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Relevance and degree of the problem development

1) At present, the laws of particle physics are described by quantum gauge theories1. The Yang–
Mills theory2 describes three of the four fundamental interactions in nature (electromagnetic, elec-
troweak, and strong interactions). The electromagnetic interaction is described by the Maxwell
equations, which are a particular case of the Yang–Mills equations with the gauge (Abelian) Lie
group U(1). The electroweak interaction is described by the Yang–Mills equations with the gauge
(non-Abelian) Lie group U(1)×SU(2), the strong interaction is described by the gauge (non-Abelian)
Lie group SU(3). Problems related to the Yang–Mills equations are in the focus of attention of spe-
cialists; it is hoped that the solution of these problems in the future may lead to answers to such
fundamental problems of mathematical physics as the problem of the mass defect, the mass spectrum,
and an understanding of the confinement mechanism.

Exact solutions of the Yang–Mills equations are important for the development of gauge theory
(in particular, for describing the vacuum structure of the theory3 4 and a more complete understand-
ing of the gauge theory5). The complexity of studying the Yang–Mills equations is explained by the
non-linearity of these equations. Through the efforts of a number of researchers, some non-trivial
classes of particular solutions of the Yang–Mills equations were found: monopoles6 7 8, instantons9 10,
merons11, and others. Let us note the well-known ADHM-construction12, which allows one to com-
pletely describe the moduli space of instantons using algebraic and geometric methods. Various
particular classes of solutions of the Yang–Mills equations with SU(2) gauge group are presented in
the review13. This review contains references to a number of other works on exact solutions of the
Yang–Mills equations.

Constant (which do not depend on the point 𝑥 of the Euclidean R𝑛 or pseudo-Euclidean space R𝑝,𝑞)
1Faddeev L. D., Slavnov A. A., Gauge field: Introduction to Quantum Theory. Benjamin/Cummings, Advanced

Book Program, 1980.
2Yang C. N., Mills R. L., Conservation of isotopic spin and isotopic gauge invariance // Phys. Rev. 1954. V. 96.
3Greensite J. P., Calculation of the Yang–Mills vacuum wave functional // Nuclear Physics B, 158 (1979).
4Jackiw R., Rebbi C., Vacuum Periodicity in a Yang–Mills Quantum Theory // Phys. Rev. Lett., 37 (1976) 172.
5Nian J., Qian Y., A topological way of finding solutions to Yang–Mills equations // Commun. Theor. Phys., 72:8,

2020.
6Wu T. T., Yang C. N., Some Solutions of the Classical Isotopic Gauge Field Equations // Properties of Matter

Under Unusual Conditions, H. Mark & S. Fernbach (Eds), Interscience, 1968.
7’t Hooft G., Magnetic Monopoles in Unified Gauge Theories // Nucl.Phys. B., 79 (1974).
8Polyakov A. M., Isomeric states of quantum fields // Sov.Phys. – JETP, 41 (1975).
9Belavin A. A., Polyakov A. M., Schwartz A. S., Tyupkin Yu. S., Pseudoparticle solutions of the Yang–Mills

equations // Phys. Lett. B., 59 (1975) 85.
10Witten E., Some Exact Multipseudoparticle Solutions of Classical Yang–Mills Theory // Phys. Rev. Lett., 38

(1977) 121.
11de Alfaro V., Fubini S., Furlan G., A new classical solution of the Yang–Mills field equations // Phys. Lett. B, 65

(1976) 163.
12Atiyah M., Drinfeld V., Hitchin N., Manin Yu., Construction of instantons // Physics Letters A, 65 (1978).
13Actor A., Classical solutions of SU(2) Yang–Mills theories // Rev. Mod. Phys., 51 (1979).
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solutions of the Yang–Mills equations with zero current are considered in the works of R. Schimming
and E. Mundt14 15, where the authors write: “The following problems concerning constant Yang–Mills
fields are actual ones in our opinion: Is there a gauge- and coordinate-invariant characterization
of those Yang–Mills fields which admit constant potentials with respect to some gauge and some
coordinate system? Find as many as possible (in the ideal case: all) constant Yang–Mills fields and
classify them!”. In our work, we give a complete answer to the above problem in the case of the Lie
group SU(2). Our results for an arbitrary current are consistent with the results of the mentioned
papers for zero current. In particular, it is proved in 14 15 that in the case of zero current 𝐽 = 0

the Yang–Mills field strength is zero 𝐹 = 0 for all constant potentials 𝐴 satisfying the Yang–Mills
equations in the case of Euclidean and Lorentzian signatures. This fact is explicitly confirmed in our
work for all constant solutions of the Yang–Mills equations with SU(2) gauge symmetry, besides, in
our paper, we present solutions with non-zero field strength 𝐹 ̸= 0 and zero current 𝐽 = 0 in all other
cases 𝑝 ≥ 2 and 𝑞 ≥ 2.

Note that the constant solutions of the Yang–Mills equations are essentially non-linear solutions
and, from this point of view, are especially important for applications.

Almost all known classes of solutions of the Yang–Mills equations are considered for zero current
and, most often, only for the particular cases of Euclidean or Minkowski spaces. Instantons are
solutions of the Yang–Mills equations in Euclidean space-time (with imaginary time).

The advantage of this work is that all constant solutions are presented not only for zero current,
but also for an arbitrary nonzero current. One of the main results of this work is the representation
of all constant solutions of the Yang–Mills equations with SU(2) gauge symmetry for an arbitrary
non-Abelian current in an arbitrary pseudo-Euclidean (and Euclidean) 𝑛-dimensional space. Using
algebraic and geometric methods, we present a general solution of special-type algebraic systems of
3𝑛 cubic equations with 3𝑛 unknowns and 3𝑛 parameters. This problem is solved using the singular
value decomposition (SVD) method in the case of Euclidean spaces and the hyperbolic singular
value decomposition (HSVD) method in the case of pseudo-Euclidean spaces. Using the invariance
of the Yang–Mills equations with respect to (pseudo-)orthogonal coordinate changes and the gauge
symmetry, we choose a specific coordinate system and a specific gauge fixing for each constant solution
and obtain all constant solutions of the Yang–Mills equations in this coordinate system with this
gauge fixing, and then in the original coordinate system with the original gauge fixing. The proposed
approach essentially uses the two-sheeted covering of the orthogonal group SO(3) by the spin group
Spin(3) ∼= SU(2).

14Schimming R., On constant solutions of the Yang–Mills equations // Arch. Math., 24:2 (1988).
15Schimming R., Mundt E., Constant potential solutions of the Yang–Mills equation // J. Math. Phys., 33 (1992)

4250.
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Some classes of particular solutions of the Yang–Mills–Dirac equations are known16 17 18 19 20 21 22.
In this work, we present all constant solutions of this system of equations in the Minkowski space
using the methods of hyperbolic singular value decomposition and the two-sheeted covering of the
orthogonal group by the spin group. We also use the gauge symmetry of the Dirac equation with
respect to the pseudo-unitary group SU(2, 2)23.

The Proca equation24 is a generalization of Maxwell’s equations. It is not gauge invariant and
describes massive particles with spin 1. The Yang–Mills–Proca equations are considered, for example,
in the paper25. These equations are at the same time a generalization of the Yang–Mills equations and
the Proca equation, they are also not gauge invariant. We present all constant solutions of the system
of Yang–Mills–Proca equations in the case of the Lie group SU(2) in Euclidean and pseudo-Euclidean
spaces of arbitrary dimension and signature.

Plane wave solutions of the Yang–Mills equations are considered in the papers26 27 28 29 30 31 32 33.
We present all plane wave solutions of the Yang–Mills equations with SU(2) gauge symmetry and
zero current in Euclidean and pseudo-Euclidean spaces of arbitrary finite dimension and signature.

16Akhoury R., Weisberger W. I., Self-consistent solutions for fermions in constant SU(2) gauge potentials // Nuclear
Physics B 174(1) (1980).

17Antoine J.-P., Mahara I., Classical Yang–Mills–Dirac Equations: Qualitative Analysis of Some Solutions with a
Noncompact Symmetry Group // Letters in Mathematical Physics, 38 (1996).

18Antoine J.-P., Dabrowski L., Mahara I., Classical Yang–Mills–Dirac system with conformal symmetry: a geometric
analysis // Modern Physics Letters A, 09:37 (1994).

19Basler M., Self-Consistent Spherically Symmetric Solutions of the Yang–Mills–Dirac–Equations // Z. Phys. C –
Particles and Fields 20, (1983).

20Magg M., Static solutions of the coupled Yang–Mills–Weyl equations // Journal of Mathematical Physics 25, 1539
(1984).

21Meetz K., Finite energy solutions for interacting Yang–Mills and Dirac fields on Minkowski space // Zeitschrift
für Physik C Particles and Fields, 6 (1980).

22Rudolph G., Tok T., Volobuev I., Exact solutions in Einstein – Yang – Mills – Dirac systems // Journal of
Mathematical Physics 40, 5890 (1999).

23Marchuk N., Field theory equations, Amazon, CreateSpace, 2012 , 290 pp.
24Proca A., Wave Theory of Positive and Negative Electrons // J. Phys. Radium, 7 (1936).
25Dzhunushaliev V., Folomeev V., Dirac star with SU(2) Yang–Mills and Proca fields // Phys. Rev. D. 2020. V.

101. № 024023.
26Coleman S., Non-Abelian plane waves // Phys. Lett. B. 70, 1977
27Melia F., Lo S.,Linear plane waves solutions of the Yang – Mills theory // Phys. Lett. B. 77, 1978.
28Baseyan G. Z., Matinyan S. G., Savvidi G. K., Nonlinear plane waves in the massless Yang–Mills theory // ZhETF

Pis’ma Redaktsiiu. 1979. V. 29.
29Campbell W. B., Morgan T. A., Non-abelian plane-fronted waves // Phys. Lett. B. 84, 1979.
30Oh C., Teh R., Periodic solutions of the Yang–Mills field equations // Phys. Lett. B. 87, 1979.
31Oh C., Teh R., Nonabelian progressive waves // Journal of Mathematical Physics. 26, 1985.
32Tsapalisa A., Politisa E. P., Maintasa X. N., Diakonosa F. K., Gauss’ Law and Non-Linear Plane Waves for

Yang–Mills Theory // Phys. Rev. D. 2016. V. 93. 085003.
33Li W., Wave Solutions to the Yang–Mills Equation, 60 pp., 2017. https://www.physics.nus.edu.sg/wp-

content/uploads/sites/5/2020/08/hyp-201617-16.pdf
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2) The method of singular value decomposition34 35 (SVD) was independently proposed by E.
Beltrami36 and C. Jordan37 38 in 1873 and 1874 respectively. This method is widely used in various
applications – computer science, engineering, signal and image processing, process control, least
squares fitting of data, etc.

The hyperbolic singular value decomposition (HSVD) method was first proposed by R. Onn,
A. O. Steinhardt, and A. W. Bojanczyk in 198939 for the special case of complex matrices 𝐴𝑛×𝑁 with
𝑛 ≥ 𝑁 , rank(𝐴𝜂𝐴†) = rank(𝐴) = 𝑁 (here and below, the notation corresponds to Theorem 3)40. In
this particular case, we have 𝑑 = 0, and the matrix Σ is diagonal with all positive diagonal entries. In
the next paper41, the same three authors formulated the statement for the slightly more general case of
arbitrary 𝑛 and 𝑁 , rank(𝐴𝜂𝐴†) = rank(𝐴) = min(𝑛,𝑁). The third paper by these authors42 presents
a generalization of HSVD to the case rank(𝐴𝜂𝐴†) < rank(𝐴). In this generalization, some elements of
the matrix Σ are complex. H. Zha in his paper43 pointed out that this generalization looked unnatural
and proposed another generalization using only the matrix Σ with real entries. B. C. Levy44 presented
Zha’s statement in a different form, using a different proof. At the same time, Levy’s result is weaker:
there are additional arbitrary diagonal blocks instead of the identical blocks 𝐼𝑑 in the Σ matrix; the
explicit form of the matrix 𝜂 is not presented; only the case 𝑛 ≥ 𝑁 is considered. We also note the
interesting results of S. Hassi 45, B. N. Parlett46, and V. Šego47 48 on other generalizations of SVD to

34Forsythe G. E., Malcolm M. A., Moler C. B., Computer Methods for Mathematical Computations (Prentice Hall,
Upper Saddle River, 1977).

35Golub G., Van Loan C., Matrix Computations, JHU Press, Baltimore, 1989.
36Beltrami E., Sulle funzioni bilineari. Giomale di Matematiche ad Uso degli Studenti Delle Universita. 1873. V. 11.
37Jordan C., Memoire sur lesformes bilineaires // J. Math. Pures Appl., 2e serie. 19, 1874.
38Jordan C., Sur la reduction desformes bilineaires // Comptes Rendus de l’Academie Sciences, Paris. 78, 1874.
39Onn R., Steinhardt A. O., Bojanczyk A. W., The hyperbolic singular value decomposition and applications //

Proceedings of the 32nd Midwest Symposium on Circuits and Systems. 1989.
40For consistency throughout this work, we denote the Hermitian conjugate of the matrix 𝐴 by 𝐴†, as is customary

in the theory of Yang–Mills equations and other physical applications; mathematicians also denote the Hermitian
conjugate by 𝐴* or 𝐴𝐻 .

41Onn R., Steinhardt A. O., Bojanczyk A. W., The hyperbolic singular value decomposition and applications // IEEE
Trans. Signal Proc., 39 (1991).

42Bojanczyk A. W., Onn R., Steinhardt A. O., Existence of the hyperbolic singular value decomposition // Linear
Algebra and its Applications, 185 (1993).

43Zha H., A note on the existence of the hyperbolic singular value decomposition // Linear Algebra and its Applica-
tions. 1996; 240.

44Levy B. C., A note on the hyperbolic singular value decomposition // Linear Algebra and its Applications. 1998; 277.
45Hassi S., A Singular Value Decomposition of Matrices in a Space with an Indefinite Scalar Product // Series A,

Mathem., dissert. 79, Annales Academiae Scientiarum Fennicae, Helsinki, 1990.
46Parlett B. N., A Bidiagonal Matrix Determines Its Hyperbolic SVD to Varied Relative Accuracy // SIAM J. Matrix

Anal. Appl. 2005; 26(4).
47Šego V., Two-sided hyperbolic singular value decomposition. Dissertation. 2009; 130 pp.

https://bib.irb.hr/datoteka/465088.drsc.proc.pdf
48Šego V., Two-sided hyperbolic SVD // Linear Algebra and its Applications. 433, 2010.
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the hyperbolic case, as well as multilinear singular value decomposition49. The hyperbolic singular
value decomposition is used in signal and image processing50, engineering51, computer science52 53,
physics54, and others.

In this work, we present a new version of HSVD for an arbitrary complex (or real) matrix. The
advantage of the new version of HSVD over the previous versions (of which the most complete version
is given by H. Zha) is that it does not use hyperexchange matrices, which do not form a group. Instead
of hyperexchange matrices, we use matrices from pseudo-unitary and pseudo-orthogonal groups, which
are more natural from the theoretical and practical points of view. Another advantage of the new
version is that it contains only three invariant parameters (𝑑, 𝑥, and 𝑦) and does not contain the
other redundant parameters (𝑘 and 𝑠) from the Zha’s result. Also, the new version of HSVD naturally
includes the usual SVD as a special case and, thus, is a more general mathematical apparatus. The
need to use HSVD instead of SVD arises when we can use only one orthogonal and one pseudo-
orthogonal transformation (instead of two orthogonal ones), as, for example, in the case of the Yang–
Mills equations in pseudo-Euclidean spaces. Another result of our work is to present the relationship
between HSVD and the generalized eigenvalue problem. The new version of HSVD allows us to
reduce the problem of computing HSVD to calculating eigenvalues, eigenvectors, and generalized
eigenvectors of some auxiliary matrices in the general case. These results generalize known results
about the relationship between SVD and the eigenvalue problem.

3) In this work, we actively use and develop methods related to Clifford algebras (or geometric
algebras). Clifford algebras were proposed in 1878 by W. K. Clifford55 as a generalization of Hamil-
ton’s quaternions56 and the exterior Grassmann’s algebra57. Currently, Clifford algebras are widely
used in various sciences – physics, field theory, mechanics, space dynamics, geometry, engineering,
robotics, computer science, computer vision, signal and image processing, chemistry, etc. Clifford

49De Lathauwer L., De Moor B., Vandewalle J., A Multilinear Singular Value Decomposition // SIAM J. Matrix
Anal. Appl. 2000; 21(4).

50Bojanczyk A. W., Steinhardt A. O., A linear array for covariance differencing via hyperbolic SVD // Proc. Vol.
1152, Advances Algorithms and Architectures for Signal Processing IV, 1989.

51Kulikova M. V., Hyperbolic SVD-based Kalman filtering for Chandrasekhar recursion // IET Control Theory &
Applications. 2019; 13(10): 1525.

52Bojanczyk A. W., An implicit Jacobi-like method for computing generalized hyperbolic SVD // Linear Algebra and
its Applications. 2003; 358.

53Politi T., A continuous approach for the computation of the hyperbolic singular value decomposition // ICCS 2004.
LNCS. Springer, Berlin, Heidelberg. 2004; 3039.

