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Introduction

Finite order knot invariants, which were introduced in [29] by V. Vassiliev near 1990,
may be expressed in terms of weight systems, that is, functions on chord diagrams
satisfying the so-called Vassiliev 4-term relations. In paper [18], M. Kontsevich
proved that over a field of characteristic zero every weight system corresponds to
some finite order invariant. There are multiple approaches to constructing weight
systems. In particular, D. Bar-Natan and M. Kontsevich suggested a construction
of a weight system coming from a finite dimensional Lie algebra endowed with an
invariant nondegenerate bilinear form. The sl(2) Lie algebra weight system is the
simplest case whose weight system is associated to the knot invariant known as the
colored Jones polynomial. Its values lie in the center of the universal enveloping alge-
bra of the Lie algebra sl(2), which, in turn, is isomorphic to the ring of polynomials
in one variable (the Casimir element). The sl(2) weight system was studied in many
papers. Despite the fact that this weight system can be defined easily, it is difficult
to compute its value on a chord diagram using the definition because it is necessary
to work with elements of a non-commutative algebra in order to do this. The Chmu-
tov–Varchenko recurrence relations [6] simplify these computations significantly and
numerous computations have been done using it, see e.g. [12, 13, 30]. A theorem
by S. Chmutov and S. Lando [7] states that the value of the sl(2) weight system on
a chord diagram depends only on the intersection graph of this chord diagram, i.e.
if two chord diagrams have isomorphic intersection graphs, then the values of the
weight system on these chord diagrams coincide.

On the other side, we don’t have such good properties for the next reasonable
case, namely, for the sl(3) weight system. The sl(3) Lie algebra weight system takes
values in the center of the universal enveloping algebra of the Lie algebra sl(3), which
is isomorphic to the ring of polynomials in TWO variables (the Casimir elements of
degrees 2 and 3). For the sl(3) weight system, we do not have a result similar to the
Chmutov—Varchenko recurrence relations for the sl(2) weight system which could
help us to compute its value. The Chmutov–Lando theorem also fails for the sl(3)
weight system, which means there are two different chord diagrams with different
values of the sl(3) weight system such that they have isomorphic intersection graphs.

The thesis is devoted to constructing efficient ways to computing the values of
weight systems associated to various Lie algebras and Lie superalgebras, and to
analyzing their properties. It has the following structure. In Sec. 7 we give the key
definitions and state the main results.

Our first group of main results in Sec. 6 concerns explicit values of the sl(3)
weight system on chord diagrams whose intersection graph is complete bipartite,
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with the size of one part equal to 2. In our computations, we use certain results
from [34]. Up to now, explicit values of the sl(3) weight system were known only in
few examples and simple series. Our results imply a nontrivial conclusion that for
the chord diagrams whose intersection graph is the complete bipartite graph K2,n,
the value of the sl(3) weight system depends on the second Casimir only.

A key role in our study is played by the Hopf algebra structure on the space of
chord diagrams modulo 4-term relations introduced by Kontsevich. Chord diagrams
whose intersection graph is complete bipartite generate a Hopf subalgebra in this
Hopf algebra. By analyzing the structure of this Hopf subalgebra, P. Filippova
managed in [12, 13] to deduce the values of the sl(2) weight system on projections of
the chord diagrams whose intersection graph is complete bipartite to the subspace
of primitives. By combining our computations with her results, we obtain explicit
expressions for the values of the sl(3) weight system on primitives.

Much less is known about other Lie algebras; for them, explicit answers have been
computed only for chord diagrams of very small order or for simple families of chord
diagrams, see [31]. In particular, no recurrence similar to the Chmutov–Varchenko
one exists (with the exception of the Lie superalgebra gl(1|1), see [11, 6]). Sec. 7 is
devoted to new ways to compute the values of the gl(N) weight system.

One of these new ways is based on a suggestion due to M. Kazarian to define
an invariant of permutations taking values in the center of the universal enveloping
algebra of gl(N). The restriction of this invariant to involutions without fixed points
(such an involution determines a chord diagram) coincides with the value of the
gl(N)-weight system on this chord diagram. We describe the recursion allowing one
to compute the gl(N)-invariant of permutations and demonstrate how it works in a
number of examples.

For N ′ < N , the center of the universal enveloping algebra of gl(N ′) is naturally
embedded into that of gl(N), and the gl(N)-weight system is stable: its value on
a permutation is a universal polynomial. The recursion we describe allows one to
compute this polynomial simultaneously for all N .

Recall that calculations of the highest homogeneous part of the universal gl(N)
weight system in terms of Casimir elements for some special primitive elements given
by open Jacobi diagrams form the central part in the proof of the lower estimate for
the dimension of the Vassiliev knot invariants in [5, 9] (see also [5, §14.5.4]).

We also develop another efficient way for computing the gl(N)-weight system,
which is based on the Harish–Chandra isomorphism.

In Sec. 9, we expand the results about the gl(N) weight system to the weight
system corresponding to the Lie Superalgebra gl(m|n). We prove that it is a special-
ization of the gl(N) weight system, for N = m− n.
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The original references to the Lie superalgebras can be found in [15]. Weight
systems arising from Lie superalgebras are defined in [28]. The straightforward ap-
proach to computing the values of a Lie superalgebra weight system on a general
chord diagram amounts to elaborating calculations in the noncommutative universal
enveloping algebra, in spite of the fact that the result belongs to the center of the
latter. This approach is rather inefficient even for the simplest noncommutative Lie
Superalgebra gl(1|1). For this Lie Superalgebra, however, there is a recurrence rela-
tion due to Figueroa-O’Farrill, T. Kimura and A. Vaintrob [11]. Much less is known
about other Lie superalgebras.

