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1 Introduction

We consider the classical problem of information transmission between a

sender with private, payoff-relevant information and a receiver who takes

actions which affect the sender’s payoff. Following the Bayesian persuasion

literature pioneered by Rayo and Segal (2010) and Kamenica and Gentzkow

(2011), we suppose that the sender has commitment power over the infor-

mation she reveals to the receiver. Without setting any restrictions on the

possible persuasion strategies, we search for conditions under which full dis-

closure is optimal. Differently from other complicated schemes, just disclos-

ing the truth seems to be a realistic goal in many scenarios — e.g., with

transparency policies in organizations.

In our model, the state space can be a continuum, therefore the con-

cavification approach of Kamenica and Gentzkow (2011) is not operational.

Moreover, differently from most contributions in the field (e.g., Dworczak and

Martini (2019), Dizdar and Kováč (2020), Gentzkow and Kamenica (2016),

Kolotilin et al. (2021), Arieli et al. (2020)), we do not assume that the

sender’s payoff is a function of the posterior mean state (or any moments of

the posterior distribution).1 Despite this, we obtain a sufficient condition for

the optimality of full disclosure that speaks directly to the underlying incen-

tives of the parties, as opposed to the indirect utility function of the sender.

This makes our condition easily interpretable and verifiable. In particular,

it can be interpreted as a requirement of minimal alignment of incentives

between the sender and the receiver. Notably, despite its level of generality,

our condition is substantially weaker than the sufficient condition provided

1We will discuss three notable exceptions in detail.
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by Kolotilin et al. (2022) for environments in which the receiver’s optimal

action is linear in the expected state.

To see why the effect of full disclosure may be non-trivial, consider a

simple principal-agent setup, as an example. The agent generates an output,

which he shares with the principal in a fixed proportion. The output is

increasing in the agent’s effort, and the agent bears the cost of effort. The

state of nature determines the productivity of effort, with a higher state

resulting in higher productivity. The principal knows the state, while the

agent does not. At first sight, the principal would always want to commit

to revealing the state to the agent, as both parties seem to benefit from

effort more when the state is higher. Here is a simple argument why this

may not be the case. Suppose that the agent is sufficiently risk averse.

Then, good news about the productivity may actually depress effort. This is

because a higher productivity implies that the agent reaches a higher income,

hence a lower marginal utility, at lower levels of effort. If the principal is

risk neutral, then the disclosure discourages the agent precisely when the

principal benefits more from effort (and incentivizes the agent when the

principal gains less from effort). In such a case, full disclosure is unlikely to

be optimal. Note also that, even when this “income effect” does not prevail

in the agent’s incentives, full disclosure may still not be optimal. Even if the

agent increases effort under the good news and reduces it under the bad news

about the state, as the principal wants, the increase may be smaller than

the decrease, to the point that the overall effect on the principal’s utility is

negative.

To see how we tackle these difficulties, stick to the principal-agent setup

and consider a message that pools two equally likely states. The principal
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contemplates splitting this message into two messages that reveal the state.

Then, given the optimal effort under the pooling message, the agent will dis-

cover that her marginal utility of effort is positive when one state is revealed,

negative when the other state is revealed, and the two values have the same

magnitude, just opposite signs. Thus, the agent will decrease effort under

the first state and increase it under the second state. Two forces determine

whether the principal gains from the split or not: the changes in the agent’s

effort and the changes in the principal’s utility per unit of effort. Under each

state, the agent modifies his effort until its marginal utility returns to zero.

Then what matters is how much the principal’s utility changes per unitary

change of the agent’s marginal utility. In particular, the principal benefits

from the split if this measure of her marginal utility is larger when the agent

wants to increase effort with respect to when he prefers to reduce effort. In

this sense, ours is a condition of minimal alignment of interest between the

two parties.

Our main result extends this argument to all possible messages in a gen-

eral sender-receiver framework. Specifically, we show that any message with

a non-singleton support can be split so as to improve the sender’s welfare

if an increase of action that decreases the receiver’s marginal utility by one

unit has a larger benefit for the sender when it also benefits the receiver,

compared to when it harms him. This condition ensures the optimality of

full disclosure.

Under some additional regularity assumptions, we also provide an analo-

gous sufficient condition that is entirely expressed in terms of derivatives of

the parties’ utility functions (“derivatives condition”). This condition may

be easier to check in some economic applications.
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Finally, we also derive a sufficient condition for the suboptimality of full

disclosure. While there remains a gap between this condition and our op-

timality condition (one is not a negation of the other), it helps to establish

when full disclosure is definitely not optimal, as we will show in an example.

We then focus on the principal-agent setting we outlined before. Typi-

cally, in this application, the principal’s utility cannot be represented as a

function of the posterior mean. We discuss several examples demonstrating

that our sufficient condition for full disclosure is easy to check and often satis-

fied. The first example (section 5.1) sheds light on the role of risk aversion for

the optimality/suboptimality of full disclosure. We assume that both parties

exhibit CRRA and the output is a product of the state and a concave power

function of effort. Full disclosure turns out to be optimal when the agent is

more risk averse than the principal (a typical textbook situation) but not too

risk averse (with the coefficient of relative risk aversion below one). In this

case, state and effort are complements for both parties, and then disclosing

the state boosts effort exactly when the principal benefits from higher effort

more. Instead, when the agent becomes too risk averse (while the principal

remains moderately risk averse), full disclosure ceases to be optimal. As we

discussed earlier, under high agent’s risk aversion, good news about produc-

tivity depress effort, that is, effort and state become substitutes for the agent

while remaining complements for the principal.

Another interesting case discussed in Section 5.1 is when the agent is

sufficiently risk averse, and the principal is at least as risk averse as the agent.

In that case, the average effort falls but the principal nevertheless gains from

transparency. This happens because for the principal effort and state are

even more substitutes than for the agent. Bad news about productivity

6



encourages effort, and the principal benefits even more from effort in lower

states than the agent does.

In the second example (section 5.2) we simplify the preferences by as-

suming risk neutrality for both parties and focus instead on the properties

of the production function that ensure the optimality of full disclosure. By

applying the “derivatives condition”, we show that full disclosure is optimal

under some commonly used functional forms for output.

Without assuming that the sender’s payoff is a function of the expected

state, Kolotilin (2018) and Kolotilin et al. (2022) establish that (under some

assumptions on the utility functions) full disclosure is optimal if and only

if, for any pair of states, the sender prefers revealing them to garbling.2 So,

under some conditions, the problem reduces to checking only messages with

binary support. In some simple cases (for example, the receiver’s optimal

action depends only on the expected state and the sender’s direct utility

depends only on the action), the sender’s indirect utility function becomes

a function of only the posterior mean; then, the necessary and sufficient

condition for the optimality of full disclosure boils down to requiring the

convexity of this function. Kolotilin et al. (2022) make further progress

by providing sufficient conditions for the optimality of full disclosure on the

sender’s (direct) utility function for the special case in which the receiver’s

optimal action is linear in the expected state (while the sender’s utility is

allowed to depend on the state as well as the action).