54Singer S., Napoli E. D., Novaković V., Čaclović G., The LAPW method with eigendecomposition based on the
Hari–Zimmermann generalized hyperbolic SVD // SIAM J. Sci. Comput. 42 (2020).

55Clifford W. K., Application of Grassmann’s Extensive Algebra’ // American Journal of Mathematics, 1:4 (1878).
56Hamilton W. R., On quaternions, or on a new system of imaginaries in algebra // Phil. Mag. (3), 25 (1844).
57Grassmann H., Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Verlag von Otto Wigand,

Leipzig, 1844.
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algebras play a special role in the study of the Dirac equation58 59, which includes the so-called Dirac
𝛾-matrices generating the Clifford algebra of signature (1, 3). Currently, major international con-
ferences on applications of Clifford algebras in various sciences are regularly held – International
Conference on Clifford Algebras and their Applications in Mathematical Physics (the last confer-
ences were held in 2020, 2017, 2014, 2011), International Conference on Applied Geometric Algebras
in Computer Science and Engineering (2021, 2018, 2015, 2012), Alterman Conference on Geomet-
ric Algebra and Summer School on Kähler Calculus (2019, 2018, 2017, 2016), Empowering Novel
Geometric Algebra for Graphics & Engineering Worksop at the International Conference Computer
Graphics International (2022, 2021, 2020, 2019, 2018, 2017), International Conference of Advanced
Computational Applications of Geometric Algebra (2022), and others. Note recent surveys60 61 on
modern applications of Clifford algebras in various sciences, in which four articles of the author are
discussed [4, 5, 7, 11].

The real Clifford algebras 𝒞ℓ𝑝,𝑞 are isomorphic to matrix algebras over R, C, R⊕ R, H or H⊕H
depending on 𝑝 − 𝑞 mod 8 (the so-called Cartan periodicity), the complexified Clifford algebras
C⊗ 𝒞ℓ𝑝,𝑞 are isomorphic to matrix algebras over C or C⊕C depending on 𝑛 mod 2. The advantage
of using Clifford algebras in applications instead of the corresponding matrix algebras lies in the
richer mathematical apparatus, which allows us to naturally realize various algebraic and geometric
structures, spin groups62 63, spinors64 65 66 67 68, and others. In this connection, the problem arises of
transposing the known matrix methods into the Clifford algebras formalism69 70 71.

The problem of computing the inverse in Clifford algebras has been studied in many papers in the
58Dirac P. A. M., The quantum theory of electron // Proc. Roy. Soc. London Ser. A, 117 (1928).
59Dirac P. A. M., The quantum theory of electron. Part II // Proc. Roy. Soc. London Ser. A, 118 (1928).
60Hitzer E., Lavor C., Hildenbrand D., Current Survey of Clifford Geometric Algebra Applications // Mathematical

Methods in the Applied Sciences, 37 pages, (2022) viXra:2204.0062.
61Breuils S., Tachibana K., Hitzer E., New Applications of Clifford’s Geometric Algebra // Adv. Appl. Clifford

Algebras, 32, 17 (2022).
62Lawson H. B., Michelsohn M.-L., Spin geometry (Princeton, Princeton Univ. Press, 1989).
63Doran C. J. L., Hestenes D., Sommen F., Acker N., Lie Groups as Spin Groups // J. Math. Phys., 34(8), (1993).
64Cartan E., The theory of spinors, Dover Publications, 1981.
65Riesz M., Clifford Numbers and Spinors, E. F. Bolinder and P. Lounesto (Eds), Springer, Netherlands 1993.
66Rashevskii P. K., The theory of spinors, Uspekhi Mat. Nauk, 10:2(64) (1955), 3–110 [In Russian]
67Rumer Yu. B., Spinor analysis, Moscow-Leningrad, 1936 [In Russian]
68Zhelnorovich V. A., Theory of Spinors and Its Application in Physics and Mechanics, Springer Cham, 2019.
69Ab lamowicz R., The Moore–Penrose Inverse and Singular Value Decomposition of Split Quaternions // Adv. Appl.

Clifford Algebras 30, 33 (2020).
70Hitzer E., Sangwine S., Exponential Factorization and Polar Decomposition of Multivectors in 𝐶𝑙(𝑝, 𝑞), 𝑝 + 𝑞 ≤ 3

// https://vixra.org/abs/1911.0275.
71Sangwine S. J., Hitzer E., Polar Decomposition of Complexified Quaternions and Octonions // Adv. Appl. Clifford

Algebras 30, 23 (2020)

7



case of low dimensions72 73 74 75. The characteristic polynomial in Clifford algebras was considered in
the paper76. We have proposed explicit formulas for all coefficients of the characteristic polynomial
in Clifford algebras in the case of an arbitrary dimension and signature. In particular, formulas
for the determinant are obtained that make it possible to compute the inverse in Clifford algebras
of arbitrary dimension and signature. Our results are already actively used by other scientists in
symbolic computing77 78. We have applied these results to obtain an explicit solution of the Sylvester
equation79 and the Lyapunov equation in Clifford algebras. The Sylvester equation and its special
case, the Lyapunov equation, are widely used in control theory, stability theory, image and signal
processing, and mathematical modeling.

There is a known geometric analogue (or generalization) of Clifford algebras – Atiyah–Kähler
algebras80 81 82 83 84 85. We use a generalization of the Atiyah–Kähler algebras and the algebra of
differential forms, which is called the algebra of ℎ-forms. Instead of the differentials 𝑑𝑥𝜇, the Clifford
field vectors ℎ𝜇 = ℎ𝜇(𝑥) are used, which satisfy the anticommutative relations of the Clifford algebra
at each point 𝑥 ∈ R𝑝,𝑞 of (pseudo-)Euclidean space. This technique is used by us in studying spin
connection, presenting a new class of particular solutions of the Yang–Mills equations, and proving
the local Pauli’s theorem on the connection of two sets of anticommutative elements in Euclidean
space. Note that the spin connection86 is widely used in the theory of the Dirac equation on curved

72Dadbeh P., Inverse and determinant in 0 to 5 dimensional Clifford algebra // arXiv:1104.0067 (2011).
73Hitzer E., Sangwine S., Multivector and multivector matrix inverses in real Clifford algebras // Applied Mathe-

matics and Computation 311 (2017).
74Acus A., Dargys A., The Inverse of a Multivector: Beyond the Threshold 𝑝+𝑞 = 5 // Adv. Appl. Clifford Algebras

28, 65 (2018).
75Hitzer E., Sangwine S. J., Construction of Multivector Inverse for Clifford Algebras Over 2m+1-Dimensional

Vector Spaces from Multivector Inverse for Clifford Algebras Over 2m-Dimensional Vector Spaces // Adv. Appl.
Clifford Algebras 29, 29 (2019).

76Helmstetter J., Characteristic polynomials in Clifford algebras and in more general algebras // Adv. Appl. Clifford
Algebras 29, 30 (2019).

77Acus A., Dargys A., Geometric Algebra Mathematica package, https://github.com/ArturasAcus/GeometricAlgebra,
2017

78Hadfield H., Wieser E., Arsenovic A., Kern R., and The Pygae Team: pygae/clifford: v1.3.1 (2020).
https://github.com/pygae/clifford/pull/373

79Sylvester J. J., Sur l’equations en matrices 𝑝𝑥 = 𝑥𝑞 // C.R. Acad. Sci. Paris. 99(2), 1884.
80Kähler E., Randiconti di Mat. (Roma) ser. 5, 21, 1962, 425.
81Atiyah M., Vector Fields on Manifolds, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Heft,

200, 1970.
82Graf W., Differential Forms as Spinors // Ann. Inst. Henri Poincare, 29:1 (1978).
83Salingaros N. A., Wene G. P., The Clifford Algebra of Differential Forms // Acta Applicandae Mathematicae, 4

(1985).
84Ivanenko D., Landau L., Zur theorie des magnetischen electrons // Z. Phys. (I), 48 (1928).
85Obukhov Yu. N., Solodukhin S. N., Reduction of the Dirac equation and its connection with the Ivanenko-Landau-

Kähler equation // Theoretical and Mathematical Physics, 94 (1993).
86Mitskevich N. V., Physical fields in general theory of relativity, Nauka, Moscow, 1969 [In Russian]
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pseudo-Riemannian manifolds of signature (1, 3).
In this work, various Lie groups and Lie algebras in Clifford algebras are studied. Note the pa-

pers87 88 on the connection between classical matrix groups and Clifford algebras and a number of
other works, including the application of unitary, symplectic, and pseudo-unitary groups in the for-
malism of Clifford algebras in field theory and physics89 90 91 92. We generalize the Hestenes method93

(which works only in the case of dimension 4) for computing elements of spin groups, using the cor-
responding elements of orthogonal groups under a two-sheeted covering, to the case of an arbitrary
dimension and signature. The method of averaging in Clifford algebras, which was developed in the
previous papers of the author, is used.

Aim and objectives of the research

The aim of the work is to develop new algebraic and geometric methods related to the singular
value decomposition, hyperbolic singular value decomposition, Clifford algebras and their generaliza-
tions, Lie groups and Lie algebras, and their application in the study of various applied problems
related to the Yang–Mills, Yang–Mills–Dirac, Yang–Mills–Proca equations, Sylvester and Lyapunov
equations, spin groups, spin connection, Pauli’s theorem, etc.

Research objectives are:

1. Find all constant solutions of the Yang–Mills equations with SU(2) gauge symmetry with an
arbitrary non-Abelian current in an arbitrary Euclidean space R𝑛.

2. Generalize the hyperbolic singular value decomposition (HSVD) method to an arbitrary case
using pseudo-orthogonal and pseudo-unitary matrices. Find a method of computing the HSVD
in the general case.

3. Find all constant solutions of the system of Yang–Mills–Proca equations in the case of the Lie
group SU(2) in Euclidean and pseudo-Euclidean spaces of arbitrary dimension and signature.

4. Find all plane wave solutions of the Yang–Mills equations with SU(2) gauge symmetry and zero
current in Euclidean and pseudo-Euclidean spaces of arbitrary dimension and signature.

5. Solve the problem of computing the inverse, determinant, and other coefficients of the charac-
teristic polynomial in Clifford algebras of arbitrary dimension. Find a basis-free solution of the
Sylvester and Lyapunov equations in Clifford algebras of arbitrary dimension.

87Porteous I. R., Clifford Algebras and the Classical Groups, CUP, Cambridge, 1995.
88Lounesto P., Clifford Algebras and Spinors, 2nd edition, London Math. Soc. Lecture Note Ser., 286, Cambridge

Univ. Press, Cambridge, 2001.
89Benn I. M., Tucker R. W., An introduction to Spinors and Geometry with Applications in Physics (Bristol, 1987).
90Snygg J., Clifford Algebra. A computation tool for physicists, Oxford Univ. Press, Oxford, 1997.
91Marchuk N. G., Filed theory equations and Clifford algebras, 2nd edition, URSS, 2018 [In Russian]
92Marchuk N., Dyabirov R., A symplectic subgroup of a pseudounitary group as a subset of Clifford algebra //

Advances in Applied Clifford Algebras, 20:2 (2010).
93Hestenes D., Space-Time Algebra, Gordon and Breach, New York, 1966.
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6. Find a method for computing elements of spin groups (using the corresponding elements of
orthogonal groups under the two-sheeted covering) in the case of an arbitrary dimension and
signature.

7. Find an expression for the spin connection of a general form. Based on this expression, present a
new class of solutions of the Yang–Mills equations. Generalize Pauli’s theorem to the local case
when two sets of anticommutative elements depend smoothly on a point of Euclidean space.

8. Give a classification of all Lie groups and Lie algebras of specific type (Lie algebras are direct
sums of subspaces of quaternion types) in Clifford algebras; find isomorphisms to classical matrix
Lie groups and Lie algebras in the case of arbitrary dimension and signature.

9. Give a complete classification of Lie groups that define inner automorphisms that leave invariant
fundamental subspaces of Clifford algebras determined by the reversion and grade involution.

Main results to be defended

1. A classification and an explicit form of all constant solutions of the Yang–Mills equations with
SU(2) gauge symmetry with an arbitrary non-Abelian current in an arbitrary Euclidean space
R𝑛 are presented [9] .

2. The hyperbolic singular value decomposition (HSVD) is formulated [6] for the case of an ar-
bitrary complex or real matrix without using hyperexchange matrices and using only pseudo-
unitary or pseudo-orthogonal matrices. The computing HSVD is reduced to the calculation of
eigenvalues, eigenvectors, and generalized eigenvectors of some auxiliary matrices.

3. All constant solutions of the system of Yang–Mills–Proca equations are presented [1] in the case
of the Lie group SU(2) in Euclidean and pseudo-Euclidean spaces of arbitrary dimension and
signature.

4. An explicit form of all plane wave solutions of the Yang–Mills equations with SU(2) gauge
symmetry and zero current in Euclidean and pseudo-Euclidean spaces of arbitrary dimension
and signature is presented [8].

5. The problem of computing the inverse, determinant, and other coefficients of the characteristic
polynomial in Clifford algebras of arbitrary dimension is solved [5, 3]. On the basis of these
results, a basis-free solution of the Sylvester and Lyapunov equations in the Clifford algebra of
arbitrary dimension is presented [4].

6. Based on the method of averaging in Clifford algebras [14], a generalization of the Hestenes
method for computing elements of spin groups (using the corresponding elements of orthogonal
groups under the two-sheeted covering) is given [11] for the case of arbitrary dimension and
signature.
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7. An expression for the spin connection of a general form is found [17]. Based on this expression,
a new class of solutions of the Yang–Mills equations is presented [13], and a generalization of
the Pauli’s theorem on the connection of two sets of anticommutative elements is given [10] in
the local case, when both sets smoothly depend on a point of Euclidean space.

8. A complete classification of Lie groups and Lie algebras of specific type (Lie algebras are direct
sums of subspaces of quaternion types) in Clifford algebras is given [12, 16, 18]; isomorphisms
to classical matrix Lie groups and Lie algebras are proved in the case of arbitrary dimension
and signature.

9. A complete classification of Lie groups is given [7, 2] that define inner automorphisms that
leave invariant fundamental subspaces of Clifford algebras determined by the reversion and
grade involution.

Scientific novelty

All the main results of the dissertation listed above were obtained personally by the author and
are new.

Research methods

The dissertation uses various methods of algebra, geometry, mathematical physics, computational
mathematics, differential geometry, representation theory, theory of Lie groups and Lie algebras.
In particular, the following methods are used: the methods of singular value decomposition and
hyperbolic singular value decomposition of an arbitrary real or complex matrix, two-sheeted coverings
of orthogonal groups by spin groups in the case of arbitrary dimension and signature, the method of
averaging from the representation theory of finite groups, the Faddeev – LeVerrier method and the
method of Bell polynomials for computing coefficients of characteristic polynomial, etc.

Theoretical and practical significance

The dissertation has theoretical and practical significance. The practical significance of the work
is manifested in the use of the results in such applied fields as physics, engineering, computer sci-
ence, robotics, control theory, stability theory, signal and image processing, mathematical modeling,
symbolic computation. The results are used in the study of the problems related to the Yang–Mills
equations, Yang–Mills–Dirac equations, Yang–Mills–Proca equations, spin groups, spin connection,
the Sylvester and Lyapunov equations, the Pauli’s theorem, and others.

Reliability of the obtained results

Reliability of the results of the dissertation is confirmed by the given rigorous mathematical proofs
of the corresponding statements.

