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1 Introduction

Topic of the thesis

Over the past decade, deep learning has demonstrated remarkable results, outperforming
other machine learning methods on a variety of tasks and domains. Recent years have seen a
dramatic growth in the size of neural networks due to a significant impact of the model scale on
its resulting capabilities [45; 46]. This presents a challenge to the progress of the broader scien-
tific community: as the resources needed to obtain or exceed state-of-the-art models continue to
grow, research in the field becomes less and less accessible to everybody outside of organiza-
tions with the most funding. In this work, we argue that a potential solution to this challenge is
decentralization: instead of obtaining all resources from a centralized high-performance com-
puting (HPC) cluster, we can leverage idle hardware resources of volunteers who are potentially
distributed around the globe. Inspired by successes of volunteer computing in other scientific
fields [7; 20; 48], we propose deep learning methods that are applicable for general large-scale
training and take the unique challenges of volunteer computing into account.

More specifically, this work introduces the Decentralized Mixture-of-Experts layer, a sparse
neural network architecture that meets the above challenges and naturally handles both node fail-
ures and large numbers of irregularly participating peers. Next, we consider training across net-
works of volunteers in the data-parallel setting: this requires a method that can quickly aggregate
model parameters or gradients in presence of network failures. To this end, we developMoshpit
All-Reduce, an efficient fault-tolerant method for parameter averaging. Using this method, we
propose Moshpit SGD — a distributed training algorithm that can be applied to networks of
heterogeneous and unreliable devices. Lastly, we propose Distributed Deep Learning in Open
Collaborations, a practical approach to large-scale collaborative pretraining. This approach
combines an adaptive averaging strategy, global gradient accumulation, and careful system de-
sign to enable distributed training with workers that have highly diverse network conditions,
computational performance, and participation time.

Relevance of the work

The growing size of models is at the heart of many recent advancements in deep learning.
Today, the most capable models are routinely reaching the scale of tens and hundreds of bil-
lions of parameters [27; 35]: these developments are supported by studies [46] that demonstrate
increasing gains in quality or even novel properties [18] of neural networks at larger sizes. Cor-
respondingly, the size of training datasets is also growing: as recent works suggest [54], the
number of examples might be equally as important as the model size when training a neural net-
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work with a fixed compute budget. Both of these scaling directions require an immense amount
of computational resources: all state-of-the-art models are trained in HPC clusters with hundreds
or even thousands of specialized accelerators and dedicated high-speed networking solutions.

Predictably, acquiring the computational resources to train such large models can be difficult
for an average researcher. Renting even one deep learning accelerator for a month may cost
several thousands of dollars, and building a cluster is often outside the budget constraints for
organizations with modest funding. This dramatically limits the availability of state-of-the-art
research to a set of laboratories that can afford to run large-scale experiments with billion-scale
neural networks. In turn, this results in a smaller potential for replicating or adapting the latest
results to new datasets, an inability to analyze or improve the training process of large models,
and overall difficulties in contributing to further scientific progress in deep learning.

In this work, we explore an alternative approach to large-scale deep learning that does not
involve expensive supercomputers. We take inspiration from successful cases of leveraging
volunteer resources in other sciences, such as computational biology [20] or astrophysics [17].
The most famous example of such projects is Berkeley Open Infrastructure for Network Com-
puting (BOINC) [7], which became the first “supercomputer” reaching the exaflop scale [19].
However, directly applying existing methods for distributed deep learning in such conditions is
challenging because of multiple infrastructure-related challenges.

Specifically, the most popular methods for efficient distributed training [22; 40; 47] are not
designed to handle node failures or connectivity issues: in the most severe cases, even one dis-
connected peer can jeopardize the entire training procedure or significantly inhibit its progress.
At the same time, workers in a volunteer computing setup possess a much higher degree of
heterogeneity: each personal computer might have a unique hardware and networking setup,
and this diversity needs to be taken into account when designing such decentralized training
systems. Lastly, the communication links across cluster nodes can be magnitudes faster than
standard Internet connections of collaborative experiment participants, which also impacts our
design choices. Hence, we develop methods that aim to maximize the distributed training per-
formance in the conditions outlined above.

The first work described in this thesis focuses on the goal of training models that can exceed
the limits of a single device in the context of decentralized training. Trading off generality for
performance, this work introduces Decentralized Mixture-of-Experts (DMoE), which is a spe-
cialized layer designed to be sharded across the computers of volunteers. Similarly to standard
Mixture-of-Experts models [2], the DMoE layer consists of independent sublayers called experts
that get assigned to the input based on the output of the gating function. We propose a natural
extension of this architecture for fault-tolerant training and show that DMoE is not sensitive to
communication latency. Another important difference is that the DMoE experts are located by
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other nodes using distributed hash tables (DHT), a fault-tolerant decentralized key-value stor-
age. This mitigates the need for a centralized entity that would track available experts, which
might not be feasible in larger collaborations without incurring significant costs. To efficiently
find the most relevant experts for a given input, we propose a structured gating function that
factorizes the set of experts in a predefined multidimensional grid.

The subsequent part of this work addresses the problem of data-parallel training with vol-
unteers. Our rationale for that is twofold: first, even if we use mixture-of-experts in each model
layer, we still need to have parameters of the gating function and the embedding layer that are
consistent across the collaboration. Second, with memory-efficient training methods (such as
lower numeric precision [32] or parameter sharing [3]), it might be possible to train models that
can fit consumer GPUs yet still require large amounts of computation to achieve the best quality.

