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1 Introduction

Topic of the thesis

Natural language processing (NLP) is an interdisciplinary subfield of computational linguistics,
computer science, and artificial intelligence aimed at the development of language technologies
for performing tasks that involve the use of knowledge of the language, such as machine trans-
lation, question answering, information extraction, grammar error detection, and summarisa-
tion [31]. Large language models (LLMs) based on the Transformer architecture [117] have
become an integral part of solutions for these tasks, leading to a paradigm shift in the area. The
LLMs, also called the foundation models [15], are pretrained in a self-supervised manner at
scale on a vast amount of text data and efficiently adapted to downstream tasks via finetun-
ing [33; 64] and few-shot learning [17]. The rapid development and proliferation of the LLMs
necessitate standardised methodologies for objectively evaluating their generalisation abilities
across tasks, domains, and languages.

Benchmarking has found broad acceptance in computer science since the 1960s as a con-
ventional approach to comparing systems with respect to specific criteria, such as performance,
computational efficiency, security, and resilience [55; 60]. A benchmark represents a combi-
nation of one or more datasets associated with performance metrics and an aggregation pro-
cedure for summarising the results. More than 2,000 influential benchmarks1 have been cre-
ated by the NLP community to foster the development of general-purpose LLMs and address
diverse aspects of the evaluation, including but not limited to general language understand-
ing [119; 121], linguistic competence [125], cross-lingual generalisation [7], robustness to ad-
versarial attacks [122], computational efficiency [143], and biases against disadvantaged social
groups [74]. Most NLP benchmarks are gamified with public leaderboards, which enable a
competitive evaluation of the LLMs against one another and human-level performance. Al-
though benchmarking has become more application-oriented [62; 91], it suffers from low lin-
guistic diversity [50] and the inappropriateness of the result aggregation procedures [27].

This dissertation is devoted to benchmarking Transformer LLMs on natural language under-
standing (NLU) tasks. We propose the first large-scale benchmarks for the Russian language
that cover a broad scope of NLU tasks: machine reading comprehension (MRC), word sense
disambiguation, coreference resolution, natural language inference, acceptability classification,
authorship attribution, and artificial text detection. The latter is of particular interest to the
fast-growing area of natural language generation (NLG) due to the growing risks of misusing
the generative LLMs for malicious purposes [128]. Together with a benchmark for detecting
machine-generated content, we develop a novel approach to this problem that relies on topo-
logical data analysis (TDA; [20]). Last, we introduce a framework for aggregating the per-
formance results in multi-task benchmarks andmulti-criteria evaluation protocols based on the

1paperswithcode.com/area/natural-language-processing. Access date: March 6, 2023.
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social choice theory [6]. The aggregation procedures can be efficiently utilised to rank NLP sys-
tems in various evaluation scenarios while being more reliable and robust than the commonly
used Pythagorean mean aggregation procedures.

Relevance of the work

Benchmarks for Russian. The advancement of machine learning (ML) technologies is in-
separable from reliable evaluation. The NLP field predominantly focuses on English and ex-
hibits skewed data and evaluation resource distribution for more than 7,000 languages [13; 90].
The data scarcity problem is addressed within the cross-lingual knowledge transfer paradigm,
where the multilingual LLM is finetuned on the train set in a high-resource language – most of-
ten English – and evaluated on the test set in another language [92]. Even though this paradigm
opens up new perspectives, it has several drawbacks. The transfer performance depends on the
linguistic similarity between the source and target language and the amount of the target lan-
guage’s data in the model’s pretraining corpus [59]. At the same time, languages typologically
close to English are well-represented in multilingual benchmarks, such as XGLUE [63] and
XTREME [46; 93], and the other cover a small fraction of tasks due to the lack of high-quality
annotated data.

Recent research has adapted the benchmarking methodologies for English to develop large-
scale NLU benchmarks for many typologically diverse languages, such as Polish [94], Ko-
rean [80], Basque [116], Arabic [101], Slovene [137], Chinese [133], Japanese [56], Persian [53],
and Indonesian [130]. However, Russian is one of the languages that have received the least at-
tention concerning standardised evaluation resources [50]. To this end, we present three novel
NLU benchmarks for the Russian language:

1. Russian SuperGLUE [105] is a collection of nine Russian language understanding datasets
created from scratch and designed analogically to the SuperGLUE benchmark [119]. The
tasks include MRC, word sense disambiguation, coreference resolution, natural language
inference, and a broad-coverage entailment diagnostic for a fine-grained model interpreta-
tion. The results of evaluating the Transformer-based LLMs for Russian at the time of release
indicate that these models perform far below humans. Within three years, the newly devel-
oped LLMs have matched or surpassed the human performance on particular tasks, but
remain inferior to humans by up to 4.9 of the overall score.