Approbation of the obtained results

The main results of the dissertation were reported at the following international conferences and
symposiums:

11



1. International Conference “Computer Graphics International 2022”, Empowering Novel Geomet-
ric Algebra for Graphics & Engineering Workshop (2022, Geneva, Switzerland, online), talk
“On Noncommutative Vieta Theorem in Geometric Algebras”;

2. The 8th Conference on Applied Geometric Algebras in Computer Science and Engineering
(2021, Brno, Czech Republic, online), talk “On Lie groups defining inner automorphisms that
leave invariant fundamental subspaces of geometric algebra”;

3. International Conference “Marchuk Scientific Readings 2021” (2021, Academgorodok, Novosi-
birsk, Russia, online), talk “Hyperbolic SVD for obtaining solutions of SU(2) Yang–Mills equa-
tions”;

4. International Conference “Mathematical Physics, Dynamical Systems and Infinite-Dimensional
Analysis 2021” (2021, Dolgoprudny, Russia, online), talk “On constant solutions of the Yang–
Mills–Dirac equations”;

5. International Conference “Computer Graphics International 2020”, Empowering Novel Geomet-
ric Algebra for Graphics & Engineering Workshop (2020, Geneva, Switzerland, online), talk
“On basis-free solution to Sylvester equation in geometric algebra”;

6. International Conference on Mathematical Physics in Memory of Academic V. S. Vladimirov
(2020, Moscow, Russia, online), talk “On some equations modeling the Yang–Mills equations”;

7. The 12th International Conference on Clifford Algebras and Their Applications in Mathematical
Physics (2020, Hefei, China, online), talk “On determinant, other characteristic polynomial
coefficients, and inverses in Clifford algebras”;

8. 9th International Conference on Mathematical Modeling (2020, Yakutsk, Russia, online), talk
“On determinant and inverses in Clifford algebras”;

9. International Bogolyubov Conference “Problems of theoretical and mathematical physics” (2019,
Moscow — Dubna, Russia), talk “On constant solutions of SU(2) Yang–Mills equations”;

10. IX-th International Conference “Solitons, Collapses and Turbulence: Achievements, Devel-
opments and Perspectives” (SCT–19) in honor of Vladimir Zakharov’s 80th birthday (2019,
Yaroslavl, Russia), talk “Classification of all constant solutions of SU(2) Yang–Mills equations
with arbitrary current”;

11. 4th Alterman Conference on Computational and Geometric Algebra-cum-Workshop on Kähler
Calculus (2019, Manipal, India), plenary talk “Method of averaging in Clifford algebras and
applications”;

12. International Conference “Mathematical Physics, Dynamical Systems and Infinite-Dimensional
Analysis” (2019, Dolgoprudny, Russia), talk “On constant solutions of SU(2) Yang–Mills equa-
tions”;
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13. The 2nd JNMP Conference on Nonlinear Mathematical Physics (2019, Santiago, Chile), talk
“On constant solutions of SU(2) Yang–Mills equations”;

14. International Symposium on Wen-Tsun Wu’s Academic Thought and Mathematics Mechaniza-
tion (2019, Beijing, China), talk “SVD and hyperbolic SVD for obtaining solutions of SU(2)
Yang–Mills equations”;

15. International Conference on Mathematical Methods in Physics (2019, Marrakesh, Morocco),
talk “Method of averaging in Clifford algebras and applications”;

16. International Conference “Modern Mathematical Physics. Vladimirov-95” (2018, Moscow, Rus-
sia), talk “On some solutions of Yang–Mills equations with SU(2) gauge symmetry”;

17. The 7th Conference on Applied Geometric Algebras in Computer Science and Engineering (2018,
Campinas, Brazil), talk “Calculation of elements of spin groups using method of averaging in
Clifford’s geometric algebra”;

18. Operators, Functions, and Systems of Mathematical Physics Conference (2018, Baku, Azerbai-
jan), talk “On some solutions of Yang–Mills equations with SU(2) gauge symmetry”;

19. The 11th International Conference on Clifford Algebras and Their Applications in Mathematical
Physics (2017, Ghent, Belgium), talk “Yang–Mills equations and Clifford algebras”;

20. International Conference on Mathematical Modeling (2017, Yakutsk, Russia), talk “Local gen-
eralized Pauli’s theorem and one field equation”;

21. The 2nd French-Russian Conference “Random Geometry and Physics” (2016, Paris, France),
talk “On connection between two sets of higher-dimensional gamma matrices and a primitive
field equation”;

22. International Conference “New trends in Mathematical and Theoretical Physics” (2016, Moscow,
Russia), talk “Covariantly constant solutions of the Yang–Mills equations”;

23. VI Russian-Armenian Conference on Mathematical Analysis, Mathematical Physics and An-
alytical Mechanics (2016, Rostov-on-Don, Russia), talk “Covariantly constant solutions of the
Yang–Mills equations”;

24. Alterman Conference on Geometric Algebra and Summer School on Kähler Calculus (2016,
Brasov, Romania), talk “On some Lie groups containing Spin groups in Clifford algebra”;

25. Physical and Mathematical Problems of Advanced Technology Development, devoted to the
50th Anniversary of the Scientific and Educational Division “Fundamental Sciences” of the
Bauman Moscow State Technical University (2014, Moscow, Russia), talk “New class of gauge
invariant solutions of Yang–Mills equations”;

26. The Fourth International Conference on Mathematical Physics and Its Applications (2014,
Samara, Russia), talk “Method of contractions in Clifford algebras with applications to the field
theory equations”;
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27. The 10th International Conference on Clifford Algebras and their Applications in Mathematical
Physics (2014, Tartu, Estonia), talk “The method of contractions in Clifford algebras”.

In addition, the main results of the dissertation were presented at the following seminars

1. Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute, Russian
Academy of Sciences (2021, Moscow, chairman: Corr. memb. of RAS I. V. Volovich);

2. Seminar “Infinite dimensional analysis and mathematical physics”, Department of Function the-
ory and functional analysis , Faculty of Mechanics and Mathematics, Lomonosov Moscow State
University (2021, 2023, Moscow, chairmen: Prof. O. G. Smolyanov, Prof. E. T. Shavgulidze);

3. V. P. Mikhailov seminar, Steklov Mathematical Institute, Russian Academy of Sciences (2018,
Moscow, chairmen: Prof. A. K. Gushchin, Prof. V. V. Zharinov);

4. Seminar “Supercomputer simulations in science and engineering”, MIEM HSE (2023, Moscow,
chairman: Prof. L. N. Shchur);

5. Seminar “Perspective Mathematical Technologies”, Laboratory of Mathematical Methods in
Natural Science, HSE University (2023, Moscow, chairman: Prof. V. G. Danilov);

6. Seminar “Quantum mathematical physics”, Research and Educational Center of Steklov Mathe-
matical Institute, Russian Academy of Sciences (2013–2015, Moscow, chairmen: Academician V.
V. Kozlov, Corr. memb. of RAS I. V. Volovich, Prof. S. V. Kozyrev, Prof. A. S. Trushechkin);

7. Seminar of Mathematics Mechanization Research Center, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences (2019, Beijing, China, chairman: Prof. Hongbo Li);

8. Spectral Theory and PDE Seminar, Pontificia Universidad Catolica de Chile (2019, Santiago,
Chile, chairman: Prof. Georgi Raikov).

Based on the results of the dissertation, the author delivered the following special courses:

1. semi-annual course at the Steklov Mathematical Institute of Russian Academy of Sciences “Foun-
dations of the theory of Clifford algebras and spinors” (spring 2021);

2. semi-annual course at the Steklov Mathematical Institute of Russian Academy of Sciences “Clif-
ford algebras and field theory equations” (autumn 2014);

3. open optional course at the HSE University “Foundations of the theory of Clifford algebras and
spinors” (autumn 2020);

4. elective course for master students at the HSE University (magolego) “Foundations of the theory
of Clifford algebras” (spring 2020, spring 2022);

5. lecture course “Introduction to the Theory of Clifford Algebras” at the International Sum-
mer School “Hypercomplex Numbers, Lie Groups, and Applications”, Varna, Bulgaria (summer
2017).
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The research of the author on the topic of the dissertation was supported by grants:

1. grant 16-31-00347 of the Russian Foundation for Basic Research “Algebraic and geometric meth-
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algebras” (Individual Research Project), 2017–2018, head of project;

3. grant 18-71-00010 of the Russian Science Foundation “Algebraic and geometric methods in the
theory of nonlinear equations of mathematical physics”, 2018–2020, head of project;

4. grant 20-11-00009 of the Russian Foundation for Basic Research “Theory of Clifford algebras
and spinors”, book publishing, 2020, head of project;

5. grant 20-01-003 of the HSE Academic Fund Programme “Computational problems in Clifford
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Publications

The main results of the dissertation is published in 20 articles [1] – [20] in peer-reviewed scientific
journals (all indexed in WoS/Scopus; 12 papers in Q1 – Q2; 14 papers without co-authors)94. There
is also a peer-reviewed95 book [21] and 5 peer-reviewed articles [22] – [26] in conference proceedings
(all indexed in WoS/Scopus).96
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94Requirements of the HSE Dissertation Council: at least 10 articles (WoS/Scopus); at least 4 articles in Q1 – Q2;
at least 3 articles without co-authors (or the applicant is the main co-author).

95There are two anonymous reviews by RFBR experts.
96All the papers [1] – [26] were published after 2015, while the PhD thesis was defended in 2013, so the main results

of these papers are not used twice to obtain a degree.
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Personal contribution of the author

All results presented in the dissertation and submitted for defense were obtained by the author
personally.

Structure and volume of the dissertation

The dissertation consists of an introduction, 3 chapters, appendices, a conclusion, and a bibliog-
raphy. The volume of the dissertation without appendices is 249 pages, the bibliography includes 202
titles.

The main content of the work

In Chapter 1, we study the Yang–Mills equations with SU(2) gauge symmetry using the methods
of singular value decomposition (SVD) and hyperbolic singular value decomposition (HSVD). The
systems of Yang–Mills–Dirac and Yang–Mills–Proca equations are also studied.

In Section 1.1, the Yang–Mills equations are considered in the pseudo-Euclidean space R𝑝,𝑞 (or,
as a special case, the Euclidean space R𝑛):

𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝜌[𝐴𝜇, 𝐴𝜈 ] =: 𝐹𝜇𝜈 , (1)

𝜕𝜇𝐹
𝜇𝜈 − 𝜌[𝐴𝜇, 𝐹

𝜇𝜈 ] = 𝐽𝜈 , (2)

where 𝐴𝜇 ∈ gT1, 𝐽𝜈 ∈ gT1, 𝐹𝜇𝜈 = −𝐹𝜈𝜇 ∈ gT2 are tensor fields (potential, current, and strength
of the Yang–Mills filed, respectively) with values in the Lie algebra g = su(2) (the case of this Lie
algebra is considered below), 𝜌 is a real constant (coupling constant). The metric tensor of R𝑝,𝑞 is
given by the diagonal matrix

𝜂 = (𝜂𝜇𝜈) = (𝜂𝜇𝜈) = diag(1, . . . , 1⏟  ⏞  
𝑝

,−1, . . . ,−1⏟  ⏞  
𝑞

), 𝑝+ 𝑞 = 𝑛. (3)

We can represent the potential and current of the Yang–Mills field in the form

𝐴𝜇 = 𝐴𝜇𝑎𝜏
𝑎, 𝐽𝜇 = 𝐽𝜇𝑎𝜏

𝑎, 𝐴𝜇𝑎, 𝐽
𝜇
𝑎 ∈ R, (4)
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using the basis 𝜏𝑎 = 𝜎𝑎

2𝑖
, 𝑎 = 1, 2, 3 of the Lie algebra su(2), where 𝜎𝑎, 𝑎 = 1, 2, 3, are the Pauli

matrices. From (1), (2), we get

𝜕𝜇(𝜕
𝜇𝐴𝜈𝑘 − 𝜕𝜈𝐴𝜇𝑘)− 𝜌𝜖𝑎𝑏𝑘(𝜕𝜇(𝐴

𝜇
𝑎𝐴

𝜈
𝑏) + 𝜂𝜇𝛼𝐴

𝛼
𝑎(𝜕

𝜇𝐴𝜈𝑏 − 𝜕𝜈𝐴𝜇𝑏)) + 𝜌2𝜂𝜇𝛼𝐴
𝛼
𝑐𝐴

𝜇
𝑎𝐴

𝜈
𝑏𝜖
𝑎𝑏
𝑑𝜖
𝑐𝑑
𝑘 = 𝐽𝜈𝑘. (5)

We can consider (5) as the system of equations for elements of two matrices 𝐴 = (𝐴𝜇𝑘) and 𝐽 = (𝐽𝜈𝑘)

of size 𝑛 × 3. Further, we assume that the matrix of current 𝐽 is given or depends on the unknown
matrix 𝐴 in some given way (for example, in the case of the Yang–Mills–Proca equations, we have
𝐽 = −𝑚2𝐴). Using the invariance of the Yang–Mills equations (5) with respect to pseudo-orthogonal
transformations of coordinates from the group O(𝑝, 𝑞), the gauge invariance of these equations with
respect to transformations from the Lie group SU(2), and the two-sheeted covering of the special
orthogonal group SO(3) by the spin group Spin(3) ∼= SU(2), we obtain the following theorem.

Theorem 1 The system of equations (5) is invariant under the transformations

𝐴→ 𝐴 = 𝑄𝐴, 𝐽 → 𝐽 = 𝑄𝐽, 𝑄 ∈ O(𝑝, 𝑞), (6)

and the transformations

𝐴→ 𝐴 = 𝐴𝑃 + Ω, 𝐽 → 𝐽 = 𝐽𝑃, 𝑃 = (𝑝𝑎𝑏 ) ∈ SO(3), (7)

where
Ω = Ω(𝑃 ) = (𝜔𝜇𝑑), 𝜔𝜇𝑑 =

1

8
𝛿𝑎𝑐𝜖

𝑏𝑘
𝑑(𝑝

𝑐
𝑘𝜕

𝜇𝑝𝑎𝑏 − 𝑝𝑎𝑘𝜕
𝜇𝑝𝑐𝑏).

Combining these two transformations, we conclude that the system (5) is invariant under the trans-
formation

𝐴→ 𝑄𝐴𝑃 + Ω, 𝐽 → 𝑄𝐽𝑃, 𝑄 ∈ O(𝑝, 𝑞), 𝑃 ∈ SO(3), Ω = Ω(𝑃 ). (8)

The system of Yang–Mills equations for constant (independent of 𝑥 ∈ R𝑝,𝑞) solutions takes the form

𝜌2𝜂𝜇𝛼𝐴
𝛼
𝑐𝐴

𝜇
𝑎𝐴

𝜈
𝑏 𝜖
𝑎𝑏
𝑑𝜖
𝑐𝑑
𝑘 = 𝐽𝜈𝑘 (9)

with the global symmetry

𝐴→ 𝑄𝐴𝑃, 𝐽 → 𝑄𝐽𝑃, 𝑄 ∈ O(𝑝, 𝑞), 𝑃 ∈ SO(3). (10)

Multiplying a matrix on the left by a pseudo-orthogonal matrix and on the right by an orthogonal
matrix allows you to transform it to a canonical form with a large number of zeros. In the case of
the Euclidean space R𝑛, we use the singular value decomposition, and in the case of the pseudo-
Euclidean space R𝑝,𝑞, 𝑝 ̸= 0, 𝑞 ̸= 0, we use the hyperbolic singular value decomposition. Further, for
convenience, we set the coupling constant equal to 𝜌 = 1.
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In Section 1.2, we present all constant solutions of the Yang–Mills equations with SU(2) gauge
symmetry in an arbitrary Euclidean space R𝑛. Using the invariance of the Yang–Mills equations under
the orthogonal transformations of coordinates and gauge invariance, we choose a specific system of
coordinates and a specific gauge fixing for each constant current and obtain all constant solutions of
the Yang–Mills equations in this system of coordinates with this gauge fixing, and then in the original
system of coordinates with the original gauge fixing. We use the singular value decomposition method
and the method of two-sheeted covering of the orthogonal group by the spin group.

We use the singular value decomposition, namely, for an arbitrary real matrix 𝐴 ∈ R𝑛×𝑁 there exist
orthogonal matrices 𝐿 ∈ O(𝑛) and 𝑅 ∈ O(𝑁) such that 𝐿T𝐴𝑅 = 𝐷, where 𝐷 = diag(𝜇1, . . . , 𝜇𝑠) ∈
R𝑛×𝑁 , 𝑠 = min(𝑛,𝑁), where singular values can always be arranged in descending order 𝜇1 ≥ 𝜇2 ≥
· · · ≥ 𝜇𝑠 ≥ 0.

Theorem 2 Let 𝐴 = (𝐴𝜈𝑘), 𝐽 = (𝐽𝜈𝑘) satisfy the system of 3𝑛 cubic equations in R𝑛

𝐴𝜇𝑐𝐴
𝜇
𝑎𝐴

𝜈
𝑏𝜖
𝑎𝑏
𝑑𝜖
𝑐𝑑
𝑘 = 𝐽𝜈𝑘, 𝜈 = 1, . . . , 𝑛, 𝑘 = 1, 2, 3. (11)

Then there exist matrices 𝑃 ∈ SO(3) and 𝑄 ∈ O(𝑛) such that 𝑄𝐴𝑃 is diagonal. For all such matrices
𝑃 and 𝑄, the matrix 𝑄𝐽𝑃 is also diagonal, and the system (11) takes the following form under the
transformation (10):

−𝑎1((𝑎2)2 + (𝑎3)
2) = 𝑗1, −𝑎2((𝑎1)2 + (𝑎3)

2) = 𝑗2, −𝑎3((𝑎1)2 + (𝑎2)
2) = 𝑗3 (12)

in the case 𝑛 ≥ 3, and

−𝑎1(𝑎2)2 = 𝑗1, −𝑎2(𝑎1)2 = 𝑗2 (13)

in the case 𝑛 = 2. We denote the diagonal elements of the matrix 𝑄𝐴𝑃 by 𝑎1, 𝑎2, 𝑎3 (or 𝑎1, 𝑎2) and
the diagonal elements of the matrix 𝑄𝐽𝑃 by 𝑗1, 𝑗2, 𝑗3 (or 𝑗1, 𝑗2).

The system (12) has the following symmetry.

Lemma 1 If the system (12) has a solution (𝑎1, 𝑎2, 𝑎3), where 𝑎1 ̸= 0, 𝑎2 ̸= 0, 𝑎3 ̸= 0, then this
system also has a solution (𝐾

𝑎1
, 𝐾
𝑎2
, 𝐾
𝑎3
), where 𝐾 = (𝑎1𝑎2𝑎3)

2
3 .