In the second paper covered in this thesis, we study methods for efficiently aggregating
the model gradients for distributed training. The family of communication-optimal methods,
known as All-Reduce [37], is not fault-tolerant by default and thus unsuitable for our goals. On
the other hand, more robust methods for decentralized training, such as Gossip [49; 52], require
many communication rounds to achieve consistency across the network. We propose Mosh-
pit All-Reduce, an iterative averaging algorithm that combines the fault tolerance of Gossip-
based methods with the efficiency of All-Reduce. It combines the participants into independent
groups and ensures that peers within one group are assigned to different groups in the next
round. Moshpit SGD, a distributed optimization algorithm based on Moshpit All-Reduce, has
convergence rates equivalent to standard distributed SGD (more specifically, Local-SGD [51])
yet exhibits much higher large-scale training performance in slower networks with node failures,
as we demonstrate in our experiments.

Finally, the third work presents Distributed Deep Learning in Open Collaborations
(DeDLOC), an approach that takes node heterogeneity into account and alleviates the issue
of slower communication speeds of volunteer-oriented distributed training. Specifically, we
propose an adaptive averaging strategy that assigns training and gradient aggregation tasks to
workers based on their performance to minimize the overall time of averaging, the fundamental
communication phase in data-parallel training. We also design a decentralized tracking mecha-
nism for the total accumulated batch size, which is necessary to enable the dynamic participation
of peers. Aside from ablation studies, the paper presents the results of the first collaborative
language model pretraining experiment: an effort organized by the authors and a community of
volunteers has resulted in sahajBERT, a Bengali masked language model that has competitive
performance with both monolingual and multilingual baselines [25; 56].

Moreover, the methods we develop can be applied not only in the volunteer computing sce-
nario. Specifically, cloud providers frequently offer preemptible (or spot) instances at a cost
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that can be 2–3 times lower than the cost of on-demand servers [5; 21]. Spot instances, how-
ever, have the disadvantage of non-guaranteed availability: if the demand for nodes with their
hardware configuration increases, some of these instances might become unavailable until the
demand recedes. In principle, these conditions make applying traditional high-performance dis-
tributed methods infeasible. Usually, efficient training relies on reliable uptime and high com-
munication speeds, both of which are difficult to achieve in preemptible environments. Still, the
target setting of this work considers most challenges that arise from using spot instances. Hence,
as we show in our experiments below, the proposed methods can be applied to heterogeneous
volunteer hardware and to more homogeneous, yet still unstable, preemptible cloud servers.

The goal of this work is to develop practical large-scale distributed training methods for
slowly-connected networks consisting of heterogeneous and unreliable nodes.

2 Key results and conclusions

The contributions of this work can be summarized as follows:

1. We proposedDecentralized Mixture-of-Experts (DMoE), a neural network layer designed
for training large models in volunteer computing conditions. To handle peer failures and
low-speed communication in a unified framework, we designed Learning@home — a
system for large-scale learning in the setting of volunteer computing. We empirically
validate both the performance of Learning@home under latency and the convergence of
DMoEmodels in presence of node failures to the same results as equivalent dense models.

2. We proposed Moshpit All-Reduce, an efficient decentralized gradient averaging method,
and Moshpit SGD, a distributed optimization algorithm that leverages Moshpit All-
Reduce, has equivalent convergence rates to Local-SGD, and is suitable for training with
unreliable devices. In large-scale training experiments, Moshpit SGD outperforms exist-
ing baselines (including previous decentralized methods) tasks by more than 30% in terms
of wall clock time until convergence to the target loss value.

3. We proposed Distributed Deep Learning in Open Collaborations — a practical method
for collaborative data-parallel deep learning. This method is robust to peers joining and
leaving during training and takes the diversity of hardware setups and network connec-
tions into account by design. We also ran a real-world collaborative experiment and train
sahajBERT, a neural network for Bengali language representations with downstream re-
sults that are comparable to regular models trained in clusters which cost≈ 3 times more.
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Theoretical and practical significance.
We propose several methods that can be applied for large-scale training of neural networks in

decentralized setups with unstable connections between heterogeneous and intermittently avail-
able nodes. Such conditions can arise in two cases: the first one is collaborative training (among
organizations or simply volunteering individuals), and the second one is cost-efficient training
with preemptible instances. The research described in this work aims to make these two cost-
efficient alternatives to HPC more practical and widespread. All of our implemented methods
have publicly available open source implementations in PyTorch [41], one of the most popular
deep learning frameworks at the time of writing. This makes it possible for any deep learning
practitioner to apply these methods and orchestrate decentralized training experiments.

Key aspects/ideas to be defended.

1. The Distributed Mixture-of-Experts layer for training large neural networks using volun-
teer resources.

2. The Moshpit All-Reduce protocol and the Moshpit SGD algorithm for communication-
efficient training across unstable devices.

3. DeDLOC, an approach for data-parallel pretraining in large collaborations consisting of
nodes with highly diverse capabilities.

Personal contribution.
In “Towards Crowdsourced Training of Large Neural Networks using Decentralized

Mixture-of-Experts”, the author of this work designed the core idea behind the approach, im-
plemented the runtime component of Learning@home, ran all experiments and wrote most of
the paper (aside from discussions on the Distributed Hash Table).