2. RuCoLA (Russian Corpus of Linguistic Acceptability; [70]) tests the linguistic competence
of the LLMs with acceptability judgments, which reflect a sentence’s well-formedness and
naturalness from the perspective of native speakers [22]. RuCoLA consists of in-domain sen-
tences manually collected from linguistic publications and out-of-domain sentences gener-
ated with nine downstream neural models. The out-of-domain set is developed to facilitate
the practical use of acceptability judgments for improving Russian language generation. We
empirically show that (i) the most widely used LLMs for Russian fall behind humans by
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a large margin, especially when detecting morphological and semantic errors, and (ii) the
cross-lingual knowledge transfer across Russian, English [126], and Italian [111] is hardly
possible for the in-domain set. In contrast, the difference betweenmonolingual andmultilin-
gual finetuning results for the out-of-domain set is less significant, meaning that the LLMs
generalise well to judge the generated sentences.

3. RuATD (Russian Artificial Text Detection; [103]) is a multi-domain benchmark comprised
of human-written and machine-generated texts. The neural texts are produced by 13 gen-
erative LLMs finetuned for text summarisation, paraphrase generation, text simplification,
and machine translation. We also consider the back-translation and open-ended generation
approaches. The RuATD benchmark has been organised as a shared task on (i) detection
of neural texts, i.e., predicting whether a given text is natural or neural, and (ii) authorship
attribution, i.e., identification of the author of a given text. The shared task has featured 38
submissions, with a performance gap of about 20% accuracy between the best-performing
and least-performing ones for both task formulations. The evaluation results show that hu-
mans struggle to distinguish between the natural and neural texts while the detectors can
achieve up to 83% accuracy.

Detection of neural texts. Disclaimer: The text in brown is generated with ChatGPT2 to il-
lustrate the need to develop generalisable artificial text detectors. The LLMs have become a
powerful tool for generating text that closely resembles human language, but their misuse can
have serious consequences. Misuse can lead to the amplification of biases present in the training
data, the generation of misinformation, and privacy violations. Therefore, it is important to use
these models responsibly, with careful consideration of the potential risks involved. Advance-
ment of the LLMs enables new forms of misuse and stimulates the development of innovative
approaches to mitigating risks of such misuse [15].

To address this line of research, we introduce a novel neural text detector based on TDA [57].
The TDA-based detector is a linear classifier trained on a concatenation of TDA features ex-
tracted from the Transformer’s attention map represented as a weighted graph. The features
include standard graph properties, descriptive characteristics of barcodes, and features based
on the distance to attention patterns [25]. The experimental results show that the proposed
detector outperforms count-based and BERT-based baselines [33] by up to 10% across three
domains (Reddit, product reviews, and news) and is more generalisable to unseen GPT-2 mod-
els [86] than the baselines. The probing analysis of the features reveals their sensitivity to the
surface and syntactic properties, which is analysed in greater detail in the follow-up work [21].

Aggregation procedures in benchmarking. The question of whether the mean aggregation
procedure is suitable for ranking NLP systems in multi-task benchmarks remains a topic of

2openai.com/blog/chatgpt
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ongoing debate. The mean aggregation simplifies the evaluation of the LLMs contrary to the
considerable efforts of the community to keep benchmarking up-to-date. In particular, this pro-
cedure treats high-resource and low-resource languages equally and does not account for other
criteria, such as task complexity and text domain [71; 127]. Moreover, the leading systems may
outperform the others only on the outlier tasks, which leads to biased evaluation [1; 75].

Borrowing conventions from the social choice theory, we propose Vote’n’Rank [87], a frame-
work that can be used to rank NLP systems in multi-task benchmarks and multi-criteria eval-
uation protocols. The framework includes eight aggregation procedures that account for the
system rankings in each evaluation criterion and are suitable for aggregating heterogeneous per-
formance measures. We conduct an empirical comparison of the Vote’n’Rank and Pythagorean
mean procedures in four case studies: (i) re-ranking the GLUE, SuperGLUE, and VALUE [61]
leaderboards, (ii) defining conditions that determine the system’s top rank, (iii) assessing the
procedures’ robustness to missing task scores, and (iv) ranking NLP systems based on user
preferences. The proposed aggregation procedures aremore robust than the Pythagoreanmean
ones and provide interpretable decisions on the systems’ rankings while accounting formissing
performance scores and user preferences.