Our approach is based on defining an invariant of permutations taking values
in the center of the universal enveloping algebra of gl(m|n). The restriction of this
invariant to involutions without fixed points (such an involution determines a chord
diagram) coincides with the value of the gl(m|n)-weight system on this chord dia-
gram. We prove the recursion for the gl(m|n) weight system, which proves to be the
same as the recursion for the gl(N)-one.

1 Chord diagrams and weight systems

Below, we use standard notions from the theory of finite order knot invariants; see,
e.g. [5, 22].

In this section we define the Hopf algebra of chord diagrams modulo 4-term
relations.

Definition 1.1 (chord diagram). A chord diagram D of order n (or degree n) is an
oriented circle (sometimes termed Wilson loop) with a distinguished set of n disjoint
pairs of distinct points, considered up to orientation preserving diffeomorphisms of
the circle. We denote the set of chords of a chord diagram D by [D].

The vector space A spanned by chord diagrams over complex field C is graded,

A = A0 ⊕A1 ⊕A2 ⊕A3 ⊕ . . . .

Each component An is spanned by diagrams of the same order n.

Definition 1.2 (4-term elements). A 4term (or 4T ) element is the alternating sum
of the following quadruples of diagrams:

- + - .
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Here all the four chord diagrams contain, in addition to the two depicted chords,
one and the same set of other chords whose ends belong to the dashed arcs. For any
vector space V , a linear mapping f ∈ homlinear(A, V ) that vanishes on all 4-term
elements is called a weight system.

Now we define the Hopf algebra structure on A/⟨4-term elements⟩ := Afr.

Definition 1.3. The product of two chord diagrams D1 and D2 is defined by cutting
and gluing the two circles as shown

× = = .

Modulo 4-term relationship, the product is well-defined, that is, it does not de-
pend on the chosen points of cutting the Wilson loops.

Definition 1.4. The coproduct in the algebra Afr

δ : Afr
n →

⊕
k+l=n

Afr
k ⊗Afr

l

is defined as follows. For a diagram D ∈ Afr
n we put

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ̄ .

The summation is taken over all subsets J of the set of chords of D. Here DJ is the
chord diagram formed by those chords of D that belong to J and J̄ = [D] \ J is the
complementary subset of chords. To the entire space Afr, the operator δ is extended
by linearity.

Claim 1.5. [18] The vector space Afr endowed with the above product and coproduct
is a commutative cocommutative connected graded bialgebra.

Definition 1.6. An element p of a bialgebra is said to be primitive if δ(p) = 1⊗ p+
p⊗ 1.

It is easy to show that primitive elements form a vector subspace P (Afr) in
the bialgebra Afr. Since any homogeneous component of a primitive element is
primitive, such a vector subspace of a graded bialgebra is also graded, Pn = P (Afr

n ).
An element of An is decomposable if it can be represented as a product of elements
of order smaller than n.
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Theorem 1.7 ([19, 27]). The projection π(D) of a chord diagram D to the subspace
of primitive elements whose kernel is the subspace spanned by decomposable elements
in the Hopf algebra Afr is given by the formula

π(D) = D − 1!
∑

[D1]⊔[D2]=[D]

D1 ·D2 + 2!
∑

[D1]⊔[D2]⊔[D3]=[D]

D1 ·D2 ·D3 . . .

= D −
|[D]|∑
i=2

(−1)i(i− 1)!
∑

i⊔
j=1

[Dj ]=[D]

[Dj ] ̸=∅

i∏
j=1

Dj

For example

Example 1.8. The element

π( ) = − 2 +

is a primitive element, which is the projection of the argument in the left-hand side
to the subspace of primitives.

2 Constructing weight systems from Lie algebras

Given a Lie algebra g equipped with a non-degenerate invariant bilinear form, one
can construct a weight system with values in the center of its universal enveloping
algebra U(g). This is the form M. Kontsevich [18] gave to a construction due to D.
Bar-Natan [3]. Kontsevich’s construction proceeds as follows.

Definition 2.1 (Universal Lie algebra weight system for chord diagram). Let g be
a metrized Lie algebra over R or C, that is, a Lie algebra with an ad-invariant non-
degenerate bilinear form ⟨·, ·⟩. Let d denote the dimension of g. Choose a basis
e1, . . . , ed of g and let e∗1, . . . , e

∗
d be the dual basis with respect to the form ⟨·, ·⟩,

⟨ei, e∗j⟩ = δij, where δij is the Kronecker delta.
Given a chord diagram D with n chords, we first choose a base point on the circle,

away from the ends of the chords of D. This gives a linear order on the endpoints
of the chords, increasing in the positive direction of the Wilson loop. Assign to each
chord a an index, that is, an integer-valued variable, ia. The values of ia will range
from 1 to d, the dimension of the Lie algebra. Mark the first endpoint of the chord a
with the symbol eia and the second endpoint with e∗ia .
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Now, write the product of all the eia and all the e∗ia , in the order in which they
appear on the Wilson loop of D, and take the sum of the dn elements of the universal
enveloping algebra U(g) obtained by substituting all possible values of the indices ia
into this product. Denote by wg(D) the resulting element of U(g).