Except for the requirement that the receiver’s utility is strictly concave in

action and delivers an interior solution (along with some regularity assump-

2In more rigorous terms, the sender prefers to split any posterior with a binary support
into two degenerate posteriors.
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tions), we impose no restrictions on how state and action affect utilities.

Despite this, we offer a sufficient condition for the optimality of full disclo-

sure in terms of the primitives of the model: the (direct) utility functions

of the sender and the receiver. In this way, compared to the condition in

Kolotilin (2018) and Kolotilin et al. (2022), we gain operability and inter-

pretability. Moreover, in contrast to Kolotilin (2018) and Kolotilin et al.

(2022), we do not impose a single-crossing assumption on the receiver’s util-

ity. This allows applying our condition to environments where considering

only binary support messages may not be without loss of generality. Despite

this level of generality, our condition turns out to be substantially weaker

than the sufficient condition of Kolotilin et al. (2022) for the case in which

the receiver’s action is linear in the expected case, as it requires neither con-

vexity of the sender’s payoff in action, nor its supermodularity in action and

state.

Using a concept analogous to the concept of “virtual value” in the mech-

anism design literature, Mensch (2021) offers conditions for full disclosure

jointly on the receiver’s utility function and on a transformation of the

sender’s utility function that takes into account the incentive compatibility

constraint of the receiver (“virtual utility”). His focus is on the importance

of complementarities between states and actions, and whether these com-

plementarities “point in the same direction” for the sender and the receiver.

While Mensch’s condition for full disclosure (Theorem 5) is insightful, it is

rather abstract and not straightforward to apply, as it requires a derivation

of the “virtual utility”. Instead, our conditions are directly on primitives of

the model, that is, the shape of the parties’ utility functions.
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The paper is organized as follows. Section 2 sets up the model. Section

3 derives the conditions for the optimality of full disclosure, as well as the

condition for its suboptimality. In Section 4, we compare our sufficient con-

dition with the conditions obtained in the literature for two special cases of

the parties’ preferences. Section 5 demonstrates how our conditions can be

applied in a principal-agent setting and discusses the role of risk aversion

and complementarity/substitutability between the action and the state. All

proofs are relegated to the Appendix.

2 Model

There are a sender (she) and a receiver (he). The receiver needs to take a

non-contractible action a ∈ A. There is a state of the world ω ∈ Ω with

common prior p ∈ ∆(Ω). We assume that A and Ω are compact intervals

in the real line; with this, we do not rule out that the possible states be

discrete, because we do not impose restrictions on the support of p.

Action and state jointly determine the receiver’s utility U(ω, a).3 We

assume that, for every ω ∈ Ω, U(ω, a) is twice differentiable and strictly

concave in a, with Ua(ω, a) = 0 for some finite a ∈ A, denoted by a∗(ω). We

also assume that Ua(ω, a) is continuous in ω.

The sender’s utility is V (ω, a), and we assume it to be differentiable in a,

with Va(a, ω) continuous in ω. Until Section 5, we abstract away from the

origin of U(ω, a) and V (ω, a).

Before learning the state, the sender can commit to an information struc-

3The state may just represent whatever information is available to the sender about a
“more primitive” state that affects payoffs; in this case U is an expected utility.
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ture, whereby the receiver gets some information about the state before

choosing the action. Formally, following the standard Bayesian persuasion

framework, the sender commits to a mapping from the set of states Ω to

distributions over messages that are sent to the receiver. The information

structure chosen by the sender is common knowledge. The goal of the sender

is to select an information structure that maximizes her expected utility.

After receiving message m, the receiver solves

max
a

E(U(ω, a)|m)

Due to our assumptions on U(ω, a), the receiver’s optimal action is unique

under every posterior belief about the state, and it is determined by the

first-order condition
dE(U(ω, a)|m)

da
= 0

By continuity of Ua(ω, a) in ω, the receiver’s optimal action changes con-

tinuously in the posterior belief. With this, the persuasion problem of the

sender is well-defined and has a solution.

3 Sufficient conditions

3.1 Main condition

Full disclosure is optimal if any message that pools or partially pools several

states that induce different actions can be split into several more informative

(in Blackwell sense) messages in a way that strictly increases the sender’s

expected utility (conditional on the original message). We will first consider
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messages that generate a posterior with binary support. The crucial and

most insightful passage of our construction identifies a condition under which

splitting a message with binary support into two messages that reveal the

state weakly benefits the sender — we illustrate this passage in detail in

the main text (and report a more formal proof in the Appendix). Then, we

will sketch how we extend this argument to find a strictly profitable split

of any message m under a slightly stronger condition, and finally establish

the optimality of full disclosure under the original condition — the details

of these two passages are deferred to the formal proof in the Appendix.

Consider two states, ω1 and ω2, such that the receiver’s optimal action

is higher under ω2: a∗2 := a∗(ω2) > a∗(ω1) =: a∗1. Let m be a message that

(partially) pools ω1 and ω2, and let π1 := Pr(ω1|m), π2 := Pr(ω2|m), π2 =

1−π1. The graph below depicts the receiver’s utilities under ω1, ω2, and his

expected utility under m: U(ω1, a), U(ω2, a), Ũ(ω, a). Action a∗ denotes

the receiver’s optimal action under m. The sender’s state-contingent utilities

V (ω1, a) and V (ω2, a) are depicted increasing, with V (ω2, a) above V (ω1, a),

for illustration purposes, but they do not have to be such.
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Figure 1.

Conditional on m, the sender (weakly) benefits from disclosing ω1, ω2

instead of sending m if and only if

π1V (ω1, a
∗
1) + π2V (ω2, a

∗
2) ≥ π1V (ω1, a

∗) + π2V (ω2, a
∗),

that is,

π2[V (ω2, a
∗
2)− V (ω2, a

∗)] ≥ π1[V (ω1, a
∗)− V (ω1, a

∗
1)]. (1)

Graphically, condition (1) means that the probability-weighted increase in
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the sender’s payoff as we move from A to B exceeds the probability-weighted

decrease as we move from C to D.4

If (1) holds for all possible ω1, ω2 and π1, full disclosure is optimal.

Stated in this way, the condition does not help much, as it does not provide

a recipe to verify it for all possible ω1, ω2 and π1.

Our idea is as follows. First, instead of comparing the total probability-

weighted changes in the sender’s state-contingent payoff, we are going to

compare “marginal changes” (weighted with the corresponding probabilities)

as we move from A to B and from C to D, “pointwise”. We will define what

it means for a change to be “marginal” in such a way that if any marginal

change on the way from A to B is larger than on the way from C to D, the

total change will be larger as well.

Second, notice that any a on the way from A to B (i.e., between a∗ and

a∗2), is higher than any a on the way from C to D (i.e., between a∗ and a∗1).

In addition, Ua(ω2, a) > 0 for any a ∈ [a∗, a∗2), and Ua(ω1, a) < 0 for any

a ∈ (a∗1, a
∗]. Since these properties hold for any message with binary support,

they allow us to formulate a sufficient condition that neither involves specific

posterior probabilities nor requires computing the optimal receiver’s action.

We start from defining the marginal changes. We cannot compare marginal

changes in the space of a, because [a∗1, a
∗] and [a∗, a∗2] have different lengths.