Further in the dissertation, the general solution of the written systems of equations is presented
in terms of the potential 𝐴, the strength 𝐹 , and the invariant 𝐹 2 := 𝐹𝜇𝜈𝐹

𝜇𝜈 of the Yang–Mills
field. All these expressions depend only on the singular values 𝑗1, 𝑗2, 𝑗3 of the matrix of current 𝐽 .
Thus, a complete classification of all constant solutions of the Yang–Mills equations with SU(2) gauge
symmetry in an arbitrary Euclidean space R𝑛 is given. The number of non-zero solutions depending
on the matrix of current for the case of an arbitrary Euclidean space R𝑛, 𝑛 ≥ 2 is given in Table 1;
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Table 1: All constant solutions of the Yang–Mills equations with SU(2) gauge symmetry in R𝑛.

𝑛 rank(𝐽) additional conditions rank(𝐴) 𝐴 𝐹 𝐹 2

𝑛 ≥ 2 0 0 𝐴 = 0 𝐹 = 0 𝐹 2 = 0

𝑛 ≥ 2 0 1 ∞ solutions 𝐹 = 0 𝐹 2 = 0

𝑛 ≥ 2 1 ∅ ∅ ∅
𝑛 ≥ 2 2 2 1 solution 𝐹 ̸= 0 𝐹 2 ̸= 0

𝑛 ≥ 3 3 𝑗1 = 𝑗2 = 𝑗3 3 1 solution 𝐹 ̸= 0 𝐹 2 ̸= 0

𝑛 ≥ 3 3 𝑗1 = 𝑗2 > 𝑗3 3 2 solutions 𝐹 ̸= 0 two 𝐹 2 ̸= 0

𝑛 ≥ 3 3 𝑗3 > 𝑗1 = 𝑗2 3 2 solutions 𝐹 ̸= 0 one 𝐹 2 ̸= 0

𝑛 ≥ 3 3 all different 𝑗1, 𝑗2, 𝑗3 3 2 solutions 𝐹 ̸= 0 two 𝐹 2 ̸= 0

explicit formulas for 𝐴, 𝐹 , and 𝐹 2 in all cases are given in the dissertation. It is shown that the
number (0, 1 or 2) of constant solutions of the Yang–Mills equations in terms of the strength of the
Yang–Mills field depends on the singular values of the matrix of current.

In Section 1.3, we present a new formulation of the hyperbolic singular value decomposition
(HSVD) for an arbitrary complex (or real) matrix without using hyperexchange matrices, which
do not form a group. In our formulation, we use only matrices from pseudo-unitary (or pseudo-
orthogonal) groups. We show that the computing the HSVD in the general case reduces to the
calculation of eigenvalues, eigenvectors, and generalized eigenvectors of some auxiliary matrices. The
new formulation is more natural and useful for applications. It naturally includes the ordinary singular
value decomposition (SVD).

Let us give a formulation for the complex case. To obtain a real analogue, it suffices to replace
the Hermitian conjugation † with the transposition T, the unitary U(𝑁) and pseudo-unitary groups
U(𝑝, 𝑞) with the corresponding orthogonal O(𝑁) and pseudo-orthogonal groups O(𝑝, 𝑞).

Theorem 3 Assume 𝜂 (3), 𝑝 + 𝑞 = 𝑛. For an arbitrary matrix 𝐴 ∈ C𝑛×𝑁 , there exist 𝑅 ∈ U(𝑁)

and 𝐿 ∈ U(𝑝, 𝑞) such that

𝐿†𝐴𝑅 = Σ, Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋𝑥 O O O

O O 𝐼𝑑 O

O O O O

O 𝑌𝑦 O O

O O 𝐼𝑑 O

O O O O

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭ 𝑝

⎫⎪⎪⎬⎪⎪⎭ 𝑞

∈ R𝑛×𝑁 , (14)

where the first block has 𝑝 rows and the second block has 𝑞 rows, 𝑋𝑥 and 𝑌𝑦 are diagonal matrices of the
corresponding sizes 𝑥 and 𝑦 with all positive, uniquely defined diagonal entries (up to permutation).
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Moreover, choosing 𝑅, one can swap columns of the matrix Σ. Choosing 𝐿, one can swap rows
in individual blocks but not across blocks. Thus, we can always arrange the diagonal elements of the
matrices 𝑋𝑥 and 𝑌𝑦 in decreasing (or increasing) order.

Here we have
𝑑 = rank(𝐴)− rank(𝐴†𝜂𝐴), 𝑥+ 𝑦 = rank(𝐴†𝜂𝐴),

and 𝑥 is the number of positive eigenvalues of the matrix 𝐴†𝜂𝐴, 𝑦 is the number of negative eigenvalues
of the matrix 𝐴†𝜂𝐴.

The diagonal elements of the matrices 𝑋, 𝑌 are called hyperbolic singular values.

Theorem 4 For the matrices 𝐴, 𝑅, 𝐿, and Σ from Theorem 3, we have the following equations:

(𝐴†𝜂𝐴)𝑅 = 𝑅(ΣT𝜂Σ), (𝜂𝐴𝐴†)𝐿 = 𝐿(𝜂ΣΣT). (15)

The hyperbolic singular values of the matrix 𝐴 are the square roots of the modules of the eigenvalues of
the matrix 𝐴†𝜂𝐴. The columns of the matrix 𝑅 are eigenvectors of the matrix 𝐴†𝜂𝐴. The columns of
the matrix 𝐿 are eigenvectors of the matrix 𝜂𝐴𝐴† (in the case 𝑑 = 0) or eigenvectors and generalized
eigenvectors of the matrix 𝜂𝐴𝐴† (in the case 𝑑 ̸= 0).

In Section 1.4, we present all constant solutions of the Yang–Mills equations with SU(2) gauge
symmetry in pseudo-Euclidean space R𝑝,𝑞 of arbitrary dimension and signature.

Using the global symmetry (10) and the hyperbolic singular value decomposition (Theorem 3) for
the real case, one of the matrices 𝐴 = (𝐴𝜈𝑘), 𝐽 = (𝐽𝜈𝑘) can be reduced to canonical form; the second
matrix will have a specific form due to the equations (9). For each constant current, a specific system
of coordinates and a specific gauge fixing are selected; the general solution of the corresponding
systems of equations is given in terms of the potential 𝐴, the strength 𝐹 , and the invariant 𝐹 2 of the
Yang–Mills field. All these expressions depend only on the hyperbolic singular values of the matrix
of current 𝐽 and the parameters 𝑥𝐽 , 𝑦𝐽 , 𝑑𝐽 . Thus, a complete classification of all constant solutions
of the Yang–Mills equations with SU(2) gauge symmetry in an arbitrary pseudo-Euclidean space R𝑝,𝑞

is given.
In Section 1.5, we present a complete classification of all constant solutions of the Yang–Mills–

Dirac equations with SU(2) gauge symmetry in Minkowski space R1,3. An explicit form of all solutions
is presented. We use our results on the hyperbolic singular value decomposition for two different cases
(for the real matrix 𝐴 ∈ R4×3 of the potential of the Yang–Mills field and for the complex matrix
Ψ ∈ C4×2).

The system of Yang–Mills–Dirac equations with SU(2) gauge symmetry has the form

𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − [𝐴𝜇, 𝐴𝜈 ] =: 𝐹𝜇𝜈 , (16)
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𝜕𝜇𝐹
𝜇𝜈 − [𝐴𝜇, 𝐹

𝜇𝜈 ] = 𝐽𝜈 := 𝑖Ψ†𝛾0𝛾𝜈Ψ− 1

2
tr(𝑖Ψ†𝛾0𝛾𝜈Ψ)𝐼2, (17)

𝑖𝛾𝜇(𝜕𝜇Ψ+Ψ𝐴𝜇)−𝑚Ψ = 0, 𝑚 ≥ 0, (18)

for unknown Ψ : R1,3 → C4×2 and 𝐴𝜇 : R1,3 → su(2). The system for constant solutions (Ψ ∈
C4×2, 𝐴 ∈ R4×3) of the system (16), (17), (18) takes the form

[𝐴𝜇, [𝐴
𝜇, 𝐴𝜈 ]] = 𝐽𝜈 := 𝑖Ψ†𝛾0𝛾𝜈Ψ− 1

2
tr(𝑖Ψ†𝛾0𝛾𝜈Ψ)𝐼2, (19)

𝑖𝛾𝜇Ψ𝐴𝜇 −𝑚Ψ = 0, 𝑚 ≥ 0. (20)

Using the basis of the Lie algebra su(2), we write the current and potential of the Yang–Mills field
in the form

𝐴𝜇 = 𝐴𝜇𝑎𝜏
𝑎, 𝐽𝜇 = 𝐽𝜇𝑎𝜏

𝑎, 𝐴𝜇𝑎, 𝐽
𝜇
𝑎 : R1,3 → R, 𝐴 := (𝐴𝜇𝑎), 𝐽 := (𝐽𝜇𝑎).

We prove that the system (19), (20) is invariant under the global transformation

Ψ → Ψ𝑆, 𝐴→ 𝑄𝐴𝑃, 𝐽 → 𝑄𝐽𝑃, 𝑆 ∈ SU(2), 𝑄 ∈ O(1, 3), 𝑃 ∈ SO(3), (21)

where 𝑃 and 𝑆 are related as the two-sheeted covering

𝑆−1𝜏𝑎𝑆 = 𝑝𝑎𝑏𝜏
𝑏, 𝑃 = (𝑝𝑎𝑏 ) ∈ SO(3), ±𝑆 ∈ SU(2). (22)

Using the hyperbolic singular value decomposition for the matrix 𝐴, we obtain the explicit form of
all solutions (Ψ, 𝐴) of the system of equations (19), (20). We also give explicit formulas for the
corresponding current 𝐽 = (𝐽𝜇𝑎) and the invariant 𝐹 2 = 𝐹𝜇𝜈𝐹

𝜇𝜈 . Some solutions are found using
the pseudo-unitary symmetry of the Dirac equation, namely, the system of equations (19), (20) is
invariant with respect to the transformation

Ψ → 𝑊−1Ψ, 𝛾𝜇 → 𝑊−1𝛾𝜇𝑊, 𝑊 ∈ SU(2, 2). (23)

Non-constant solutions of the Yang–Mills–Dirac equations are considered in the form of perturbation
theory series, where constant solutions are taken as the zero approximation.

In Section 1.6, we present an explicit form of all constant solutions of the system of Yang–Mills–
Proca equations in the case of the Lie group SU(2) in an arbitrary pseudo-Euclidean space R𝑝,𝑞 (or
Euclidean space R𝑛). The Yang–Mills–Proca equations have the form

𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝜌[𝐴𝜇, 𝐴𝜈 ] =: 𝐹𝜇𝜈 , (24)

𝜕𝜇𝐹
𝜇𝜈 − 𝜌[𝐴𝜇, 𝐹

𝜇𝜈 ] +𝑚2𝐴𝜈 = 0, (25)

where 𝐴𝜇 ∈ gT1, 𝐽𝜈 ∈ gT1, 𝐹𝜇𝜈 = −𝐹𝜈𝜇 ∈ gT2, 𝜌 ∈ R. These equations differ from the Yang–Mills
equations (1), (2) by the presence of the term 𝑚2𝐴𝜈 with mass 𝑚 ∈ R. If the mass is zero 𝑚 = 0, then
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the equations (24), (25) coincide with the Yang–Mills equations (1), (2) with zero current 𝐽𝜈 = 0.
The case 𝑚 ̸= 0 is considered below. For constant solutions of the Yang–Mills–Proca equations, we
obtain the system of equations

𝜂𝜇𝛼𝐴
𝛼
𝑐𝐴

𝜇
𝑎𝐴

𝜈
𝑏𝜖
𝑎𝑏
𝑑𝜖
𝑐𝑑
𝑘 = −𝜆𝐴𝜈𝑘, 𝜆 =

𝑚2

𝜌2
> 0. (26)

which can be interpreted as the system of Yang–Mills equations for constant solutions with the current
𝐽𝜈 = −𝜆𝐴𝜈 depending on the potential 𝐴𝜈 .

We use the invariance of the system of equations (26) with respect to the global transformation

𝐴→ 𝑄𝐴𝑃, 𝑄 ∈ O(𝑝, 𝑞), 𝑃 ∈ SO(3), (27)

and the hyperbolic singular value decomposition for the matrix 𝐴. A classification of all solutions of
the system of equations (26) in terms of 𝐴, 𝐹 , and 𝐹 2 is given.

Non-constant solutions of the Yang–Mills–Proca equations are considered in the form of series of
perturbation theory, where the constant solutions of the Yang–Mills–Proca equations are taken as the
zero approximation. For the first approximation, systems of linear partial differential equations with
constant coefficients are written out, which can be further investigated using well-known numerical
methods and methods of the theory of linear partial differential equations.

In Section 1.7, solutions of the system of Yang–Mills equations (1), (2) in the form of plane
waves are considered:

𝐴𝜇 = 𝑎𝜇𝑒
𝜌, where 𝜌 = 𝜉𝜇𝑥

𝜇, (28)

and 𝑎𝜇 are components of a constant covector field with values in the Lie algebra g. In the case of the
Lie algebra g = su(2), zero current 𝐽 = 0, and (pseudo-)Euclidean space R𝑝,𝑞, 𝑝+ 𝑞 = 𝑛 of arbitrary
finite dimension 𝑛, we get the system of equations

𝜉𝜇𝜉
𝜇𝑎𝜈 − 𝜉𝜈𝜉𝜇𝑎

𝜇 = 0, (29)

−3𝜉𝜇[𝑎
𝜇, 𝑎𝜈 ] = 0, (30)

[𝑎𝜇, [𝑎
𝜇, 𝑎𝜈 ]] = 0. (31)

An explicit form of all solutions {𝑎𝜇, 𝜉𝜈} of this system of equations is given, the solutions are written
out with an appropriate choice of the coordinate system and gauge (any solution of the system of
equations under study can be reduced using (pseudo-)orthogonal change of coordinates and gauge
fixing to those solutions).

Thus, all plane wave solutions of the system of Yang–Mills equations with SU(2) gauge symmetry
in an arbitrary pseudo-Euclidean (or Euclidean) space with zero current are presented. Solutions of
the Yang–Mills equations in the form of a sum of waves are also discussed. Three systems of equations
are proposed that model the Yang–Mills equations, which may be of interest for further research.
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In Chapter 2, a number of applied problems of the theory of Clifford algebras are solved.
In Section 2.1, we consider the notion of the real Clifford algebra (or geometric algebra) 𝒞ℓ𝑝,𝑞,𝑟.

The generators of the algebra 𝒞ℓ𝑝,𝑞,𝑟 satisfy the relations 𝑒𝑎𝑒𝑏 + 𝑒𝑏𝑒𝑎 = 2𝜂𝑎𝑏𝑒, where

𝜂 = (𝜂𝑎𝑏) = diag(1, . . . , 1⏟  ⏞  
𝑝

,−1, . . . ,−1⏟  ⏞  
𝑞

, 0, . . . , 0⏟  ⏞  
𝑟

), 𝑝+ 𝑞 + 𝑟 = 𝑛. (32)

An arbitrary element of the real Clifford algebra 𝑈 ∈ 𝒞ℓ𝑝,𝑞,𝑟 can be written as

𝑈 = 𝑢𝑒+
𝑛∑︁
𝑎=1

𝑢𝑎𝑒𝑎 +
∑︁
𝑎<𝑏

𝑢𝑎𝑏𝑒𝑎𝑏 + · · ·+ 𝑢1...𝑛𝑒1...𝑛 =
∑︁
𝐴

𝑢𝐴𝑒𝐴, (33)

where 𝑢, 𝑢𝑎, 𝑢𝑎𝑏, . . . , 𝑢1...𝑛 ∈ R are real numbers, 𝑒 is the identity element, 𝑒𝐴 = 𝑒𝑎1...𝑎𝑘 = 𝑒𝑎1 · · · 𝑒𝑎𝑘
are the basis elements, 1 ≤ 𝑎1 < · · · < 𝑎𝑘 ≤ 𝑛. Here and below, by 𝐴 we denote an arbitrary ordered
multi-index of length from 0 to 𝑛.

In the particular case 𝑟 = 0, we get non-degenerate real Clifford algebra 𝒞ℓ𝑝,𝑞 := 𝒞ℓ𝑝,𝑞,0. In the
particular case 𝑝 = 𝑞 = 0, 𝑟 = 𝑛, we obtain Grassmann algebra (or exterior algebra) Λ𝑛 := 𝒞ℓ0,0,𝑛.
We also consider the complexified Clifford algebra C⊗𝒞ℓ𝑝,𝑞,𝑟. An arbitrary element 𝑈 ∈ C⊗𝒞ℓ𝑝,𝑞,𝑟 has
the form (33), where 𝑢, 𝑢𝑎, 𝑢𝑎𝑏, . . . , 𝑢1...𝑛 ∈ C are complex numbers. We also consider the complex
Clifford algebra, for which the matrix (32) can been considered diagonal with 𝑝 ones and 𝑟 zeroes on
the diagonal, 𝑝+ 𝑟 = 𝑛, 𝑞 = 0. In the case when the reasoning is valid for a real or complex Clifford
algebra of arbitrary signature (including degenerate cases), we simply write 𝒞ℓ, thus emphasizing that
the reasoning does not depend on the signature.

