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1 Introduction

1.1 Relevance

Genomics is a new interdisciplinary scientific field that emerged at the in-
tersection of genetics, mathematics, and computer science. Population and
evolutionary genetics is one of the important sections in this field. Due to
the rapid decrease in the costs of sequencing and genotyping technologies,
more and more genetic data are available for analysis, providing information
about the processes of population development. Genomes contain informa-
tion about the history and structure of populations, evolutionary factors and
mechanisms of natural selection. For example, over the past 15 years, a
lot of new insights has been obtained from genomic data about the history
of peopling of Earth, the admixture of ancient humans (Neanderthals and
Denisovans) with the ancestors of modern humans, their adaptation to dif-
ferent climatic conditions and geographic territories. On the other hand, the
SARS-CoV-2 coronavirus pandemic has shown the importance of real-time
genomic epidemiological surveillance. By November 2022, about 13.5 mil-
lion samples of the coronavirus have been already available in the GISAID
database. This data makes it possible to trace transmission paths, detect
new variants of the virus, and study its evolution. Thus, the development
of new mathematical models and methods for analyzing genetic data is an
important and timely problem.

The dissertation presents theoretical results in population and evolution-
ary genetics, new mathematical models, methods of genetic data analysis, as
well as the results of the analysis of experimental data. The results of the
work extend the arsenal of methods for research in the field of population
and evolutionary genetics, allowing to clarify a more detailed and accurate
picture of the history of population development, to obtain new knowledge
about the evolutionary processes and adaptation of different species of an-
imals and viruses. The developed models and methods make it possible to
use genetic data for estimation of such fundamental parameters as migration
rates, proportions of admixture (for single, pulse, migrations), time of sepa-
ration and admixture of populations, and the strength of natural selection.
New algorithms and software meet the requirements of modern and future ge-
nomics problems that require processing of large datasets. For example, our
new method MiSTI [18*]1 allows simultaneous estimation of population split

1Here an asterisk denotes publications from the list submitted by the applicant for
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times and migration rates based on estimates of historical effective population
size obtained, for example, by PSMC [1]. Using our method, we challenged
the result [2] of a deep separation (260-350 thousand years ago) between
African Bushmen and Dinka populations, obtaining a new estimate of ≈ 107
thousand years ago and one-way migration from Dinka to Bushmen, that is
about 2.5− 3.5 times smaller than previously reported. Our results are also
confirmed by our computer simulations.

1.2 State-of-the-art

The theoretical and methodological results presented in this work allow us to
obtain new knowledge in the field of population and evolutionary genetics and
genomic epidemiology, which could not be obtained by previously existing
methods, as well as lay the foundation for the development of new, even more
accurate and effective methods.

The following theoretical results have been obtained: the number of p-
cousins in a large sample from a diecious Wright-Fisher population was stud-
ied, the distribution of chromosome tract lengths under adaptive introgres-
sion was studied, the accuracy of the SMC’ approximation of structured co-
alescence with recombination was investigated, the concept of local effective
population size was formalized and studied, a three-locus admixture linkage
disequilibtium model was constructed for two populations, and a quantitative
quasiisometric hyperbolic space problem was studied.

Based on these theoretical results we developed methods that provide new
possibilities for the analysis of real genetic data. Thus, a method for inferring
adaptive introgression allows to study one of the most important population
adaptation mechanisms. The method for calculating the local effective popu-
lation size and estimation of migration rates and split times and the method
for estimation of multiple admixture times allow us to clarify the history of
population development, in particular, to study migration processes on dif-
ferent time scales. The method for predicting the historical population size
using deep learning has an important methodological significance, opening
up the possibility to use deep learning for genome-wide analysis in the fu-
ture. This is especially relevant for tasks in which probabilistic methods are
computationally intractable. A new method for computer simulation of viral

defense listed in section 1.9.
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genealogies allows generating datasets of sizes equal to and larger than the
existing experimental datasets of SARS-CoV-2 coronavirus genomes. The
developed software is required for validation of existing and new methods in
the field of genomic epidemiology. Variational autocoders with Euclidean and
hyperbolic latent spaces are proposed to be used as a method for clustering
and visualizing data for population analysis.

Real data analysis was performed: we studied natural selection in Chileans
after admixture of indigenous, European and African populations; we esti-
mated the time of separation of human populations, challenged the result
about deep time of separation of Bushmen and Dinka populations; we studied
coronavirus philodynamics in Vreden Research Institute (March-April 2020),
AY.122+ORF7a:P45L delta clades in Moscow (April-September 2021).

1.3 Aims and tasks of the study

The aim of the study is to develop new mathematical models, methods, al-
gorithms and software to study population and evolutionary history from
genomic sequences, namely to study the processes of population separation
and admixture, determine the adaptive loci of the genome and the strength
of natural selection, and estimate changes in the historical size of the popu-
lation.

The objectives of the study are:

• Study the number of individuals with p-cousins in a large sample from
a population.

• Develop a mathematical model of adaptive introgression to accurately
and efficiently calculate the distribution of chromosome tract lengths.

• Develop a method for inferring adaptive introgression based on the
developed mathematical model.

• Develop a viral genealogy simulator scaling to realistic sample sizes
collected during the SARS-CoV-2 pandemic.

• Investigate the accuracy of the approximation of structured coalescence
with recombination by the SMC’ model.
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• Separate the effects of genetic drift (local effective population size) and
migration, develop a method to calculate the local effective population
size from the historical effective population size for the two populations,
and estimate migration rates and separation times.

• Develop a mathematical theory of admixture linkage disequilibrium of
the three loci, and develop a method based on this theory to estimate
the timings of multiple admixture.

• Study natural selection in Chilean population following post-Columbian
admixture.

• Develop a method for predicting changes in effective population size
using deep learning.

• Study the phylodynamics of SARS-CoV-2 coronavirus in Russia.

• Develop a theory and apply hyperbolic geometry to analyze genetic
data in population genetics.

1.4 Research methods

Research methods include the use and development of population models
(Wright-Fisher model and its generalizations, coalescent model, sequential
Markov coalescence, compartmental epidemiological models), probabilistic
approaches, Hidden Markov Model, Gillespie algorithm (including approxi-
mate τ -leaping algorithm), deep learning and geometric data analysis meth-
ods. The software is implemented in Python and C/C++ (including cython
technology). Existing methods of population and evolutionary genomics were
also used: PSMC, Admixture, BEAST2. For computer calculations, a high-
performance cluster of the National Research University Higher School of
Economics was used.

1.5 Theoretical and practical significance

The theoretical significance lies in the development of mathematical theory
in population and evolutionary genetics; in particular, new results were ob-
tained for the Wright-Fisher and coalescent models. Several data analysis
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methods and algorithms have also been developed using these new theoreti-
cal results. Experimental data were analyzed using new and existing meth-
ods, in particular new knowledge was gained about the history of the human
population, the spread of the SARS-CoV-2 coronavirus in Russia. The prac-
tical significance lies in the development of software that implements new
methods and algorithms for genetic data analysis and computer modeling of
populations. All the developed software packages are publicly available in
the corresponding GitHub repositories.

1.6 Provisions for the defense

• On the number of p-cousins in a large sample from a population [13*].
An asymptotic formula for the expectation of the fraction of individu-
als in a sample of size K from a population of size N without p-cousins
in that sample is derived for the limit of N → ∞ and K/N = const.
The formulas were obtained for monogamous and for non-monogamous
Wright-Fisher diecious models. It is shown that for large samples,
whose size is comparable to some large-scale studies in genetics, close
relatedness cannot be neglected. The result is important when plan-
ning, for example, GWAS (genome-wide association search) projects
with large cohorts.

• Mathematical model of adaptive introgression [10*]. A mathematical
model of adaptive introgression has been developed. The allele fre-
quency trajectory under natural selection is modeled using a determin-
istic logistic curve. The model is computationally efficient while being
accurate over a wide range of adaptive introgression parameters. It
is also shown that this range can be extended to cases where the lo-
gistic approximation is inaccurate due to genetic drift by numerically
estimating the average trajectory of the adaptive allele. The model
allowed the development of two methods (a method for calculating the
distribution of tract lengths under adaptive introgression and a method
for inferring adaptive introgression), which in turn opens up new pos-
sibilities for studying adaptation in various animal species, including
humans.

• Viral genealogy simulator [2*]. A software package VGsim for model-
ing epidemics and the resulting viral genealogies has been developed.
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The functionality of the software package includes simulation of epi-
demiological, evolutionary and population complexities. The simula-
tion of epidemic development is based on the Gillespie algorithm, the
simulation of genealogies is based on structured coalescence driven by
epidemiological dynamics. The software package is the fastest genomic
epidemiology solution we know of. It allows us to simulate genealogies
of tens of millions of samples under complex epidemiological scenarios,
which exceeds the current size of the GISAID database. This makes
VGsim a promising solution for validating data analysis results and new
data analysis methods in genomic epidemiology.

• Accuracy of the SMC’ approximation of structured coalescent [1*] The
accuracy of the SMC’ approximation of coalescence with recombina-
tion in the case of two populations with migration was investigated.
We analyzed the total variation in the difference between the joint dis-
tributions of times to a common ancestor of two loci in the coalescence
with recombination and SMC’ models as a function of the genetic dis-
tance between these loci. It is shown that for two populations with
migration, the total variation decreases significantly slower than in the
case of a homogeneous population. This shows that in the presence of
population structure, data analysis methods based on the SMC’ model
may lead to inaccurate results.

• Effective population size and migration [18*]. The notion of local effec-
tive population size for the scenario with two populations and migration
was formalized. The effect of migration on population size estimation
by PSMC method was studied. Based on this mathematical theory, we
developed a method for calculating the local effective population size
and for estimating the time of population separation and migration
rates between them. The work has important methodological signif-
icance for the theory of structured coalescence, and also allows us to
accurately reconstruct the history of gene flow between populations.