Hence, we move to the space of probability-weighted receiver’s marginal util-

ities: x1 := π1Ua(ω1, a) and x2 := −π2Ua(ω2, a). As a runs from a∗ to a∗1

(for x1) and from a∗ to a∗2 (for x2), both x1 and x2 run from the same con-

4We are saying “increase” and “decrease” to relate to the graph. But, as we have said,
V (ω, a) does not have to be upward sloping, so, in general, it is more accurate to talk
about comparing the change as we move from A to B with a negative of the change as we
move from C to D, exactly as in (1).
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stant, k < 0, to zero. That the starting point is the same stems from the

first-order condition under m:

π1Ua(ω1, a
∗) + π2Ua(ω2, a

∗) = 0 (2)

⇒ π1Ua(ω1, a
∗) = −π2Ua(ω2, a

∗) =: k

That the arrival point is zero is due to the first-order condition under ωi:

Ua(ωi, a
∗
i ) = 0.

Now, since x1 and x2 span the same intervals, comparing marginal changes

in V (ω1, a) and V (ω2, a) in the space of x1 and x2 (respectively) is legiti-

mate. Comparing a marginal gain from revealing ω2 with a marginal loss

from revealing ω1
5 at given a1 ∈ (a∗1, a

∗) and a2 ∈ (a∗, a∗2), is the same as

comparing ∂(π2V (ω2, a2))/∂x2(a2) with −∂(π1V (ω1, a1))/∂x1(a1) (we are

using ∂ to emphasize that we are differentiating while holding ωi and πi

fixed). Thus, if

∂(π2V (ω2, a2))/∂x2(a2) ≥ −∂(π1V (ω1, a1))/∂x1(a1)

for all a1 ∈ (a∗1, a
∗) and a2 ∈ (a∗, a∗2),

inequality (1) will be satisfied.

5Here again it would be more accurate to say “a marginal change” from revealing ω2

and “negative of a marginal change” from revealing ω1.
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Now, notice that6

∂(π1V (ω1, a))

∂x1(a)
=

∂V (ω1, a)

∂Ua(ω1, a)
=

Va(ω1, a)

Uaa(ω1, a)
,

∂(π2V (ω2, a))

∂x2(a)
=

∂V (ω2, a)

−∂Ua(ω2, a)
=

Va(ω2, a)

−Uaa(ω2, a)
.

Moreover, notice that for all a1 ∈ (a∗1, a
∗), Ua(ω1, a1) < 0, and for all a2 ∈

(a∗, a∗2), Ua(ω2, a2) > 0.

Consequently, if −Va(ω2, a2)/Uaa(ω2, a2) ≥ −Va(ω1, a1)/Uaa(ω1, a1) for

any a1, a2, ω1, ω2 such that a1 < a2 and Ua(ω1, a1) < 0 < Ua(ω2, a2),

revealing the states in the support of any binary-support message benefits

the sender. Hence, we arrive at the following sufficient condition for the

optimality of splitting any message with binary support:

For all a1, a2, ω1, ω2, a1 < a2

Ua(ω1, a1) < 0 < Ua(ω2, a2)
⇒ Va(ω1, a1)

−Uaa(ω1, a1)
≤ Va(ω2, a2)

−Uaa(ω2, a2)
. (3)

Condition (3) can be concisely phrased as the requirement that

Va(ω, a)/(−Uaa(ω, a)) goes up (or stays the same) whenever both a and

Ua(ω, a) increase and Ua(ω, a) switches from negative to positive.

Lemma 1 Under condition (3), for any message that generates a posterior

with binary support, revealing the states in the support instead of sending

6Formally, the second equality in each of the two lines below can be derived as follows.
Let y = Ua(ω, a) and a = U−1

a (ω, y) respectively. Then, holding ω fixed:

∂V (ω,U−1
a (ω, y))

∂y
= Va(ω,U−1

a (ω, y))
∂U−1

a (ω, y)

∂y
=

Va(ω,U−1
a (ω, y))

Uaa(ω,U−1
a (ω, y))

=
Va(ω, a)

Uaa(ω, a)
.
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the message weakly increases the expected utility of the sender, conditional

on the message. If the inequality between the ratios in (3) is strict, the

expected utility of the sender strictly increases.

Kolotilin (2018) shows that, under certain assumptions, it is enough to

consider only binary support messages to check for the optimality of full

disclosure.7 These assumptions are: (i) both A and Ω are compact inter-

vals in R, (ii) Ua(ω, a) and Va(ω, a) are continuous in ω and continuously

differentiable in a, (iii) for any posterior, the receiver’s expected utility is

single-peaked in a and his optimal a is interior, (iv) the receiver’s optimal

state-contingent action a∗(ω) is monotonic in ω (“single crossing”).

We have milder requirements compared to (ii), and, more importantly,

our framework does not impose (iv). So, we cannot rule out a priori that

non-binary support messages be unneeded to optimize the sender’s utility.

Nonetheless, we are able to show that (3) is a sufficient condition for full

disclosure, in the following way. First, we extend the argument of Lemma 1

to find a profitable split of any arbitrary message m. To start, we show that

we can always split m into a message with binary support and a “comple-

mentary” message that both induce the same action as m. Then, if (3) holds

as a strict inequality, it is tempting to say that a further split of the binary

support message does the job and generates a welfare-improving ultimate

7Kolotilin (2018), Proposition 1, part (ii) and Corollary 1, part (ii). See also Kolotilin
et al. (2022), Lemma 3, for a more explicit formulation. More precisely, both papers state
that, under the assumptions that allow to focus on binary-support messages, full disclosure
is optimal if and only if (1) holds for all possible ω1, ω2 and π1. (By employing (2),
Kolotilin (2018) expresses the condition in terms of Ua(ω1, a∗) and Ua(ω1, a∗) instead of
π1 and π2.) As we argued in the Introduction, compared to these papers, our contribution
consists of translating the necessary-and-sufficient but abstract condition (1) into a just
sufficient but easily interpretable/verifiable condition, and extending it to settings where
considering binary-support messages may not be enough.
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split. However, with a continuous state space, the binary-support message

may have a zero probability conditional on m, and then we cannot claim

welfare improvement. We circumvent this problem by looking at arbitrar-

ily small “neighborhoods” of the two states of the binary-support message.

This allows us to claim that (3) with the strict instead of weak inequality is

a sufficient condition for the optimality of full disclosure. The last step uses

perturbations of the sender’s utility function to claim that condition (3) is

sufficient for the optimality of full disclosure. These steps are formalized in

the proof of our main result:

Theorem 1 Under condition (3) full disclosure is optimal for the sender.

Condition (3) does not require computing the receiver’s optimal response

to a posterior and can be applied to a broad class of sender’s and receiver’s

utility functions (Section 5 provides examples). Moreover, it can be inter-

preted as a requirement of minimal alignment of interest between the sender

and the receiver. Suppose for a second that Uaa is a constant. Conditions

a1 < a2 and Ua(ω1, a1) < 0 < Ua(ω2, a2) mean that state ω2 generates pos-

itive incentives for the receiver (i.e., the incentive to increase a2) and state

ω1 generates negative incentives (i.e., the incentive to decrease a1). Then,

(3) requires that the sender’s marginal benefit from an increase in action

is (weakly) larger when such an increase is desirable for the receiver with

respect to when it is not.