The Clifford algebra 𝒞ℓ can be represented as the direct sum 𝒞ℓ =
⨁︀𝑛

𝑘=0 𝒞ℓ𝑘, where subspaces
𝒞ℓ𝑘 := {

∑︀
𝐴:|𝐴|=𝑘 𝑢𝐴𝑒𝐴} are linear spans of the basis elements 𝑒𝐴 with multi-indices of length |𝐴| =

𝑘 and are called subspaces of grade 𝑘. We consider projection operations onto these subspaces
⟨𝑈⟩𝑘 =

∑︀
𝐴:|𝐴|=𝑘 𝑢𝐴𝑒𝐴 ∈ 𝒞ℓ𝑘. We consider three classical operations of conjugation: grade involution̂︀ , reversion (anti-involution) ̃︀ , and superposition of these two operations ̂︀̃︀ , which is called the

Clifford conjugation (anti-involution):

̂︀𝑈 =
𝑛∑︁
𝑘=0

(−1)𝑘⟨𝑈⟩𝑘, ̃︀𝑈 =
𝑛∑︁
𝑘=0

(−1)
𝑘(𝑘−1)

2 ⟨𝑈⟩𝑘,
̃︀̂︀𝑈 =

𝑛∑︁
𝑘=0

(−1)
𝑘(𝑘+1)

2 ⟨𝑈⟩𝑘, (34)

̂︂𝑈𝑉 = ̂︀𝑈 ̂︀𝑉 , ̃︂𝑈𝑉 = ̃︀𝑉 ̃︀𝑈, ̂︂̃︂𝑈𝑉 =
̂︀̃︀𝑉 ̂︀̃︀𝑈, ∀𝑈, 𝑉 ∈ 𝒞ℓ. (35)

The Clifford algebra 𝒞ℓ is a 𝑍2-graded algebra (or, using physical terminology, a superalgebra),
namely, it can be represented as a direct sum of even and odd subspaces

𝒞ℓ = 𝒞ℓ(0) ⊕ 𝒞ℓ(1), 𝒞ℓ(𝑗) :=
⨁︁

𝑘=𝑗 mod 2

𝒞ℓ𝑘 = {𝑈 ∈ 𝒞ℓ | ̂︀𝑈 = (−1)𝑗𝑈}, 𝒞ℓ(𝑖)𝒞ℓ(𝑗) ⊂ 𝒞ℓ(𝑖+𝑗) mod 2, 𝑖, 𝑗 = 0, 1.
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The Clifford algebra 𝒞ℓ can be represented as a direct sum of four subspaces 𝒞ℓ = 𝒞ℓ0⊕𝒞ℓ1⊕𝒞ℓ2⊕𝒞ℓ3,
which are defined as

𝒞ℓ𝑗 :=
⨁︁

𝑘=𝑗 mod 4

𝒞ℓ𝑘 = {𝑈 ∈ 𝒞ℓ | ̂︀𝑈 = (−1)𝑗𝑈, ̃︀𝑈 = (−1)
𝑗(𝑗−1)

2 𝑈}, 𝑗 = 0, 1, 2, 3,

and are called subspaces of quaternion types 0, 1, 2, 3. In the case of the real Clifford algebra 𝒞ℓ𝑝,𝑞,
we denote these four subspaces by 0, 1, 2, and 3. We have the properties

[k,k] ⊆ 2, [k,2] ⊆ k, 𝑘 = 0, 1, 2, 3, [0,1] ⊆ 3, [0,3] ⊆ 1, [1,3] ⊆ 0; (36)

{k,k} ⊆ 0, {k,0} ⊆ k, 𝑘 = 0, 1, 2, 3, {1,2} ⊆ 3, {1,3} ⊆ 2, {2,3} ⊆ 1 (37)

with respect to the operations of commutator [𝑈, 𝑉 ] := 𝑈𝑉 − 𝑉 𝑈 and anticommutator {𝑈, 𝑉 } :=

𝑈𝑉 + 𝑉 𝑈 .
In Section 2.2 , we solve the problem of computing the inverse in Clifford algebras of arbitrary

dimension. We present basis-free formulas of different types (explicit and recursive) for the determi-
nant and all other coefficients of the characteristic polynomial, adjugate, and inverse in real Clifford
algebras of arbitrary dimension and signature. The formulas involve only operations of multiplication,
summation, and conjugation operations and do not use the corresponding matrix representations. We
use methods from the matrix theory and computational methods (the Faddeev–LeVerrier method;
the method for computing the coefficients of the characteristic polynomial using Bell polynomials).

Let us consider the complexified Clifford algebra and isomorphisms to matrix algebras

𝛽 : C⊗ 𝒞ℓ𝑝,𝑞 →𝑀𝑝,𝑞 :=

{︃
Mat(2

𝑛
2 ,C), if 𝑛 is even,

Mat(2
𝑛−1
2 ,C)⊕Mat(2

𝑛−1
2 ,C), if 𝑛 is odd.

(38)

We have the exact representation 𝛽 of the complexified Clifford algebra C⊗𝒞ℓ𝑝,𝑞 of the corresponding
(minimum) dimension over C or C⊕ C depending on 𝑛 mod 2. We have 𝒞ℓ𝑝,𝑞 ⊂ C⊗ 𝒞ℓ𝑝,𝑞, and 𝒞ℓ𝑝,𝑞
is isomorphic to some subalgebra of 𝑀𝑝,𝑞. Then we can consider the representation (of non-minimal
dimension)

𝛽 : 𝒞ℓ𝑝,𝑞 → 𝛽(𝒞ℓ𝑝,𝑞) ⊂𝑀𝑝,𝑞. (39)

Let us denote the dimension of the representation (39) by 𝑁 := 2[
𝑛+1
2

].

Lemma 2 For the matrix representation 𝛽 (39), we have

1

𝑁
tr(𝛽(𝑈)) = ⟨𝑈⟩0 ∈ 𝒞ℓ0𝑝,𝑞.

Let us introduce the concept of determinant

Det(𝑈) := det(𝛽(𝑈)) ∈ 𝒞ℓ0𝑝,𝑞 ≡ R, 𝑈 ∈ 𝒞ℓ𝑝,𝑞 (40)

in the real Clifford algebra 𝒞ℓ𝑝,𝑞 using the representation 𝛽 (39).
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Lemma 3 The determinant (40) is well defined, i.e. does not depend on the choice of the represen-
tation 𝛽 (39).

We call the characteristic polynomial of the element 𝑈 ∈ 𝒞ℓ𝑝,𝑞

𝜙𝑈(𝜆) := Det(𝜆𝑒− 𝑈) = det(𝛽(𝜆𝑒− 𝑈)) = det(𝜆𝐼𝑁 − 𝛽(𝑈)) (41)

= 𝜆𝑁 − 𝐶(1)𝜆
𝑁−1 − · · · − 𝐶(𝑁−1)𝜆− 𝐶(𝑁) ∈ 𝒞ℓ0𝑝,𝑞,

where the coefficients of the characteristic polynomial 𝐶(𝑗) = 𝐶(𝑗)(𝑈) ∈ 𝒞ℓ0𝑝,𝑞 ≡ R, 𝑗 = 1, . . . , 𝑁 can
be interpreted as scalars or as elements of grade 0. We have 𝐶(𝑗)(𝑈) = 𝑐(𝑗)(𝛽(𝑈)), where 𝑐(𝑗)(𝛽(𝑈))
are the coefficients of the characteristic polynomial of the matrix 𝛽(𝑈). In particular, we have
𝐶(𝑁) = −Det(𝑈) and 𝐶(1) = tr(𝛽(𝑈)) = 𝑁⟨𝑈⟩0.

Let us call the adjugate of an element 𝑈 ∈ 𝒞ℓ𝑝,𝑞 the element Adj(𝑈) ∈ 𝒞ℓ𝑝,𝑞 such that Adj(𝑈)𝑈 =

𝑈Adj(𝑈) = Det(𝑈). The inverse exists 𝑈−1 = Adj(𝑈)
Det(𝑈)

if and only if Det(𝑈) ̸= 0. The expression
Adj(𝑈) is an analogue of the adjugate of matrix, namely, we have Adj(𝑈) = adj(𝛽(𝑈)).

Theorem 5 Let us consider an arbitrary element of the Clifford algebra 𝑈 ∈ 𝒞ℓ𝑝,𝑞, 𝑛 = 𝑝+ 𝑞. Let us
denote 𝑁 := 2[

𝑛+1
2

]. Consider the following set of elements of the Clifford algebra 𝑈(𝑘), 𝑘 = 1, . . . , 𝑁 ,
and the set of scalars 𝐶(𝑘) ∈ 𝒞ℓ0𝑝,𝑞 ≡ R, 𝑘 = 1, . . . , 𝑁 :

𝑈(1) := 𝑈, 𝑈(𝑘+1) := 𝑈(𝑈(𝑘) − 𝐶(𝑘)), 𝐶(𝑘) =
𝑁

𝑘
⟨𝑈(𝑘)⟩0 ∈ 𝒞ℓ0𝑝,𝑞 ≡ R. (42)

Then 𝐶(𝑘) are the coefficients of the characteristic polynomial,

Det(𝑈) = −𝑈(𝑁) = −𝐶(𝑁) = 𝑈(𝐶(𝑁−1) − 𝑈(𝑁−1)) ∈ 𝒞ℓ0𝑝,𝑞 ≡ R (43)

is the determinant of the element 𝑈 , and

Adj(𝑈) = 𝐶(𝑁−1) − 𝑈(𝑁−1) ∈ 𝒞ℓ𝑝,𝑞 (44)

is the adjoint element for 𝑈 .
Alternatively, using the set of scalars

𝑆(𝑘) := (−1)𝑘−1𝑁(𝑘 − 1)!⟨𝑈𝑘⟩0 ∈ 𝒞ℓ0𝑝,𝑞 = R, 𝑘 = 1, . . . , 𝑁, (45)

we have

𝐶(𝑘) =
(−1)𝑘+1

𝑘!
𝐵𝑘(𝑆(1), 𝑆(2), 𝑆(3), . . . , 𝑆(𝑘)), 𝑘 = 1, . . . , 𝑁, (46)

Det(𝑈) = −𝐶(𝑁) =
1

𝑁 !
𝐵𝑁(𝑆(1), 𝑆(2), 𝑆(3), . . . , 𝑆(𝑁)), (47)

Adj(𝑈) =
𝑁−1∑︁
𝑘=0

(−1)𝑁+𝑘−1

𝑘!
𝑈𝑁−𝑘−1𝐵𝑘(𝑆(1), 𝑆(2), 𝑆(3), . . . , 𝑆(𝑘)), (48)
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where we use the complete Bell polynomials with the following two equivalent definitions

𝐵𝑘(𝑥1, . . . , 𝑥𝑘) :=
𝑘∑︁
𝑖=1

∑︁ 𝑘!

𝑗1!𝑗2! · · · 𝑗𝑘−𝑖+1!
(
𝑥1
1!
)𝑗1(

𝑥2
2!
)𝑗2 · · · ( 𝑥𝑘−𝑖+1

(𝑘 − 𝑖+ 1)!
)𝑗𝑘−𝑖+1

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 𝐶1
𝑘−1𝑥2 𝐶2

𝑘−1𝑥3 · · · 𝑥𝑘

−1 𝑥1 𝐶1
𝑘−2𝑥2 · · · 𝑥𝑘−1

0 −1 𝑥1 · · · 𝑥𝑘−2

· · · · · · · · · · · · · · ·
0 0 0 · · · 𝑥1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the second sum is taken over all sequences 𝑗1, 𝑗2, . . . , 𝑗𝑘−𝑖+1 of nonnegative integers satisfying
the conditions 𝑗1 + 𝑗2 + · · ·+ 𝑗𝑘−𝑖+1 = 𝑖 and 𝑗1 + 2𝑗2 + 3𝑗3 + · · ·+ (𝑘 − 𝑖+ 1)𝑗𝑘−𝑖+1 = 𝑘.

Theorem 6 In the case 𝑛 = 1, we have

𝐶(1) = 𝑈 + ̂︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, Det(𝑈) = −𝐶(2) = 𝑈 ̂︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, Adj(𝑈) = ̂︀𝑈, 𝑈−1 =
̂︀𝑈

Det(𝑈)
.

In the case 𝑛 = 2, we have

𝐶(1) = 𝑈 +
̂︀̃︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, Det(𝑈) = −𝐶(2) = 𝑈

̂︀̃︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, Adj(𝑈) =
̂︀̃︀𝑈, 𝑈−1 =

̂︀̃︀𝑈
Det(𝑈)

.

In the case 𝑛 = 3, we have

𝐶(1) = 𝑈 + ̂︀𝑈 + ̃︀𝑈 +
̂︀̃︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, 𝐶(2) = −(𝑈 ̃︀𝑈 + 𝑈 ̂︀𝑈 + 𝑈

̂︀̃︀𝑈 + ̂︀𝑈 ̂︀̃︀𝑈 + ̃︀𝑈 ̂︀̃︀𝑈 + ̂︀𝑈 ̃︀𝑈) ∈ 𝒞ℓ0𝑝,𝑞,

𝐶(3) = 𝑈 ̂︀𝑈 ̂︀̃︀𝑈 + 𝑈 ̃︀𝑈 ̂︀̃︀𝑈 + 𝑈 ̂︀𝑈 ̃︀𝑈 + ̂︀𝑈 ̃︀𝑈 ̂︀̃︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞, Det(𝑈) = −𝐶(4) = 𝑈 ̂︀𝑈 ̃︀𝑈 ̂︀̃︀𝑈 ∈ 𝒞ℓ0𝑝,𝑞,

Adj(𝑈) = ̂︀𝑈 ̃︀𝑈 ̂︀̃︀𝑈, 𝑈−1 =
̂︀𝑈 ̃︀𝑈 ̂︀̃︀𝑈

Det(𝑈)
.

In the case 𝑛 = 4, we have

𝐶(1) = 𝑈 +
̂︀̃︀𝑈 + ̂︀𝑈△ + ̃︀𝑈△ ∈ 𝒞ℓ0𝑝,𝑞, 𝐶(2) = −(𝑈

̂︀̃︀𝑈 + 𝑈 ̂︀𝑈△ + 𝑈 ̃︀𝑈△ +
̂︀̃︀𝑈 ̂︀𝑈△ +

̂︀̃︀𝑈 ̃︀𝑈△ + (̂︀𝑈 ̃︀𝑈)△) ∈ 𝒞ℓ0𝑝,𝑞,

𝐶(3) = 𝑈
̂︀̃︀𝑈 ̂︀𝑈△ + 𝑈

̂︀̃︀𝑈 ̃︀𝑈△ + 𝑈(̂︀𝑈 ̃︀𝑈)△ +
̂︀̃︀𝑈(̂︀𝑈 ̃︀𝑈)△ ∈ 𝒞ℓ0𝑝,𝑞, Det(𝑈) = −𝐶(4) = 𝑈

̂︀̃︀𝑈(̂︀𝑈 ̃︀𝑈)△ ∈ 𝒞ℓ0𝑝,𝑞,

Adj(𝑈) =
̂︀̃︀𝑈(̂︀𝑈 ̃︀𝑈)△, 𝑈−1 =

̂︀̃︀𝑈(̂︀𝑈 ̃︀𝑈)△
Det(𝑈)

.

Here and below, we use the additional operation of conjugation

𝑈△ =
𝑛∑︁
𝑘=0

(−1)𝐶
4
𝑘⟨𝑈⟩𝑘 =

∑︁
𝑘=0,1,2,3 mod 8

⟨𝑈⟩𝑘 −
∑︁

𝑘=4,5,6,7 mod 8

⟨𝑈⟩𝑘, 𝑛 ≥ 4.

In Section 2.3, we consider the Sylvester equation, a linear equation of the form 𝐴𝑋 −𝑋𝐵 = 𝐶

for known 𝐴,𝐵,𝐶 and unknown 𝑋. The Sylvester equation and its special case, the Lyapunov
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equation (with 𝐵 = −𝐴†), are widely used in various applications – image processing, control theory,
stability theory, signal processing, mathematical modeling, etc. We study the Sylvester equation in
the Clifford algebras 𝒞ℓ𝑝,𝑞 and present a basis-free solution of this equation in the case of arbitrary
dimension 𝑛 = 𝑝+ 𝑞.

Let us first present statements for the particular cases 𝑛 = 4, 5 with explicit formulas, and then a
statement for arbitrary 𝑛 with recursive formulas for the solution.