• Multiple admixture and three loci linkage disequilibrium [8*]. The math-
ematical theory of three genetic loci linkage disequilibrium in admixed
population was developed. Based on this theory, a method and soft-
ware were developed to estimate the timings of admixture between two
populations and two pulses of migration. The developed method makes
it possible to accurately investigate the recent (within several tens of
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generations) history of population admixture in complex scenarios for
which previously existing methods were inapplicable or inaccurate.

• Selection in Chilean population due to post-Columbian admixture [11*].
Using computer simulations, the results of the scan for natural selec-
tion after admixture of indigenous, European, and African populations
in Chile based on the prediction of local ancestry are verified. The con-
sistence of the chosen statistics for the selection genome-wide scan was
confirmed. This supported the reliability of the study of adaptation
processes in the modern Chilean population.

• Deep learning for demographic analysis [4*, 3*]. A method based on
deep learning was developed to predict local times to the last common
ancestor along the diploid genome. The method can also be used to
infer the trajectory of effective population size similar to the PSMC
method PSMC [1]. The work has important methodological significance
for the further development of deep learning methods for the analysis
of whole genomes.

• Phylodynamics of the SARS-CoV-2 coronavirus in Russia [9*, 7*]. A
Bayesian phylodynamic analysis of the Covid-19 outbreak in the Vre-
den Hospital (St. Petersburg) in March-April 2020, as well as the
(AY.122+ORF7a:P45L) clade of the delta variant in April-September
2021 in Moscow using software package BEAST2. The first study shows
that the nosocomial outbreak was the result of at least two, probably
three, introductions of the coronavirus into the hospital. The second
study confirmed independently of the epidemiological data that the
main clade (AY.122+ORF7a:P45L) was responsible for the summer
epidemic wave in 2021, and probably for the subsequent fall wave. The
results provide an objective picture of SARS-CoV-2 coronavirus spread
in Russia, which is important in the analysis of epidemiological mea-
sures for pandemic control.

• Hyperbolic geometry and genetic data analysis [14*-17*]. The numeri-
cal problem of quasiisometric hyperbolic spaces is stated and studied.
The application of variational autocoders with hyperbolic latent space
to the problem of population genetic diversity visualization (similar to
the principal component method) was considered. These results have
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both fundamental mathematical significance and open up the possibil-
ity to develop and apply novel approaches in population genetics.

1.7 Novelty and reliability

All of the scientific results presented for the defense are novel. New math-
ematical model for the distribution of chromosome lengths during adaptive
introgression has been proposed. New methods for inferring adaptive intro-
gression, computer modeling of viral genealogies, estimation of split times
and migration rates between populations, estimation of timings of multiple
admixture from linkage disequilibrium of three loci, and estimation of his-
torical effective population size using deep learning were proposed. Using
these and existing methods, the following problems were solved: split times
between human populations were estimated and the result of deep split time
between African populations of San and Dinka was challenged, admixture
times for modern populations of Mexicans and Colombians were estimated,
adaptation in Chileans after post-Columbian admixture was studied, philo-
dynamics of coronavirus SARS-CoV-2 in Russia was studied.

The reliability of the results is justified by the fact that all the results
presented for the defense, were published in leading peer-reviewed scientific
journals indexed in the scientific databases Web of Sciences and Scopus with
quartiles Q1 - 13 articles, Q3 - 2 articles, of which 3 articles were published in
journals from the Nature Index. Software code are published in open GitHub
repositories as 7 software packages.

1.8 Approbation of the obtained results

The main results of the dissertation work were reported at the following
international conferences and seminars:

• Estimating the timing of multiple admixture events using 3-locus Link-
age Disequilibrium, conference Moscow Conference on Computational
Molecular Biology (MCCMB’21), July 2021, Moscow, Russia.

• Deep learning for demographic inference from whole-genome sequences,
conference Moscow Conference on Computational Molecular Biology
(MCCMB’21), July 2021, Moscow, Russia.
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• ngsPSMC: genotype likelihood-based PSMC for analysis of low coverage
NGS data, conference Probabilistic Modeling in Genomics, October
2019, Aussois, France.

• ngsPSMC: genotype likelihood-based PSMC for analysis of low coverage
NGS data, conference Moscow Conference on Computational Molecular
Biology (MCCMB’19), July 2019, Moscow, Russia.

• Estimation of population split times and migration rates with variable
population sizes, conference Probabilistic Modeling In Genomics, Oc-
tober 2018, Cold Spring, USA.

• ngsPSMC: modifying PSMC to work with NGS data”, UCCGC work-
shop, 15–18 August 2017, Blue Oak Ranch Reserve, USA.

• Tree consistent PBWTs and their application to reconstructing ances-
tral recombination graphs and demographic inference, conference Proba-
bilistic Modeling in Genomics, October 12–17 2015, Cold Spring, USA.

• Tree consistent PBWT and their application to reconstructing Ances-
tral Recombination Graphs and demographic inference, Recomb 2015,
Warsaw, Poland. Best poster award.

• On modern problems and methods for data analysis in human genomics,
Computer Simulation in Physics and beyond 2015, Moscow, Russia,
plenary talk

• Tree consistent PBWT and their application to reconstructing ances-
tral recombination graphs and population structure inference, Biology
of Genomes, 10–14 May 2015, Cold Spring, USA

• Extension of PBWT and its connection with ARG, conference Interna-
tional meeting on genomics, April 2014, Doha, Qatar.

11



1.9 List of papers on the topic of the dissertation work
presented for the defense (with the personal contri-
bution of the candidate)

Author’s publications in peer-reviewed scientific journals listed in the inter-
national citation system Scopus

1.* Shchur V. Accuracy of the SMC’ approximation of structured coalescent
Lobachevskii journal of mathematics 43(12) (2022), pp. 3626–3630

The accuracy of the SMC’ approximates of coalescence with recombi-
nation for the case of two populations with migration was evaluated.
It is shown that the total variation between the joint distribution of
time to the last common ancestor in two loci decreases significantly
slower with increasing genetic distance between loci than in the case of
a homogeneous population.

2.* Shchur V., Spirin V., Burovski E., De Maio N., Corbett-Detig R.
VGsim: scalable viral genealogy simulator for global pandemic // PLoS
Computational Biology. 18(8) (2022), e1010409.

https://journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1010409

A viral genealogy simulator VGsim has been developed, which is the
fastest solution in its field to the best of our knowledge. Mathematical
models and algorithms were developed, the core part of the software
was implemented, and all the other stages of research and development
were supervised.

3.* Arzymatov K., Khomutov E., Shchur V. Deep learning for inferring
distribution of time to the last common ancestor from a diploid genome
// Lobachevskii Journal of Mathematics 43(8) (2022) pp. 2092–2098.

https://doi.org/10.1134/S1995080222110075

A deep learning based method for predicting local times to the last
common ancestor along the genome, as well as their marginal proba-
bility distribution, was proposed and evaluated.

4.* Khomutov E., Arzymatov K., Shchur V. Deep learning based methods
for estimating distribution of coalescence rates from genome-wide data
// Journal of Physics: Conference Series 1740 (2021). 012031.
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https://iopscience.iop.org/article/10.1088/1742-6596/1740
/1/012031

A prototype method for predicting local times to the last common
ancestor along the genome is proposed.

5.* Jin Y., Brandt D. Y., Li J., Wo Y., Tong H., Shchur V. Elevation
as a selective force on mitochondrial respiratory chain complexes of
the Phrynocephalus lizards in the Tibetan plateau // Current Zoology
67(2) (2021), pp. 191–199.

https://academic.oup.com/cz/article/67/2/191/5909995

A permutation analysis was performed to study parallel altitude adap-
tation in Phrynocephalus lizards in the Tibetan Plateau.

6.* Svedberg J., Shchur V., Reinman S., Nielsen R., Corbett-Detig R. In-
ferring Adaptive Introgression Using Hidden Markov Models // Molec-
ular Biology and Evolution 38(5) (2021), pp. 2152–2165.

https://academic.oup.com/mbe/article/38/5/2152/6120794

A Hidden Markov Model for adaptive introgression was developed. An
approach for approximate fast computation of transition probabilities
near the adaptive locus was proposed.

7.* Klink G. V., Safina K. R., Nabieva E., Shvyrev N., Garushyants S.,
Alekseeva E., Komissarov A. B., Danilenko D. M., Pochtovyi A. A.,
Divisenko E. V., Vasilchenko L. A., Shidlovskaya E. V., Kuznetsova N.
A., Speranskaya A. S., Samoilov A. E., Neverov A. D., Popova A. V.,
Fedonin G. G., Akimkin V. G., Lioznov D., Gushchin V. A., Shchur V.,
Bazykin G. A. The rise and spread of the SARS-CoV-2 AY.122 lineage
in Russia // Virus Evolution 8 (2022), pp. 1–11.

https://academic.oup.com/ve/article/8/1/veac017/6542789

A phylodynamic analysis of the Y.122ORF7a:P45L coronavirus clade
in Moscow in April-September 2021 was performed.

8.* Liang M., Shishkin M., Mikhailova A., Shchur V., Nielsen R. Esti-
mating the timing of multiple admixture events using 3-locus Linkage
Disequilibrium // PLOS Genetics 18(7) (2022), e1010281.

https://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.1010281
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A mathematical model of the three loci linkage disequilibrium was de-
veloped for two populations.