Research goal. The main goal of this work is to develop standardised evaluation resources
and tools that (i) provide an exhaustive multi-domain comparison of existing and upcoming
LLMs for Russian against the human-level performance, (ii) enable the inclusion of the Russian
language into the cross-lingual research directions, and (iii) address the practical aspects of
benchmarking, artificial text detection, and language generation evaluation.

2 Key results and conclusions

The contributions of this work can be summarized as follows:

1. We create the Russian SuperGLUE, RuCoLA, and RuATD benchmarks, which test the
LLMs’ generalisation abilities on 11 diverse NLU tasks across more than 15 text domains.
We develop themethodologies for human evaluation, data collection, and data annotation
accounting for specifics of the Russian language. Each benchmark hosts a public leader-
board for summarising the results of humans and state-of-the-art LLMs.

2. Together with the RuATD benchmark, we develop the TDA-based artificial text detector,
which exploits geometrical properties underlying textual data and relies on structural dif-
ferences in the topology of the Transformer LLMs’ attention maps to distinguish between
human-written and machine-generated texts.

3. We introduce Vote’n’Rank, a framework that includes eight aggregation procedures to
rank LLMs in multi-task benchmarks and multi-criteria evaluation protocols under the
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principles of the social choice theory. We provide recommendations for using the frame-
work based on the procedures’ properties and scenarios of the intended application.

4. We utilise the proposed evaluation resources and tools to conduct a detailed comparative
analysis of more than 100 NLP systems, including count-based models, monolingual and
multilingual Transformer LLMs, their ensembles, and other model configurations against
the human-level performance in various experiment settings.

Theoretical and practical significance. Wemake application-oriented contributions based on
the theoretical concepts of linguistics, TDA, and social choice theory. The following factors
determine the significance of this thesis. We release the benchmarks, source code, leaderboards,
human evaluation projects, and other materials under the Apache 2.0 license:

• Russian SuperGLUE ( GitHub repository; russiansuperglue.com)

• RuCoLA ( GitHub repository; rucola-benchmark.com)

• RuATD ( GitHub repository)

1. Detection of neural texts: kaggle.com/competitions/ruatd-binary

2. Authorship Attribution: kaggle.com/competitions/ruatd-authorship

• The TDA-based detector ( GitHub repository)

• Vote’n’Rank ( GitHub repository)

The proposed benchmarks have become one of the standardised evaluation resources for
Russian, with more than 2,000 private submissions received from the academic and industrial
communities. In total, the public leaderboards rank more than 90 NLP systems against the hu-
man level, includingwidely used LLMs and their configurations, e.g., RuLeanALBERT3, ruGPT-
34, YaLM5, FRED-T56, and ruRoBERTa7. The human evaluation projects can be re-used in many
research directions, such as reproducibility of the human evaluation results [12], evaluating
the effect of the project design on human performance [81], and analysing the performance
differences between expert and non-expert annotators [51].

With Vote’n’Rank, researchers and practitioners can compare systems irrespective of theML
area. The framework allows the users to plug in their data and define their preferences in the
evaluation. The evaluation resources and tools can also be used for educational purposes, e.g.,
practising the development of machine and deep learning models.

3hf.co/yandex/RuLeanALBERT

4hf.co/ai-forever/rugpt3large_based_on_gpt2

5hf.co/yandex/yalm-100b

6hf.co/ai-forever/FRED-T5-1.7B

7hf.co/ai-forever/ruRoBERTa-large
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Last but not least, RuCoLA and RuATD promote the development of downstream and
human-machine interaction models for evaluating the grammatical and semantic correctness
in Russian language generation (e.g., ruRoBERTa-large-rucola8), detecting propaganda spread
with bots, andwarning users about potentially fake content on socialmedia andnewsplatforms.

Key aspects/ideas to be defended.

