𝑖‖ be as large as ℎ2/3𝐾 . Finally, in [14] the authors require 𝑀 = 𝑂(ℎ).
So, we see that the condition (A4) is quite mild.

Theorem 3 claims that, despite the relatively large noise, our procedure constructs consistent
estimates of the projections of the sample points onto the manifold ℳ*. The accuracy of the
projection estimation is a bit worse than the accuracy of manifold estimation, which we provide
in Theorem 4 below. The reason for that is the fact that the estimate ̂︀𝑋𝑖 is significantly shifted
with respect to 𝑋𝑖 in a tangent direction, while the orthogonal component of ( ̂︀𝑋𝑖 −𝑋𝑖) is small.
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A similar phenomenon was already known in the problem of efficient dimension reduction. For
instance, in [20, 21] the authors managed to obtain the rate 𝑛−2/3 for the bias of the component,
which is orthogonal to the efficient dimension reduction space, while the rate of the bias in the
index estimation was only 𝑛−1/2. Moreover, the term 𝑀ℎ𝐾 in Theorem 3 appears because of the
correlation between the weights 𝑤(𝑘)

𝑖𝑗 and the sample points 𝑌𝑗.
We proceed with upper bounds on the estimation of the manifold ℳ*.

Theorem 4. Assume conditions of Theorem 3. Consider the piecewise linear manifold estimate

̂︁ℳ =
{︁ ̂︀𝑋𝑖 + ℎ𝐾 ̂︀Π(𝐾)

𝑖 𝑢 : 1 6 𝑖 6 𝑛, 𝑢 ∈ ℬ(0, 1) ⊂ R𝐷
}︁
,

where ̂︀Π(𝐾)
𝑖 is a projector onto 𝑑-dimensional space obtained on the K-th iteration of Algorithm 2.

Then, as long as ℎ𝐾 &
(︀
(𝐷 log 𝑛/𝑛)1/𝑑 ∨ (𝐷𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
(with a sufficiently large hidden

constant, which is greater than 1), on an event with probability at least 1 − (5𝐾 + 5)/𝑛, it holds

𝑑𝐻(̂︁ℳ,ℳ*) .

(︂
(1 + Φ𝑀,𝑏,ℎ𝐾 ,κ + Ψ𝑀,𝑏,ℎ𝐾 ,κ)ℎ2𝐾

κ
∨ 𝑀2𝑏2

κ3

)︂
+

√︃
𝐷(ℎ4𝐾/κ2 ∨𝑀2) log ℎ−1

𝐾

𝑛ℎ𝑑𝐾
,

where Φ𝑀,𝑏,ℎ𝐾 ,κ and Ψ𝑀,𝑏,ℎ𝐾 ,κ are defined in (2.5). In particular, if 𝑎 and 𝐾 are chosen such that
ℎ𝐾 ≍

(︀
(𝐷 log 𝑛/𝑛)1/𝑑 ∨ (𝐷𝑀2κ2/𝑛 log 𝑛)1/(𝑑+4)

)︀
, then

𝑑𝐻(̂︁ℳ,ℳ*) .
𝑀2𝑏2

κ3
∨ κ−1

(︂
𝐷 log 𝑛

𝑛

)︂ 2
𝑑

∨ κ−1

(︂
𝐷𝑀2κ2 log 𝑛

𝑛

)︂ 2
𝑑+4

.

Let us elaborate on the result of Theorem 4. First, let us discuss the case of bounded
non-orthogonal noise, that is, the situation when (A4.2) holds. The model with bounded noise
was considered in [19], where the authors assumed that ℳ* satisfies (A1) and the density of 𝑋
fulfils

0 < 𝑝0 6 𝑝(𝑥) 6 𝑝1, ∀𝑥 ∈ ℳ*,

for some constants 𝑝0, 𝑝1. Note that this is a slightly more general setup, since we additionally
assume that the log-density is Lipschitz. Under these assumptions, [19] proved (Theorem 2.7) the
following upper bound on the Hausdorff distance using the tangential Delaunay complex (TDC):

𝑑𝐻(̂︁ℳ𝑇𝐷𝐶 ,ℳ*) .

(︂
log 𝑛

𝑛

)︂2/𝑑

+𝑀2

(︂
log 𝑛

𝑛

)︂−2/𝑑

,

provided that 𝑀 . (log 𝑛/𝑛)1/𝑑. To the best of our knowledge, the situation, when (A1), (A2),
(A3), and (A4.2) hold, was not studied in the manifold learning literature. One can observe
that both TDC and SAME achieve the rate 𝑂 (log 𝑛/𝑛)2/𝑑 in the case of extremely small noise
𝑀 . (log 𝑛/𝑛)2/𝑑. However, if (log 𝑛/𝑛)2/𝑑 . 𝑀 . 𝑛−4/(3𝑑+4) then the rate of convergence of
SAME in the case of the density 𝑝(𝑥) satisfying (A2) improves over the known rates of TDC in
the case of bounded away from 0 and ∞ density 𝑝(𝑥).