In “Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Un-
reliable Devices”, the author proposed Moshpit All-Reduce, ran the majority of averaging ex-
periments in Section 4.1 and all pretraining experiments, obtained Theorem C.1, and proposed
the load balancing approach in Appendix G (which was later developed into a more general
version in DeDLOC by Michael Diskin).

In “Distributed Deep Learning in Open Collaborations”, the author designed the core idea
of research and led the project, implemented the original codebase for pretraining ALBERT
models, conducted the sahajBERT collaborative experiment, andwrote themajority of the paper.
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Publications and approbation of the work

* denotes equal contribution
First-tier publications

1. Max Ryabinin*, Anton Gusev. Towards Crowdsourced Training of Large Neural Net-
works using Decentralized Mixture-of-Experts. In Advances in Neural Information Pro-
cessing Systems, 2020 (NeurIPS 2020). Pages 3659–3672. CORE A* conference.

2. Max Ryabinin*, Eduard Gorbunov*, Vsevolod Plokhotnyuk, Gennady Pekhimenko.
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Un-
reliable Devices. In Advances in Neural Information Processing Systems, 2021 (NeurIPS
2021). Pages 18195–18211. CORE A* conference.

3. Michael Diskin*, Alexey Bukhtiyarov*, Max Ryabinin*, Lucile Saulnier, Quentin
Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander
Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite,
Thomas Wolf, Gennady Pekhimenko. Distributed Deep Learning In Open Collabora-
tions. In Advances in Neural Information Processing Systems, 2021 (NeurIPS 2021).
Pages 7879–7897. CORE A* conference.

Reports at conferences and seminars

1. Invited talk on “Learning@home: Crowdsourced Training of Large Neural Networks
using Decentralized Mixture-of-Experts”. Eindhoven Reinforcement Learning Seminar,
virtual, April 30 2020.

2. Poster presentation on “Towards Crowdsourced Training of Large Neural Networks us-
ing Decentralized Mixture-of-Experts”. Neural Information Processing Systems, virtual,
December 6 2020.

3. Report on Decentralized Deep Learning. Seminar of the Faculty of Computer Science of
HSE University in Voronovo, May 29 2021.

4. Invited talk on “Decentralized Deep Learning: Training Large Neural Networks To-
gether”. Second Workshop on Distributed Machine Learning (DistributedML), virtual,
December 7 2021.

5. Poster presentation on “Moshpit SGD: Communication-Efficient Decentralized Training
on Heterogeneous Unreliable Devices”. Neural Information Processing Systems, virtual,
December 10 2021.
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6. Poster presentation on “Distributed Deep Learning In Open Collaborations”. Neural In-
formation Processing Systems, virtual, December 10 2021.

7. Invited talk on “Moshpit SGD: Communication-Efficient Decentralized Training on Het-
erogeneous Unreliable Devices” at “Endless Summer School: NeurIPS Highlights”. Vec-
tor Institute, virtual, February 16 2022.

8. Invited talk on “Decentralized Deep Learning: Training and Running Large Models over
the Internet”. DeepMind, virtual, December 12 2022.

9. Invited talk on “Decentralized Deep Learning: Training and Running Large Models over
the Internet”. ETH Zurich, December 20 2022.

10. Invited talk on “Decentralized Deep Learning: Training and Running Large Models over
the Internet”. Naver Labs Europe, February 7 2023.

11. Invited talk on “Decentralized Deep Learning: Training and Running Large Models over
the Internet”. Institute of Science and Technology Austria, March 21 2023.

Volume and structure of the work. The thesis contains an introduction, contents of publi-
cations and a conclusion. The full volume of the thesis is 132 pages.

The author has also contributed to the following publications:

1. Alexander Borzunov*, Max Ryabinin*, Tim Dettmers*, Quentin Lhoest*, Lucile
Saulnier*, Michael Diskin, Yacine Jernite, Thomas Wolf. Training Transformers To-
gether. In Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track.
Pages 335–342.

2. Eduard Gorbunov*, Alexander Borzunov*, Michael Diskin,Max Ryabinin. Secure Dis-
tributed Training at Scale. In Proceedings of the 39th International Conference on Ma-
chine Learning 2022 (ICML 2022). Pages 7679–7739.
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3 Content of the work

3.1 Towards Crowdsourced Training of Large Neural Networks using De-
centralized Mixture-of-Experts

Decentralized Mixture-of-Experts

To train large models in the setting of volunteer computing, we propose Decentralized
Mixture-of-Experts (DMoE), a direct extension of standard mixture-of-experts (MoE) layers [2;
34] for the setting of decentralized deep learning. Each DMoE layer contains multiple experts
— independent parallel units that have the same architecture but different weights. On the for-
ward pass, each input example is routed to most relevant experts by means of a gating function,
which is a trainable classifier that determines the priority of an expert for an input. Similarly to
regular MoE, DMoE can process any kind of input data by using appropriate types of layers as
experts. The key difference of Decentralized Mixture-of-Experts is that experts are distributed
over the network of volunteer computers according to the memory limits of each device.