1. The Russian SuperGLUE, RuCoLA, and RuATD benchmarks as standardised evaluation
resources for Russian.

2. An interpretable and robust ATD method based on TDA.

3. The Vote’n’Rank framework for ranking and determining single-winner NLP systems in
multi-task benchmarks.

4. An empirical study of more than 100 LLMs and their configurations on NLU benchmarks.

Personal contribution. This thesis includes six publications, which result from the collabora-
tion between authors of diverse backgrounds. In the first publication, "Russian SuperGLUE: A
Russian Language Understanding Evaluation Benchmark" [105], the author of the thesis cre-
ated RuCoS (Russian Reading Comprehension with Commonsense), the largest MRC dataset
for Russian. The second publication, "Read and Reason with MuSeRC and RuCoS: Datasets for
Machine Reading Comprehension for Russian" [38] describes in detail the approaches to the
RuCoS collection and human evaluation through crowd-sourcing, which are developed solely
by the author. The author also obtained the empirical results on the RuCoS dataset.

The author’s contributions in the third paper, "RuCoLA: Russian Corpus of Linguistic Ac-
ceptability" [70], are (i) developing the high-level idea of the benchmark, (ii) collecting the
in-domain sentences from the dataset on the Unified State Exam in the Russian language [104]
and linguistic publications for a corpus-based description of Russian grammar, (iii) developing
the methodologies for annotating the out-of-domain set and conducting estimates of the hu-
man performance jointly with Tatiana Shamardina, (iv) establishing the statistic and linguistic
criteria for controlling the data quality, and (v) conducting the LLMs’ performance and error
analysis together with Max Ryabinin.

In the fourth paper, "Findings of the RuATD Shared Task 2022 on Artificial Text Detection in
Russian" [103], the author (i) designed the benchmark and contributed as a Co-PI, (ii) aggre-
gated the benchmarkdata collected by the co-authors, and (iii) developed the human evaluation
project together with Tatiana Shamardina and Alena Fenogenova. The author’s contributions
in the fifth paper, "Artificial Text Detection via Examining the Topology of AttentionMaps" [57]
are (i) designing the experimental setup, (ii) conducting the attention head-wise probing, and
(iii) analysing the results of each experiment.

8hf.co/RussianNLP/ruRoBERTa-large-rucola
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In the sixth paper, "Vote’n’Rank: Revision of Benchmarkingwith Social Choice Theory" [87],
the author (i) contributed as a Co-PI, (ii) designed the experimental setup, and (iii) conducted
the first case study on re-interpretingNLP benchmarkswith the assistance ofMarkRofin. More-
over, the author made the principal contributions to writing each paper.

Publications and probation of the work

* denotes equal contribution
First-tier publications

1. Tatiana Shavrina, Alena Fenogenova, Anton Emelyanov, Denis Shevelev, Ekaterina Arte-
mova, Valentin Malykh, Vladislav Mikhailov, Maria Tikhonova, Andrey Chertok, and Andrey
Evlampiev. 2020. Russian SuperGLUE: A Russian Language Understanding Evaluation
Benchmark. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4717–4726, Online. Association for Computational
Linguistics. Conference rank: CORE A.

2. Alena Fenogenova, Vladislav Mikhailov, and Denis Shevelev. 2020. Read and Reason with
MuSeRC and RuCoS: Datasets for Machine Reading Comprehension for Russian. In Pro-
ceedings of the 28th International Conference on Computational Linguistics (COLING),
pages 6481–6497, Barcelona, Spain (Online). International Committee on Computational
Linguistics. Conference rank: CORE A.

3. Vladislav Mikhailov∗, Tatiana Shamardina∗, Max Ryabinin∗, Alena Pestova, Ivan Smurov, and
Ekaterina Artemova. 2022. RuCoLA: Russian Corpus of Linguistic Acceptability. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 5207–5227, Abu Dhabi, United Arab Emirates. Association for Compu-
tational Linguistics. Conference rank: CORE A.

4. Laida Kushnareva∗, Daniil Cherniavskii∗, Vladislav Mikhailov∗, Ekaterina Artemova, Serguei
Barannikov, Alexander Bernstein, Irina Piontkovskaya, Dmitri Piontkovski, and Evgeny Burnaev.
2021. Artificial Text Detection via Examining the Topology of Attention Maps. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 635–649, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics. Conference rank: CORE A.