9.* Komissarov A. B., Safina K. R., Garushyants S. K., Fadeev A. V.,
Sergeeva M. V., Ivanova A. A., Danilenko D. M., Lioznov D., Shneider
O. V., Shvyrev N., Spirin V., Glyzin D., Shchur V., Bazykin G. A.
Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak
in Russia // Nature Communications 12 (2021), pp. 1–13.

https://www.nature.com/articles/s41467-020-20880-z

A phylodynamic analysis of a nosocomial SARS-CoV-2 outbreak at the
Vreden Hospital in March-April 2020 was performed.

10.* Shchur V., Svedberg J., Medina P., Corbett-Detig R., Nielsen R. On
the Distribution of Tract Lengths During Adaptive Introgression // G3:
Genes, Genomes, Genetics 10(10) (2020), pp. 3663–3673.

https://academic.oup.com/g3journal/article/10/10/3663/6053
540

We constructed a mathematical model for introgressed genome tracts
under adaptive introgression based on coalescent theory and an approx-
imation of the selected allele frequency trajectory with a deterministic
logistic curve.

11.* Vicuña L., Klimenkova O., Norambuena T., Martinez F. I., Fernan-
dez M. I., Shchur V., Eyheramendy S. Post-Admixture Selection on
Chileans Targets Haplotype Involved in Pigmentation, Thermogenesis
and Immune Defense Against Pathogens // Genome Biology and Evo-
lution 12(8) (2020), pp. 1459–1470.

https://academic.oup.com/gbe/article/12/8/1459/5866553

The choice of a statistics for LAI selection scan in the admixed Chilean
population was verified using simulations.

12.* Skov L., Hui R., Shchur V., Hobolth A., Scally A., Schierup M. H.,
Durbin R. Detecting archaic introgression using an unadmixed outgroup
// PLoS Genetics 14 (2018), pp. 1–15.

https://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.1007641
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A Hidden Markov Model architecture was proposed to detect segments
of archaic origin using a non-admixed outgroup population. This ar-
chitecture made it possible to detect Neanderthal and Denisovian DNA
segments in individuals from Papua New Guinea with high accuracy.

13.* Shchur V., Nielsen R. On the number of siblings and p-th cousins in
a large population sample // Journal of Mathematical Biology 77(5)
(2018), pp. 1279–1298.

https://link.springer.com/article/10.1007/s00285-018-125
2-8

We derive formulas for the mathematical expectation of the number of
individuals without p-cousing in a sample of population in monogamous
and non-monogamous diecious Wright-Fisher models, and find asymp-
totic behavior as a function of the sample fraction with the population
size N going to infinity.

14.* Gouezel S., Shchur V. A corrected quantitative version of the Morse
lemma // Journal of Functional Analysis. 277(4) (2019), pp. 1258-
1268. https://www.sciencedirect.com/science/article/pii/S0
022123619300801

The proof of the quantitative version of Morse’s lemma about the dis-
tance from a quasi-geodesic to a geodesic segment in hyperbolic space
was corrected.

15.* Shchur V. On the quantitative quasi-isometry problem: Transport of
Poincaré inequalities and different types of quasi-isometric distortion
growth // Journal of Functional Analysis. 269(10) (2015), pp. 3147–
3194.

https://www.sciencedirect.com/science/article/pii/S0022123
615003699

Quantitative properties of quasi-isometries are investigated: the trans-
port of Poincaré inequalities is considered, exact estimates of the growth
of quasi-isometric distortion for some class of hyperbolic metric spaces
are obtained. The linearity of quasi-isometric distortion growth be-
tween the hyperbolic space Hn and the binary tree is also proved.
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16.* Shchur V. A quantitative version of the Morse lemma and quasi-isometries
fixing the ideal boundary // Journal of Functional Analysis. 264(3)
(2013), pp. 815–836.

https://www.sciencedirect.com/science/article/pii/S0022123
61200434X

A quantitative version of Morse lemma, the dual anti-Morse lemma, are
proven, and quasi-isometries fixing the ideal boundary are investigated.

Other publications and preprints:

17.* I. Bogdanov and V. Shchur, Variational Autoencoders with Euclidean
and Hyperbolic Latent Spaces for Population Genetics // 2021 XVII
International Symposium “Problems of Redundancy in Information and
Control Systems” (REDUNDANCY), 2021, pp. 91–94

https://ieeexplore.ieee.org/abstract/document/9606448

A method for population clustering of genetic data based on variational
autoencoders with Euclidean and hyperbolic latent spaces is proposed.

18.* Preprint Shchur V., Brandt D. Y., Ilina A., Nielsen R. Estimating pop-
ulation split times and migration rates from historical effective popula-
tion sizes / Cold Spring Harbor Laboratory. Series 005140 "Biorxiv".
2022

https://www.biorxiv.org/content/10.1101/2022.06.17.496540v
1

The concepts of historical and local effective population sizes are in-
troduced. A method for split time and migration rates estimation was
developed from the historical effective population sizes of individuals
from two populations. This method simultaneously infers the local
effective population size.

2 Results
In this section, we outline the main research results presented in the disser-
tation.
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2.1 On the number of siblings and p-cousins in a large
population sample

As genomic sequencing and genotyping techniques are becoming cheaper, the
data sets analysed in genomic studies are becoming larger. With an increase
in the proportion of individuals in the population sampled, we might also
expect an increase in the proportion of related individuals in the sample. In
Genome Wide Association Studies (GWAS), related individuals are routinely
removed from the sample, but other strategies also exist for using related-
ness as a covariate in the statistical analyses (e.g., [3]). These observations
raise the following question: given a particular effective population size, how
many close relatives would we expect to find in a sample? The answer to
this question may help guide study designs and strategies for addressing re-
latedness in population samples and improve design for GWAS. Of particular
interest is the number of individuals in the sample without relatives, i.e. the
number of individuals remaining in the sample if individuals with relatives
are removed.

In this section, we present results on the number of close relatives in
two diecious Wright-Fisher models, the monogamous model and the random
mating model from [13*]. We will use these models to obtain the distribution
and expectation of the number of individuals with siblings, and expectation
of the number of cousins, third cousins, etc. in the sample.

We use two generalizations of the Wright-Fisher model to model the
diecious population. The first generalization is the monogamous Wright-
Fisher model, in which pairs of parents are fixed. The second generalization
is the random mating Wright-Fisher model, in which for each individual,
each of the two parents is chosen independently from the sets of male and
female individuals, respectively.

Further, we assume that each generation contains exactly N male and N
female individuals. Denote by G0 the observed generation, and the ancestral
generations will be numbered backward in time, i.e. the generation Gi is
parental to the generation Gi−1.

Consider a random sample S from generation G0. Denote by UT (for
monogamous model) and VT (for random mating model) the number of indi-
viduals in the sample S who have no (T +1)-cousins and (T +1)-semicousins
in S and whose genealogy has no cycles (that is, there is no inbreeding in
their genealogy). The probability of cycles is small if 2T (the number of an-
cestors in the T -th generation without inbreeding) is much smaller than the
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effective population size. Thus, inbreeding can be neglected. We will denote
p = T + 1.

Below we give formulas for the distributions and expectations of the num-
bers of U1 sisters in the monogamous model and V1 half-sisters in the non-
monogamous model. We will also derive an asymptotic formula for the math-
ematical expectation of UT and VT when the sample fraction is fixed and the
population size is large.

Recall that the Stirling number of the second kind S(n, k) is equal to the
number of partitions of a set of n elements into k non-empty subsets. The
r-associated Stirling number of the second kind Sr(n, k) [4] is the number of
partitions of the set of n elements into k non-empty subsets of size at least
r.

2.1.1 Results for the monogamous Wright-Fisher model

Consider individuals in a random sample S of size K such that the same
sample S does not include their siblings. We are interested in the distribution
of the number of such individuals, its expectation, and asymptotic behavior
of the expectation for a large population size and a fixed sample S fraction
of the total population (that is, for a fixed ratio K/N and a limit N → ∞).

Theorem 1 Let U1 be a random variable, denoting the number of individuals
in a random sample S of size K without siblings (0-cousins) in the same
sample S, under monogamous Wright-Fisher model. Then

• the probability distribution of U1 is given by

P(U1 = u) =

(
K
u

)∑⌊K−u
2

⌋
t=1 S2(K − u, t)

(
N
u+t

)
(u+ t)!∑m

t=1 S(K, t)
(
N
t

)
t!

;

• expectation of U1 is

E(U1) = K(1− 1/N)K−1;

• moreover, if K/N = α, then

lim
K→∞

E(U1)

K
= e−α.
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For the number U2 of individuals in a sample, without cousins we found
the expectation and its asymptotic behavior.

Theorem 2 Let U2 be a random variable, denoting the number of individuals
in a random sample S without cousins (1−cousins) in the same sample S,
under monogamous Wright-Fisher model. Then the expectation of U2 is equal
to

E(U2)

K
= K

∑K
m=1 S(K,m)

(
N
m

)
m!N(N − 1)(N − 2)2m−2∑K

m=1 S(K,m)
(
N
m

)
m!N2m

.

Moreover, if K/N = α, then

lim
K→∞

E(U2) = e−4α.

Our results can be generalized to any degree of kinshop, that is for the
number Up of individuals in a sample S, without p-cousins in S.

Theorem 3 • For any natural p ≥ 1, the expectation of Up is

E(Up) = K

K∑
m1=1

R1

2m1∑
m2=2

R2 . . .

2mp−2∑
mp−1=4

Rp−1︸ ︷︷ ︸
(p−1) nested sums

N2mp−1W (p)

K∑
m1=1

R1

2m1∑
m2=2

R2 . . .