Claim 2.2. [18] The function wg : D 7→ wg(D) on chord diagrams has the following
properties:

1. the element wg(D) does not depend on the choice of the base point on the
diagram;

2. it does not depend on the choice of the basis ei of the Lie algebra g;

3. its image belongs to the ad-invariant subspace

U(g)g = {x ∈ U(g)|xy = yx for all y ∈ g} = ZU(g);

4. it is multiplicative, wg(D1D2) = wg(D1)wg(D2) for any pair of chord diagrams
D1, D2;

5. this map from chord diagrams to ZU(g) satisfies the 4-term relations.

Remark 2.3. If D is a chord diagram with n chords, then

ϕg(D) = cn + {terms of degree less than 2n in U(g)},

where c = e1⊗e∗1+ · · ·+em⊗e∗m ∈ U(g) is the quadratic Casimir element. Indeed, we
can permute the endpoints of chords on the circle without changing the highest term
of ϕg(D) since all the additional summands arising as commutators have degrees
smaller than 2n. Therefore, the highest degree term of ϕg(D) does not depend on D
with a given number n of chords. Finally, if D is a diagram with n isolated chords,
that is, the nth power of the diagram with one chord, then ϕg(D) = cn.

3 Mutations of knots, chord diagrams and inter-

section graphs

The Figures of this section are borrowed from [7].
Two knots are said to be mutant if they differ by a rotation/reflection of a tangle

with four endpoints; if necessary, the orientation inside the tangle may be replaced
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by the opposite one. Here is a famous example of mutant knots, the Conway (11n34)
knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2. (see [1]).

C = KT =

Note that the change of the orientation of a knot can be achieved by a mutation in
the complement to a trivial tangle.

Most known knot invariants cannot distinguish mutant knots. Neither the (col-
ored) Jones polynomial, nor the HOMFLY polynomial, nor the Kauffman two vari-
able polynomial distinguish mutants. All Vassiliev invariants up to order 10 do not
distinguish mutants as well [21] (up to order 8 this fact was established by a direct
computation [2, 5]). However, there is a Vassiliev invariant of order 11 distinguishing
C and KT [20, 21]. It comes from the colored HOMFLY polynomial.

The main combinatorial objects of the Vassiliev theory of knot invariants are
chord diagrams. To a chord diagram, its intersection graph (also called circle graph)
is associated. The vertices of the graph correspond to chords of the diagram, and two
vertices are connected by an edge if and only if the corresponding chords intersect.

The value of a Vassiliev invariant of order n on a singular knot with n double
points depends only on the chord diagram of the singular knot. Hence any such
invariant determines a function, a weight system, on chord diagrams with n chords.
Conversely, any weight system induces, in composition with the Kontsevich integral,
which is the universal finite order invariant, a finite order invariant of knots.

Definition 3.1. The intersection graph is associated to a chord diagram. The ver-
tices of the graph correspond to chords of the diagram, and two vertices are connected
by an edge if and only if the corresponding chords intersect.

Not each abstract graph is isomorphic to the intersection graph of certain chord
diagram. In the opposite direction, two different chord diagrams can have isomorphic
intersection graphs.

Knot mutation is defined as an operation of rotating a tangle in a knot. A
combinatorial analog of the tangle in mutant knots is a share [2, 5]. Informally, a
share of a chord diagram is a subset of chords whose endpoints are separated into at
most two parts by the endpoints of the complementary chords. More formally,

Definition 3.2. A share is a part of a chord diagram consisting of two arcs of the
outer circle possessing the following property: each chord one of whose ends belongs
to these arcs has both ends on these arcs.
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Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram is its own share
whose complement contains no chords.

Definition 3.3. A mutation of a chord diagram is another chord diagram obtained
by a rotation/reflection of a share.

For example, three mutations of the share in the first chord diagram above pro-
duce the following chord diagrams:

Obviously, mutations preserve the intersection graphs of chord diagrams.

Theorem 3.4. [4, 8, 14] Two chord diagrams have the same intersection graph if
and only if they are related by a sequence of mutations.

Intersection graphs play a crucial role in studying mutant knots:

Theorem 3.5. [7] A finite order knot invariant does not distinguish mutants if and
only if the corresponding weight system does not distinguish mutant chord diagrams,
that is, it depends on the intersection graph of a chord diagram rather than the
diagram itself.

In particular,

Theorem 3.6. [7] The sl(2) weight systems depend on the intersection graphs of
chord diagrams rather than on the diagrams themselves.

Therefore, we know that sl(2) weight system does not distinguish mutant pairs.
In contrast, the sl(3)-weight system distinguishes between the Conway and the
Kinoshita–Terasaka mutant knots. The corresponding weight system distinguishes
between two mutant chord diagrams of order 11.
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4 Jacobi diagrams

When computing the values of the sl(3) weight system, we will require the results
in [34] about recurrence relations for the values of this weight system on Jacobi
diagrams. To this end, we recall the notion of closed Jacobi diagram. These diagrams
provide a better understanding of the primitive space PA, see, e.g. [5].

Definition 4.1. A closed Jacobi diagram (or, simply, a closed diagram) is a connected
trivalent graph with a distinguished embedded oriented cycle, called Wilson loop, and
a fixed cyclic order of half-edges at each vertex not on the Wilson loop.

Half the number of the vertices of a closed diagram is called the degree, or order,
of the diagram. This number is always an integer. The vertices of a closed diagram
belonging to the Wilson loop are called its legs.

In the pictures below, we shall always draw the diagram inside its Wilson loop,
which will be assumed to be oriented counterclockwise unless explicitly specified
otherwise. Inner vertices will also be assumed to be oriented counterclockwise.

Chord diagrams are exactly those closed Jacobi diagrams all of whose vertices lie
on the Wilson loop.