To share necessary metadata across the network, we use Distributed Hash Tables
(DHT, [11]), a distributed key-value data structure that requires no centralized coordination,
is designed to be fault-tolerant and has logarithmic scaling with respect to the number of nodes.
These properties have made DHT a popular choice for robust data storage in peer-to-peer appli-
cations; we use Kademlia [31] as one of the most popular DHT protocols with existing public
implementations. For DMoE, DHT stores the expert metadata, such as the correspondingworker
status and its location. An example of DMoE forward and backward pass is given in Figure 1.

Choose experts with 
gating function, locate 

workers using DHT

Send inputs and
execute a forward pass 

Aggregate outputs
of responding experts

Update parameters of 
responding experts, 

get gradient for input Trainer process

Available expert 
(unused)

Expert selected
by gating function

Failed expert
(e.g. disconnected)

DHT request

Data transfer

On backward 
pass, send inputs 

and gradients

Figure 1: DMoE layer processing a single example with peer failures.

Importantly, using DMoE layers can resolve multiple issues that arise with volunteer com-
puting. First, if the requested expert fails to respond, DMoE will be able to exclude it from
averaging by renormalizing the weights of other experts. Second, servers with different mem-
ory capacities can accommodate different numbers of experts. Next, increasing the diversity of
mixture-of-experts layers to help expert specialization [34] serves as a natural way of balanc-
ing the load between different servers. Finally, the sparse nature of mixture-of-experts models
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makes them less sensitive to stale gradients that occur in asynchronous training, which is highly
useful for increasing the training throughput in case of high network latency. Strictly speaking,
if the weights of the neural network were changed by the optimization step, its gradients for pre-
vious iterations computed on other nodes become invalid. Thus, having independently updated
sets of weights for each expert can reduce the degree of overlap for concurrent updates.

To find the highest-scoring experts in an efficient manner over a large network of volunteers,
we propose a structured gating function, which has a design similar to product key layers [29].
This function operates over a set of experts arranged into a grid of d × M elements: as we
might expect new volunteers to join over time, it should be sufficiently large and have empty
positions to allocate future experts. Importantly, this grid structure associates each expert f with
its unique identifier, allowing to encodeMd experts inMd space:

uid(f) = (u0, u1, . . . , ud−1), ui ∈ [0,M). (1)

Hence, by arranging experts in this way, we only need to predict Md values for expert
priorities. Specifically, the gating function g(x, f) consists of d linear layers with M outputs,
and the priority of each expert is computed as a sum of grid values corresponding to its identifier:

g(x, f) =
d∑

i=1

gi(x)ui
, ui ∈ uid(f). (2)

As a result, we can select approximate top-k highest responding experts inO(dk logN) time
(N is the total number of peers) using the beam search algorithm. First, we predict the priorities
for all grid dimensions, and then traverse the grid by increasing i from 1 to d. We maintain the
list of k highest-scoring identifier prefixes for each iteration, which gives us the answer after
the end of the traversal. For each dimension, we first expand the candidate list by finding all
experts with given prefixes that exist in the DHT, and then save k highest-scoring continuations
as the candidate list.

When the most relevant experts are found, we find their respective servers using the DHT
and send them the vector of input activations. After the requested experts have responded with
their outputs, we average their responses with weights determined by the gating function:

DMoE(x) =
∑

f∈TopK(x)

f(x)
exp (g(x, f))∑

f ′∈TopK(x) exp (g(x, f ′))
, TopK(x) are k best experts w.r.t. g (3)

Learning@home

To support training of large models on volunteer hardware, we also develop Learn-
ing@home, an infrastructure that allows efficient training in the presence of node failures and
slow network speeds. It consists of three main components:
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• Trainer generates the batches of data and performs forward and backward passes through
the entire model.

• Runtime serves experts and processes incoming requests for forward and backward
passes (including the optimization step in case of the backward pass). To maximize its
throughput, the runtime aggregates incoming requests of the same type into batches.

• DHT Node announces experts and exchanges their metadata with other nodes.

Empirical results

First, we evaluate the throughput (number of examples processed per second) of Learn-
ing@home in different network conditions. We emulate the distributed training environment
by serving large feed-forward layers or Transformer [10] encoder blocks over 4 GPUs, simulat-
ing network delays of varying degrees. Our baseline for performance here is non-asynchronous
model parallel training [22], and we include the result of training without network delays as our
upper bound on performance. As we can see in Figure 2, the throughput of our approach remains
consistent even in high-latency environments, which validates its utility in our setting. We also
conduct a comparison in a more realistic setup of three cloud GPU instances in different regions:
Table 1 depicts results that are similar to simulated experiments, confirming our findings.
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Network delay, ms

0

500

1000
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Feed-forward block

0 50 100 150 200
Network delay, ms

0.0

0.5

1.0

1.5

2.0 Transformer encoder block

Model parallel
Pipelined MP
Learning@home

Figure 2: Training throughput as a function of latency.

Approach Feed-forward Transformer

Model-parallel 7.23± 0.06 0.01± 0.0

Learning@home 300.8± 15.9 0.68± 0.0

Table 1: Training throughput (measured in ex-
amples/s) for 3 servers in different regions.

Our second set of experiments verifies the robustness of DMoE to asynchronous updates and
gradient staleness. We compare DMoEwith a sequence of dense layers having the same forward
pass computational cost as a subset of 4 experts. To evaluate different network conditions, we
consider three setups: low latency (100ms delay for each request), high latency (1000ms delay),
and high latency with failures (0.1 probability of not responding to a request).