2mp−2∑
mp−1=4

Rp−1︸ ︷︷ ︸
(p−1) nested sums

N2mp−1

, (1)

where 2m0 := K,

Qp(N,M) =

p∑
t=0

(
p

t

)
S(N − p,M − t)

(
M − t

p− t

)
(k − t)!,

R(j) = Q2j−1(2mj−1,mj)

(
N

mj

)
mj!,

and

W (p) =

(
1− 2p−1

N

)2mp−1−2p−1 2p−1∏
s=1

(
1− s

N

)
.

• If K/N = α (i = 1, 2, . . . , p), then

lim
K→∞

E(Up)

K
= lim

K→∞

(
1− 2p−1α

K

)2p−1K

= e−(22p−2)α. (2)
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2.1.2 Results for random mating Wright-Fisher model

We obtained similar results for the case of the random mating Wright-Fisher
model. However, unlike in the case of the monogamous model, the probability
that two individuals are full p-cousins is small compared to the probability
of being p-semicousins. So, in this case we will be interested in the number
Vp of individuals in the sample S whose p-semicousins and p-cousins are not
in the sample.

Theorem 4 • For any natural p ≥ 1, the expectation of Vp is

E(Vp) = K

K∑
m1=1

P1

2m1∑
m2=2

P2 . . .

2mp−2∑
mp−1=2p−2

Pp−1︸ ︷︷ ︸
(p−1) nested sums

N2mp−1W 2(p)

K∑
m1=1

P1

2m1∑
m2=2

P2 . . .

2mp−2∑
mp−1=2p−2

Pp−1︸ ︷︷ ︸
(p−1) nested sums

N2mp−1

, (3)

where we assume m0 = K and

Pj :=

mj−2j−1∑
n=2j−1

Q2j−1(mj−1, n)Q2j−1(mj−1,mj−n)

(
N

n

)(
N

mj − n

)
n!(mj−n)!

and

W (p) =

(
1− 2p−1

N

)mp−1−2p−1 2p−1−1∏
s=1

(
1− s

N

)
.

• If K/N = α, then

lim
K→∞

E(Vp)

K
= e−(22p−1)/α.

In particular, for V1 we have

E(V1) = K(1− 1/N)2(K−1).

Finally, we conclude that there is the following relation between Up and
Vp:

lim
K→∞

E(Vp)

K
=

(
lim

K→∞

E(Up)

K

)2

.
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2.2 Modeling adaptive introgression

2.2.1 Adaptive introgression

In [10*], we developed a mathematical model to efficiently and accurately nu-
merically estimate the distribution of ancestral chromosome lengths around
a genetic locus under the influence of natural selection. Further, in [6*] we
used our theoretical model to develop a method based on a Hidden Markov
Model to infer adaptive introgression and estimate its parameters.

2.2.2 Model overview

Let us now proceed to the details of our approach. Consider a random process
along a chromosome with two states corresponding to two ancestral popu-
lations. Transitions between ancestral states occur due to recombinations,
with chromosome tracts to the left and right of the recombination point com-
ing from different populations. We consider a model with three genetic loci.
Thus, we calculate the transition probabilities between ancestral states at
two loci depending on the distance to the third locus under selection.

Let us formulate in more detail the population model under consideration.
Let α be a genetic locus under selection with two possible alleles: selected
allele A and neutral allele a. We consider the scenario in which allele A
enters the population due to adaptive introgression. That is, at a certain time
individuals from one population replace a certain proportion of individuals
from a second population [5, 6]. We also make the assumption that at the
time of introgression all individuals of the donor population are carriers of
allele A and all individuals of the recipient population have allele a.

The expected trajectory of the selected allele frequency is accurately de-
scribed by a logistic curve (see, e.g., [7]) if selection is strong enough and
allele frequency is not too close to 0 or to 1 [8,9]. Approximating the random
trajectory of the allele frequency under the logistic curve selection avoids inte-
gration due to uncertainty due to genetic drift. Using computer simulations,
we have shown that within a certain range of parameters, our approximation
allows us to estimate very accurately the expected length of the introgressed
genetic sites.

Outside this parameter range (e.g., when the admixture fraction is small),
the genetic drift is strong and the logistic approximation is inaccurate. This
observation coincides with the results of [10]. In this case, the expected
trajectory can be efficiently estimated numerically by averaging over a large

21



number of random realizations, provided that one of the two alleles is not
fixed. We used this approach to analyze Denisovan introgression in Tibetan
ancestors. where the admixture fraction is estimated at only 0.06% [11].

2.2.3 Derivation of the approximate deterministic model

So, we consider a sample chromosome. Our goal is to describe the transitions
(along the genome) between ancestral states of loci. In the coalescence with
recombination model (with time direction from the present to the past), our
model is Markovian, provided that the allele frequency trajectory is fixed.
To describe the dynamics of adaptive introgression with three loci, we first
need to enumerate all the possible states corresponding to the ancestral con-
figurations of the three loci. Then, we approximate this process by another
Markov process along the genome (SMC/SMC’ [12, 13]), where the states
in the loci of the observed chromosome will correspond to one of the two
ancestral populations.

The model has 6 possible states. Each state represents an ancestral con-
figuration for an observed chromosome with three loci: α, β and γ. At α
we track the allelic state, A or a, which also indicates ancestry. In β and γ
we only need to know if the given chromosome is ancestral to the observed
chromosome or not. We use the notation βa and γa to indicate DNA in β
or γ that is ancestral to the observed chromosome. βn and γn is used to
indicate DNA that is not ancestral to the observed chromosome. The six
states are then: X1 = (A− βa − γa), X2 = (A− βa − γn, A− βn − γa), X3 =
(A− βa − γn, a− βn − γa), X4 = (a− βa − γn, A− βn − γa), X5 = (a− βa −
γn, a− βn − γa), X6 = (a− βa − γa).

We denote the frequency of the selected allele at time t by ω(t). As we
indicated previously, we assume that ω(t) deterministically follows a logistic
function:

ω(t) = 1− 1

1 + e−st/2
=

1

1 + est/2
,

because we are working in backward time.
Recombination acts at a rate proportional to the recombination distances

between loci. We assume that recombination between loci α and β occurs at
rate r1 and recombination occurs between loci β and γ at rate r2.

Let λ = 1/2Ne, where 2Ne - haploid effective population size. Transitions
in the Markov process correspond to two types: coalescences and recombi-
nations. Coalescences are possible only between chromosomes with the same
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allele at locus α. So, the transition matrix of the Markov process is

M(t) =


−r1ω̄(t)− r2 r2ω(t) r2ω̄(t) 0 0 r1ω̄(t)

λ/ω(t) −λ/ω(t)− (2r1 + r2)ω̄(t) (r1 + r2)ω̄(t) r1ω̄(t) 0 0
0 (r1 + r2)ω(t) −r1 − r2ω(t) 0 r1ω̄(t) 0
0 r1ω(t) 0 −r1 − r2ω̄(t) (r1 + r2)ω̄(t) 0
0 0 r1ω(t) (r1 + r2)ω(t) −λ/ω̄(t)− (2r1 + r2)ω(t) λ/ω̄(t)

r1ω(t) 0 0 r2ω(t) r2ω̄(t) −r1ω(t)− r2

 ,

where ω̄(t) = 1−ω(t) is the allele frequency of a. So, our system is described
by the Kolmogorov equation

P′(t) = P(t)M(t). (4)

The initial condition for this equation, corresponding to the dynamics of
the introgressed site (that is, with the A allele), is

P(t0) = (1, 0, 0, 0, 0, 0),

and for a site from the recipient population (with allele a) the initial condition
is

P(t0) = (0, 0, 0, 0, 0, 1).

2.2.4 Transition rates between ancestral states along the chromo-
some

In our model, the probability that the locus has an ancestry of type 1 (donor
population) or type 0 (recipient population) is equal to the probability that
the ancestral chromosome carries the A or a allele, respectively, at the time
of introgression.

Now we will consider a new Markov process that describes the ancestries
of the locus as it moves along the chromosome away from the adaptive locus.
This is only an approximation (see SMC/SMC’ [12, 13] model), since the
indicated process is not actually Markovian. The states of this process are
ancestries of type 0 and 1. By definition, the transition rates between states
s1 and s2 at position r for this Markov process

τs1,s2(r) = lim
dr→0

P (S(r + dr) = s2|S(r) = s1)

dr
.

Thus, the transition rate τ10(r) of type 1 ancestry to type 0, corresponding
to the end of the introgressed tract is
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τ10(r) = lim
dr→0

P (S(r + dr) = 0|S(r) = 1)

dr
=

lim
dr→0

1

dr

P (S(r + dr) = 0, S(r) = 1)

P (S(r) = 1)
. (5)

The numerator P (S(r+dr) = 0, S(r) = 1) is the probability P (X3), and the
denominator P (S(r) = 1) is equal to P (X1)+P (X2)+P (X3). The expression
(5) can be easily evaluated numerically for sufficiently small values of r2.

2.2.5 Numerical results

We have demonstrated that our model accurately models the distribution of
tract lengths, as opposed to the exponential distribution. Thus, the figure
1 shows the distribution of the distance from the adaptive locus to one end
of the introgressed section. This distribution was estimated by computer
simulation, using our deterministic approximation model and an exponen-
tial distribution with a parameter inversely proportional to the mean of the
numerically modeled distribution (i.e., an estimate of the mathematical ex-
pectation). The figure also shows QQ plots for all three pairs of distributions.
The reason why the exponential distribution does not accurately model the
distribution of introgressed site lengths is that it does not account for the
possibility of reverse coalescence after recombination.

Further, using our method, we have demonstrated the perhaps counter-
intuitive fact that, given the observed frequency of the adaptive allele and a
fixed introgression time, stronger selection leads to shorter introgressed tracts
(Fig. 2).