Definition 4.2. The vector space of closed diagrams CSTU
n is the space spanned by

all closed diagrams Cn of degree n modulo the STU relations:

S
=

T
−

U

The three diagrams S, T and U must be identical outside the shown fragment. We
write CSTU for the direct sum of the spaces CSTU

n for all n ≥ 0.

Now we shall define a bialgebra structure in the space CSTU .

Definition 4.3. The product of two closed diagrams is defined in the same way as
for chord diagrams: the two Wilson loops are cut at arbitrary places and then glued
together into one loop, in agreement with the orientations:

× =

11



Definition 4.4. The internal graph of a closed diagram is the graph obtained by
erasing the Wilson loop. A closed diagram is said to be connected if its internal
graph is connected. The connected components of a closed diagram are defined as
the connected components of its internal graph.

In the sense of this definition, any chord diagram of order n consists of n connected
components — the maximal possible number of connected components in an order n
Jacobi diagram.

Now, the construction of the coproduct proceeds in the same way as for chord
diagrams, the chords being replaced by the more general connected components.

Definition 4.5. Let D be a closed diagram and [D] the set of its connected com-
ponents. For any subset J ⊆ [D], denote by DJ the closed diagram with only those
components that belong to J and byDJ̄ the “complementary” diagram (J̄ := [D]\J).
We define the coproduct of D by

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ̄ .

Now, for each n = 0, 1, 2, . . . , we have a natural inclusion λ : An → Cn.

Claim 4.6. [3] The inclusion λ gives rise to an isomorphism of bialgebras λ : Afr →
CSTU .

By definition, connected closed diagrams are primitive with respect to the co-
product δ. It may sound surprising that the converse is also true:

Claim 4.7. [3] The primitive space P of the bialgebra CSTU coincides with the linear
span of connected closed diagrams.

Since every closed diagram is a linear combination of chord diagrams, the weight
system ϕg can be treated as a function on CSTU with values in U(g). The STU
relation, the defining relation for the algebra C, gives us a hint how to make this
treatment explicit. Namely, if we assign elements ei, ej to the endpoints of chords of
the T- and U- diagrams from the STU relations,

Tejei

e∗je∗i

−
U

e∗ie∗j

e∗je∗i

=

S
[ei, ej]

e∗je∗i

12



then it is natural to assign the commutator [ei, ej] to the trivalent vertex on the
Wilson loop of the S-diagram.

Generally, [ei, ej] may not be a basis vector. A diagram with an endpoint marked
by a linear combination of the basis vectors should be understood as the correspond-
ing linear combination of diagrams marked by basis vectors. This understanding
implies a useful

Lemma 4.8. The degree of the value of a Lie algebra weight system on a closed
diagram D is less or equal than the number of legs of D.

5 The sl(3) weight system

In this section, we concentrate on the weight system associated to the Lie algebra
sl(3).

Definition 5.1 (Weight systems associated with representations). A linear repre-
sentation T : g → End(V ) extends to a homomorphism of associative algebras
U(T ) : U(g) → End(V ). The composition of following three maps (with the last
map being the trace)

A ϕg−→ U(g)
U(T )−−−→ End(V )

Tr−→ C
by definition gives the weight system associated with the representation T ,

ϕT
g = Tr ◦ U(T ) ◦ ϕg.

Consider the standard representation of the Lie algebra sl(3) as the space of
3× 3 matrices with zero trace. It is an eight-dimensional Lie algebra spanned by the
matrices

E1 =

0 1 0
0 0 0
0 0 0

 , E2 =

0 0 0
0 0 1
0 0 0

 , E3 =

0 0 1
0 0 0
0 0 0

 , H1 =

1 0 0
0 −1 0
0 0 0

 ,

F1 =

0 0 0
1 0 0
0 0 0

 , F2 =

0 0 0
0 0 0
0 1 0

 , F3 =

0 0 0
0 0 0
1 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1

 ,

whose commutators are

[Ei, Fj] = δijHi, [Hi, Hj] = 0, [Hi, Ei] = 2Ei, [Hi, Fi] = −2Fi,

[H1, E2] = −E2, [H2, E1] = −E1, [H2, E3] = E3, [H1, E3] = E3,

[H1, F2] = F2, [H2, F1] = F1, [H2, F3] = −F3, [H1, F3] = −F3.
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We shall use the symmetric bilinear form ⟨x, y⟩ = Tr(xy):

⟨Ei, Ej⟩ = 0, ⟨Fi, Fj⟩ = 0, ⟨Hi, Ej⟩ = 0, ⟨Hi, Fj⟩ = 0,

⟨Ei, Fj⟩ = δij, ⟨Hi, Hi⟩ = 2, ⟨H1, H2⟩ = −1.

One can easily check that it is ad-invariant and nondegenerate. The corresponding
dual basis is

H∗
1 =

2

3
H1 +

1

3
H2, H

∗
2 =

1

3
H1 +

2

3
H2, E

∗
i = Fi, F

∗
i = Ei,

and under the standard representation St of the Lie algebra sl3 and the trace of
the product of matrices as the preferred ad-invariant bilinear form, we have the sl3
weight system associated with the standard representation ϕSt

sl3
:= Tr(ϕsl3). This

yields

ϕsl(3)( ) = c2 =
∑
i

eie
∗
i =

2

3
H2

1 +
2

3
H2

2 +
1

3
(H1H2 +H2H1) +

3∑
i=1

(EiFi + FiEi)

ϕSt
sl(3)( ) = Tr

(
8

3
× id3

)
= 8.

In addition,

ϕSt
sl(3)( ) = Tr

(∑
i

eieje
∗
i e

∗
j

)
= Tr

(
−8

9
× id3

)
= −8

3
.