“Normalization” of Va by Uaa in (3) can be understood as follows. It is

important not only how strong the sender’s utility reacts to marginal changes

in action, but also how far the action moves once the state is revealed. The

“speed of readjustment” is determined precisely by Uaa. When −Uaa(ω2, a2)
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is lower, a2 increases slower, that is, it goes a longer way until it reaches the

optimal value under ω2. This implies a higher benefit for the sender from

the revelation of ω2 if Va(ω2, a2) is positive (a higher loss if Va(ω2, a2) is

negative). Similarly, when −Uaa(ω1, a1) is lower, a1 goes a longer way, but

now this is a decrease towards the new optimal action, so there is a higher

loss from the revelation of ω1 if Va(ω1, a1) is positive (a higher benefit if

Va(ω2, a2) is negative).

Note also that condition (3) is always trivially satisfied when V = U , that

is, when the incentives of the parties are perfectly aligned. This is because

Ua(ω1, a1) < 0 < Ua(ω2, a2) implies

Ua(ω1, a1)

−Uaa(ω1, a1)
<

Ua(ω2, a2)

−Uaa(ω2, a2)
,

given that Uaa < 0.

3.2 Derivatives condition

A stronger but somewhat simpler condition than (3) is the following:

For all a1, a2, ω1, ω2, a1 < a2

Ua(ω1, a1) < Ua(ω2, a2)
⇒ Va(ω1, a1)

−Uaa(ω1, a1)
≤ Va(ω2, a2)

−Uaa(ω2, a2)
. (4)

It is stronger than (3) because it requires that the relation between the

ratios holds for a larger set of (ω1, a1), (ω2, a2) pairs, where Ua(ω1, a1) does

not have to be negative and Ua(ω2, a2) does not have to be positive.

Assuming that Uaaa, Uaaω and Vaa exist, condition (4) can be expressed
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in terms of just derivatives of U and V . To see this, notice that (4) is

equivalent to stating that, at each (ω, a), −Va(ω, a)/Uaa(ω, a) is increasing

in all directions in which both a and Ua(ω, a) increase. So, by applying

directional derivatives, one can show the lemma below. Namely, consider

the following conditions:

For each (ω, a) s.t. Uaω > 0, UaaωVa ≥ VaωUaa
Va(UaaaUaω − UaaωUaa) ≥ Uaa(VaaUaω − VaωUaa)

, (5)

and

For each (ω, a) s.t. Uaω < 0, UaaωVa ≤ VaωUaa
Va(UaaaUaω − UaaωUaa) ≤ Uaa(VaaUaω − VaωUaa)

. (6)

Lemma 2 Assume that Uaaa, Uaaω and Vaa exist. Then condition (4) is

equivalent to (5) and (6).

Notice that (5) and (6) do not cover the case Uaω = 0. This is because,

when Uaω = 0, there is simply no direction in which both a and Ua increase.

Subsection 5.2 will illustrate the application of the derivatives conditions.

3.3 Sufficient condition for suboptimality of full disclo-

sure

Subsection 3.1 delivered a sufficient condition for the optimality of full dis-

closure. We can apply almost the same scheme of reasoning to derive a
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sufficient condition for the suboptimality of full disclosure. Instead of the

existence of a welfare-improving split for any message with binary support,

the suboptimality of full disclosure requires the existence of at least one

pair of states that can be pooled (or partially pooled) so as to improve the

sender’s welfare.

Namely, fix a pair of states ω1, ω2 and consider the following condition

For all a1, a2, a1 < a2

Ua(ω1, a1) < 0 < Ua(ω2, a2)
⇒ Va(ω1, a1)

−Uaa(ω1, a1)
>

Va(ω2, a2)

−Uaa(ω2, a2)
(7)

This condition resembles (3) except that it is formulated for given ω1 and

ω2 and the sign of the inequality between the ratios flips.

Theorem 2 If there exists a pair of states ω1, ω2 ∈ suppp such that (7)

holds non-vacuously, full disclosure is suboptimal for the sender.

Notice that Theorem 2 does not imply that (3) delivers a necessary

and sufficient condition for the optimality of full disclosure. The fact that

−Va(ω1, a1)/Uaa(ω1, a1) ≤ −Va(ω2, a2)/Uaa(ω2, a2) fails to hold for some

a1, a2, ω1, ω2 such that a1 < a2 and Ua(ω1, a1) < 0 < Ua(ω2, a2) does

not mean that there will necessarily be a pair of states ω1 and ω2 for which

−Va(ω1, a1)/Uaa(ω1, a1) > −Va(ω2, a2)/Uaa(ω2, a2) for all a1, a2, such that

a1 < a2 and Ua(ω1, a1) < 0 < Ua(ω2, a2), as the relation between the ratios

may change sign as a1 and a2 change.
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4 Well-known special cases

In this section we compare our sufficient condition with the conditions de-

rived in the literature for two specific cases.

4.1 “Linear case”

Much of the literature has focused on settings in which the sender’s payoff

from sending a certain message can ultimately be represented as a function

of the posterior mean only. This is the case, for example, when the receiver’s

action only depends on the expected state, E(ω|m), and the sender’s utility

only depends on the receiver’s action: V (ω, a) = V (a). Then, given the

posterior induced by message m, the sender’s payoff is V (a∗(E(ω|m)), which

can be represented as an indirect utility function, V̂ (E(ω|m)). It is well

known that the necessary and sufficient condition for the optimality of full

disclosure in this case is that V̂ (·) is convex on the set of admissible values

for E(ω|m).

A particularly simple case is the “linear case” (Kolotilin et al. (2022)),

in which V (ω, a) = V (a) and Ua(ω, a) = ω − a.8 This shape of Ua arises,

for example, in the classical case of a quadratic loss function of the receiver:

U(ω, a) = − 1
2 (a − ω)2. Then a∗(E(ω|m)) = E(ω|m), and the convexity of

V̂ (·) is equivalent to the convexity of V (a). Following Kolotilin et al. (2022),

assume A = Ω = [0, 1]. Hence, the necessary and sufficient condition for the

optimality of full disclosure in the “linear case” can be written as

V ′(a1) ≤ V ′(a2) for any a1 ∈ (0, 1), a2 ∈ (0, 1), such that a1 < a2. (8)

8More generally, Ua(ω, a) can be any linear function of ω and a.
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In this context, our condition (3) becomes

For all a1, a2, ω1, ω2,

 a1 < a2

ω1 − a1 < 0 < ω2 − a2
⇒ V ′(a1) ≤ V ′(a2) (9)

At first sight, (9) seems weaker than (8) due to the extra restriction before

the implication sign, ω1 − a1 < 0 < ω2 − a2. Note however that if it were

truly weaker, it would be wrong, because (8) is a necessary condition. But

for any a1 ∈ (0, 1), a2 ∈ (0, 1), such that a1 < a2, one can always pick ω1

and ω2 such that ω1 − a1 < 0 < ω2 − a2. Hence, ω1 − a1 < 0 < ω2 − a2
becomes redundant in (9). The bottom line is that our sufficient condition for

optimality of full disclosure is in fact necessary and sufficient in the “linear

case”.