2.2.6 Discussion

Adaptive introgression is an important and common phenomenon in evo-
lutionary genetics [14]. We have developed an approximate mathematical
model to numerically calculate the distribution of ancestral tract lengths
during adaptive introgression near the locus under selection in the case of
a single admixture pulse. This approach allows efficient and rapid calcula-
tion of such site lengths for a wide range of realistic adaptive introgression
scenarios. However, our model does not extend to scenarios such as com-
plex demographics, continuous migration, and multiple mixing pulses, which
requires further work.
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Figure 1: Distribution of the distance from the selected locus to one end
of the introgressed tract. Selection coefficient s = 0.01, admixture fraction
ω1 = 0.1 and time since introgression T = 1000 generations. The observed
allele frequency is ω0 = 0.94. The first panel shows the probability density
functions for the empirical distribution obtained by simulations, the distribu-
tion calculated under the deterministic approximation and the exponential
distribution with the mean set equal to the simulated mean. Three other
panels are qq-plots showing all three pairs of the presented distributions.

2.3 Method for inferring adaptive introgression

The adaptive introgression theory developed in the previous section was the
basis of the new AHMM-S method. This method is a modification of the
Ancestry_HMM [6] method for the local ancestry inference for admixture
of two populations based on a Hidden Markov Model. Thus, we assume a
single discrete admixture (introgression) event. The emission probabilities in
the model with natural selection remain the same as those without selection,
that is, they are the same as for the Ancestry_HMM method. The impor-
tant difference is that natural selection affects the probabilities of transitions
between states. These probabilities can be calculated in the deterministic
adaptive introgression model presented in the previous section. Such a model
is optimized at equal intervals along the chromosome, and the optimization
result is compared with the result for the neutral model (without natural
selection). This makes it possible to find loci under selection, as well as to
estimate the selection coefficient at these sites.

To efficiently compute the transition probability matrix, we proposed a
4-point approximation of the transition rates f10(r) and f01(r). For example,
for the transition rate f10(r) from the ancestral state 1 (introgressed popu-
lation) to the state 0 at genetic distance r (in Morgans) from the selected
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Figure 2: Dependence of the expected length of the introgressed tracts con-
ditional on the allele frequency at the time of observation. Different panels
correspond to different introgression times (10, 100, and 1000 generations
ago, respectively). Different colors of the lines correspond to different allele
frequencies at the time of observation (0.1, 0.2, 0.5, 0.9).
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locus we use an approximation in the form

f̂10(r) = L− ke−αrp ,

where L, k, α and p are estimated numerically. This approximation was veri-
fied in a wide range of parameters. It substantially improves the performance
on the developed software.

The developed method was tested on a wide range of parameters (intro-
gression time, selection strength, admixture fraction). It demonstrates high
sensitivity and accuracy of parameter estimation. The software is publicly
available on GitHub https://github.com/jesvedberg/Ancestry_HMM-S/.

2.4 Viral genealogy simulator VGsim

The unprecedented world-wide effort to produce and share viral genomic
data for the ongoing SARS-CoV-2 pandemic allows us to trace the spread
and the evolution of the virus in real time, and has made apparent the need
for improved computational methods to study viral evolution. It is essential
that we also have tools to accurately simulate viral evolutionary processes
so that the research community can validate inference methods and develop
novel insights into the effects of such complexities.

Pandemic-scale datasets impose technical problems associated with the
scalability and memory usage of computational methods. The viral geneal-
ogy simulator VGsim, based on a combination of the generalized SIS model
and the structured coalescent approach, efficiently scales for such problems.
In the first step (forward pass), the evolutionary dynamics of the virus is
simulated using the Gillespie algorithm taking into account many realcistic
complexities. The second step (backward pass) uses a structured coalescence
approach, which simulates the genealogical tree of pathogen samples condi-
tional on the simulated dynamics obtained during the forward pass.

2.4.1 Model and implementation

Our epidemiological model is based on compartmental models [15]. Random
trajectories are implemented using the Gillespie algorithm [16] (the logarith-
mic direct method [16] and the approximate τ -leaping algorithm [17] are
implemented). The different compartments in our model are defined by sev-
eral interacting factors: (1) host population structure, (2) different groups of
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infected depending on the strain, and (3) different groups of susceptible host
individuals.

As stated earlier, the simulation consists of two parts: a forward pass
generating epidemiological dynamics, and a backward pass generating a ge-
nealogy of samples based on these dynamics. The epidemiological dynamics
are represented as a chain of events (Figure 3). This chain of events define
the probability space for the genealogy that is generated during the backward
pass. A coalescent approach conditional by the chain of events is used for
this purpose.

VGsim provides a convenient and compact user interface in Python. The
critical computational parts are implemented in C++ using Cython [18].

2.4.2 Results

We compared the performance of VGsim with that of the simulator MASTER
[19] which is popular in epidemiological studies [20–22] and also implements
the Gillespie algorithm. The scalability and memory usage of VGsim is sig-
nificantly higher than that of MASTER (see Fig. 4).

We also made a comparison with the epidemiological simulator TiPS [23],
which also uses a combination of the generalized SIS model and structured
coalescence and generates genealogies with epidemiological trajectories. For
a simple SIR model, the implementation of the exact Gillespie algorithm
in VGsim is about twice as fast as in TiPS (see Table 1). For backward
run (generating genealogies using epidemiological trajectories), VGsim scales
much better than TiPS

Number of
iterations VGsim TiPS

106 0.19 0.31
5 · 106 0.96 1.72
107 1.84 3.44

5 · 107 9.87 17.57
108 19.06 38.94

Table 1: Forward run time in seconds for different number of iterations under
the SIR model. The recovery rate is set to 1 and the transmission rate to
2.5. The tests were run on a MacBookPro with Quad-Core Intel Core i5 2
GHz processor and 16GB of memory.
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Figure 3: Scheme of the Gillespie algorithm used in the forward pass used for
the chain of events generation. The black squares correspond to sequential
steps, where subsets of events are selected according to their weights, or
propensities, depending on the model parameterization and the current state
of the epidemiological process. The propensities for each step are cached and
updated, based on the dependency graph, only if their values change due to
the generated event.
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Figure 4: The comparison of VGsim and MASTER performance: the time to
simulate a tree with a given number of leaves.

2.5 Accuracy of the SMC’ approximation of structured
coalescent

Sequential Markovian Coalescent (shortly SMC) [12] and its modification
SMC’ [13] are two of the most important models in population genetics
which underlie many algorithms and methods for genetic data analysis, e.g.
diCal [24], PSMC [1] and MSMC [25]. These models approximate the full
coalescent with recombination [?] by considering a Markovian process along
a chromosome. In our recent work [?] we showed that under panmictic SMC
model applied to a sample with structured population history, leads to bi-
ased and inaccurate estimates of the distribution of times to the most recent
common ancestor.

Consider the joint distribution of times to the last common ancestor of
two chromosomes at two loci at the genetic distance ρ (in this case, ρ is
the recombination rate between the two loci) in the coalescence models with
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Number of
samples VGsim TiPS

104 0.059 242.4
2 · 104 0.11 808.2
3 · 104 0.18 1377.6
4 · 104 0.22 1921.2
5 · 104 0.27 3157.2

Table 2: Backward run time in seconds to generate genealogies for different
sample sizes under the SIR model. The population size is 107 in all runs.
The recovery rate is 1 while the transmission rate is 2.5. The tests were run
on a MacBookPro with Quad-Core Intel Core i5 2 GHz processor and 16GB
of memory.

recombination and SMC’. We denote these distributions by pρ,CR(t, s) and
pρ,SMC′(t, s), respectively.

To compute pρ,CR(t, s), we consider a Markov process with continuous
time (time flows from present to past). We denote the coalescence rates in
the first and second populations by λ1 and λ2, and the migration rates by
m12 and m21.

The states of backward in time Markov process (structured coalescent
with recombination) correspond to different configurations of ancestral chro-
mosomes. Each chromosome consists of two loci and is found in one of the
two ancestral populations.

Chromosomes might coalesce when they are in the same population. In
total there are 40 states and additionally two more absorbing states corre-
sponding to the LCA. There are three types of transitions in this model:

• recombinations with rate ρ,

• coalescences with rates λ1 and λ2 per pair depending on a population,

• migrations with rates m12 and m21.

The SMC’ model approximates coalescence with recombination by an-
other Markov process directed along the genome. The states of this process
are genealogical trees at the locus. In the case of two chromosomes, the shape
of the tree is trivial, and the states are actually times to the last commin
ancestor.
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Firstly, we show the difference between joint distribution of the TMRCA
times of two chromosome with two loci at recombination distance ρ. As
shown at Fig. 5, there is a clear difference in the qualitative behavior between
a single population model and two population model.

Figure 5: Differences between joint probability distributions of the MRCA
times at two loci for recombination distance ρ = 2 under full coalescent with
recombination and SMC’ models. Left panel shows the difference for a single
population scenario. Right panel shows the difference for two populations
with migration scenario.

Secondly, we calculate the total variation between these joint probabilities
in function of the recombination distance ρ. As defined in [26], total variation
is the L1-norm of the difference between two joint distributions divided by
two. For our analysis we calculate the total variation between the joint
MRCA times distributions pρ,CR(t, s) (under coalescent with recombination)
and pρ,SMC′(t, s) (under SMC’)

TV (ρ) =
1

2

∫ ∞

0

∫ ∞

0

|pρ,CR(t, s)− pρ,SMC′(t, s)| dtds.

From Fig. 6, one can notice that for the structured model total variation
is larger than for the panmictic case. Importantly, the decay of variation
distance is much slower for two populations with migrations.