We train models on two datasets: a sequence of feed-forward layers on MNIST [23], and
Transformer-XL [55] on WikiText-2 [50]. In the case of WikiText-2, we only consider the
setting of high latency with failures. The results are shown in Figure 3 and Figure 4: as we can
see from the plots, the gradient staleness introduced by asynchronous training in high latency
setups affects DMoE to a lesser degree compared to regular dense models.
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Figure 3: Convergence plots for feedforward models trained on MNIST with different network latencies
and failure rates. Light areas depict standard deviations over 5 runs.
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Figure 4: Convergence plots for Transformer-XL language models trained on the WikiText-2 dataset.
Light areas depict standard deviations over 5 runs.

3.2 Moshpit SGD: Communication-Efficient Decentralized Training on
Heterogeneous Unreliable Devices

To run distributed training in a data-parallel setting (with all peers processing different data),
it is necessary to have an algorithm for aggregating updates across the network. For example, in
case of Decentralized Mixture-of-Experts, the input embeddings and the gating function param-
eters are still shared between workers. In its simplest form, training a neural network reduces to
a stochastic optimization problem of minimizing the expected loss function f(x, θ) depending
on inputs x and model parameters θ with respect to θ:

min
θ

1

N

N∑
i=1

f(xi, θ) (4)

As a result, the primary communication pattern of data-parallel deep learning is averaging
the gradients∇θf(xi, θ) across the network nodes. Hence, training with unreliable participants
requires a communication-efficient algorithm that is robust to node failures. However, most
widely used methods have only one of these properties: All-Reduce is theoretically optimal
in terms of network transfer [37] but not fault-tolerant, and Gossip-based approaches [13; 43;
52] to decentralized training exchange parameters over a sparse graph, avoiding the need for a
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simultaneous synchronization across the entire network but communicating less efficiently. We
proposeMoshpit All-Reduce, an averaging method for decentralized deep learning that is highly
efficient yet fault-tolerant.

Moshpit All-Reduce

Running Moshpit All-Reduce involves executing several iterations of averaging in smaller
dynamically changing groups that do not overlap within each iteration. Intuitively, in this case,
the failure of a single peer leads to an interruption only within a small subgroup of the network.
Each group consists of peers sharing the same coordinate in a virtual d-dimensional grid withM
elements in each dimension. In practice,M and d are chosen to accommodate all participating
peers with a relatively high grid utilization.

First round Second round

A θA θA θA

θB θB θB

θC θC θC

Group

C
Group

B
Group

Average θ
in groups

θ3θ1 θ2

θ6θ4 θ5

θ9θ8θ7

Figure 5: Example steps of Moshpit All-Reduce for 9 peers executed in 2 iterations.

The method is illustrated in Figure 5 and described formally in Algorithm 1. Peers find the
next group for averaging using grid indices C, which are formed as multidimensional integer
tuples. These tuples are initialized using the get_initial_index function that samples indices
for each dimension from a uniform distribution. On each iteration of the procedure, nodes com-
municate using the DHT to announce their network addresses and current grid indices. Then,
they organize into groups and get the list of immediate peers by also using the DHT. In the next
step, peers within the same group exchange data using Butterfly All-Reduce [42]: this proce-
dure, shown in Figure 6, assigns each peer to aggregate a separate part of the averaged vector.
Finally, peers update their group indices based on the indices of Butterfly All-Reduce parts that
they were responsible for: this ensures a different set of neighbors for the next step, as no peers
share a part index within one All-Reduce iteration.
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Algorithm 1Moshpit All-Reduce for peer i
1: Input: parameters {θj}Nj=1, number of peers N , d,M , number of iterations T , peer index i
2: θ0i := θi

3: C0
i := get_initial_index(i)

4: for t ∈ 1 . . . T do
5: DHT[Ct−1

i , t].add(addressi)

6: Matchmaking()
7: peerst := DHT.get([Ct−1

i , t])

8: θti , c
t
i := AllReduce(θt−1

i , peerst)

9: Ct
i := (Ct−1

i [1:], cti)
10: end for
11: Return θTi

Worker 1
Split Scatter Reduce All-Gather

Worker 2

Worker 3

x1

x2

x3

aavg

bavg
cavg

a1

b1
c1

a2

b2
c2

a3
b3
c3

aavg

bavg
cavg

aavg

bavg
cavg

Σ

Σ

Σ

aavg

bavg

cavg

Figure 6: The Butterfly All-Reduce algorithm. First, peers split the averaged vector into equal segments.
Then, each peer aggregates a particular segment across all nodes. Finally, peers send the averaged parts
to all other nodes to get the result.

If the grid is fully occupied (N ≡ Md) and all All-Reduce calls are successful, Algorithm 1
becomes a generalization of Torus All-Reduce [44] and computes the exact average after d iter-
ations, as we prove in the theorem below:

Theorem 1. Assume that Md peers are arranged in a d-dimensional hypercube with M posi-
tions in each dimension. Also, assume that each peer fully participates in every averaging step,
andM -sized groups for each averaging iteration are determined based on the hypercube coor-
dinates. Then, if Moshpit All-Reduce is ran in the above setup for d iterations without repeating
groups (i.e. averaging across each dimension exactly once), its result for each participant is the
average value of θ across allMd peers.