Now, let us discuss the case of almost orthogonal noise, i.e. when (A4.1) holds. This model
is completely new in the manifold learning literature. The most similar one considered in the prior
work is the model with perpendicular noise studied in [16, 17], so we find it useful to compare this
more restrictive model with our upper bounds for the case of almost orthogonal noise. In [17],
the authors obtain the rates 𝑂(log 𝑛/𝑛)2/(𝑑+2) assuming that, given 𝑋, the noise 𝜀 has a uniform
distribution on ℬ(𝑋,𝑀) ∩ (𝒯𝑋ℳ*)⊥. In their work, the authors do not assume that 𝑀 tends
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to zero as 𝑛 tends to infinity, however, they put a far more restrictive assumption on the noise
distribution than we do. In [16, Theorem 6], the authors use local polynomial estimate ̂︁ℳ𝐿𝑃 to
prove the upper bound

𝑑𝐻(̂︁ℳ𝐿𝑃 ,ℳ*) .

(︂
log 𝑛

𝑛

)︂𝑘/𝑑

∨𝑀

for the case when ℳ* is a 𝒞𝑘-manifold with dimension 𝑑 and reach at least κ without a boundary.
If ℳ* is a 𝒞2-manifold, this rate is minimax optimal for the case of extremely small noise 𝑀 .
(log 𝑛/𝑛)2/𝑑 but it can be improved when the noise magnitude exceeds (log 𝑛/𝑛)2/𝑑.

The result of Theorem 4 cannot be improved for the case of general additive noise, which fulfils
the assumption (A3) with 𝑏 &

(︀
(log 𝑛/𝑛)1/𝑑∨ (𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
. We justify this discussion

by the following theorem.

Theorem 5. Suppose that the sample Y𝑛 = {𝑌1, . . . , 𝑌𝑛} is generated according to the model (2.1),
where ℳ* ∈ M𝑑

κ, the density 𝑝(𝑥) of 𝑋 fulfils (A2) (with sufficiently large 𝑝1, 𝐿 and sufficiently
small 𝑝0) and the noise 𝜀 satisfies (A3). Then, for any estimate ̂︁ℳ, it holds that

sup
ℳ*∈M𝑑

κ

Eℳ*𝑑𝐻(̂︁ℳ,ℳ*) &
𝑀2𝑏2

κ3
. (2.6)

Moreover, if, in addition, 𝑛 is sufficiently large, 𝑀κ & (log 𝑛/𝑛)2/𝑑, and the parameter 𝑏 in (A3)
is such that

𝑏 &
(︀
(log 𝑛/𝑛)1/𝑑 ∨ (𝑀2κ2 log 𝑛/𝑛)1/(𝑑+4)

)︀
,

with a large enough hidden constant, then, for any estimate ̂︁ℳ, it holds that

sup
ℳ*∈M𝑑

κ

Eℳ*𝑑𝐻(̂︁ℳ,ℳ*) & κ−1

(︂
𝑀2κ2 log 𝑛

𝑛

)︂ 2
𝑑+4

. (2.7)

Theorem 5 studies the case 𝑀 & (log 𝑛/𝑛)2/𝑑. In [54], the authors proved the minimax lower
bound

inf̂︁ℳ sup
ℳ*∈M𝑑

κ

Eℳ*𝑑𝐻(̂︁ℳ,ℳ*) &

(︂
log 𝑛

𝑛

)︂2/𝑑

for the noiseless case, which is also tight for 𝑀 . (log 𝑛/𝑛)2/𝑑. Theorem 5, together with [54,
Theorem 1] yields that SAME is minimax optimal in the model with almost orthogonal noise.
The lower bounds (2.6) and (2.7) are completely new and are different from the currently known
results on manifold estimation from [17] and [16], where the authors studied a perpendicular noise
fulfilling (A3) with 𝑏 = 0.
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Conclusion

1. We proposed an adaptive algorithm for multiclass classification, which is based on aggrega
tion of nearest neighbor estimates. The procedure automatically chooses an almost optimal
number of neighbors for each test point and each class and adapts to the smoothness of the
underlying target function.

2. We proved an upper bound on the excess risk of the classifier, returned by the proposed
algorithm, under mild assumptions. This is the first theoretical result matching the minimax
lower bound up to a logarithmic factor under these assumptions.

3. We developed a new structure-adaptive manifold estimation procedure for manifold denois
ing. The procedure turns out to be more robust to orthogonal noise, than the existing
methods.

4. We carried out theoretical analysis of the proposed procedure. We proved new upper and
lower bounds on the accuracy of manifold estimation. The bounds coincide up to a muti
plicative constant, claiming optimality of the proposed algorithm in the minimax sense.
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28. A. B. Yuditskĭı, A. V. Nazin, A. B. Tsybakov, and N. Vayatis. Recursive aggregation of
estimators by the mirror descent method with averaging. Problemy Peredachi Informatsii,
41(4):78–96, 2005.

29. A. Juditsky, P. Rigollet, and A. B. Tsybakov. Learning by mirror averaging. The Annals of
Statistics, 36(5):2183–2206, 2008.
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