Indeed,

ϕsl(3)( ) = (c2 − t)c2,

and we have (8
3
− t)8

3
= −8

9
, hence t = 3. Therefore. ϕsl(3)( ) = (c2 − 3)c2.

6 Values of the sl(3) weight system on chord dia-

grams K2,n

Given a weight system w, we write w̄ := w◦π for its composition with the projection
to the subspace of primitives along the subspace of decomposable elements.
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Denote by Ji,j the order i + j + 2 Jacobi diagram with i − 1 cells and j chords
crossing cells. (i, j ≥ 0)

Ji,j = . . .
. . .

ii-1i-2321

j chords

Specifically,

Ji,0 = . . .
ii-1i-2321

J0,j =

. . .j chords

and J0,j is the chord diagram whose intersection graph is the complete bipartite
graph K2,j.

Our first result is the following

Theorem 6.1. For any simple Lie algebra g endowed with the scalar product pro-
portional to the Killing form with proportionality coefficient λ, one has

w̄g(Ji,j) = w̄g(Ji−1,j+1) +
1

λ
w̄g(Ji−1,j)

Theorem 6.1 implies the following

Corollary 6.2. The following assertions are true:

1. the value w̄g(J0,j) has degree at most 4;

2. we have w̄g(Ji,0) =
∑i

k=0

(
i
k

)
λ−kw̄g(J0,i−k);

3. we have
∑

n=0 w̄g(Jn,0)
xn

n!
= e

x
λ

∑
n=0 w̄g(J0,n)

xn

n!
.

Then we get the values of sl(3) weight system on chord diagrams whose intersec-
tion graph is complete bipartite K2,n.

Main Theorem A. We have∑
n=0

w̄sl(3)(K2,n)
xn

n!
=
∑
n=0

w̄sl(3)(J0,n)
xn

n!
= e−6x

∑
n=0

w̄sl(3)(Jn,0)
xn

n!
,

∑
n=0

w̄sl(3)(K2,n)
xn

n!
=

c2
40

(
(27c2 − 72)e−8x + (8c2 + 72)e−3x − 40c2e

−6x + 5c2
)
,

∑
n=0

wsl(3)(K2,n)
xn

n!
=

c2
40

(
(27c2 − 72)e(c2−8)x + (8c2 + 72)e(c2−3)x + 5c2e

c2x
)
,

wsl(3)(K2,n) =
c2
40

(
(27c2 − 72)(c2 − 8)n + (8c2 + 72)(c2 − 3)n + 5cn+1

2

)
.
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Our computations show, in particular, that, for the chord diagrams whose inter-
section graph isK2,n, their projection to the subspace of primitives can be represented
as a linear combination of connected Jacobi diagrams with at most 4 legs. It has
been conjectured earlier by S. Lando that the value of the weight system sl(2) on
a projection to the subspace of primitives of a chord diagram is a polynomial in
the quadratic Casimir element c whose degree does not exceed half the length of
the largest cycle in the intersection graph of the chord diagram. There is a lot of
evidence supporting this conjecture, see, for example [12, 13]. The following more
general conjecture may explain Lando’s one, and is, probably, easier to prove.

Conjecture 6.3 (S. Lando, Z. Yang). Let D be a chord diagram, and let ℓ be the
length of the longest cycle in it. Then the projection π(D) of D to the subspace of
primitives is a linear combination of connected Jacobi diagrams with at most ℓ legs.
In particular, the value of a weight system associated to an arbitrary Lie algebra g
on this projection has degree at most ℓ.

Theorem 6.4. We have

1 2 3 nn-1n-2

· · · =
∑

1≤i<j≤n

i j

· · ·· · · · · · +
n∑

i=1

i

· · · · · · −
n−1∑
i=1

i i+1

· · · · · ·

Corollary 6.5. We have

deg(wg(km,n)) ≤ 2min{m,n}.

Corollary 6.6. We have

deg(wg(V ×G)) ≤ 2|G|.

Corollary 6.7. We have For sl(2) weight system, we have

wsl(2)(D) = (c− 2k)wsl(2)(Da) + 2
∑

1≤i<j≤k

(wsl(2)(D
||
i,j)− wsl(2)(D

×
i,j))

7 The gl weight system for permutations

There is no recurrence relation for the weight system wgl(N) we know about. Instead,
following the suggestion by M. Kazarian, we interpret an arc diagram as an involution
without fixed points on the set of its ends and extend the function wgl(N) to arbitrary
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permutations of any number of permutated elements. For permutations, in contrast
to chord diagrams, such a recurrence relation could be given.

For a permutation σ ∈ Sm, set

wgl(N)(σ) =
N∑

i1,··· ,im=1

Ei1iσ(1)
Ei2iσ(2)

· · ·Eimiσ(m)
∈ U(gl(N)).

We claim that

• wgl(N) lies in the center of U(gl(N));

• this element is invariant under conjugation by a cyclic permutation:

wgl(N)(σ) =
∑N

i1,··· ,im=1 Ei2iσ(2)
· · ·Eimiσ(m)

Ei1iσ(1)
.

For example, the standard generator

Cm =
N∑

i1,··· ,im=1

Ei1i2Ei2i3 · · ·Eim−1imEimi1

corresponds to the cyclic permutation 1 7→ 2 7→ · · · 7→ m 7→ 1 ∈ Sm.
On the other hand, a chord diagram with n chords can be considered as an

involution without fixed points on a set of m = 2n elements. The value of wgl(N) on
the corresponding involution is equal to the value of the gl(N) weight system on the
corresponding chord diagram.