2.6 Effective population size and migration

The effective population size can be defined as the average time to coales-
cence (to the last common ancestor) of two ancestral linages, measured in the
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Figure 6: Total variation distance between joint probability distribution of
the MRCA times at two loci under full coalescent with recombination and
SMC’ models as a function of recombination distance ρ. Blue (lower) line
corresponds to a single population scenario, orange (upper) line corresponds
to the two population with migration scenario.

number of generations [27]. In the standard coalescent model with one homo-
geneous population [28], the following simple interpretation takes place. If
the population size is N >> 1, the coalescence rate is 1/N and the expected
coalescence time is λ−1 = N . This definition can be naturally generalized
for the effective size of a mixed population. For some population, we con-
sider the coalescence rate at time t between pairs of ancestral linages. Time
is considered in the reverse direction from the present (t = 0) to the past.
The coalescence rate λ(t) defines a Markovian time-inhomogeneous process
that describes the distribution of coalescence times. Hence, the probability
distribution of coalescence times Tc is given by the law

P (Tc = t) = λ(t)e−
∫ t
0 λ(s)ds.

We define historical effective population size at time t as the inverse of
the coalescence rate λ(t). This value depends on population structure and
demography. It allows us to approximate populations with complex histories
by a single idealized population (e.g., the Wright-Fisher population). This
approach is useful in interpreting the results of methods such as PSMC,
which allow us to estimate the change in population size over time. In some
cases, it also approximates the value estimated by PSMC [1, 29]. We have
shown that although PSMC does give a good estimate of coalescent times in
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some scenarios, in other scenarios PSMC can lead to significantly different
results. We have shown qualitatively that PSMC, informally, searches for the
best approximation for the transition matrix of the sequential Markov model.
This is because the likelihood function optimized by PSMC depends directly
on the transition probabilities. Nevertheless, the transition matrix may have
a different marginal distribution that determines the effective population size.

Consider the case of two populations with migration between them - this
can occur either through continuous migration or pulse migration. Let us
denote the ancestral populations by S1(t) and S2(t). At any point in time,
the ancestral linage of the observed population Sm is either in population
S1(t) or in population S2(t) due to migration. Within populations S1(t) and
S2(t), ancestral lineages are indistinguishable, which means that any pair of
lineages within a population has the same probability of coalescence. Let us
denote the effective population sizes S1(t) and S2(t) by NL1(t) and NL2(t),
respectively. We will call NL1(t) and NL2(t) the local effective population
sizes, that is, these values represent only the effective number of individuals
in the population at time t, thus separating the effect of migration and the
genetic diversity of populations.

If two ancestral lineages are in the same population Si(t) (i = 1, 2) at time
t, coalescence can occur between them with a rate of 1/NLi(t). If they are in
different populations, coalescence between them is not possible. Assuming
that the two lineages have not merged by the time t, let P1(t) and P2(t) be
the probabilities that the two lineages are in population S1 and population
S2, respectively. Let P0(t) = 1 − P1(t) − P2(t) be the probability that the
two lineages are in different populations. Then the coalescence rate between
a pair of ancestral lines at time t is

λ(t) = P1(t)
1

NL1(t)
+ P2(t)

1

NL2(t)
+ P0(t) · 0, (6)

and historical effective population size is

N(t) =
1

λ(t)
=

1

P1(t)
1

NL1(t)
+ P2(t)

1
NL2(t)

. (7)

The condition that the observed population Sm is the population S1(0)
is equivalent to the initial conditions on the probabilities

P1(0) = 1, P2(0) = P0(0) = 0.
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Thus, we see an obvious difference between the local population sizes
(NL1(t) and NL2(t)) and the historical population size (N(t)). In many cases,
estimates of effective population size obtained by PSMC and similar methods
are estimates of historical effective population size rather than local effective
size.

2.6.1 Disentangling the effect of migration on effective population
size

Assume that we observe two populations S
(1)
m = S1(0) and S

(2)
m = S2(0),

which had ancestral admixture with each other. Writing Equation 7 for
samples from both populations, we get the system of equations relating the
ordinary effective population size of S(1)

m and S
(2)
m (N1 and N2) with the local

effective population size of each of the two parental populations (NL1 and
NL2). 

N1(t) =
1

P
(1)
1 (t) 1

NL1(t)
+ P

(1)
2 (t) 1

NL2(t)

,

N2(t) =
1

P
(2)
1 (t) 1

NL1(t)
+ P

(2)
2 (t) 1

NL2(t)

.
(8)

Thus, with known historical effective population sizes N1 and N2 (e.g., es-
timated by the PSMC method) and migration rates m12 and m21, the local
effective population sizes NL1 and NL2 can be calculated numerically.

2.6.2 Parameter estimation

We applied the developed method to test the hypothesis of [2] about the deep
split of populations within Africa between San and Dinka. Namely, the esti-
mate of the split time obtained by the TT method exceeds 8,500 generations
ago. The model with the highest likelihood obtained by our MiSTI method
estimates the split time of ≈ 3700 generations ago (that is, about 107,000
years ago, assuming a generation length of 29 years) with almost unilateral
migration from Dinka to San (Table 3). These conclusions are consistent
with estimates obtained from simulations with similar parameters.
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m1 m2 MiSTI split time TT split time
Dinka to San San to Dinka (generations) log(lik) (generations)

2.5 2.03× 10−9 3729 -4381 -
2.5 - 3729 -4381 -
- 1.49 3210 -4582 -

- - 3001 -4607 T1 = 8582,
T2 = 8527

Table 3: MiSTI estimates of split times and migration rates between the San
and Dinka populations in models with bidirectional migration (top row),
unidirectional migration, or no migration (bottom row).

2.7 Multiple admixture and three loci linkage disequi-
librium

There are many methods for predicting the presence of admixture between
populationsreich2009reconstructing, Patterson:2012aa, Durand:2011aa, pritchard2000inference,
alexander2009fast, maples2013rfmix. There has also been a substantial amount
of research on the development of theory and methods for estimating ad-
mixture times. One approach is based on predicting ancestral chromosome
lengths (originating from different ancestral populations) [6,30–33] and [6*].

Another approach we use in this work is based on the admixture link-
age disequilibrium (ALD) decay. Linkage disequilibrium is present in any
population because of mutations and genetic drift. In a homogeneous and
genetically isolated population with recombination, it decreases rapidly on
a genome-wide scale. However, ancestral sites entering populations through
admixture result in a noticable ALD at much greater distances. After a sin-
gle admixture, the linkage disequilibrium in the admixed population begins
to gradually decrease in subsequent generations due to recombinations. This
idea was used in the methods ROLLOFF [34] and ALDER [35], where ALD
is estimated for two genetic loci. ROLLOFF and ALDER are well suited
for estimating the admixture time if admixture can be approximated by a
single pulse of migration. However, in many realistic scenarios, the admix-
ture occurred through several migration pulses. For example, a well-known
example of such admixture is the admixture of the Native American popula-
tion of Easter Island [36] as well as the admixed American populations [37].
In such cases, the expected ALD decrease becomes a mixture of exponential
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laws. Existing ALD-based admixture dating methods at this time can either
estimate the time of the last admixture [34] or be used to reject the single
pulse hypothesis [35].

In our work, we use Bennett and Slatkin’s definition [38,39] for the linkage
disequilibrium of three loci in order to study the ALD decay as a function
of distances between these loci. We derived an analytical equation describ-
ing the ALD decay with multiple pulses of migration and also developed a
method to estimate the times of two pulses of migration. The results are
validated through computer simulations and applied to real data, samples of
Mexicans and Colombians from the 1000 Genomes Project, as an example.

2.7.1 Linkage disequilibrium and local ancestry

Denote by x, y, z three successive genetic loci with the distances d and d′

between them. Hi,x, Hi,y, Hi,z - haplotypes ({0, 1}) or genotypes ({0, 1/2, 1})
in the corresponding loci of i-the genome. Three loci linkage disequilibriumis
defined as the covariance of Hx, Hy, Hz

D3(d, d
′) = cov(Hx, Hy, Hz) = E[(Hx − EHx)(Hy − EHy)(Hz − EHz)]. (9)

The linkage disequilibrium in an admixed population depends on the
genetic differentiation between the original populations and their history of
admixture. Let Ax represent the local origin of locus x, with Ax = 0 if x
is inherited from a population that is admixed twice, and Ax = 1 if the
locus is inherited from a population that is admixed once. Then D3 can be
represented through allele frequencies and local-origin covariance Ax, Ay, Az.
Consider the conditional expectation E(Hx|Ax) = gx + δxAx, where gx is the
allele frequency at locus x in population 0 and δx = fx − gx is the difference
in allele frequencies at locus x in two source populations. We assume that
the allele frequencies in the initial population are known and fixed. Then

D3(d, d
′) = cov(Hx, Hy, Hz) = δxδyδzcov(Ax, Ay, Az). (10)

Moreover, the following equality holds

cov(HS1 , . . . , HSN
) = cov (gS1 + δS1AS1 , . . . , gSN

+ δSN
ASN

)

= cov(AS1 , . . . , ASN
)

N∏
i=1

δSi
. (11)
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2.8 Deep learning for demographic analysis

In [4*, 3*] a method based on deep learning to predict the local times of the
last common ancestor from the diploid genome is presented.

Predicting demography, that is, estimating the historical effective popu-
lation size, is one of the most important tasks of population genetics. It is
one of the key factors of population genetic diversity. For example, [1] shows
that all non-African populations went through a bottleneck between approx-
imately 30 and 100 thousand years ago. African populations do not have
this phenomenon. This fact supports the hypothesis of the African origin of
modern humans.

Deep learning demonstrates high accuracy for many problems, including
analysis of different sequences. We have developed an architecture based on
recurrent neural networks to predict local times to the last common ancestor
from a diploid sequence (similar to PSMC). This task has two key challenges:
the large length of the genomic sequence (3.2 · 109 for humans) and the lack
of labeled data for training.