Still, these assumptions are unlikely to hold in practice for the entire duration of training.
More specifically, volunteers will join and leave during the experiment, possibly during the All-
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Reduce phase; also, it can be challenging to ensure that the total number of participants can
be arranged in a grid of the required structure without any gaps. However, as we show in the
paper, Moshpit All-Reduce can asymptotically reduce the inconsistency between peers even in
the setting of non-constant participation and with uneven groups.

Finally, if peers in the same group have uneven network bandwidth, assigning equal parts
of the aggregated vector in Butterfly All-Reduce will cause communication bottlenecks and
unnecessary delays in the training procedure. To prevent this, we can dynamically adjust the
communication load of each peer. Specifically, we design an optimization problem that allocates
differently sized fractionswi of the averaged vector toM peers with different network bandwidth
bi. We minimize the total averaging time, which can be modeled as the maximum time across
all nodes to receive, aggregate, and send the corresponding vector part and send (and receive)
the rest of the vector for aggregation by other peers.

The resulting optimization problem is given below:

min
w

max
i

(1− wi + (M − 1)wi) · 1
bi

subject to
∑M

i=1 wi = 1,

wi ≥ 0 ∀i

(5)

As we show in the paper, it is possible to reduce this to an instance of a linear programming
problem, which allows us to use efficient solvers [6] and find the optimal averaging strategy in
a negligible amount of time.

Moshpit SGD

To run distributed training on networks composed of unreliable participants, we formulate
Moshpit SGD, a modification of standard stochastic gradient descent with local steps [36]. Dur-
ing the communication phase, peers leverage Moshpit All-Reduce for parameter averaging in-
stead of using standard All-Reduce or a parameter server [30]. Importantly, under mild assump-
tions, we can derive convergence rates for Moshpit SGD that are competitive with state-of-the-
art results [1; 14] at the time of publication.

Empirical results

First, we verify the efficiency and robustness of Moshpit All-Reduce that we aimed to obtain
when developing this method. To do this, we run simulated averaging experiments, using a
sample from the standard normal distribution as input data for each worker. We consider several
settings: 1024 peers with no failures, 1024 peers with a failure rate of 0.005, and 768 peers
with a failure rate of 0.005 (used to show the impact of having a non-full grid). We report the
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mean squared deviation of data on all workers (or, equivalently, the variance between nodes): a
successful exact averaging procedure results in an error of zero.

We use several algorithms from prior work as baselines: the list includes All-Reduce (with
restarts after failures), Gossip [13], and PushSum [53]. In addition, we report the performance
of a simplification of Moshpit All-Reduce that averages parameters in small random groups.
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Figure 7: Mean squared error of averaging methods as a function of the iteration number.

The main results of these experiments are shown in Figure 7. As expected, standard All-
Reduce computes the average in a single step when there are no peer failures. However, it fails
to average the values on workers in less optimistic cases; Gossip and PushSum also require a sig-
nificant number of iterations for convergence. On the other hand, Moshpit SGD both computes
the exact average in 2 iterations in case of no failures and converges faster than other methods
in case of a non-zero failure probability. Random group averaging has performance similar to
Moshpit All-Reduce for low grid utilization but underperforms our method for fuller grids.

Also, we benchmark Moshpit SGD in several distributed training experiments, comparing
its performance with several popular algorithms for large-scale deep learning. We consider
two settings covering different application domains: ResNet-50 [16] image classifier training
on ImageNet [24] and ALBERT-large [3] language representation model pretraining on Book-
Corpus [4]. Along with Moshpit SGD, we evaluate multiple baselines, including standard All-
Reduce SGD, as well as two decentralized methods: AD-PSGD [9] and Stochastic Gradient
Push [52]. Our training setups encompass both the case of homogeneous training (a single
multi-GPU server) and heterogeneous training across different environments and locations.

The outcome of these experiments can be seen in Figure 8: as we demonstrate, Moshpit SGD
outperforms all baselines in terms of time until convergence, including the best decentralized
ones. Importantly, this does not mean that the iteration convergence time is the smallest as well:
All-Reduce SGD (AR-SGD) converges in fewer epochs due to more accurate gradient estimates
at each step. For training ALBERT, the heterogeneous setup uses less powerful preemptible
instances and is thus more cost-efficient than the homogeneous setup: however, the instability of
nodesmakes it impossible to train with All-Reduce in this setting. Conversely, the fault tolerance
of Moshpit SGDmakes it possible to achieve the same training loss in a smaller amount of time.
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Figure 8: (Left, Middle) ResNet-50 accuracy on ImageNet validation set as a function of wall clock time
(left) and training epochs (middle). (Right) Training loss convergence of ALBERT-large.

3.3 Distributed Deep Learning in Open Collaborations

Although Moshpit SGD can be used even on its own for training with volunteers, handling
large numbers of participants in an efficient, inclusive, and robust manner requires resolving
several additional problems. For example, in a collaborative setting, one might expect a dy-
namic composition of participants and hence a dynamically changing set of computational and
communication capabilities for each node in the network. In addition, the dynamic participa-
tion of peers might make it non-trivial to ensure that the training results are comparable (ideally,
equivalent) to the outcomes obtained in a regular HPC cluster. To address these considerations,
we design Distributed Deep Learning in Open Collaborations (DeDLOC), a comprehensive de-
centralized approach for large-scale data-parallel training with volunteers.