Example 7.1. For the chord diagram Kn =
1 2 n n+1n+2 2n· · · · · · we have

wgl(N)(Kn) =
N∑

i1,··· ,i2n=1

Ei1in+1Ei2in+2 · · ·Eini2nEin+1i1Ein+2i2 · · ·Ei2nin

= wgl(N)((1 n+ 1)(2 n+ 2) · · · (n 2n)) .

Definition 7.2 (digraph of the permutation). Let us represent a permutation as an
oriented graph. The m vertices of the graph correspond to the permuted elements.
They are ordered cyclically and are placed on a real line, subsequently connected
with horizontal arrows looking right and numbered from left to right. The arc arrows
show the action of the permutation (so that each vertex is incident with exactly one
incoming and one outgoing arc edge). The digraph G(σ) of a permutation σ ∈ Sm

consists of these m vertices and m oriented edges, for example:

G((1 n+ 1)(2 n+ 2) · · · (n 2n)) =
1 2 n n+1n+2 2n· · · · · ·
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Example 7.3. The digraph of the Casimir element Cm, which corresponds to the
cyclic permutation 1 7→ 2 7→ · · · 7→ m 7→ 1 ∈ Sm, is the following one:

G((1 2 3 · · ·m− 1 m)) =
1 2 3 mm-1m-2

· · ·

Main Theorem B. The value of the wgl(N) invariant of permutations possesses the
following properties:

• for an empty graph (with no vertices) the value of wgl(N) is equal to 1, wgl(N)(○) =
1;

• wgl(N) is multiplicative with respect to concatenation of permutations;

• for a cyclic permutation (with the cyclic order on the set of permuted elements
compatible with the permutation), the value of wgl(N) is the standard generator,
wgl(N)(1 7→ 2 7→ · · · 7→ k 7→ 1) = Ck.

• (Recurrence Rule) For the graph of an arbitrary permutation σ in Sm, and
for any two neighboring elements k, k + 1, of the permuted set {1, 2, . . . ,m},
we have for the value of the wgl(N) weight system

k k+1
−

k+1k
=

k’ −
k’

In the diagrams on the left, two horizontally neighboring vertices and the edges
incident to them are depicted, while on the right these two vertices are replaced
with a single one; the other vertices are placed somewhere on the line and their
positions are the same on all diagrams participating in the relations, but the
numbers of the vertices to the right of the latter are to be decreased by 1.

In particular, for the special case σ(k+1) = k, the recurrence looks like follows:

k k+1

−
k+1k

= C1 × −N × k’

These relations are indeed a recursion, that is, they allow one to replace the
computation of wgl(N) on a permutation with its computation on simpler per-
mutations.
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Remark 7.4. In the situation of permutations corresponding to chord diagrams,
the difference at the right-hand side of the recurrence relation represents a Jacobi
diagram with a triple vertex according to the STU relation, see Sec. 4. This gives
a way to calculate the weight system wgl(N) on primitive elements given by Jacobi
diagrams. For some special elements the calculation of this sort were given in [5, 9].

Corollary 7.5. The value of wgl(N) on a permutation is well defined, can be repre-
sented as a polynomial in N,C1, C2, . . . , and this polynomial is universal.

Definition 7.6 (universal gl-weight system on permutations). The universal gl-
weight system on permutation wgl is the weight system taking values in the polynomial
ring C[N,C1, C2, · · · ], which satisfies wgl(σ) = wgl(N)(σ), for all permutations σ and
is obtained by the above recurrence relations.

8 Symmetric functions and Harish–Chandra iso-

morphism

In this section, we show how to use the Harish-Chandra isomorphism for the Lie
algebras gl(N) to compute the corresponding weight systems.

Definition 8.1 (algebra of shifted symmetric polynomials).
For a positive integer N , the algebra Λ∗(N) of shifted symmetric polynomials in N
variables x1, x2, · · · , xN consists of polynomials that are invariant under changes of
variables

(x1, · · · , xi, xi+1, · · · , xN) 7→ (x1, · · · , xi+1 − 1, xi + 1, · · · , xN),

for all i = 1, · · · , N − 1. Equivalently, this is the algebra of symmetric polynomials
in the shifted variables (x1 − 1, x2 − 2, . . . , xN −N).

The universal enveloping algebra U(gl(N)) of the Lie algebra gl(N) admits the
direct sum decomposition

U(gl(N)) = (n−U(gl(N)) + U(gl(N))n+)⊕ U(h), (1)

where n− and n+ are the nilpotent subalgebras of, respectively, upper and lower
triangular matrices in gl(N), and h is the subalgebra of diagonal matrices.
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Definition 8.2 (Harish–Chandra projection in U(gl(N))).
The Harish–Chandra projection for U(gl(N)) is the projection to the second sum-
mand in (1)

ϕ : U(gl(N)) → U(h) = C[E11, · · · , ENN ],

where E11, · · · , ENN are the diagonal matrix units in gl(N); they commute with one
another.

Theorem 8.3 (Harish–Chandra isomorphism [35, 24]). The Harish–Chandra pro-
jection, when restricted to the center ZU(gl(N)), is an algebra isomorphism to the
algebra Λ∗(N) ⊂ U(h) of shifted symmetric polynomials in E11, · · · , ENN .