At the moment, deep learning is gradually beginning to be used in pop-
ulation genetics, although it is not a popular approach. The first method
for predicting detailed population history using deep learning is proposed
in [40] and proves that neural network approaches can be powerful tools in
population genetics. Nevertheless, much work remains to be done in this
area, including the advantages, limitations, and drawbacks of deep learning
in the tasks at hand, before these methods find widespread application in
the analysis of experimental data.

We used the software simulator msprime [41] to generate suitable samples
for training. A sequence of 0 (homozygous sites) and 1 (heterozygous sites)
is fed to the input of the neural network. The prediction target is one of the
time intervals where the local last common ancestor is located. The problem
was solved as a classification problem. The program code is publicly available
on GitHub https://github.com/Genomics-HSE/deepgen. An example of
time prediction for a common ancestor along the genome is demonstrated
in Figure 7. The x axis corresponds to positions along the genome, the y
axis to the time intervals where the local common ancestor falls. The colors
correspond to the probabilities of the local last common ancestor falling into
a certain time interval. Thus, the developed deep learning method predicts
quite accurately the time to the local last common ancestor.
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Figure 7: The time to the last common ancestor (LCA) along the chromo-
some. The heat map shows the probability that the LCA time fell within
a given time interval (y-axis) at the considered position on the chromosome
(x-axis). The left panel shows an example for the case of a population of
constant size and a neural network trained on examples from constant size
populations. The right panel shows an example for a population with a
bottleneck, with the neural network trained on examples from random de-
mographic histories. The red lines show the true LCA times known from the
corresponding simulations.

2.9 Selection in Chilean population adter post-Columbian
adxmiture

The article [11*] investigates the presence of natural selection after admixture
(adaptive introgression) in the Chilean population. The modern Chilean
population emerged as a consequence of the admixture of the indigenous
South American population, European colonizers and Africans. To solve
the problem, we performed a genome-wide search for the deviation in the
proportion of European local ancestry from the genome-wide average.

After predicting local ancestry using the LAMP-LD method, we calcu-
lated the proportion of European local ancestry for each SNP. Next, we used
a one-way Student’s t-test to determine the deviations from the mean Eu-
ropean ancestry. In each SNP, we compared the proportion of European
ancestry with the genome-wide mean p0 = 0.52. We performed a statistical
test with the null hypothesis H0 : pi = p0 and the alternative hypothesis
H1 : pi > p0 for each SNP i (here pi is the proportion of European origin in
SNP i). Variants (SNPs) that reached a significant level with p < 10−5 were
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considered to be under selection after admixture [42].
To verify the validity of this approach and the choice of the significance

level, we performed computer simulations of the pi distribution. Since devi-
ations of pi from the mean are often due to genetic drift, we estimated the
effective population size for our Chilean samples by equating the empirical
and theoretical variance of pi. According to [43], the variance

Vpi = p0(1− p0)
(
1− e−

T
2Ne

)
,

where p0 is the proportion of admixture, T is the time since admixture, 2Ne

is the haploid effective population size.
The distribution pi can be approximated by a beta distribution with ap-

propriate expectation and variance. Let us also consider that the fraction of
European origin observed in the empirical data depends on the sample size.
In each SNP with number i, the number ki of sequences of European origin is
a realization of a binomial random variable with sample size K (in our case
K = 370) and probability p1. Hence, the distribution for ki is

ki ∼
∫ 1

0

P (Binom(pi, K))d(pi).

From here, we can estimate the value of 2Ne such that the variance pi
coincides with the variance estimate of European local ancestry from the em-
pirical data (for all SNPs in our Chilean dataset with N = 370 haplotypes).

We used the 2Ne effective population size estimates thus obtained to
model local origin in the SELAM package [44]. We considered a scenario
with a single simultaneous mixing of three populations T generations ago
(for different realistic values of T ). The admixture fractions corresponded
to the fractions of the European, Native American, and African components
estimated using LAMP-LD. We then mapped the SNP positions from our
empirical dataset to the modeled sequences to obtain the same correlation
structure (resulting from recombinations). We calculated Student’s t-test for
all parameter combinations. In no case were the p-values below the critical
threshold p = 10−5. Thus, the chosen level of statistical significance can
indeed be considered an indicator of the presence of selection after admixture.

Our numerical approach allowed us to test our hypothesis that, after ad-
mixture, Chileans were subjected to natural selection by genetic variation
of European origin. Because ancestral variation can contain the same ge-
netic variants, for each SNP we determined its genome-specific origin. We
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then used the deviation of the local ancestry proportion [42,45] (rather than
directly the allele frequency) from the genome-wide average ancestry (es-
timate 0.52 for Europeans) as a selection signal. We constructed a t-test
with the null hypothesis H0 : µEUR,i = 0.52 and the competing hypothesis
H1 : µEUR,i > 0.52 for each variant i.

We found 85 SNPs that reach the statistical significance threshold P <
10−5 recommended for recently mixed populations [42]. We justified the
choice of this level of statistical significance using computer modeling (see
above). 85 SNPs correspond to a peak of European origin on chromosome 12.
This site is associated with several regulatory regions, including two lncRNAs
(RP11-13A1.1 and RP11-13A1.3) and one pseudogene (RP11-13A1.2).

2.10 Phylodynamics of coronavirus SARS-CoV-2 in Rus-
sia

The Covid-19 pandemic raised many challenges to the scientific community.
In particular, great efforts have been focused on the sequencing of SARS-
CoV-2 coronavirus samples in most regions of the world. This, in turn,
has enabled genomic epidemiological analysis to study the distribution of
different variants (strains) of the coronavirus. In this section, we present
the results of phylodynamic analysis of the Covid-19 outbreak at the Vreden
hospital (Research Institute of Traumatology) in March-April 2020 [9*] and
the coronavirus delta variant in Moscow in April-September 2021 [7*].

2.10.1 Covid-19 nosocomial outbreak in the Vreden hospital

We investigated a large transmission cluster, the nosocomial outbreak of
Covid-19 at the Vreden Hospital. Vreden Hospital in St. Petersburg at
the beginning of the pandemic. According to an internal investigation, the
presumptive patient zero was operated on March 27, 2020. Although regular
testing for Covid-19 at Vreden Hospital began on March 18, 2020, the first
positive sample was obtained on April 3, 2020. Quarantine measures were
then phased in between April 7 and April 9, 2020, which included complete
hospital closure, isolation of departments, and shutdown of the hospital-wide
ventilation system. 474 patients and 270 staff remained in the hospital for
35 days.

Our dataset consists of SARS-CoV-2 virus genomes from 52 patients and
staff at Vreden Hospital. Phylogenetic analysis showed that these samples
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form three different groups with their own unique set of mutations. The
largest group (hereafter group 1) includes 41 sequences obtained between
April 3 and April 22, 2020. Group 2 consists of 7 sequences, and its cor-
responding clade on the world phylogenetic tree also includes one sequence
from England. Finally, Group 3 consists of 4 sequences. Group 1 specimens
come from different compartments on different floors, while groups 2 and 3
are each from their own compartment.

Groups 1 and 2 are phylogenetically distant from group 3. The closest
common ancestor of groups 1 and 2 is separated by six mutations from group
3. Groups 1 and 2 belong to lineage B.1.1, defined by three mutations at
positions 28881, 28882, and 28883, and further defined by mutations at po-
sitions 26750 and 1191, respectively. At the same time, group 3 belongs to
lineage B.1.5, and is also complemented by a mutation at position 20268,
which at that time was distributed throughout the world and appeared early
in the phylogenetic history, as well as two additional mutations. Thus, we
obtained strong evidence that group 3 appeared as a result of independent
introduction of infection relative to groups 1 and 2.

To examine the spread of this outbreak of nosocomial infection in more
detail, we performed a Bayesian phylogenetic analysis in the [46] birth-death
skyline model in the BEAST2 [47] package. Because of the high probability
of multiple introductions of infection, we analyzed both the entire dataset
consisting of groups 1, 2, and 3 as well as its two subsets: one consisting
of groups 1 and 2 and the other consisting of group 1. The results of our
analysis are shown in figures 8 and 9.

We found that Bayesian analysis supports at least two different introduc-
tions of SARS-CoV-2 coronavirus into Vreden Hospital. This is supported
by a deep split between groups 1-2 and group 3. The last common ancestor
of this dataset is dated February 21, 2020 (95% posterior credible interval
January 20-March 21). This is more than a month earlier than the estimated
date of the first introduction (March 27), which again confirms that group 3
and all other specimens were introduced into the hospital independently.

A third introduction to Vreden Hospital is also highly probable. Indeed,
the last common ancestor of groups 1 and 2 is dated March 24, 2020 (95%
credible interval March 6-April 1). Given the lack of obvious signs of infection
at the hospital in late March, it is very likely that Groups 1 and 2 are derived
from two independent introductions. The root (last common ancestor) of
group 1 is dated March 26 (95% credible interval March 13-April 2), which
is consistent with the period of illness of putative patient zero. Additional
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Figure 8: Estimates of the phylodynamic parameters of the Covid-19 out-
break at Vreden Hospital in the horizonal birth-death model in the BEAST2
package. The upper panel shows posterior distributions of the effective re-
productive number Re (upper panel) with a dashed line showing the critical
value Re = 1. The lower panel shows posterior distributions of the date of
the last common ancestor. Each panel shows the estimates for three datasets
from pest samples: groups 1, 2, and 3 (left column), groups 1 and 2 (middle
column), and group 1 (right column).
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Figure 9: Maximum clade credibility tree for the Covid-19 outbreak at Vreden
Hospital. Groups 1, 2, and 3 are marked with an asterisk, a triangle, and a
diamond, respectively. Pink bars show 95% credible intervals for node times.
The outbreak period is marked by a gray background, with the time from
estimated patient zero (March 27) to quarantine (April 8) highlighted in dark
color.
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confirmation of the independent ancestry of groups 1 and 2 is the presence
of a non-Russian (English) sequence in the same clade.