4.2 “Linear receiver case”

Another simple case is what Kolotilin et al. (2022) call the “linear receiver

case”: Ua(ω, a) = ω − a but V may depend on ω. As Kolotilin et al. show,

a sufficient condition for full disclosure to be optimal is that the sender’s

utility is convex in a and supermodular in (a, ω), that is Va(ω, a1)̇ ≤ Va(ω, a2)̇ for any ω and a1 < a2

Va(ω1, a)̇ ≤ Va(ω2, a)̇ for any a and ω1 < ω2

(10)

In this context, (3) becomes
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For all a1, a2, ω1, ω2,

 a1 < a2

ω1 − a1 < 0 < ω2 − a2
⇒ Va(ω1, a1) ≤ Va(ω2, a2)

(11)

Our condition is weaker because it requires Va(ω, a) to (weakly) increase only

when a grows and ω grows more than a, more precisely from being smaller to

being larger than a. In particular, our condition requires neither convexity

of V (ω, a) in a, nor its supermodularity in a and ω. For example, take the

classical setting of Crawford and Sobel (1982) with U(ω, a) = −(ω − a)2

and V (ω, a) = −(ω − a − b)2 with b ≥ 0. These preferences satisfy the

assumptions of the “simple receiver case”. The condition from Kolotilin

et al. (2022) does not hold because the sender’s utility is concave in a.

Instead, our condition is satisfied, as Va(ω1, a1) ≤ Va(ω2, a2) becomes simply

ω1 − a1 ≤ ω2 − a2. Although there is a disagreement between the sender

and the receiver regarding the optimal action in each state, full disclosure

is nonetheless optimal, and our condition sheds light on why it is so: News

about the state move the marginal utilities of the two parties in the same

direction, therefore the decrease of action under “bad” news has a lower

impact on the utility of the sender than the increase of action under “good”

news.

5 Application to a principal-agent model

In this section we explore the implications of our results in the following

principal-agent setting. An agent exerts effort a to produce output y(ω, a).

He bears the cost of effort, which is normalized to be a (in other words, a
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should be treated as disutility of effort). The agent receives wage w(y), and

the principal receives y − w(y). The agent’s and the principal’s utilities of

money are (weakly) concave functions u(·) and v(·) respectively. The agent

does not know ω, while the principal does and can send a message to the

agent before he chooses effort. So, the agent is the receiver and the principal

is the sender.

For simplicity, we assume that the wage is linear, that is, the agent re-

ceives a fixed share δ of the output. While we take the compensation scheme

for the agent as given, the conclusions about the optimality of full disclosure

will not depend on δ, as we will see. However, allowing for a non-linear wage

schedule and jointly solving for the optimal wage schedule and disclosure

policy could be an interesting avenue for future research.

We will first examine the implications of the parties’ risk-aversion for

the optimality of full disclosure, given a simple and meaningful production

function. Then we will simplify the parties’ preferences by assuming their

risk-neutrality and focus on the properties of the production function instead.

5.1 Effects of risk aversion in a simple setting

Consider the following setting:

y(ω, a) = ωaκ, κ ∈ (0, 1), w(y) = δy

u(x) =
x1−γ

1− γ
, v(x) =

x1−ρ

1− ρ

That is, both the agent and the principal exhibit CRRA with coefficients γ

and ρ respectively, where both γ and ρ are non-negative and different from 1.

Assume that the upper boundary of A is large enough to ensure the interior
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solution of the agent’s problem.

We can compute:

U(ω, a) =
1

1− γ
(δω)1−γaκ(1−γ) − a,

Ua(ω, a) = κ(δω)1−γaκ(1−γ)−1 − 1,

Uaa(ω, a) = (κ(1− γ)− 1)κ(δω)1−γaκ(1−γ)−2,

V (ω, a) =
1

1− ρ
((1− δ)ω)1−ρaκ(1−ρ),

Va(ω, a) = κ((1− δ)ω)1−ρaκ(1−ρ)−1.

Notice that the principal’s utility cannot be expressed as a function of the

posterior mean, so we cannot use the familiar convexity/non-convexity ar-

gument to establish the optimality/suboptimality of full disclosure.

With some algebra, one can derive

Va(ω, a)

−Uaa(ω, a)
= const · (Ua(ω, a) + 1)

γ−ρ
1−γ · a

1−ρ
1−γ ,

where const is a positive constant.

It is straightforward to check that the ratio is increasing as both Ua and

a go up when ρ ≤ γ < 1 or ρ ≥ γ > 1. Hence, in this case, (3) holds, and full

disclosure is optimal (see Figure 2). At the same time, under ρ < 1 < γ or

γ < 1 < ρ, the ratio is decreasing when both Ua and a increase. According

to Theorem 2, full disclosure is then suboptimal. In all other cases, the ratio

is decreasing in Ua and increasing in a. Then, neither (3) nor (7) is satisfied,

and our analysis is inconclusive in such cases.
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Figure 2.

We can notice that full disclosure fails to be optimal when ρ and γ are

on the opposite sides from 1. This is related to the fact that, in this case,

state end effort are complements for one party and substitutes for the other,

which can be seen by examining the expressions for Ua(ω, a) and Va(ω, a). In

contrast, when ρ and γ are both smaller or both greater than 1, the direction

of interaction between state and effort is the same for both parties, and, thus,

full disclosure gets a chance.

For example, consider a typical textbook situation with a risk neutral

principal (ρ = 0) and a risk averse agent. If the agent is not too risk averse
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(γ < 1), full disclosure is optimal. Since state and effort are complements

for both parties, the principal benefits more from effort exactly when the

agent has higher incentives to exert effort. Instead, when the agent becomes

too risk averse (γ > 1), state and effort become substitutes for the agent.

As a result, good news about productivity depress effort, while the principal

benefits more from effort in higher states. As a result, full disclosure ceases

to be optimal.

When the principal is highly risk averse (ρ > 1) the story is reversed: now

insufficient risk aversion of the agent (γ < 1) implies that full disclosure is

suboptimal. This is because now the principal benefits more from effort

under lower states, while for the agent state and effort are complements.

One needs to make the agent sufficiently risk averse (γ > 1) to align the

interaction of effort and state between the two parties, so that full disclosure

can be optimal.

What is interesting about the case of a highly risk averse principal is that

full disclosure can be optimal despite lowering the expected effort and can

be harmful despite raising the expected effort. Indeed, one can easily derive

that the disclosure of states in the support of any given message increases

the expected effort under γ < 1 and lowers it under γ > 1. This observa-

tion demonstrates that an increase (decrease) in the average effort due to

disclosure is not sufficient to make full disclosure optimal (suboptimal), as

the direction and strength of the interaction between state and effort in the

principal’s payoff matters too.

The role of complementarity/substitutability between the action and the

state can also be observed if one carefully looks at our general condition (3).