Method description

The relatively easier challenge is that of achieving consistent training results. As most state-
of-the-art models are usually trained with large batches [27; 28; 39; 46; 58], we leverage the
same approach, accumulating gradients for processed examples across the entire collaboration
before making a synchronous step on all nodes. Importantly, this offers a natural way of sup-
porting dynamic participation in real-world conditions: if a peer leaves the experiment during
training, other peers will compensate for that by processing more examples, which will delay
but not prevent the next SGD step. Conversely, if a new peer joins the experiment, the computa-
tional throughput of the collaboration grows, and the time between subsequent steps decreases.
An illustration of this inherent elasticity of large-batch training can be seen in Figure 9.

Notably, we assume that all peers process data coming from the same distribution: otherwise,
the online peers would not be able to compensate for the disconnected ones. Still, for large-
scale pretraining, the data is usually obtained from public sources and can exceed hundreds of
gigabytes in size, so this assumption is quite realistic for the setting that we consider.
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This approach allows us to have the same training updates and thus, the same learning dy-
namics as in a standard data-parallel setting from an algorithmic viewpoint. Hence, if the training
step and the gradient aggregation procedure are the same as in the regular centralized setting,
DeDLOC will reach results that are similar to the results of standard methods up to numerical
precision (and other sources of instability frequent in deep learning). In practice, we still relax
this constraint to some degree: we can use group averaging techniques like [12] or Moshpit All-
Reduce for improved fault tolerance and Delayed Parameter Updates (DPU [59], also known as
one-step delayed SGD [8]) to overlap a costly communication phase with computing the gra-
dients for the next step. Importantly, both the analysis and the empirical evidence demonstrate
that these modifications have little impact on training convergence.

Next, we develop an adaptive algorithm for data-parallel training that can dynamically adjust
the aggregation strategy given the current network and hardware conditions of the collaboration.
This is necessary to achieve optimal performance in a heterogeneous setting with dynamic peer
participation: having a uniform distributed strategy is suboptimal for peers with highly different
performance. Moreover, nodes with a fast Internet connection might have a relatively slow
compute accelerator and vice versa.

For this purpose, we design an optimization problem that maximizes the training throughput.
In the case of DPU, the throughput can be viewed as the minimum of the batch processing time
for B examples and the gradient aggregation time for a neural network with P parameters. Our
primary constraints are the computational performance of each peer i (gradients for si examples
obtained per second), the download and upload speed of peers (di and ui correspondingly),
and the pairwise bidirectional transfer limitations (tij and tji for peers i and j). We optimize
the averaging strategy with respect to the peers computing gradients (indicator variables ci),
the speed of sending local gradients for aggregation aij , and the speed of sending aggregated
gradients back to peers gij .

Peer

Microbatch

State averaging

Peer failure

P1

P2

P3

P4
P5

Time

Figure 9: Two example training steps of DeDLOC with peers that are joining and leaving. First, peer 4
leaves, so others needs to process more examples to reach the same batch size. In the next iteration, peer
5 joins and the time before the target batch size is accumulated becomes smaller.
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The final optimization problem is given below:

max
a,g,c

min

(∑n
i=1 si·ci
B

,
mini

∑
j gji

P

)
subject to gij ≤ mink∈{r:cr=1} aki ∀i, j∑

j ̸=i (aji + gji) ≤ di ∀i∑
j ̸=i (aij + gij) ≤ ui ∀i

aij + gij ≤ tij ∀i, j
aij, gij ≥ 0, ci ∈ {0, 1} ∀i, j

(6)

An example admissible solution for this problem is ci = 1 only for the peer with highest
si and a, g ≡ 0, which corresponds to no communication between peers. However, to find the
most efficient training strategy for a given composition of peers, we need to find an optimal
solution for each training iteration. Thus, we reformulate the optimization problem as a linear
program, which allows us to find a solution in sub-second time using existing solvers [6].

Notably, in special cases (such as homogeneous network and hardware conditions), the opti-
mal solution corresponds towell-known distributed training paradigms, as our strategy is general
enough to accommodate them. Figure 10 displays an illustration of several strategies that are
optimal in different conditions.

Empirical results

In our first group of experiments, we validate the adaptive properties of DeDLOC by running
it in a series of setups with varying heterogeneity. We focus on self-supervised machine learning
models: they both require a substantial amount of resources for training and can be applied to
multiple tasks, potentially making them highly attractive for volunteer deep learning.

We begin with measuring the performance of training Swapping Assignments between mul-
tiple Views (SwAV), a method for learning universal image representations [57], on ImageNet.
We consider three setups: Server with 8 nodes having one V100 GPU each and 1 Gb/s network,
Workstation with 16 workers having one 1080 Ti GPU and 200 Mb/s network, and Hybrid that
combines them. For averaging benchmarks, we also include the fourth setup that adds a single

All-ReduceEqual bandwidth One fast peer Parameter Server HybridHeterogeneous

Figure 10: Example hardware and network conditions for participating peers along with optimal averag-
ing strategies. Bolder lines correspond to faster connections.
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high-bandwidth node. Our key performance metrics are the training performance as a function
of time, as well as the gradient averaging speed. The results of these experiments are available
in Figure 11 and Table 2. Most importantly, our hybrid averaging strategy yields speedups of up
to 92% in heterogeneous networks compared to the All-Reduce and Parameter Server baselines
while being close to the optimal method in all tested setups.
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Figure 11: SwAV convergence in different setups.