5. Mark Rofin∗, Vladislav Mikhailov∗, Mikhail Florinskiy∗, Andrey Kravchenko, Elena Tutubalina,
Tatiana Shavrina, Daniel Karabekyan, and Ekaterina Artemova. 2023. Vote’n’Rank: Revision
of Benchmarking with Social Choice Theory. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), Dubrovnik,
Croatia. Association for Computational Linguistics. Conference rank: CORE A.
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Other publications

1. Tatiana Shamardina∗, Vladislav Mikhailov∗, Daniil Cherniavskii, Alena Fenogenova, Marat
Saidov, Anastasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena Tutubalina, and Ekaterina
Artemova. 2022. Findings of the RuATD Shared Task 2022 on Artificial Text Detection
in Russian. In Computational Linguistics and Intellectual Technologies: Proceedings of
the International Conference "Dialogue 2022". Indexed by Scopus.

Reports at conferences, workshops, and seminars

1. Russian SuperGLUE: A Russian Language Understanding Evaluation Benchmark. Online
seminar at the Computational Pragmatics lab, HSE University.

2. Russian SuperGLUE:ARussianLanguageUnderstandingEvaluationBenchmark. EMNLP.
November 17, 2020. Online presentation.

3. Read and Reason with MuSeRC and RuCoS: Datasets for Machine Reading Comprehen-
sion for Russian. COLING. December 8, 2020. Online presentation.

4. All Ways to Measure an Elephant: Russian SuperGLUE & RuSentEval. The Interna-
tional Symposium on the Application of Big Data Analysis for Trend Spotting. Session:
Prospects for the Development of Applied Technologies for Big Data Processing and Nat-
ural Language Analysis. April 12, 2021. Online presentation.

5. Russian Commitment Bank: Machine Learning Lessons vs. Lessons of Linguistics – All
not Learnt? Moscow HSE Pragmatics Workshop. September 30, 2021. Online presenta-
tion.

6. Artificial Text Detection via Examining the Topology of Attention Maps. EMNLP. Online
and Punta Cana, Dominican Republic. November 7, 2021. Oral presentation.

7. Findings of the RuATDShared Task 2022 onArtificial TextDetection in Russian. "Dialogue
2022". June 16, 2022. Online presentation.

8. RuCoLA: Russian Corpus of Linguistic Acceptability. EMNLP. December 9, 2022. Poster
presentation.

9. Vote’n’Rank: Revision of Benchmarking with Social Choice Theory. EACL. May 2, 2023.
Online presentation.

The author has organised the following conference events related to the thesis

1. Tatiana Shavrina, Vladislav Mikhailov, Valentin Malykh, Ekaterina Artemova, Oleg Serikov, and
Vitaly Protasov. 2022. Proceedings of NLP Power! The First Workshop on Efficient Bench-
marking in NLP. Association for Computational Linguistics (ACL), Dublin, Ireland. Con-
ference rank: CORE A∗.

2. Adaku Uchendu, Vladislav Mikhailov, Jooyoung Lee, Saranya Venkatraman, Tatiana Shavrina,
and Ekaterina Artemova. 2022. Tutorial on Artificial Text Detection. The 15th International
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Conference onNatural Language Generation (INLG),Waterville, Maine, USA and virtual
meeting. Association for Computational Linguistics. Conference rank: CORE B.

The author has also contributed to the following selected peer-reviewed publications

1. Maria Tikhonova, Vladislav Mikhailov, Dina Pisarevskaya, Valentin Malykh, and Tatiana Shav-
rina. 2022. Ad Astra or Astray: Exploring Linguistic Knowledge of Multilingual BERT
Through NLI Task. In Natural Language Engineering, pages 1–30. Cambridge University
Press. Journal Quartile: Q1.

2. Daniil Cherniavskii∗, Eduard Tulchinskii∗, Vladislav Mikhailov∗, Irina Proskurina∗, Laida
Kushnareva, Ekaterina Artemova, Serguei Barannikov, Irina Piontkovskaya, Dmitri Piontkovski,
and Evgeny Burnaev. 2022. Acceptability Judgements via Examining the Topology ofAtten-
tion Maps. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pages 88–107, Abu Dhabi, United Arab Emirates. Association for Computational Linguis-
tics.

3. Ekaterina Taktasheva, Tatiana Shavrina, Alena Fenogenova, Denis Shevelev, Nadezhda Ka-
tricheva, Maria Tikhonova, Albina Akhmetgareeva, Oleg Zinkevich, Anastasiia Bashmakova,
Svetlana Iordanskaia, Alena Spiridonova, Valentina Kurenshchikova, Ekaterina Artemova, and
Vladislav Mikhailov. 2022. TAPE: Assessing Few-shot Russian Language Understanding.
In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2472–
2497, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

4. Ekaterina Taktasheva, Vladislav Mikhailov, and Ekaterina Artemova. 2021. Shaking Syntac-
tic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations. In
Proceedings of the 1st Workshop on Multilingual Representation Learning (MRL) at the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
191–210, Punta Cana, Dominican Republic. Association for Computational Linguistics.