Theorem 7 Let us consider the Sylvester equation in the algebra 𝒞ℓ𝑝,𝑞, 𝑝+ 𝑞 = 4

𝐴𝑋 −𝑋𝐵 = 𝐶, (49)

for known 𝐴,𝐵,𝐶 ∈ 𝒞ℓ𝑝,𝑞 and uknown 𝑋 ∈ 𝒞ℓ𝑝,𝑞.
If 𝑄 := 𝐷

̂︀̃︀𝐷( ̂︀𝐷 ̃︀𝐷)△ ̸= 0, then

𝑋 =
̂︀̃︀𝐷( ̂︀𝐷 ̃︀𝐷)△𝐹

𝑄
, (50)

where

𝐷 := 𝐴4 − 𝐴3(𝐵 +
̂︀̃︀𝐵 + ̂︀𝐵△ + ̃︀𝐵△) + 𝐴2(𝐵

̂︀̃︀𝐵 +𝐵 ̂︀𝐵△ +𝐵 ̃︀𝐵△ +
̂︀̃︀𝐵 ̂︀𝐵△ +

̂︀̃︀𝐵 ̃︀𝐵△ + ( ̂︀𝐵 ̃︀𝐵)△) (51)

− 𝐴(𝐵
̂︀̃︀𝐵 ̂︀𝐵△ +𝐵

̂︀̃︀𝐵 ̃︀𝐵△ +𝐵( ̂︀𝐵 ̃︀𝐵)△ +
̂︀̃︀𝐵( ̂︀𝐵 ̃︀𝐵)△) +𝐵

̂︀̃︀𝐵( ̂︀𝐵 ̃︀𝐵)△,

𝐹 := 𝐴3𝐶 − 𝐴2𝐶(
̂︀̃︀𝐵 + ̂︀𝐵△ + ̃︀𝐵△) + 𝐴𝐶(

̂︀̃︀𝐵 ̂︀𝐵△ +
̂︀̃︀𝐵 ̃︀𝐵△ + ( ̂︀𝐵 ̃︀𝐵)△)− 𝐶

̂︀̃︀𝐵( ̂︀𝐵 ̃︀𝐵)△. (52)

Theorem 8 Let us consider the Sylvester equation in the algebra 𝒞ℓ𝑝,𝑞, 𝑝+ 𝑞 = 5,

𝐴𝑋 −𝑋𝐵 = 𝐶 (53)

for known 𝐴,𝐵,𝐶 ∈ 𝒞ℓ𝑝,𝑞 and unknown 𝑋 ∈ 𝒞ℓ𝑝,𝑞.
If 𝑄 := 𝐷 ̃︀𝐷( ̂︀𝐷 ̂︀̃︀𝐷)△(𝐷 ̃︀𝐷( ̂︀𝐷 ̂︀̃︀𝐷)△)△ ̸= 0, then

𝑋 =
̃︀𝐷( ̂︀𝐷 ̂︀̃︀𝐷)△(𝐷 ̃︀𝐷( ̂︀𝐷 ̂︀̃︀𝐷)△)△𝐹

𝑄
, (54)

where

𝐷 := 𝐴4 − 𝐴3(𝐵 + ̃︀𝐵 + ̂︀𝐵△ +
̃︀̂︀𝐵△

) + 𝐴2(𝐵 ̃︀𝐵 +𝐵 ̂︀𝐵△ +𝐵
̃︀̂︀𝐵△

+ ̃︀𝐵 ̂︀𝐵△ + ̃︀𝐵 ̃︀̂︀𝐵△

+ ( ̂︀𝐵 ̃︀̂︀𝐵)△) (55)

− 𝐴(𝐵 ̃︀𝐵 ̂︀𝐵△ +𝐵 ̃︀𝐵 ̃︀̂︀𝐵△

+𝐵( ̂︀𝐵 ̃︀̂︀𝐵)△ + ̃︀𝐵( ̂︀𝐵 ̃︀̂︀𝐵)△) +𝐵 ̃︀𝐵( ̂︀𝐵 ̃︀̂︀𝐵)△,

𝐹 := 𝐴3𝐶 − 𝐴2𝐶( ̃︀𝐵 + ̂︀𝐵△ +
̃︀̂︀𝐵△

) + 𝐴𝐶( ̃︀𝐵 ̂︀𝐵△ + ̃︀𝐵 ̃︀̂︀𝐵△

+ ( ̂︀𝐵 ̃︀̂︀𝐵)△)− 𝐶 ̃︀𝐵( ̂︀𝐵 ̃︀̂︀𝐵)△. (56)

Theorem 9 Let us consider the Sylvester equation in the algebra 𝒞ℓ𝑝,𝑞, 𝑝+ 𝑞 = 𝑛,

𝐴𝑋 −𝑋𝐵 = 𝐶 (57)
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for known 𝐴,𝐵,𝐶 ∈ 𝒞ℓ𝑝,𝑞 and unknown 𝑋 ∈ 𝒞ℓ𝑝,𝑞.
Let us denote 𝑁 := 2[

𝑛+1
2

]. If 𝑄 := 𝑑(𝑁) ̸= 0, then

𝑋 =
(𝐷(𝑁−1) − 𝑑(𝑁−1))𝐹

𝑄
, where 𝐷 := −

𝑁∑︁
𝑗=0

𝐴𝑁−𝑗𝑏(𝑗), 𝐹 :=
𝑁∑︁
𝑗=1

𝐴𝑁−𝑗𝐶(𝐵(𝑗−1) − 𝑏(𝑗−1)), (58)

and the following expressions are defined recursively (𝑘 = 1, . . . , 𝑁):

𝑏(𝑘) =
𝑁

𝑘
⟨𝐵(𝑘)⟩0, 𝐵(𝑘+1) = 𝐵(𝐵(𝑘) − 𝑏(𝑘)), 𝐵(0) := 0, 𝑏(0) := −1,

𝑑(𝑘) =
𝑁

𝑘
⟨𝐷(𝑘)⟩0, 𝐷(𝑘+1) = 𝐷(𝐷(𝑘) − 𝑑(𝑘)), 𝐷(0) := 0, 𝑑(0) := −1.

Note that 𝐷 (58) is the characteristic polynomial of the element 𝐵 with the substitution of 𝐴.
In Section 2.4, we present a method for computing elements of spin groups in the case of arbitrary

dimension using the corresponding elements of orthogonal groups under a two-sheeted covering. This
method generalizes the Hestenes method, which works only in the case of dimension 4. We use the
method of averaging in Clifford algebras proposed earlier by the author.

Let us consider the pseudo-orthogonal group O(𝑝, 𝑞), 𝑝+ 𝑞 = 𝑛:

O(𝑝, 𝑞) := {𝑃 ∈ Mat(𝑛,R) |𝑃T𝜂𝑃 = 𝜂}. (59)

Denote by 𝑝𝐴𝐵 = 𝑝𝑎1...𝑎𝑘𝑏1...𝑏𝑘
, 𝑎1 < · · · < 𝑎𝑘, 𝑏1 < · · · < 𝑏𝑘, minors of the matrix 𝑃 = (𝑝𝑎𝑏 ). In the case of

empty multi-indices 𝐴 and 𝐵, the corresponding minor is equal to 1 by definition. The group O(𝑝, 𝑞)

has the following subgroups:

O+(𝑝, 𝑞) := {𝑃 ∈ O(𝑝, 𝑞) | 𝑝1...𝑝1...𝑝 ≥ 1}, O−(𝑝, 𝑞) := {𝑃 ∈ O(𝑝, 𝑞) | 𝑝𝑝+1...𝑛
𝑝+1...𝑛 ≥ 1},

SO(𝑝, 𝑞) := {𝑃 ∈ O(𝑝, 𝑞) | det𝑃 = 1}, SO+(𝑝, 𝑞) := {𝑃 ∈ SO(𝑝, 𝑞) | 𝑝1...𝑝1...𝑝 ≥ 1}.

For example, in the particular case of Minkowski space we have the following groups: Lorentz group
O(1, 3), special (or proper) Lorentz group SO(1, 3), orthochronous Lorentz group O+(1, 3), ortho-
chorous Lorentz group O−(1, 3), special orthochronous Lorentz group SO+(1, 3).

The subset of all invertible elements of any set 𝑀 is denoted by 𝑀×. Let us consider the Lipschitz
group

Γ±
𝑝,𝑞 := {𝑆 ∈ 𝒞ℓ(0)×𝑝,𝑞 ∪ 𝒞ℓ(1)×𝑝,𝑞 |𝑆𝒞ℓ1𝑝,𝑞𝑆−1 ⊂ 𝒞ℓ1𝑝,𝑞} = {𝑣1 · · · 𝑣𝑘 | 𝑣1, . . . , 𝑣𝑘 ∈ 𝒞ℓ1×𝑝,𝑞}

and its even subgroup

Γ+
𝑝,𝑞 := {𝑆 ∈ 𝒞ℓ(0)×𝑝,𝑞 |𝑆𝒞ℓ1𝑝,𝑞𝑆−1 ⊂ 𝒞ℓ1𝑝,𝑞} = {𝑣1 · · · 𝑣2𝑘 | 𝑣1, . . . , 𝑣2𝑘 ∈ 𝒞ℓ1×𝑝,𝑞} ⊂ Γ±

𝑝,𝑞.

The following groups are called spin groups:

Pin(𝑝, 𝑞) := {𝑆 ∈ Γ±
𝑝,𝑞 | ̃︀𝑆𝑆 = ±𝑒} = {𝑆 ∈ Γ±

𝑝,𝑞 |
̂︀̃︀𝑆𝑆 = ±𝑒},
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Pin+(𝑝, 𝑞) := {𝑆 ∈ Γ±
𝑝,𝑞 |

̂︀̃︀𝑆𝑆 = +𝑒}, Pin−(𝑝, 𝑞) := {𝑆 ∈ Γ±
𝑝,𝑞 | ̃︀𝑆𝑆 = +𝑒},

Spin(𝑝, 𝑞) := {𝑆 ∈ Γ+
𝑝,𝑞 | ̃︀𝑆𝑆 = ±𝑒} = {𝑆 ∈ Γ+

𝑝,𝑞 |
̂︀̃︀𝑆𝑆 = ±𝑒}, (60)

Spin+(𝑝, 𝑞) := {𝑆 ∈ Γ+
𝑝,𝑞 | ̃︀𝑆𝑆 = +𝑒} = {𝑆 ∈ Γ+

𝑝,𝑞 |
̂︀̃︀𝑆𝑆 = +𝑒}.

Let us consider the twisted adjoint action

ǎd : 𝒞ℓ×𝑝,𝑞 → End𝒞ℓ𝑝,𝑞, 𝑆 → ǎd𝑆, ǎd𝑆𝑈 = ̂︀𝑆𝑈𝑆−1, 𝑈 ∈ 𝒞ℓ𝑝,𝑞.

The following homomorphisms are surjective with the kernel {±1}:

ǎd : Pin(𝑝, 𝑞) → O(𝑝, 𝑞), ǎd : Pin+(𝑝, 𝑞) → O+(𝑝, 𝑞), ǎd : Pin−(𝑝, 𝑞) → O−(𝑝, 𝑞),

ǎd : Spin(𝑝, 𝑞) → SO(𝑝, 𝑞), ǎd : Spin+(𝑝, 𝑞) → SO+(𝑝, 𝑞).

For each matrix 𝑃 = (𝑝𝑎𝑏 ) ∈ O(𝑝, 𝑞), there are exactly two elements ±𝑆 ∈ Pin(𝑝, 𝑞) such that̂︀𝑆𝑒𝑎𝑆−1 = 𝑝𝑏𝑎𝑒𝑏; similarly for the other groups under consideration. The spin groups (60) are two-
sheeted coverings of the corresponding orthogonal groups.

Theorem 10 Let us consider the real Clifford algebra 𝒞ℓ𝑝,𝑞 with even 𝑛 = 𝑝+ 𝑞. Let 𝑃 ∈ SO(𝑝, 𝑞) be
an orthogonal matrix such that

𝑀 :=
∑︁
𝐴,𝐵

𝑝𝐵𝐴𝑒𝐵𝑒
𝐴 ̸= 0. (61)

Then we can compute the elements ±𝑆 ∈ Spin(𝑝, 𝑞) that correspond to the matrix 𝑃 = (𝑝𝑏𝑎) ∈ SO(𝑝, 𝑞)

under the two-sheeted covering 𝑆𝑒𝑎𝑆−1 = 𝑝𝑏𝑎𝑒𝑏 in the following way:

𝑆 = ± 𝑀√︀
𝛼̃︁𝑀𝑀

, (62)

where ̃︁𝑀𝑀 ∈ Cen(𝒞ℓ𝑝,𝑞) = 𝒞ℓ0𝑝,𝑞 ∼= R and the sign 𝛼 := sign(𝑝1...𝑝1...𝑝)𝑒 = sign(𝑝𝑝+1...𝑛
𝑝+1...𝑛)𝑒 = ̃︀𝑆𝑆 = ±𝑒

depends on the component of the group SO(𝑝, 𝑞).

Theorem 11 Let us consider the real Clifford algebra 𝒞ℓ𝑝,𝑞 with odd 𝑛 = 𝑝 + 𝑞. Let 𝑃 ∈ O(𝑝, 𝑞) be
an orthogonal matrix such that

𝑀 :=
∑︁
𝐴,𝐵

(det𝑃 )|𝐴|𝑝𝐵𝐴𝑒𝐵𝑒
𝐴 ̸= 0. (63)

Then we can compute the elements ±𝑆 ∈ Pin(𝑝, 𝑞) that correspond to the matrix 𝑃 = (𝑝𝑏𝑎) ∈ O(𝑝, 𝑞)

under the two-sheeted covering ̂︀𝑆𝑒𝑎𝑆−1 = 𝑝𝑏𝑎𝑒𝑏 in the following way:

𝑆 = ± 𝑀√︀
𝛼̃︁𝑀𝑀

, (64)
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where ̃︁𝑀𝑀 ∈ 𝒞ℓ0𝑝,𝑞 ⊂ Cen(𝒞ℓ𝑝,𝑞) ∼=

{︃
R⊕ R, if 𝑝− 𝑞 = 1 mod 4;
C, if 𝑝− 𝑞 = 3 mod 4,

and the sign

𝛼 :=

{︃
sign(𝑝𝑝+1...𝑛

𝑝+1...𝑛)𝑒 = ̃︀𝑆𝑆 = ±𝑒, if 𝑛 = 1 mod 4;

sign(𝑝1...𝑝1...𝑝)𝑒 =
̂︀̃︀𝑆𝑆 = ±𝑒, if 𝑛 = 3 mod 4,

(65)

depends on the component of the group O(𝑝, 𝑞).

Let us consider the particular case of Theorems 10 and 11 for elements of the group Spin+(𝑝, 𝑞) and
the corresponding group SO+(𝑝, 𝑞). The elements of the group Spin+(𝑝, 𝑞) are often called rotors and
are widely used in geometric algebra. Let

𝑆𝑒𝑎 ̃︀𝑆 = 𝛽𝑎, ̃︀𝑆 = 𝑆−1,

where two frames 𝑒𝑎 and 𝛽𝑎, 𝑎 = 1, . . . , 𝑛 are related by rotation. If 𝑀 = 𝛽𝐴𝑒
𝐴 = 𝑒 + 𝛽𝑎𝑒

𝑎 + · · · +
𝛽1...𝑛𝑒

1...𝑛 ̸= 0, then
𝑆 = ± 𝑀√︀̃︁𝑀𝑀

.

The presented explicit formulas for computing the elements of spin groups generalize the previously
well-known formulas that worked only in the case of small dimensions 𝑛 ≤ 4.

In Section 2.5, equations for spin connection of a general form are studied. A general solution
of these equations is presented.