The interaction between the action and the state for the two parties matters
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because it affects whether Va(ω, a) comoves with Ua(ω, a) when both a and

Ua(ω, a) increase. Specifically, when action and state are complementary for

the receiver, higher Ua(ω, a) together with higher a imply higher ω, meaning

that ω2 > ω1 in (3). Then, if action and state are complementary for the

sender as well, higher ω pushes Va(ω, a) upwards for given a, thereby relaxing

(3). In contrast, if action and state are substitutes for the sender, higher ω

pushes Va(ω, a) downward for given a, thereby tightening (3). By similar

logic, if action and state are substitutes for the receiver, (3) is more (less)

likely to be satisfied when they are substitutes (complements) for the sender.

A word of caution: Although the fact that action and state are complements

(or substitutes) for both parties helps to satisfy (3), it generally implies

neither (3), nor that full disclosure is optimal.9

5.2 Risk neutral agent and principal, separable produc-

tion function

Sometimes it is more convenient to use the derivatives conditions (5) or (6)

instead of (3). This section illustrates how to apply them in a simple set-

ting. In the previous subsection, we assumed a simple production function

and played with risk aversion of the parties. Let us now assume that both

parties’ utilities are linear in output and examine different production func-

tions instead. Linearity in output for both parties would arise, for example,

in a setting where both parties are risk neutral and the wage is linear in

9For example, if y = ωϕ(a) and both parties are risk-neutral, one can show that the
sender’s payoff can be represented as a function of just the posterior mean and then
derive that full disclosure is optimal if and only if ϕ′′′(a)ϕ′(a) ≥ (ϕ′(a))2. Hence, despite
complementarity between the state and the action for both parties, full disclosure may be
suboptimal. See also Mensch (2021) for a discussion on the role of complementarities for
the optimality of full disclosure.
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output.

The utilities of the agent and the principal under these assumptions are:

U(ω, a) = δy(ω, a)− a and V (ω, a) = (1− δ)y(ω, a), respectively, where δ is

a positive constant.

Suppose10

y(ω, a) = β(ω)ϕ(a) + ξ(a), (12)

with β(·) > 0, β′(·) > 0, ϕ(·) > 0, ϕ′(·) > 0, ξ′(·) ≥ 0, ξ′′(·) + ϕ′′(·) < 0,

ξ′′(·)ϕ′′(·) ≥ 0 (ξ′′(·)+ϕ′′(·) < 0 ensures strict concavity of y(ω, a)). Assume

also ya(ω, a)|a=supA < 1/δ to ensure that the agent’s choice of a is interior.

This output function could be called “multiplicatively-additively” separable

in state and effort; we will call it just “separable”, for simplicity. Special

cases of this form (such as ω
√
a employed in the previous subsection) are

commonly used in the literature.11

Due to our assumptions on β(·) and ϕ(·), state and effort are complements

(Uaω > 0). Thus, the relevant condition is (5), which becomes:

For each (ω, a),

 yaaωya ≥ yaωyaa
yaaayaω ≥ yaaωyaa

, (13)

10y may also contain a term “α(ω)” that only depends on ω, but it would be irrelevant
for both parties’ choice problems.

11It is fair to note that our sufficient condition is not the only way to check for the
optimality of full disclosure in this setting. One can show that the sender’s payoff can
eventually be represented as a function of expected β(ω) and then try to check for the
convexity of this function. However, because the function turns out to be cumbersome,
this is a daunting task, in general. For example, it is hard to use when ϕ(·) and ξ(·) are
arbitrary concave power functions, while our condition is easy to apply, as we demonstrate
below.
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Using (12), condition (13) can be rewritten as:

For each (ω, a), ϕ′′(a)ξ′(a) ≥ ϕ′(a)ξ′′(a)

β(ω)
[
ϕ′′′(a)ϕ′(a)− (ϕ′′(a))2

]
≥ ξ′′(a)ϕ′′(a)− ξ′′′(a)ϕ′(a)

. (14)

Now let us check (14) for some specific functional forms of ϕ(·) and ξ(·). As

a first example, assume that both ϕ(·) and ξ(·) are weakly concave power

functions: ϕ(a) = haκ, ξ(a) = laτ with h > 0, l > 0, κ ∈ (0, 1], τ ∈ [0, 1],

such that κ and τ are not both 1 (to ensure the strict concavity of the

output). It is straightforward to derive that the first inequality boils down

to κ ≥ τ , and the second inequality always holds. Thus, κ ≥ τ is a sufficient

condition for the optimality of full disclosure.

As another example, consider ϕ(a) = h · ln a and ξ(a) = l · ln a. Then

the first inequality holds as an equality, and it can be easily checked that

the second one is always satisfied. Hence, full disclosure is always optimal in

such a case.

6 Conclusion

In this paper, we have addressed the following question: When is it optimal

for a privately-informed sender to commit to full disclosure of her information

to the receiver? We answer with a sufficient condition that can be interpreted

as a minimal alignment of incentives between the sender and the receiver.

Several recent papers have derived conditions for the optimality of full

disclosure in terms of the sender’s indirect utility function, assuming that it

only depends on the posterior mean. Our condition, instead, speaks directly
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to the primitive incentives of the parties and does not rely on any assumption

on how the state affects them. For this reason, it can be easily interpreted

and verified in applications.

In a principal-agent setting where the principal is privately informed of

a state that affects the productivity of the agent’s effort, the optimal effort

of a risk-averse agent depends on the entire shape of his posterior belief. As

a consequence, given a disclosure policy, the indirect utility function of the

principal does not only depend on the posterior mean, and the conditions

that require this cannot be applied. Our condition, along with an analogous

sufficient condition for suboptimality of full disclosure that we derive, can

instead be used to study when full disclosure is optimal and when it is

not, and to interpret the results in light of the risk aversion of the parties.

For instance, we find that full transparency is optimal under the common

modeling assumptions of risk-neutrality of the principal and risk-aversion of

the agent, provided that the agent is not too risk averse (CRRA with the

coefficient of relative risk aversion below one).

One interesting question is: In a principal-agent relationship, how does

the optimality of full disclosure depend on the compensation scheme for the

agent? More generally, how to jointly determine the optimal compensation

scheme and disclosure policy? This is an avenue for future research.

7 Appendix

Proof of Lemma 1. Consider two states, ω1 and ω2, and a message m

with support {ω1, ω2}. Let π1 := Pr(ω1|m), π2 := Pr(ω2|m), π2 = 1 − π1.

Let the receiver’s optimal actions in states ω1, ω2 and under message m
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be, respectively, a∗1, a
∗
2, and a∗. Due to our assumptions on U(ω, a), each

of a∗1, a
∗
2 and a∗ is unique and determined by the corresponding first-order

condition.

If a∗1 = a∗2, revealing the states is inconsequential. So, without loss of

generality, let a∗2 > a∗1. Then, from the receiver’s first-order condition under

m and strict concavity of Ua = (ω, a) in a, we get a∗2 > a∗ > a∗1.

The sender (weakly) benefits from disclosing ω1, ω2 instead of sending

m if and only if

π1V (ω1, a
∗) + π2V (ω2, a

∗) ≤ π1V (ω1, a
∗
1) + π2V (ω2, a

∗
2),

that is,

π1[V (ω1, a
∗)− V (ω1, a

∗
1)] ≤ π2[V (ω2, a

∗
2)− V (ω2, a

∗)]. (15)

Write (15) as

∫ a∗

a∗1

π1Va(ω1, a)da ≤
∫ a∗2

a∗
π2Va(ω2, a)da. (16)

Let x1(a) := π1Ua(ω1, a) and x2(a) := −π2Ua(ω2, a). Due to the first-order

conditions for the receiver under ω1, and ω2, we have: x1(a∗1) = x2(a∗2) = 0.