Setup
Algorithm

AR PS Ours

A: 8x1Gb/s 1.19 4.73 1.20
B: 16x0.2Gb/s 5.3 39.6 5.3
C: A + B 5.69 14.1 2.96
D: B + 1x2.5Gb/s 5.3 3.22 3.18

Table 2: SWaV averaging performance.

Next, we evaluate the performance of pretraining ALBERT-large [3] on WikiText-103 [38].
We compare the training loss convergence in five setups: High-bandwidth has 16 workers with
a T4 GPU and 25 Gb/s bandwidth, the Heterogeneous one has the same GPUs with 4x 200
Mb/s, 8x 100 Mb/s, and 4x 50 Mb/s networks; in Heterogeneous + load balancing, we add load
balancing from our adaptive averaging algorithm, and CPU-only and Time-varying setups add
nodes with a fast network but no GPUs and nodes with unstable participation, respectively.

The results of this evaluation are shown in Figure 12: most importantly, having a naïve aver-
aging algorithm in heterogeneous conditions significantly slows down training, but an adaptive
strategy brings the performance closer to that of a regular HPC setup. Having additional peers
that assist with averaging or participate part-time helps reduce the training time even further.
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Figure 12: ALBERT training convergence in different setups.
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Figure 13: Collaborative experiment summary.

Finally, we conducted a real-world collaborative experiment by pretraining a version of AL-
BERT on the Bengali-language part of the OSCAR [33] dataset. We recruited 40 volunteers
who joined the experiment from their own computers with GPUs and free cloud instances and
named the resulting model sahajBERT in a collective vote. Overall, the volunteers participated
in the experiment from 91 different nodes, on average 15–35 of which were online at the same
time. The median contributed time was approximately 36 hours; additional volunteer statistics
collected during the experiment are available in Figure 13. The model took approximately 8
days to converge, which was 1.8x faster than the single-node multi-GPU baseline we trained to
verify equivalent convergence; see Figure 14 for an illustration.

We also compared the results of finetuning sahajBERT on two downstream datasets in
Bengali with several existing baselines. The datasets we considered were WikiANN [15]
and News Category Classification from IndicGLUE [26]; our baselines were monolingual bn-
RoBERTa [25], as well as multilingual IndicBERT [26] and XLM-RoBERTa [56]. The results of
this comparison are given in Table 3: even though sahajBERT used unstable resources of volun-
teers instead of a dedicated supercomputer for pretraining, it achieved results that are competitive
or even exceed those of highly capable baselines.
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Figure 14: Training progress of sahajBERT.

Model WikiANN F1 NCC Accuracy

bnRoBERTa 82.32 ± 0.67 80.94 ± 0.45

IndicBERT 92.52 ± 0.45 74.46 ± 1.91

XLM-R 96.48 ± 0.22 90.05 ± 0.38

sahajBERT 95.45 ± 0.53 91.97 ± 0.47

Table 3: Downstream evaluation results.
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4 Conclusion

In this section, we summarize the main contributions of the work. The results of this work
are a set of methods for large-scale decentralized deep learning across unstable heterogeneous
nodes with slow connectivity — in particular, across the computers of volunteers.

1. We proposedDecentralized Mixture-of-Experts (DMoE), a neural network layer designed
for fault tolerance and significant numbers of peers with different memory capacities. In
addition, we designed Learning@home—a system for deep learning in the setting of vol-
unteer computing. It uses gradient checkpointing and distributed hash tables to prevent
any single point of failure in the network and asynchronous request queuing to maximize
the training throughput. We empirically validated that Learning@home maintains high
training throughput both with emulated network latency and in realistic cross-region cloud
training conditions. Finally, we trained neural networks with DMoE layers with node fail-
ures and high latency on two example machine learning tasks, showing that they converge
to the same quality as regular dense models with a comparable parameter count.

2. We proposed Moshpit All-Reduce, a decentralized iterative method for averaging model
gradients or parameters that uses efficient communication primitives as its foundation yet
can be used in volatile networks. This method can be combined with standard stochastic
optimization algorithms to obtain Moshpit SGD — a distributed training method suit-
able for training with unreliable devices. In experiments on synthetic data, Moshpit All-
Reduce achieves the smallest inter-node distortion within a given number of iterations
when compared to popular aggregation methods used in prior work. Moshpit SGD out-
performs the baselines on two large-scale pretraining tasks by up to 1.5 times in terms
of wall clock time until convergence. We also outlined the dynamic load balancing ap-
proach that solves a linear programming problem to assign varying workloads to peers
with different network bandwidths.

3. We proposed Distributed Deep Learning in Open Collaborations, a practical method for
collaborative deep learning. It leverages an adaptive averaging strategy to account for
uneven communication and communication performance, as well as large-batch training
with global gradient accumulation over the entire network to account for both dynamic
peer participation and the presence of straggler nodes. We also ran a real-world collab-
orative pretraining experiment with a community of volunteers and obtained sahajBERT
— a Bengali-language masked language model based on the ALBERT architecture. At
the time of training, this model achieved similar downstream task performance to state-
of-the-art models despite being trained on volunteer hardware instead of a GPU cluster.
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