5. Vladislav Mikhailov, Oleg Serikov, and Ekaterina Artemova. 2021. Morph Call: Probing Mor-
phosyntactic Content of Multilingual Transformers. In Proceedings of the Third Work-
shop on Computational Typology and Multilingual NLP (SIGTYP) at the 2021 Annual
Conference of the North American Chapter of the Association for Computational Lin-
guistics (NAACL), pages 97–121, Online. Association for Computational Linguistics.

6. Vladislav Mikhailov, Ekaterina Taktasheva, Elina Sigdel, and Ekaterina Artemova. 2021. RuSen-
tEval: Linguistic Source, Encoder Force! In Proceedings of the 8th Workshop on Balto-
Slavic Natural Language Processing (BSNLP) at the 16th Conference of the European
Chapter of the Association for Computational Linguistics (EACL), pages 43–65, Kiyv,
Ukraine. Association for Computational Linguistics.

Volume and structure of the work. This thesis contains an introduction, contents of publica-
tions, and a conclusion. The full volume of the thesis is 158 pages.
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3 Content of the work

3.1 Russian SuperGLUE: A Russian Language Understanding Evaluation Bench-
mark

Dataset |Train| |Dev| |Test| Task Metrics Domain

DaNetQA 392 295 295 MRC Acc. Wikipedia

MuSeRC 500 100 322 MRC F1a/EM
news, fairy tales, academic texts, fiction,
summaries of TV series and books

RuCoS 72k 4.3k 4.1k MRC F1/EM news (Lenta, Deutsche Welle)
RUSSE 19.8k 8.5k 12.1k WSD Acc. Wikipedia, RNC, dictionaries
PARus 400 100 500 NLI Acc. blogs, photography encyclopedia
RWSD 606 204 154 Coref. Acc. fiction
RCB 438 220 348 NLI F1/Acc. news, fiction
TERRa 2616 307 3198 NLI Acc. news, fiction
LiDiRus 7 7 1104 NLI MCC news, Wikipedia, Reddit, academic texts

Table 1: The tasks included in Russian SuperGLUE. LiDiRus is a diagnostic test set for the TERRa task.
Notations: MRC=machine reading comprehension; WSD=word sense disambiguation; RNC=Russian
National Corpus; Coref.=coreference resolution; and NLI=natural language inference. Metrics: F1=F1-
score; F1a=macro-average F1 [52]; Acc.=accuracy; EM=exact match; MCC=Matthews Correlation Co-
efficient [67].

Russian SuperGLUE shares the same motivation as the GLUE [121] and SuperGLUE [119]
benchmarks: to introduce a standardised methodology for measuring the advancement of lan-
guage understanding technologies for Russian. Russian SuperGLUE is a suite of eight NLU
tasks that cover various text domains, dataset sizes, and task formulations (see Table 1). We
provide an online platform and a public leaderboard for model evaluation, comparison, and
analysis based on private test sets.

3.1.1 Method

DaNetQA (A Yes/No Question Answering Dataset) is a MRC task formulated as a binary
classification problem in which the model has to answer a yes/no natural question to a given
Wikipedia passage.

• Text: “В период с 1969 по 1972 год по программе <Аполлон> было выполнено 6 полётов с посадкой

на Луне. Всего на Луне высаживались 12 астронавтов США.”

• Question: “Был ли человек на луне?”

• Answer: True
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MuSeRC (Russian Multi-Sentence Reading Comprehension) is a MRC task that focuses on
multi-sentence inference and encompasses a range of question types that necessitate reason-
ing abilities.

• Text: “(1) Мужская сборная команда Норвегии по биатлону в рамках этапа Кубка мира в немец-

ком Оберхофе выиграла эстафетную гонку. (2) Вторыми стали французы, а бронзу получила

немецкая команда. (3) Российские биатлонисты не смогли побороться даже за четвертое ме-

сто, отстав от норвежцев более чем на две минуты. (4) Это худший результат сборной Рос-

сии в текущем сезоне. (5) Четвёртыми в Оберхофе стали австрийцы. (6) В составе сборной

Норвегии на четвёртый этап вышел легендарный Уле-Эйнар Бьорндален. (7) Впрочем, Норве-

гия с самого начала гонки была в числе лидеров, успешно проведя все четыре этапа. <…> (11)

Напомним, что днем ранее российские биатлонистки выиграли свою эстафету. (12) В составе

сборной России выступали Анна Богалий-Титовец, Анна Булыгина, Ольга Медведцева и Свет-

лана Слепцова. (13) Они опередили своих основных соперниц - немок - всего на 0,3 секунды.”