In addition, the receiver’s first-order condition under message m yields:

π1Ua(ω1, a
∗) + π2Ua(ω2, a

∗) = 0 (17)

⇒ x1(a∗) = x2(a∗) =: k < 0;

k < 0 comes from Ua(ωi, a
∗
i ) = 0, a∗2 > a∗ > a∗1, and strict concavity
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of Ua(ω, a) in a. Then, given that dx1 := π1Uaa(ω1, a)da and dx2 :=

−π2Uaa(ω2, a)da, (16) is equivalent to

−
∫ 0

k

Va(ω1, a1(x1))

Uaa(ω1, a1(x1))
dx1 ≤

∫ 0

k

Va(ω2, a2(x2))

−Uaa(ω2, a2(x2))
dx2, (18)

where ai(xi) is the value of a derived from the definition of xi, i.e.,

a1(x1) := U−1a (ω1, x1/π1), a2(x2) := U−1a (ω2,−x2/π2).

So, if−V (ω1, a1(x1))/Uaa(ω1, a1(x1)) ≤ −Va(ω2, a2(x2))/Uaa(ω2, a2(x2)) for

any x1 = x2 ∈ (k, 0), then (18) (hence, (15)) is satisfied.

For any x1 ∈ (k, 0), x2 ∈ (k, 0), we have a1(x1) ∈ (a∗1, a
∗), a2(x2) ∈

(a∗, a∗2), that is, a1(x1) < a2(x2) and Ua(ω1, a1(x1)) < 0 < Ua(ω2, a2(x2)).

This means that (15) holds for any ω1, ω2, and π1 if the following condition

is satisfied:

For all a1, a2, ω1, ω2, a1 < a2

Ua(ω1, a1) < 0 < Ua(ω2, a2)
⇒ Va(ω1, a1)

−Uaa(ω1, a1)
≤ Va(ω2, a2)

−Uaa(ω2, a2)
,

which is condition (3).

To ensure that the sender strictly benefits from the split, we need that

(15) holds as a strict inequality. Clearly, for this, we only need that ≤ turns

into < in the above condition.

Proof of Theorem 1. We first prove that, under (3) with strict instead of

weak inequality, full disclosure is optimal for the sender. We do so by showing

that any message m∗ with non-singleton support Ω∗ that pools states that
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induce different actions is suboptimal.

Let π denote the posterior probability distribution conditional on m∗.

Given a function f of states and actions, given a message m and an action

a, we let f̃(m, a) denote the expected value of f(ω, a) conditional on m. Let

a∗ denote the agent’s optimal action upon receiving m∗. It is obtained by

solving the first-order condition Ũa(m∗, a) = 0.

If revealing the states in the support of m∗ can change the receiver’s

action, then there exist ω∗1, ω
∗
2 ∈ Ω∗ such that12

Ua(ω∗1, a
∗) < 0 < Ua(ω∗2, a

∗).

Then, by continuity of Ua(ω, a) in ω, there exists ε > 0 such that, for all

intervals Ω1,Ω2 of length smaller than ε whose interiors contain ω∗1, ω
∗
2,

∀ (ω1, ω2) ∈ Ω1 × Ω2, Ua(ω1, a
∗) < 0 < Ua(ω2, a

∗). (19)

Note that, since ω∗1, ω
∗
2 ∈ Ω∗, π(Ω1)π(Ω2) > 0.

For all intervals Ω1,Ω2 of length smaller than ε whose interiors con-

tain ω∗1, ω
∗
2, let us decompose m∗ into three messages as follows: m1,m2

with supports contained in Ω1,Ω2, plus a complementary message mc that

induces action a∗ (i.e., Ũa(mc, a
∗) = 0) such that π(m1) > 0, π(m2) >

0, π(mc) > 0. To be precise, by “decomposition” we mean that these

messages are never sent in states outside Ω∗, and, for each ω ∈ Ω∗, con-

ditional on m∗ being drawn, one of the three messages is sent instead of

12If a state ω∗1 in the support of m∗ induces a lower action than a∗, then there must
also be a state ω∗2 in the support of m∗ that induces a higher action for a∗ in order to
satisfy the first-order condition after m∗, and vice versa.
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m∗, so that Pr(m1|m∗, ω) + Pr(m2|m∗, ω) + Pr(mc|m∗, ω) = 1. Obviously,

π(m1) + π(m2) + π(mc) = 1.

Such messages can be constructed because for any decomposition of m

into m1,m2,mc,

Ũa(m∗, a∗) ≡ π(m1)Ũa(m1, a
∗) + π(m2)Ũa(m2, a

∗) + π(mc)Ũa(mc, a
∗) = 0,

and if the supports of m1,m2 are contained in Ω1,Ω2, m1 and m2 satisfy

Ũa(m1, a
∗) < 0 and Ũa(m2, a

∗) > 0 by (19). Hence, we can always adjust

m1 and m2 so that

π(m1)Ũa(m1, a
∗)+π(m2)Ũa(m2, a

∗) = 0 (and hence Ũa(mc, a
∗) = 0). (20)

For every sequence of pairs of intervals Ω1,Ω2 that contain ω∗1 and ω∗2 in

their interiors and have length smaller than ε and converging to 0, consider

the corresponding sequence of messages. For each point (m1,m2,mc) of the

sequence, consider the relative probabilities

π(m1)

π(m1) + π(m2)
,

π(m2)

π(m1) + π(m2)
.

The sequence of these probabilities lives in the compact square [0, 1]
2
, there-

fore it has a subsequence that converges to two values p∗1, p
∗
2 ∈ [0, 1] with

p∗1 + p∗2 = 1. Let (mn
1 ,m

n
2 ,m

n
c )n>0 denote the corresponding subsequence of

messages. For each n > 0, recall from (20) that

− π(mn
1 )

π(mn
1 ) + π(mn

2 )
Ũa(mn

1 , a
∗) =

π(mn
2 )

π(mn
1 ) + π(mn

2 )
Ũa(mn

2 , a
∗).
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By continuity of Ua(ω, a∗) in ω, we have limn→∞ Ũa(mn
i , a
∗) = Ua(ω∗i , a

∗)

for each i = 1, 2. Hence, we get

−p∗1Ua(ω∗1, a
∗) = p∗2Ua(ω∗2, a

∗). (21)

Note that this also implies p∗1, p
∗
2 6= 0.

For each n > 0, call an1 , a
n
2 the receiver’s optimal actions under mn

1 ,m
n
2 ,

i.e., Ũa(mn
1 , a

n
1 ) = Ũa(mn

2 , a
n
2 ) = 0. Note that an1 < a∗ < an2 , as Ũa(mn

1 , a
∗) <

0 < Ũa(mn
2 , a
∗) and U is strictly concave in a. The sender’s expected util-

ity increases after the decomposition of m∗ into mn
1 ,m

n
2 ,m

n
c if the following

inequality holds:

Ṽ (m∗, a∗) = π(mn
1 )Ṽ (mn

1 , a
∗) + π(mn

2 )Ṽ (mn
2 , a
∗) + Pr(mn)Ṽ (mn

c , a
∗)

< π(mn
1 )Ṽ (mn

1 , a
n
1 ) + π(mn

2 )Ṽ (mn
2 , a

n
2 ) + Pr(mn)Ṽ (mn

c , a
∗).