Let us consider the pseudo-Euclidean space R𝑘,𝑙 of dimension dimR𝑘,𝑙 = 𝑘 + 𝑙 = 𝑚 ≥ 1 with
Cartesian coordinates 𝑥𝜇, 𝜇 = 1, . . . ,𝑚. The metric tensor of R𝑘,𝑙 is given by the diagonal matrix
𝑔 = (𝑔𝜇𝜈) = (𝑔𝜇𝜈) with 𝑘 ones and 𝑙 minus ones on the diagonal. Consider the real Clifford algebra
𝒞ℓ𝑝,𝑞, 𝑝+𝑞 = 𝑛 ≥ 1 with the generators 𝑒𝑎, 𝑎 = 1, . . . , 𝑛, which satisfy the relations 𝑒𝑎𝑒𝑏+𝑒𝑏𝑒𝑎 = 2𝜂𝑎𝑏𝑒

with the diagonal matrix 𝜂 = (𝜂𝑎𝑏) = (𝜂𝑎𝑏) with 𝑝 ones and 𝑞 minus ones on the diagonal.
We use the notation 𝒞ℓ𝑝,𝑞T𝑟

𝑠 for the set of tensor fields 𝑈Φ
Ψ = 𝑈𝜑1...𝜑𝑟

𝜓1...𝜓𝑠
(𝑥) : R𝑘,𝑙 → 𝒞ℓ𝑝,𝑞 with values

in the Clifford algebra:

𝑈Φ
Ψ = 𝑢𝜑1...𝜑𝑟𝜓1...𝜓𝑠

(𝑥)𝑒+ 𝑢𝜑1...𝜑𝑟𝑎𝜓1...𝜓𝑠
(𝑥)𝑒𝑎 + · · ·+ 𝑢𝜑1...𝜑𝑟1...𝑛𝜓1...𝜓𝑠

(𝑥)𝑒1...𝑛 = 𝑢Φ𝐴Ψ (𝑥)𝑒𝐴∈𝒞ℓ𝑝,𝑞T𝑟
𝑠, 𝑢Φ𝐴Ψ : R𝑘,𝑙→R,(66)

where we mean summation over an ordered multi-index 𝐴. We denote the multi-index 𝜑1 . . . 𝜑𝑟 by Φ,
the multi-index 𝜓1 . . . 𝜓𝑠 by Ψ, and their lengths by |Φ| = 𝑟, |Ψ| = 𝑠. We can raise and lower Greek
indices using the matrix 𝑔 = (𝑔𝜇𝜈) and raise and lower Latin indices using the matrix 𝜂 = (𝜂𝑎𝑏). Let
us consider the set of smooth functions ℎ𝑎 : R𝑘,𝑙 → 𝒞ℓ𝑝,𝑞 with values in the Clifford algebra

ℎ𝑎(𝑥) = 𝑦𝑎(𝑥)𝑒+ 𝑦𝑏𝑎(𝑥)𝑒𝑏 + · · ·+ 𝑦1...𝑛𝑎 (𝑥)𝑒1...𝑛 = 𝑦𝐴𝑎 (𝑥)𝑒𝐴, (67)
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that satisfy the relations

ℎ𝑎(𝑥)ℎ𝑏(𝑥) + ℎ𝑏(𝑥)ℎ𝑎(𝑥) = 2𝜂𝑎𝑏𝑒, 𝑎, 𝑏 = 1, . . . , 𝑛, ∀𝑥 ∈ R𝑘,𝑙. (68)

In the case of odd 𝑛 = 𝑝 + 𝑞, we also require an additional condition ⟨ℎ1 · · ·ℎ𝑛⟩0 = 0 to get the
independent elements ℎ𝐴. The set {ℎ𝐴(𝑥)} = {𝑒, ℎ𝑎(𝑥), . . . , ℎ1...𝑛(𝑥)} is a basis of the algebra 𝒞ℓ𝑝,𝑞T
of smooth functions with values in the Clifford algebra. We denote the subspaces of fixed grades with
respect to the new basis by

𝒞ℓ[ℎ]𝑘𝑝,𝑞T = {
∑︁

𝐴: |𝐴|=𝑘

𝑢𝐴(𝑥)ℎ𝐴(𝑥)}, 𝑘 = 0, 1, . . . , 𝑛. (69)

The operation of projection onto the subspace 𝒞ℓ[ℎ]𝑘𝑝,𝑞T is denoted by 𝜋[ℎ]𝑘.

Theorem 12 The set

𝒞ℓⓈ𝑝,𝑞 := 𝒞ℓ𝑝,𝑞 ∖ Cen(𝒞ℓ𝑝,𝑞), where Cen(𝒞ℓ𝑝,𝑞) =

{︃
𝒞ℓ0𝑝,𝑞, if 𝑛 is even;
𝒞ℓ0𝑝,𝑞 ⊕ 𝒞ℓ𝑛𝑝,𝑞, if 𝑛 is odd,

is a Lie algebra with respect to the commutator [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴.

For the elements ℎ𝑎 ∈ 𝒞ℓ𝑝,𝑞T (67), (68), we have (for 𝑛 ≥ 2) ℎ𝑎 ∈ 𝒞ℓⓈ𝑝,𝑞T, 𝑎 = 1, . . . , 𝑛.

Let us consider the following system of equations for unknown 𝐶𝜇 ∈ 𝒞ℓ𝑝,𝑞T1

𝜕𝜇ℎ𝑎 − [𝐶𝜇, ℎ𝑎] = 0, 𝜇 = 1, . . . ,𝑚, 𝑎 = 1, . . . , 𝑛. (70)

We call (70) an equation for spin connection of a general form. Note that if we have a solution
𝐶𝜇 = 𝐶𝜇(𝑥) ∈ 𝒞ℓ𝑝,𝑞T1 of the system of equations (70) and 𝛼𝜇 = 𝛼𝜇(𝑥) are arbitrary continuous
components of the covector field with values at the center of the Clifford algebra Cen(𝒞ℓ𝑝,𝑞), then the
components 𝐶𝜇 + 𝛼𝜇 ∈ 𝒞ℓ𝑝,𝑞T1 also satisfy the equation (70). Therefore, assume 𝐶𝜇 ∈ 𝒞ℓⓈ𝑝,𝑞T1.

Theorem 13 Let 𝑆 : R𝑘,𝑙 → 𝒞ℓ×𝑝,𝑞 be a function with values in the group of all invertible elements of
the Clifford algebra 𝒞ℓ×𝑝,𝑞 such that 𝑆−1𝜕𝜇𝑆 ∈ 𝒞ℓⓈ𝑝,𝑞T1. Then the following expressions

ℎ́𝑎 = 𝑆−1ℎ𝑎𝑆 ∈ 𝒞ℓⓈ𝑝,𝑞T, 𝐶𝜇 = 𝑆−1𝐶𝜇𝑆 − 𝑆−1𝜕𝜇𝑆 ∈ 𝒞ℓⓈ𝑝,𝑞T1

also satisfy the equation 𝜕𝜇ℎ́𝑎 − [𝐶𝜇, ℎ́𝑎] = 0, ∀𝜇 = 1, . . . ,𝑚, 𝑎 = 1, . . . , 𝑛.

Theorem 14 The following zero curvature condition follows from (70):

𝜕𝜇𝐶𝜈 − 𝜕𝜈𝐶𝜇 − [𝐶𝜇, 𝐶𝜈 ] = 0, 𝜇, 𝜈 = 1, . . . ,𝑚. (71)

The conditions (71) are invariant under the gauge transformation 𝐶𝜇 → 𝐶𝜇 = 𝑆−1𝐶𝜇𝑆 − 𝑆−1𝜕𝜇𝑆,

where 𝑆 ∈ 𝒞ℓ×𝑝,𝑞T and 𝑆−1𝜕𝜇𝑆 ∈ 𝒞ℓⓈ𝑝,𝑞T1.
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Theorem 15 Let 𝐶𝜇 ∈ 𝒞ℓⓈ𝑝,𝑞T1. Then the following two systems of equations are equivalent:

𝜕𝜇ℎ𝑎 − [𝐶𝜇, ℎ𝑎] = 0 ⇔ 𝐶𝜇 =
�́�∑︁
𝑘=1

𝜇𝑘𝜋[ℎ]𝑘((𝜕𝜇ℎ
𝑎)ℎ𝑎), (72)

where �́� = 𝑛 for even 𝑛, �́� = 𝑛−1 for odd 𝑛, and 𝜇𝑘 = 1
𝑛−(−1)𝑘(𝑛−2𝑘)

= 1
𝑛−𝜆𝑘

. Here 𝜋[ℎ]𝑘 are projection
operators onto the subspaces (69).

We use the method of averaging in Clifford algebras to obtain another form of the unique solution
(72) of the system (70).

Theorem 16 From the system (70), it follows

𝜕𝜇ℎ𝐴 − [𝐶𝜇, ℎ𝐴] = 0, 𝜇 = 1, . . . ,𝑚 (73)

for all ordered multi-indices 𝐴 of length from 0 to 𝑛.

Theorem 17 The system (70) has a unique solution 𝐶𝜇 ∈ 𝒞ℓⓈ𝑝,𝑞T1

𝐶𝜇 =
1

2𝑛
(𝜕𝜇ℎ𝐴)ℎ

𝐴, 𝜇 = 1, . . . ,𝑚. (74)

In the case of odd 𝑛, the expression (74) can be rewritten in the form

𝐶𝜇 =
1

2𝑛−1

𝑛−1
2∑︁

|𝐴|=1

(𝜕𝜇ℎ𝐴)ℎ
𝐴, 𝜇 = 1, . . . ,𝑚. (75)

In the particular case ℎ𝑎 ∈ 𝒞ℓ1𝑝,𝑞T, the presented expressions (72), (74), (75) coincide with the well-
known formula for the spin connection 𝐶𝜇 = 1

4
(𝜕𝜇ℎ𝑎)ℎ

𝑎 ∈ 𝒞ℓ2𝑝,𝑞T1.
In Section 2.6, we present a new class of covariantly constant solutions of the Yang–Mills equa-

tions. These solutions correspond to the solution of the equation for spin connection of a general
form.

Let us consider an arbitrary tensor field (66) with values in the Clifford algebra. We can take
the expressions ℎ𝑏(𝑥) = 𝑦𝐴𝑏 (𝑥)𝑒𝐴 (67), (68) and obtain another basis ℎ𝐵(𝑥) = 𝑦𝐴𝐵(𝑥)𝑒𝐴 of the algebra
𝒞ℓ𝑝,𝑞T for some 𝑦𝐴𝐵 = 𝑦𝐴𝐵(𝑥) : R𝑘,𝑙 → R. We have

𝑈Φ
Ψ(𝑥) = 𝑢[ℎ]Φ𝐵Ψ (𝑥)ℎ𝐵(𝑥) ∈ 𝒞ℓ𝑝,𝑞T𝑟

𝑠, 𝑢[ℎ]Φ𝐵Ψ (𝑥) : R𝑘,𝑙 → R, 𝑢Φ𝐴Ψ (𝑥) = 𝑢[ℎ]Φ𝐵Ψ (𝑥)𝑦𝐴𝐵(𝑥). (76)

Let us consider the following operation of covariant differentiation, which depends on the basis {ℎ𝐴}
of the algebra 𝒞ℓ𝑝,𝑞T

𝐷𝜇𝑈
Φ
Ψ := 𝜕𝜇𝑈

Φ
Ψ − [𝐶𝜇, 𝑈

Φ
Ψ ], 𝑈Φ

Ψ ∈ 𝒞ℓ𝑝,𝑞T𝑟
𝑠, (77)

where 𝐶𝜇 = 𝐶𝜇(𝑥) ∈ 𝒞ℓⓈ𝑝,𝑞T1 is the unique solution of the system (70).
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Theorem 18 For an arbitrary tensor field (76) with values in 𝒞ℓ𝑝,𝑞, we have

𝐷𝜇(𝑈
Φ
Ψ(𝑥)) = 𝜕𝜇(𝑢[ℎ]

Φ𝐵
Ψ (𝑥))ℎ𝐵(𝑥). (78)

Consider the set of covariantly constant tensor fields with values in the Clifford algebra 𝑈Φ
Ψ ∈ 𝒞ℓ𝑝,𝑞T𝑟

𝑠

M𝒞ℓ𝑝,𝑞T𝑟
𝑠 := {𝑈Φ

Ψ ∈ 𝒞ℓ𝑝,𝑞T𝑟
𝑠, 𝐷𝜇𝑈

Φ
Ψ = 0}.

Let us consider the system of Yang–Mills equations (1), (2) in the Lie algebra g = 𝒞ℓⓈ𝑝,𝑞, i.e. 𝐴𝜇 ∈
𝒞ℓⓈ𝑝,𝑞T1, 𝐹𝜇𝜈 ∈ 𝒞ℓⓈ𝑝,𝑞T2, 𝐽𝜈 ∈ 𝒞ℓⓈ𝑝,𝑞T1. The case of pseudo-Euclidean space R𝑘,𝑙, 𝑘 + 𝑙 = 𝑚, with metric
𝑔 is considered. For simplicity, we set the coupling constant equal to 𝜌 = 1.

Theorem 19 If a covariantly constant tensor field with values in the Clifford algebra 𝐾𝜇 ∈ M𝒞ℓ𝑝,𝑞T1

is a solution of the following system of algebraic equations

[𝐾𝜇, [𝐾
𝜇, 𝐾𝜈 ]] = 𝐽𝜈 , 𝜈 = 1, . . . ,𝑚, (79)

for some 𝐽𝜇 ∈ M𝒞ℓ𝑝,𝑞T1, then the tensor field

𝐴𝜇(𝑥) = 𝐶𝜇(𝑥) +𝐾𝜇(𝑥), 𝜇 = 1, . . . ,𝑚, (80)

is a solution of the Yang–Mills equations

𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − [𝐴𝜇, 𝐴𝜈 ] = 𝐹𝜇𝜈 , 𝜇, 𝜈 = 1, . . . ,𝑚, (81)

𝜕𝜇𝐹
𝜇𝜈 − [𝐴𝜇, 𝐹

𝜇𝜈 ] = 𝐽𝜈 , 𝜈 = 1, . . . ,𝑚,

in the Lie algebra 𝒞ℓⓈ𝑝,𝑞, where 𝐶𝜇 ∈ 𝒞ℓⓈ𝑝,𝑞T1 is the unique solution of the system

𝜕𝜇ℎ𝑎 − [𝐶𝜇, ℎ𝑎] = 0, 𝜇 = 1, . . . ,𝑚, 𝑎 = 1, . . . , 𝑛.

Let us consider the particular case 𝑘 = 𝑝, 𝑙 = 𝑞. We have 𝑚 = 𝑛 = 𝑝 + 𝑞, and the diagonal
matrices coincide 𝜂 = 𝑔. Let us consider a vector field ℎ𝜇 ∈ 𝒞ℓ𝑝,𝑞T1 with values in the Clifford algebra
ℎ𝜇 = ℎ𝜇(𝑥) : R𝑝,𝑞 → 𝒞ℓ𝑝,𝑞

ℎ𝜇(𝑥) = 𝑦𝜇(𝑥)𝑒+ 𝑦𝜇𝑎(𝑥)𝑒𝑎 + 𝑦𝜇𝑎𝑏(𝑥)𝑒𝑎𝑏 + · · ·+ 𝑦𝜇1...𝑛(𝑥)𝑒1...𝑛 = 𝑦𝜇𝐴𝑒𝐴, (82)

that satisfies

ℎ𝜇(𝑥)ℎ𝜈(𝑥) + ℎ𝜈(𝑥)ℎ𝜇(𝑥) = 2𝜂𝜇𝜈𝑒, ∀𝑥 ∈ R𝑝,𝑞. (83)

In the case of odd 𝑛, we also require the additional condition ⟨ℎ1(𝑥) . . . ℎ𝑛(𝑥)⟩0 = 0 to get the
independent elements ℎ𝜇1...𝜇𝑘 . The expression ℎ𝜇 is called a Clifford field vector. The expression

𝑈 = 𝑢𝑒+ 𝑢𝜔1ℎ
𝜔1 + 𝑢𝜔1𝜔2ℎ

𝜔1𝜔2 + · · ·+ 𝑢1...𝑛ℎ
1...𝑛 = 𝑢Ωℎ

Ω,
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where 𝑢Ω = 𝑢𝜔1...𝜔𝑗
are skew-symmetric tensor fields of rank 𝑗, is called ℎ-form. The set of such

ℎ-forms is the algebra of ℎ-forms 𝒞ℓ[ℎ]𝑝,𝑞. It is a generalization of the Atiyah–Kähler algebra, where
instead of the expressions ℎ𝜇 we have the differentials 𝑑𝑥𝜇. The set ℎ𝜇, 𝜇 = 1, . . . , 𝑛 = 𝑝 + 𝑞

generates a basis of the algebra 𝒞ℓ[ℎ]𝑝,𝑞: {ℎΩ, |Ω| = 0, 1, . . . , 𝑛} = {𝑒, ℎ𝜔1 , ℎ𝜔1𝜔2 , . . . , ℎ1...𝑛}. Further in
the dissertation, analogues of Theorems 13–19 are given not for the elements ℎ𝑎, but for the vector
quantities ℎ𝜇.

In Section 2.7, the generalized Pauli’s theorem, proved in the author’s previous papers for two
sets of elements satisfying the anticommutative relations of the real or complexified Clifford algebra
of dimension 2𝑛, is extended to the case when both sets of elements smoothly depend on the point
of Euclidean space 𝑉 of dimension 𝑟. Using the equation for spin connection of a general form, it is
shown that the problem of the local Pauli theorem is equivalent to the problem of the existence of a
solution of some special system of partial differential equations.

Theorem 20 Let us consider smooth functions ℎ𝑎 : 𝑉 → 𝒞ℓ, 𝑎 = 1, . . . , 𝑛, that satisfy

ℎ𝑎(𝑥)ℎ𝑏(𝑥) + ℎ𝑏(𝑥)ℎ𝑎(𝑥) = 2𝜂𝑎𝑏𝑒, 𝑎, 𝑏 = 1, . . . , 𝑛, ∀𝑥 ∈ 𝑉

and the additional condition ⟨ℎ1...𝑛⟩0 = 0 in the case of odd 𝑛.
Then there exists a function 𝑆 = 𝑆(𝑥) : 𝑉 → 𝒞ℓ such that ∃𝑆−1(𝑥)∀𝑥 ∈ 𝑉 , satisfying the system

of equations

𝜕𝜇𝑆(𝑥) = 𝐶𝜇(𝑥)𝑆(𝑥), 𝜇 = 1, . . . , 𝑟, ∀𝑥 ∈ 𝑉, (84)

where 𝐶𝜇 : 𝑉 → 𝒞ℓ ∖ Cen(𝒞ℓ) is the unique solution of the system of equations

𝜕𝜇ℎ𝑎 − [𝐶𝜇, ℎ𝑎] = 0, 𝑎 = 1, . . . , 𝑛, 𝜇 = 1, . . . , 𝑟, (85)

and there exists a function 𝑇 (𝑥) = 𝑆(𝑥)𝐾 for some independent on 𝑥 invertible element 𝐾 ∈ 𝒞ℓ,
which is also a solution of the system (84) invertible in the entire Euclidean space, and connects two
sets of elements

𝑒𝑎 = 𝑇−1(𝑥)ℎ𝑎(𝑥)𝑇 (𝑥), 𝑎 = 1, . . . , 𝑛, ∀𝑥 ∈ 𝑉 (86)

in the case of even 𝑛 and

𝑒𝑎 = ℎ1...𝑛𝑒
1...𝑛𝑇−1(𝑥)ℎ𝑎(𝑥)𝑇 (𝑥), 𝑎 = 1, . . . , 𝑛, ∀𝑥 ∈ 𝑉 (87)

in the case of odd 𝑛, where ℎ1...𝑛𝑒1...𝑛 = ±𝑒.