• Question: “На сколько секунд женская команда опередила своих соперниц?”

• Answers:

□3 “Всего на 0,3 секунды.”
□3 “На 0,3 секунды.”
□ “На секунду.”
□ “На 0.5 секунд.”

RuCoS (Russian Reading Comprehension with Commonsense Reasoning) is an MRC task re-
quiring commonsense reasoning and world knowledge. Each dataset sample consists of a pas-
sage from a news article, a cloze-style query, and answer options. The task is to fill in the place-
holder in the query by selecting one or more referents of the answer entity in the passage.

• Passage: “Мать двух мальчиков, брошенных отцом в московском аэропорту Шереметьево,

забрала их. Об этом сообщили ТАСС в пресс-службе министерства образования и науки

Хабаровского края. Сейчас младший ребенок посещает детский сад, а старший ходит в школу.

В учебных заведениях с ними по необходимости работают штатные психологи. Также мини-

стерство социальной защиты населения рассматривает вопрос о бесплатном оздоровлении

детей в летнее время. Через несколько дней после того, как Виктор Гаврилов бросил своих де-

тей в аэропорту, он явился с повинной к следователям в городе Батайске Ростовской области.

– Бросившего детей в Шереметьево отца задержали за насилие над женой

– Россиянина заподозрили в истязании брошенных в Шереметьево детей

– Оставивший двоих детей в Шереметьево россиянин сам пришел к следователям”

• Question: “26 января ___ бросил сыновей в возрасте пяти и семи лет в Шереметьево.”

• Answer: “Виктор Гаврилов”
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RUSSE (Russian Words in Context) is a word sense disambiguation task framed as a binary
classification problem. The task is to identify whether a given polysemous word is used with
the same sense in a pair of sentences.

• Sentence 1: “Бурые ковровые дорожки заглушали шаги.”

• Sentence 2: “Приятели решили выпить на дорожку в местном баре.”

• Word: “дорожка”

• Answer: False

PaRus (Choice of Plausible Alternatives for Russian) is causal reasoning task framed as a binary
classification problem. The model is given a premise sentence and has to identify which of the
two given alternatives represent either the cause or effect.

• Premise: “Гости вечеринки прятались за диваном.”

• Choice 1: “Это была вечеринка-сюрприз.”

• Choice 2: “Это был день рождения.”

• Question: “Причина”

• Answer: “Это была вечеринка-сюрприз.”

RWSD (Russian Winograd Schema Challenge) is a coreference resolution task that involves
a sentence with a pronoun and a list of noun phrases. The model must identify the correct
pronoun referent among the provided options.

• Text: “Кубок не помещается в коричневый чемодан, потому что он слишком большой.”

• Pronoun/Noun phrase: “он слишком большой”

• Referent: “чемодан”

• Answer: False

RCB (Russian Commitment Bank) is a textual entailment task cast as a three-class classification
problem. Each dataset sample includes a premise with a clause-embedding predicate under an
entailment cancelling operator and a hypothesis. The model is required to predict whether the
hypothesis entails, contradicts, or is neutral to the premise.

• Premise: “Сумма ущерба составила одну тысячу рублей. Уточняется, что на место проис-

шествия выехала следственная группа, которая установила личность злоумышленника. Им

оказался местный житель, ранее судимый за подобное правонарушение.”

• Hypothesis: “Ранее местный житель совершал подобное правонарушение.”

• Predicate: “судить“

• Answer: entailment
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Coarse-Grained Categories Fine-Grained Categories

Lexical Semantics
Lexical Entailment, Morphological Negation, Factivity,
Symmetry/Collectivity, Redundancy, Named Entities, Quantifiers

Predicate-Argument Structure
Core Arguments, Prepositional Phrases, Ellipsis/Implicits,
Anaphora/Coreference, Active/Passive, Nominalization,
Genitives/Partitives, Datives, Relative Clauses,
Coordination Scope, Intersectivity, Restrictivity

Logic
Negation, Double Negation, Intervals/Numbers, Conjunction, Disjunction,
Conditionals, Universal, Existential, Temporal, Upward Monotone,
Downward Monotone, Non-Monotone

Knowledge Common Sense, World Knowledge

Table 2: The linguistic phenomena in LiDiRus.