Thus, the computation of the value of the gl(N) weight system on a chord diagram
can be elaborated by applying the Harish-Chandra projection to each monomial of
the polynomial. For such a monomial, the projection can be computed by moving
variables Eij with i > j to the left, and/or variables Eij with i < j to the right by
means of applying the commutator relations. If, in the process, we obtain monomials
in n−U(gl(N)) or U(gl(N))n+, then we replace such a monomial with 0. A monomial
in the (mutually commuting) variables Eii cannot be simplified, and its projection
to U(h) coincides with itself. The resulting polynomial in E11, · · · , ENN will be
automatically shifted symmetric.

Example 8.4. Let’s compute the projection of the quadratic Casimir element

C2 =
∑
i,j

EijEji ∈ ZU(gl(N))

to U(h). We have

C2 =
∑
i

E2
ii +

∑
i<j

EijEji +
∑
i>j

EijEji

=
∑
i

E2
ii + 2

∑
i>j

EijEji +
∑
i<j

[Eij, Eji]

=
∑
i

E2
ii + 2

∑
i>j

EijEji +
∑
i<j

(Eii − Ejj).

In this expression, the first and the third summand depend on the diagonal unit
elements Eii only, while the second summand is in n−U(gl(N))+U(gl(N))n+, whence
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the image under the projection is

ϕ(C2) =
∑
i

E2
ii +

∑
i<j

(Eii − Ejj)

=
∑
i

(E2
ii + (N + 1− 2i)Eii).

Similarly to the ring of ordinary symmetric functions, the ring Λ∗(N) of shifted
symmetric functions in N variables is isomorphic to a polynomial ring in N variables.
There is a variety of convenient N -tuples of generators in Λ∗(N). One of them is the
tuple of shifted power sum polynomials

pk =
∑
i

((
Eii +

N + 1

2
− i

)k

−
(
N + 1

2
− i

)k
)
.

Representing ϕ(C2) in the form

ϕ(C2) =
∑
i

((
Eii +

N + 1

2
− i

)2

−
(
N + 1

2
− i

)2
)
,

we see that it is just p2.

Remark 8.5. Since the Harish–Chandra isomorphism can be applied to arbitrary
elements of ZU(gl(N)), we can also apply it to the values of wgl on permutations.

For k > 2, the expression for ϕ(Ck) is not reduced to just linear combinations of
power sums. If fact, we have the following explicit formula, which follows from [26],
[35, § 60] and [25, Remark 2.1.20],

1−Nu−
∞∑
k=1

ϕ(Ck)u
k+1 =

N∏
i=1

1− (Eii +N − i+ 1)u

1− (Eii +N − i)u

= (1−Nu)e
∑∞

k=1

(1−N−1
2 u)−k−(1−N+1

2 u)−k

k
ukpk .

This provides an expression for the image ϕ(Ck) of Ck as a polynomial in p1, p2, . . . ,
which is valid for all N . The projections of the Casimir elements C1, · · · , CN to U(h)
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can be expressed in shifted power sums p1, · · · , pN in the following way:

ϕ(C1) = p1

ϕ(C2) = p2

ϕ(C3) = −1

4
N2p1 +

Np2
2

+
p1
4

+ p3 −
p21
2

ϕ(C4) = −1

4
N3p1 +N

(
−p21

2
+

p1
4

+ p3

)
− p1p2 +

p2
2

+ p4

· · ·

Computations using the Harish-Chandra isomorphism also are elaborative, and the
results they produce are not universal, they depend on N . It is more efficient,
therefore, to substitute the known values ϕ(Ck) into the answers obtained by the
previous method.

9 Extension of the gl(m|n)-weight system to per-

mutations

We define wgl(m|n) on permutations in the following way, which is similar to the
definition for wgl(N).

For a permutation σ ∈ Sk, set

wgl(m|n)(σ) =
m+n∑

i1,··· ,ik=1

(−1)fσ (̄i1,...,̄ik)Ei1iσ(1)
Ei2iσ(2)

· · ·Eikiσ(k)
,

where fσ is the sign function which is a polynomial in ī1, ī2, . . . , īk in the field Z2

defined below.
The sign function fσ is a polynomial that has linear and quadratic terms only.

For example, for the standard cyclic permutation (12 . . . k) : 1 → 2 → · · · → k → 1,
we have f(12...k)(̄i1, . . . , īk) = ī2 + · · ·+ īk.

We say that an index a, 1 ≤ a ≤ k, is distinguished with respect to σ if σ−1(a) < a.
The set of distinguished indices is denoted by P1(σ) ⊂ {1, . . . , k}. We say that a
pair of indices (a, b), 1 ≤ a < b ≤ k, is distinguished if the two pairs of distinct
real numbers (σ−1(a) + ϵ, a − ϵ) and (σ−1(b) + ϵ, b − ϵ) alternate; here ϵ > 0 is a
small real number, say, ϵ = 1

3
. The set of distinguished pairs of indices is denoted by

P2(σ) ⊂ {1, . . . , k} × {1, . . . , k}.
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Definition 9.1. The sign function fσ of a permutation σ ∈ Sk is defined by

fσ (̄i1, ī2, . . . ) =
∑

a∈P1(σ)

īa +
∑

(a,b)∈P2(σ)

īaīb.

A more convenient treatment of the invariant wgl(m|n)(σ) and the sign function
uses the language of digraphs from the previous section.

The set of indices participating in the summation will be labelled by the edges
(rather than by vertices). For each vertex i, we denote by in(i) and out(i) the
incoming edge and outcoming edge incident to the vertex i, respectively. With this
notation, we have

wgl(m|n)(σ) =
m+n∑

i1,··· ,ik=1

(−1)fσ (̄i1,...,̄ik)Eiin(1)iout(1) · · ·Eiin(k)iout(k) .