We evaluated phylodynamic parameters before and after the introduction
of quarantine measures. In the analysis of all three datasets, estimates of the
effective reproductive number remain stable and consistent with each other.
Based on analysis of all three groups, we found that effective reproductive
number Re was 3.0 (95% credible interval 1.85 − 4.25) before April 8 and
decreased to 1.76 (95% credible interval 0.91 − 2.71) after April 8 (Figure
8). Similar estimates for the effective reproductive number Re for group 1
are 3.64 (95% credible interval 2.01− 5.43) before quarantine and 1.85 (95%
credible interval 0.77− 3.06) after quarantine, respectively. These estimates
are consistent with each other, and the possible effects of a structured popu-
lation (due to independent introductions) do not create significant biases in
the estimates.

2.10.2 Discussion

A detailed analysis of localized transmisson clusters helps to better under-
stand the process of virus spreading. Well-studied cases at the time in-
cluded the cruise ship “Diamond Princess” [48–51], the cruise ship “Grand
Princess” [52], an international conference in Boston [53], a hostel near
Boston [53] and an outbreak in a hospital at the Netcare St. Augustine
Hospital in South Africa. Augustine, South Africa. In all but one case, the
outbreaks were genetically homogeneous, meaning that each developed from
a single case of infection. In the case of the hostel, several introductions
occurred, but nevertheless there was a major clade that included almost all
samples, while the other clades were rare [53]. At the same time, in the case
of the outbreak at Vreden Hospital, we observe several (probably 2 or 3)
introductions, each of which resulted in a separate clade. This could mean
that this outbreak happened because of several instances of super-spreading.

Further, our estimate of the initial effective reproductive number Re (dur-
ing the period before quarantine) is about ∼ 3.00, which is a fairly high value.
The few cases of super-spreading and the high Re value may be a consequence
of the specificity (traumatology) of this hospital not being equipped for in-
fection control, particularly close contact (e.g., spread among staff), lack of
protective measures, and lack of awareness. In the second phase of the out-
break, we observe a significant decrease in the effective reproductive number
to ∼ 1.76. This change can be explained by two factors (or a combination
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of them). First, it may be a consequence of increased awareness and the
introduction of quarantine measures starting on April 7. Second, it could be
a consequence of the fact that many people had already gotten sick by then,
which in turn prevented further spread of the infection. In fact, about 30%
of the people in the hospital were infected by April 22. We have no way of
assessing the contribution of each of these factors in slowing the spread of
infection with the available data and methods.

2.10.3 Phylodynamics of delta variant of SARS-CoV-2 coronavirus
in Moscow

By mid-2021, the delta variant of the SARS-CoV-2 coronavirus had displaced
all other variants worldwide. This variant was characterized by increased
transmissibility and lethality. In Russia, unlike most other countries, one
transmission lineage nsp2:K81N + ORF7a:P45L spread (over 90% of cases),
and this lineage is rarely seen outside of Russia. We investigated the distri-
bution of this lineage in the country, in particular we evaluated the phylo-
dynamics of this lineage in Moscow (the most well represented region in our
genetic sample).

Further, all the dates in this section refer to the year 2021.
In order to estimate the transmission rate of the largest Delta variant

sublineage, we performed a phylodynamic analysis using the BEAST2 [47]
package. The Covid-19 epidemic runs differently and non-synchronously in
different regions of Russia. For example, the timing of epidemic waves differs
in different regions. In order to minimize the effects of geographic hetero-
geneity, we focused on a single region in this analysis. We chose 333 samples
collected in Moscow, since, as mentioned earlier, this is the Russian region
with the largest amount of data.

Phylodynamic estimates of the effective reproductive number Re for the
indicated major clade are 1.82 (95% CI [1.49− 2.16]) in May, 1.24 (95% CI
[1.07−1.41]) in June. In July, the Re value fell to 0.58 (95% CI [0.40−0.77])
and then rose again to 0.99 (95% CI [0.79 − 1.20]) in August and to 1.27
(95% CI [0.62− 1.94]) in September, the last month included in our genetic
analysis (Figure 10).

In general, the above dynamics are consistent with epidemiological data:
elevated Re values precede surges in the number of cases per day and are
consistent with estimates of Re derived by the EpiEstim method from the
number of cases reported. It is important to note that the number of cases
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through June includes a large proportion of non-Delta cases. The rise in the
total number of cases in May was slower than the corresponding Re predicts,
which can be explained by the decrease in the number of non-Delta cases.
However, the high Re values in May and June are consistent with a summer
wave that peaked on June 25, and the low Re value in July is consistent with a
decrease in cases during this period (Figure 10). These data confirm that the
major clade (AY.122+ORF7a:P45L) is responsible for the summer epidemic
wave, and probably for the subsequent fall wave. This bimodal dynamic is
similar to many other countries in the northern hemisphere, where the arrival
of summer has slowed the spread of infection, such as in the United Kingdom,
France, and the United States.

2.11 Hyperbolic geometry and genetic data analysis

Non-Euclidean, and hyperbolic geometry in particular, is finding more and
more applications in data analysis. Since genealogies are based on trees, we
conjectured that hyperbolic geometry is a promising tool for the analysis of
genetic data and conducted research in this direction. We have laid theoret-
ical foundation for such analysis in works on numerical aspects of hyperbolic
geometry. The following main results have been obtained:

• an optimal (up to the multiplicative constant) estimate is obtained for
the Morse lemma stating that in a hyperbolic Gromov space λ-quasi-
geodesic γ lies in the λ2 neighborhood of a geodesic σ with the same
ends. Moreover, this geodesic σ lies in the log λ-neighborhood of the
quasi-geodesic γ. This estimate is also optimal [16*, 14*].

• formalized the numerical problem of the quasiisometric problem, indi-
cating several important factors that allow to obtain different results
and estimates for the quasiisometric distortion. In particular, the be-
havior of volumes and connectivity are investigated. Then the transfer
of Poincaré inequality under quasiisometric mappings is investigated,
and precise upper and lower estimates for homotopic distortion growth
for several classes of hyperbolic spaces are given. The properties of
quasiisometric tree embeddings in the hyperbolic plane [15*] are inves-
tigated.

The following theorem is proved:
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Figure 10: Dynamics of effective reproductive number Re for the major clade
of delta variant coronavirus in Moscow, estimated in the birth-death skyline
model (black line; red and pink bars show 50% and 95% credible intervals,
respectively) and estimated by EpiEstim package for all (blue line) or only
delta variant (red line) SARS-CoV-2 cases in Moscow. The gray line shows
the seven-day moving average of the daily number of new cases in Moscow
regardless of genotype.
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Theorem 5 Let γ be (λ, c)-quasi-geodesic in δ-hyperbolic space E and let σ
be the geodesic segment connecting its ends. Then γ lies in the H-neighborhood
of σ, where

H = A1λ
2(c+ δ + 1),

and A1 is some universal constant.

This result is optimal. In other words, we found an example of a geodesic
whose furthest point lies at a distance λ2c/4 from the corresponding geodesic
segment. Further, the following theorem, which is in some sense dual to the
theorem 5, was proved.

Theorem 6 Let γ be (λ, c)-quasi-geodesic in δ-hyperbolic space E and let σ
be the geodesic segment connecting its ends. Let also 4δ << lnλ. Then σ
lies in the Ham-neighborhood of γ, where

Ham = A2(δ lnλ+ δ + c),

and A2 is some universal constant.

The theorems 5 and 6 allowed us to obtain nontrivial estimates of the
quasiisometric distortion for the maximum displacement of points of space
X by auto-quasiisometries X → X fixing its boundary. Further, three ap-
proaches to interpreting the quantitative quasi-isometric distortion problem
at the R scale have been proposed. Let X and Y be two metric spaces with
base points x0 and y0, respectively. For a given R > 0, three families of
mappings are considered

• quasi-isometries from ball BX(x0, R) to ball BX(x0, R),

• quasi-isometries from the ball BX(x0, R) on the ball BX(x0, ρ(R)) for
some function ρ : R+ → R+,

• quasi-isometric embedding of the ball BX(x0, R) in Y .

The study of the transport of Poincaré inequalities by quasiisometries
allowed us to obtain a lower estimate for (λ, c)-quasiisometric distortion be-
tween balls of radius R in locally homogeneous spaces of negative curvature
of the form Zµ = Tn × R with metric dt2 +

∑
i e

2µitdx2
i (0 ≤ µ1 ≤ . . . ≤

mun). The following theorem is given here without technical details, the
exact formulation can be found in [15*].
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Theorem 7 Any (λ, c)-quasiisometric embedding of a ball of radius R from
Zµ into Zµ′ satisfies the inequality

λ+ c ≥
(∑

µi

µn

−
∑

µ′
i

µ′
n

)
R.

We applied hyperbolic geometry and deep learning to the analysis of ge-
netic data in [17*]. Namely, we applied variational autocoders (VAE) with
Euclidean and hyperbolic latent spaces to cluster the genomes of various
modern human populations. Typically, the principal component method is
used for this task. Variational autoencoders (VAEs) allow non-linear clus-
tering of data, in contrast to the principal component method (PCA) widely
used in population analysis. A comparison of the results of applying VAE to
five populations from the 1000 Genome Project [54] is presented in Fig. 11.

Figure 11: Results of applying PCA, VAE with Euclidean latent space, and
VAE with hyperbolic latent space (HVAE) to individuals from five macro
populations from the 1000 Genomes Project.
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