Rewrite the inequality as

π(mn
1 )
[
Ṽ (mn

1 , a
∗)− Ṽ (mn

1 , a
n
1 )
]
< π(mn

2 )
[
Ṽ (mn

2 , a
n
2 )− Ṽ (mn

2 , a
∗)
]
,

and then as

π(mn
1 )

∫ a∗

an1

Ṽa(mn
1 , a)da < π(mn

2 )

∫ an2

a∗
Ṽa(mn

2 , a)da. (22)

Call a∗1, a
∗
2 the receiver’s optimal actions under ω∗1 and ω∗2. For each i = 2,

by continuity of Ua in ω, we have limn→∞ ani = a∗i , and by continuity of Va
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in ω, we have limn→∞ Ṽa(mn
i , a) = Va(ω∗i , a). Therefore,

lim
n→∞

π(mn
1 )

∫ a∗

an1

Ṽa(mn
1 , a)da = p∗1

∫ a∗

an1

Va(ω∗1, a)da,

lim
n→∞

π(mn
2 )

∫ an2

a∗
Ṽa(mn

2 , a)da = p∗2

∫ an2

a∗
Va(ω∗2, a)da.

So, it is enough to show

p∗1

∫ a∗

a∗1

Va(ω∗1, a)da < p∗2

∫ a∗2

a∗
Va(ω∗2, a)da; (23)

then, for sufficiently large n, the decomposition satisfies (22).

Thus, we have reduced the problem to checking if decomposing a hypo-

thetical message with binary support {ω∗1, ω∗2} and relative probabilities p∗1

and p∗2 = 1−p∗1 of the two states strictly benefits the sender. To see it, notice

that, if we replace p∗i with πi, and ω∗i with ωi, (23) and (21) become (16)

and (17) from the proof of Lemma 1, except that (23) is a strict inequality

while (16) is a weak inequality. Hence, we arrive at the same sufficient con-

dition as Lemma 1 delivers, except that (as noted at the end of the proof of

the lemma) the inequality between
Va(ω1, a1)

−Uaa(ω1, a1)
and

Va(ω2, a2)

−Uaa(ω2, a2)
becomes

strict.

The last step of the proof is showing that, if full disclosure is optimal when

condition (3) holds with strict inequality between the ratios, so it is when

it holds with weak inequality. Suppose by contradiction that full disclosure

is suboptimal and condition (3) holds. Let ∆ denote the difference between

the expected utility of the sender under the optimal communication scheme
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and under full disclosure. Fix γ ∈ (0, 1) and let

V̂ (ω, a) = V (ω, a)− γ exp (Ua(ω, a)) .

So we have

V̂a(ω, a) = Va(ω, a)− γUaa(ω, a) exp (Ua(ω, a)) ,

V̂a(ω, a)

−Uaa(ω, a)
=

Va(ω, a)

−Uaa(ω, a)
+ γ exp (Ua(ω, a)) .

Since exp (Ua(ω, a)) is strictly increasing in Ua(ω, a), the following holds:

For all a1, a2, ω1, ω2 such that Ua(ω1, a1) < Ua(ω2, a2),

Va(ω1, a1)

−Uaa(ω1, a1)
≤ Va(ω2, a2)

−Uaa(ω2, a2)
⇒ V̂a(ω1, a1)

−Uaa(ω1, a1)
<

V̂a(ω2, a2)

−Uaa(ω2, a2)
.

Therefore, if condition (3) holds with V , it holds with strict inequality with

V̂ . For sufficiently small γ, the expected utility of the sender with V and

V̂ differ in absolute value by less than ∆/2 no matter the communication

scheme, and hence full disclosure remains suboptimal with V̂ . But we have

shown above that full disclosure is optimal when condition (3) holds with

strict inequality, a contradiction.

Proof of Lemma 2. Let h(ω, a) :=
Va(ω, a)

−Uaa(ω, a)
. Condition (4) is equiv-

alent to the statement that h(ω, a) weakly increases in all directions in the

Ω × A space in which a and Ua(ω, a) jointly increase. So, let us define a

direction through a function ω(a) and take the full derivative of h(ω(a), a)
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with respect to a:

dh

da
=
−dVa
da

Uaa +
dUaa
da

Va

(Uaa)2
.

We want to show that dh
da ≥ 0, which is equivalent to

dUaa
da

Va −
dVa
da

Uaa ≥ 0, (24)

for all ω(a) such that
dUa
da

> 0, i.e., all directions in which Ua increases as

well. As
dUa
da

= Uaa + Uaω
dω

da
, we have that

dUa
da

> 0 is equivalent to


dω

da
> −Uaa

Uaω
if Uaω > 0

dω

da
< −Uaa

Uaω
if Uaω < 0

(25)

If Uaω = 0,
dUa
da

cannot be positive, as Uaa < 0 by assumption.

Taking into account that

dVa
da

= Vaa + Vaω
dω

da
dUaa
da

= Uaaa + Uaaω
dω

da

inequality (24) becomes

UaaaVa + UaaωVa
dω

da
−
(
VaaUaa + VaωUaa

dω

da

)
≡ UaaaVa − VaaUaa + (UaaωVa − VaωUaa)

dω

da
≥ 0. (26)

Consider first the case when Uaω > 0. Then, the necessary and sufficient
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conditions for (26) to hold for all ω(a) such that
dUa
da

> 0, given that by

(25)
dω

da
can take all values above −Uaa

Uaω
, are the following:

 UaaωVa − VaωUaa ≥ 0

UaaaVa − VaaUaa − (UaaωVa − VaωUaa)
Uaa
Uaω

≥ 0
,

which becomes UaaωVa ≥ VaωUaa
Va(UaaaUaω − UaaωUaa) ≥ Uaa(VaaUaω − VaωUaa)

. (27)

Consider now the case when Uaω < 0. Then, following the same steps we

get  UaaωVa ≤ VaωUaa
Va(UaaaUaω − UaaωUaa) ≤ Uaa(VaaUaω − VaωUaa)

,

Proof of Theorem 2. Suppose that there exists a pair of states ω1, ω2 with

a∗1(ω1) < a∗2(ω2) such that, for all a1, a2 satisfying a1 < a2 and Ua(ω1, a1) <

0 < Ua(ω2, a2),
Va(ω1, a1)

−Uaa(ω1, a1)
>

Va(ω2, a2)

−Uaa(ω2, a2)
.

For such states, (18) does not hold, and hence (15) does not hold, which

means that pooling those states is better than revealing them. Then, by

continuity, pooling intervals whose interiors contain (respectively) ω1 and

ω2 is better than revealing the states in the intervals. Since ω1 and ω2 are

in the support of the prior, such intervals have positive measure, and thus

full disclosure is suboptimal.
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