The original formula corresponds to the numbering of the edges such that the edge
i → j is numbered j. The result is obviously independent of the numbering.

With this notation, an edge is distinguished if it is directed from left to right. A
pair of edges with pairwise distinct ends is distinguished if the corresponding pairs
of vertices alternate. If the edges have common vertices, we first bring them to a
general position by shifting slightly the beginning of each edge to the right and the
endpoint of each edge to the left, and then check whether the pairs of ends of the
shifted edges do alternate.

Assume that two permutations σ and σ′ are conjugate by a transposition of two
neighboring elements. Then these two elements are the endpoints of the four edges
a, b, c, d as shown in the picture below (among the edges a, b, c, d there could be pairs
of coincident ones).

a

b

c

d
σ

a

b

c

d
σ′

Lemma 9.2. The sign functions fσ and fσ′ are related by

fσ′ = fσ + (̄ia + īd)(̄ib + īc).

In other words, each of the four pairs of edges (a, c), (a, d), (b, c), (b, d) changes the
property of being distinguished when one passes from the permutation σ to σ′.
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Since the sign function fσ matches the sign in the Casimir elements and this
lemma says the sign function fσ matches the involution operation S, we have

Claim 9.3. The gl(m|n)-weight system for chord diagrams in [28, 11] is a special
case of the gl(m|n)-weight system for permutations, where we treat a chord diagram
with k chords as an involution without fixed points on the set of 2k elements.

Main Theorem C. The weight system wgl(m|n) for permutations is the result of
substituting m − n for C0, and the k th Casimir element in gl(m|n) for Ck, k > 0,
in the weight system wgl.

10 Statement of the main results

The results of this dissertation are reflected in three papers:

• Zhuoke Yang, On the Lie superalgebra gl(m|n) weight system, Journal of
Geometry and Physics. 2023. Vol. 187. Article 104808.

• Zhuoke Yang, New approaches to glN weight system, arXiv:2202.12225

[math.CO], accepted by Izvestiya Mathematics

• Zhuoke Yang, On values of sl3 weight system on chord diagrams whose inter-
section graph is complete bipartite, arXiv:2102.00888 [math.CO], Accepted
by Moscow Mathematical Journal

In paper Zhuoke Yang, On values of sl3 weight system on chord diagrams whose
intersection graph is complete bipartite arXiv:2102.00888 [math.CO], we get the
values of sl(3) weight system on chord diagrams whose intersection graph is complete
bipartite K2,n.

Main Theorem A. We have∑
n=0

w̄sl(3)(K2,n)
xn

n!
=
∑
n=0

w̄sl(3)(J0,n)
xn

n!
= e−6x

∑
n=0

w̄sl(3)(Jn,0)
xn

n!
,

∑
n=0

w̄sl(3)(K2,n)
xn

n!
=

c2
40

(
(27c2 − 72)e−8x + (8c2 + 72)e−3x − 40c2e

−6x + 5c2
)
,

∑
n=0

wsl(3)(K2,n)
xn

n!
=

c2
40

(
(27c2 − 72)e(c2−8)x + (8c2 + 72)e(c2−3)x + 5c2e

c2x
)
,

wsl(3)(K2,n) =
c2
40

(
(27c2 − 72)(c2 − 8)n + (8c2 + 72)(c2 − 3)n + 5cn+1

2

)
.
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In paper Zhuoke Yang, New approaches to glN weight system, arXiv:2202.12225
[math.CO], accepted by Izvestiya Mathematics, we interpret an arc diagram as an
involution without fixed points on the set of its ends and extend the function wgl(N)

to arbitrary permutations of any number of permutated elements. For permutations,
in contrast to chord diagrams, a recurrence relation could be given.

Main Theorem B. The value of the wgl(N) invariant of permutations possesses the
following properties:

• for an empty graph (with no vertices) the value of wgl(N) is equal to 1, wgl(N)(○) =
1;

• wgl(N) is multiplicative with respect to concatenation of permutations;

• for a cyclic permutation (with the cyclic order on the set of permuted elements
compatible with the permutation), the value of wgl(N) is the standard generator,
wgl(N)(1 7→ 2 7→ · · · 7→ k 7→ 1) = Ck.

• (Recurrence Rule) For the graph of an arbitrary permutation σ in Sm, and
for any two neighboring elements k, k + 1, of the permuted set {1, 2, . . . ,m},
we have for the value of the wgl(N) weight system

k k+1
−

k+1k
=

k’ −
k’

In the diagrams on the left, two horizontally neighboring vertices and the edges
incident to them are depicted, while on the right these two vertices are replaced
with a single one; the other vertices are placed somewhere on the line and their
positions are the same on all diagrams participating in the relations, but the
numbers of the vertices to the right of the latter are to be decreased by 1.

In particular, for the special case σ(k+1) = k, the recurrence looks like follows:

k k+1

−
k+1k

= C1 × −N × k’

These relations are indeed a recursion, that is, they allow one to replace the
computation of wgl(N) on a permutation with its computation on simpler per-
mutations.
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In paper Zhuoke Yang, On the Lie superalgebra gl(m|n) weight system, Journal of
Geometry and Physics. 2023. Vol. 187. Article 104808., we extend this construction
to the weight system associated to the Lie superalgebras gl(m|n). Then we prove
that the gl(m|n)-weight system is equivalent to the gl-one, under the substitution
C0 = m− n:

Main Theorem C. The weight system wgl(m|n) for permutations is the result of
substituting m − n for C0, and the k th Casimir element in gl(m|n) for Ck, k > 0,
in the weight system wgl.
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