In the dissertation, the particular cases 𝑛 = 2, 𝑟 ≥ 1 and 𝑛 ≥ 2, 𝑟 = 1 are analyzed in details. In
these cases, the solution of the problem takes a simpler form.
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From the above theorem, we obtain an algorithm for computing the function 𝑆 = 𝑆(𝑥). Using this
algorithm and the algorithm for computing the element𝐾 provided by the algebraic Pauli theorem, we
obtain an algorithm for computing the function 𝑇 (𝑥) = 𝑆(𝑥)𝐾, which connects two sets of elements
ℎ𝑎(𝑥), 𝑒𝑎, 𝑎 = 1, . . . , 𝑛.

In Section 2.8, some particular classes of constant solutions of the Yang–Mills–Proca and Yang–
Mills equations in Clifford algebras are presented. Let us consider the system of Yang–Mills–Proca
equations for constant solutions

[𝐴𝜇, [𝐴
𝜇, 𝐴𝜈 ]] = −𝜆𝐴𝜈 , 𝜆 =

𝑚2

𝜌2
≥ 0, (88)

where 𝐴𝜇 ∈ g = 𝒞ℓⓈ with 𝑛 ≥ 2. This system has the following class of solutions

(𝐴𝜇)2 =
−𝜆𝜂𝜇𝜇𝑒
4(𝑛− 1)

, 𝜇 = 1, 2, . . . , 𝑛; {𝐴𝜇, 𝐴𝜈} = 0, 𝜇 ̸= 𝜈. (89)

After an appropriate normalization, the elements 𝐴𝜇 (89) will be generators of: 1) the Clifford algebra
𝒞ℓ𝑞,𝑝, 𝑝+𝑞 = 𝑛 in the case of the real Clifford algebra; one can also take other signatures in the case of
the complexified Clifford algebra; 2) Clifford algebras of smaller dimension 2𝑛−1 for 𝑞− 𝑝 = 1 mod 4

in the case of the real Clifford algebra 𝒞ℓ𝑞,𝑝 and for 𝑝− 𝑞 = 1, 3 mod 4 in the case of a complexified
Clifford algebra; 3) Grassmann algebras for 𝜆 = 0.

In Chapter 3, we solve the problems related to Lie groups and Lie algebras of specific type in
Clifford algebras.

In Section 3.1, we present a complete classification of Lie algebras of specific type in the com-
plexified Clifford algebras C⊗𝒞ℓ𝑝,𝑞. These 16 Lie algebras are direct sums of subspaces of quaternion
types. We obtain isomorphisms between the considered Lie algebras and the classical matrix Lie al-
gebras in the case of an arbitrary dimension and signature. We present 16 Lie groups: one Lie group
for each Lie algebra associated with this Lie group. Relations between the considered Lie groups and
spin groups (real Spin+(𝑝, 𝑞) and complex Spin(𝑛,C)) are studied.

Theorem 21 The complexified Clifford algebra C⊗ 𝒞ℓ𝑝,𝑞 has the following Lie subalgebras97

2, 02, 12, 23, 2⊕ 𝑖0, 2⊕ 𝑖1, 2⊕ 𝑖2, 2⊕ 𝑖3, 0123, (90)

02⊕ 𝑖02, 12⊕ 𝑖12, 23⊕ 𝑖23, 02⊕ 𝑖13, 12⊕ 𝑖03, 23⊕ 𝑖01.

Let us consider the following 16 Lie groups in C⊗ 𝒞ℓ𝑝,𝑞 (for group definitions, see the second column
of Table 2)98:

(C⊗ 𝒞ℓ𝑝,𝑞)×, 𝒞ℓ×𝑝,𝑞, 𝒞ℓ(0)×𝑝,𝑞 , (C⊗ 𝒞ℓ(0)𝑝,𝑞)×, (𝒞ℓ(0)𝑝,𝑞 ⊕ 𝑖𝒞ℓ(1)𝑝,𝑞)×, G23𝑖01
𝑝,𝑞 ,

97We omit the direct sum sign to simplify the notation: 0 ⊕ 2 = 02, 𝑖1 ⊕ 𝑖3 = 𝑖13, 0 ⊕ 1 ⊕ 2 ⊕ 3 = 0123, etc.
98We denote the complex conjugation of an element of the complexified Clifford algebra 𝑈 ∈ C ⊗ 𝒞ℓ𝑝,𝑞 by �̄� , i.e.

taking the complex conjugation of all coefficients 𝑢𝐴 ∈ C of the expansion with respect to the basis {𝑒𝐴}.
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G12𝑖03
𝑝,𝑞 , G2𝑖0

𝑝,𝑞 , G23𝑖23
𝑝,𝑞 , G12𝑖12

𝑝,𝑞 , G2𝑖2
𝑝,𝑞 , G2𝑖1

𝑝,𝑞 , G2𝑖3
𝑝,𝑞 , G12

𝑝,𝑞, G23
𝑝,𝑞, G2

𝑝,𝑞.

Here A× means the set (group) of invertible elements of the set A.

Theorem 22 The subsets of C ⊗ 𝒞ℓ𝑝,𝑞 given in the second column of Table 2 are Lie groups. The
subsets of C ⊗ 𝒞ℓ𝑝,𝑞 given in the third column of Table 2 are the Lie algebras of the corresponding
Lie groups from the second column of Table 2. The considered Lie groups and Lie algebras have the
dimensions given in the fourth column of Table 2.

Table 2: Lie groups and corresponding Lie algebras of specific type in Clifford algebras

Lie group Lie algebra dimension

1 (C⊗ 𝒞ℓ𝑝,𝑞)× = {𝑈 ∈ C⊗ 𝒞ℓ𝑝,𝑞 | ∃𝑈−1} 0123 ⊕ 𝑖0123 2𝑛+1

2 𝒞ℓ×𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ𝑝,𝑞 | ∃𝑈−1} 0123 2𝑛

3 𝒞ℓ(0)×𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ(0)𝑝,𝑞 | ∃𝑈−1} 02 2𝑛−1

4 (C⊗ 𝒞ℓ(0)𝑝,𝑞)× = {𝑈 ∈ C⊗ 𝒞ℓ(0)𝑝,𝑞 | ∃𝑈−1} 02 ⊕ 𝑖02 2𝑛

5 (𝒞ℓ(0)𝑝,𝑞 ⊕ 𝑖𝒞ℓ(1)𝑝,𝑞)× = {𝑈 ∈ 𝒞ℓ(0)𝑝,𝑞 ⊕ 𝑖𝒞ℓ(1)𝑝,𝑞 | ∃𝑈−1} 02 ⊕ 𝑖13 2𝑛

6 G23𝑖01
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ𝑝,𝑞 | ̃̄︀𝑈𝑈 = 𝑒} 23 ⊕ 𝑖01 2𝑛

7 G12𝑖03
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ𝑝,𝑞 |

̂̄︀̃︀𝑈𝑈 = 𝑒} 12 ⊕ 𝑖03 2𝑛

8 G2𝑖0
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ(0)𝑝,𝑞 | ̃̄︀𝑈𝑈 = 𝑒} 2 ⊕ 𝑖0 2𝑛−1

9 G23𝑖23
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ𝑝,𝑞 | ̃︀𝑈𝑈 = 𝑒} 23 ⊕ 𝑖23 2𝑛 − 2

𝑛+1
2 sin 𝜋(𝑛+1)

4

10 G12𝑖12
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ𝑝,𝑞 |

̂︀̃︀𝑈𝑈 = 𝑒} 12 ⊕ 𝑖12 2𝑛 − 2
𝑛+1
2 cos 𝜋(𝑛+1)

4

11 G2𝑖2
𝑝,𝑞 = {𝑈 ∈ C⊗ 𝒞ℓ(0)𝑝,𝑞 | ̃︀𝑈𝑈 = 𝑒} 2 ⊕ 𝑖2 2𝑛−1 − 2

𝑛
2 cos 𝜋𝑛

4

12 G2𝑖1
𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ(0)𝑝,𝑞 ⊕ 𝑖𝒞ℓ(1)𝑝,𝑞 | ̃̄︀𝑈𝑈 = 𝑒} 2 ⊕ 𝑖1 2𝑛−1 − 2

𝑛−1
2 cos 𝜋(𝑛+1)

4

13 G2𝑖3
𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ(0)𝑝,𝑞 ⊕ 𝑖𝒞ℓ(1)𝑝,𝑞 | ̂̄︀̃︀𝑈𝑈 = 𝑒} 2 ⊕ 𝑖3 2𝑛−1 − 2

𝑛−1
2 sin 𝜋(𝑛+1)

4

14 G23
𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ𝑝,𝑞 | ̃︀𝑈𝑈 = 𝑒} 23 2𝑛−1 − 2

𝑛−1
2 sin 𝜋(𝑛+1)

4

15 G12
𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ𝑝,𝑞 |

̂︀̃︀𝑈𝑈 = 𝑒} 12 2𝑛−1 − 2
𝑛−1
2 cos 𝜋(𝑛+1)

4

16 G2
𝑝,𝑞 = {𝑈 ∈ 𝒞ℓ(0)𝑝,𝑞, | ̃︀𝑈𝑈 = 𝑒} 2 2𝑛−2 − 2

𝑛−2
2 cos 𝜋𝑛

4

In the dissertation, we prove isomorphisms of Lie groups with numbers 1–5 from Table 2 to linear
classical matrix Lie groups, isomorphisms of Lie groups with numbers 6–8 to unitary, pseudo-unitary,
and complex linear classical matrix Lie groups, isomorphisms of Lie groups with numbers 9–11 to
complex orthogonal, symplectic, and linear classical matrix Lie groups, isomorphisms of Lie groups
with numbers 12–16 to real, complex, and quaternion orthogonal, symplectic, linear, unitary, and
pseudo-unitary classical matrix Lie groups (depending on 𝑝 and 𝑞). As a consequence, we obtain
isomorphisms for the corresponding Lie algebras.

In Section 3.2, we study inner automorphisms that leave invariant fixed subspaces of the real
𝒞ℓ𝑝,𝑞 or complex 𝒞ℓ(C𝑛) Clifford algebra (we denote both cases by 𝒞ℓ ) – subspaces of fixed grades and
subspaces determined by the reversion and grade involution. We present group of elements that define
such inner automorphisms and study their properties. Some of these Lie groups can be interpreted
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as generalizations of the Clifford group, Lipschitz group, and spin groups. The corresponding Lie
algebras are studied.

Table 3: Lie groups that preserve fixed subspaces of 𝒞ℓ under a similarity transformation and the
corresponding Lie algebras

Lie group 𝑛 Lie algebra dimension

𝒞ℓ× 𝒞ℓ 2𝑛

Γ =
⋂︀𝑛
𝑘=0 Γ

𝑘 1 mod 2 𝒞ℓ02𝑛 𝑛(𝑛−1)
2

+ 2

0 mod 2 𝒞ℓ02 𝑛(𝑛−1)
2

+ 1

P = Γ(0) = Γ(1) 1 mod 2 𝒞ℓ(0)𝑛 2𝑛−1 + 1

0 mod 2 𝒞ℓ(0) 2𝑛−1

A = Γ01 = Γ23 1 mod 4 𝒞ℓ023𝑛 2𝑛−1 − 2
𝑛−1
2 sin(𝜋(𝑛+1)

4
) + 2

0, 2, 3 mod 4 𝒞ℓ023 2𝑛−1 − 2
𝑛−1
2 sin(𝜋(𝑛+1)

4
) + 1

B = Γ03 = Γ12 3 mod 4 𝒞ℓ012𝑛 2𝑛−1 − 2
𝑛−1
2 cos(𝜋(𝑛+1)

4
) + 2

0, 1, 2 mod 4 𝒞ℓ012 2𝑛−1 − 2
𝑛−1
2 cos(𝜋(𝑛+1)

4
) + 1

Q = Q′ = Γ𝑘 1, 3 mod 4 𝒞ℓ02𝑛 2𝑛−2 − 2
𝑛−2
2 cos(𝜋𝑛

4
) + 2

(𝑘 = 0, 1, 2, 3) 2 mod 4 𝒞ℓ02 2𝑛−2 − 2
𝑛−2
2 cos(𝜋𝑛

4
) + 1

Q = Γ1 = Γ3 0 mod 4 𝒞ℓ02 2𝑛−2 − 2
𝑛−2
2 cos(𝜋𝑛

4
) + 1

Q′ = Γ0 = Γ2 0 mod 4 𝒞ℓ02𝑛 2𝑛−2 − 2
𝑛−2
2 cos(𝜋𝑛

4
) + 2

We use the following notation for groups of elements that preserve subspaces of fixed grades, fixed
parity, fixed quaternion types, or their direct sums under a similarity transformation99:

Γ𝑘 := {𝑇 ∈ 𝒞ℓ× |𝑇𝒞ℓ𝑘𝑇−1 ⊆ 𝒞ℓ𝑘}, 𝑘 = 0, 1, . . . , 𝑛, (91)

Γ(𝑘) := {𝑇 ∈ 𝒞ℓ× |𝑇𝒞ℓ(𝑘)𝑇−1 ⊆ 𝒞ℓ(𝑘)}, 𝑘 = 0, 1, (92)

Γ𝑘 := {𝑇 ∈ 𝒞ℓ× |𝑇𝒞ℓ𝑘𝑇−1 ⊆ 𝒞ℓ𝑘}, 𝑘 = 0, 1, 2, 3, (93)

Γ𝑘𝑙 := {𝑇 ∈ 𝒞ℓ× |𝑇𝒞ℓ𝑘𝑙𝑇−1 ⊆ 𝒞ℓ𝑘𝑙}, 𝑘, 𝑙 = 0, 1, 2, 3. (94)

In the particular case, we obtain the well-known Clifford group Γ := Γ1. We denote by Z× the group
of all invertible elements of the center 𝑍 of the Clifford algebra 𝒞ℓ

Z :=

{︃
𝒞ℓ0, if 𝑛 is even
𝒞ℓ0 ⊕ 𝒞ℓ𝑛, if 𝑛 is odd.

(95)

Theorem 23 We have

Γ(0) = Γ(1) = P := Z×(𝒞ℓ(0)× ∪ 𝒞ℓ(1)×) =

{︃
𝒞ℓ(0)× ∪ 𝒞ℓ(1)×, if 𝑛 is even,
𝒞ℓ0𝑛×𝒞ℓ(0)×, if 𝑛 is odd.

99We omit the direct sum sign to simplify the notation: 𝒞ℓ𝑘𝑙 = 𝒞ℓ𝑘 ⊕ 𝒞ℓ𝑙, 𝒞ℓ𝑘𝑙 = 𝒞ℓ𝑘 ⊕ 𝒞ℓ𝑙, etc.
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Theorem 24 We have
Γ01 = Γ23 = A := {𝑇 ∈ 𝒞ℓ× | ̃︀𝑇𝑇 ∈ Z×}.

Theorem 25 We have
Γ03 = Γ12 = B := {𝑇 ∈ 𝒞ℓ× | ̂︀̃︀𝑇𝑇 ∈ Z×}.

Let us consider the groups

Q := {𝑇 ∈ Z×(𝒞ℓ(0)× ∪ 𝒞ℓ(1)×) | ̃︀𝑇𝑇 ∈ Z×}, (96)

Q′ := {𝑇 ∈ Z×(𝒞ℓ(0)× ∪ 𝒞ℓ(1)×) | ̃︀𝑇𝑇 ∈ (𝒞ℓ0 ⊕ 𝒞ℓ𝑛)×}. (97)

We have Q = Q′ in the cases 𝑛 = 1, 2, 3 mod 4.

Theorem 26 In the cases 𝑛 ≥ 4, we have

Q = Γ1 = Γ3 ̸= Q′ = Γ0 = Γ2, 𝑛 = 0 mod 4, (98)

Q = Γ0 = Γ1 = Γ2 = Γ3, 𝑛 = 1, 2, 3 mod 4. (99)

In the exceptional cases, we have

Γ0 = 𝒞ℓ× ̸= Γ1 = Γ2 = Q = P = 𝒞ℓ(0)× ∪ 𝒞ℓ(1)×, 𝑛 = 2,

Γ0 = Γ3 = 𝒞ℓ× ̸= Γ1 = Γ2 = Q = P = Z×𝒞ℓ(0)×, 𝑛 = 3.

Theorem 27 We have

Γ = Q, 𝑛 ≤ 5; Γ ̸= Q, 𝑛 = 6. (100)

Theorem 28 The Lie groups P, A, B, Q, and Q′ have the following Lie algebras p, a, b, q, and q′

presented in Table 3 with the corresponding dimensions.
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