TERRa (Textual Entailment Recognition for Russian) is a binary classification problem that
requires recognising whether the meaning of one text can be entailed from another in a given
pair of texts.

• Premise: “Автор поста написал в комментарии, что прорвалась канализация.”

• Hypothesis: “Автор поста написал про канализацию.”

• Answer: entailment

LiDiRus (Linguistic Diagnostic for Russian) is a broad-coverage entailment diagnostic test set
for the TERRa task, which covers a wide range of phenomena for a fine-grainedmodel interpre-
tation (see Table 2). LiDiRus aims to analyse the relationship between the model predictions
and phenomena through correlation analysis.

• Sentence 1: “Мы построили наше общество на неэкологичной энергии.”

• Sentence 2: “Мы построили наше общество на экологичной энергии.”

• Answer: not entailment

• Lexical Semantics: morphological negation

• Logic: negation

3.1.2 Empirical evaluation

Baselines. We empirically evaluate count-based baselines and BERT-based LLMs for Russian.
TF-IDF is a Logistic Regression classifier over TF-IDF features [96] computed on a subset of
20k Russian and English Wikipedia articles. mBERT [33] is a multilingual BERT pretrained
on monolingual Wikipedia corpora in 104 languages. ruBERT-base [136] is a Russian BERT
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Model Overall
LiDiRus RCB PARus MuSeRC TERRa RUSSE RWSD DaNetQA RuCoS

MCC F1/Acc. Acc. F1a/EM Acc. Acc. Acc. Acc. F1/EM

TF-IDF 43.4 5.9 30.1/44.1 48.6 58.7/24.2 47.1 66.0 66.2 62.1 25.6/25.1
ruBERT 54.6 18.6 43.2/46.8 61.0 65.6/25.6 63.9 89.4 67.5 74.9 25.5/25.1
mBERT 54.2 15.7 38.3/42.9 58.8 62.6/25.3 62.0 84.0 67.5 79.0 37.1/36.7
Human 80.2 62.6 68.0/70.2 98.2 80.6/42.0 92.0 74.7 84.0 87.9 93.0/92.4

Table 3: Baseline performance on the Russian SuperGLUE private test sets and diagnostics. Metrics: F1=F1-score;
F1a=macro-average F1 [52]; Acc.=accuracy; EM=exact match; MCC=Matthews Correlation Coefficient [67]. All
values are scaled by 100. The Overall column is the mean average benchmark score. The scores in bold reflect
the best performance on dataset.

pretrained onRussian news andWikipedia, with theweights initialised from themBERTmodel.
The BERT-based models are finetuned on the corresponding task. We also conduct estimates
of the human performance on each dataset using Toloka9, a crowd-sourcing platform for data
labelling. Annotation instructions and examples of the web interface for each task are provided
in the GitHub repository10.

Key results. The results are presented in Table 3. Overall, the BERT-based LLMs significantly
underperformhumans onmost tasks. However, the LLMs exceed the human level on theRUSSE
task by up to a 14.7% accuracy score. Comparing the LLMs with one another, we observe that
ruBERT performs slightly better than mBERT, especially on the NLI tasks (RCB, TERRa) and
MRC tasks (RuCoS, DaNetQA).

3.1.3 Retrospective

Since its release, Russian SuperGLUE has undergone community validation and methodologi-
cal improvements [39]: (i) enriching the RUSSE test set with 6.7k samples and improving the
human performance by a 6% accuracy score, (ii) extending the MuSeRC train set with 300 sam-
ples, (iii) doubling the size of the RuCoS development and test sets, (iv) increasing the size of
the DaNetQA dataset up to 1750, 821, and 805 samples in the train, development, and test sets,
and (v) cleaning typos and inaccuracies and improving the annotation consistency through
manual development of the MuSeRC and RuCoS datasets.

Within three years, the overall performance gap between humans and the leading LLMs
has been narrowed from 25.8 to 4.9. The progress has been achieved due to the advances in
language modelling and the development of novel Russian LLMs, such as RuLeanALBERT,
ruGPT-3, YaLM, FRED-T5, and ruRoBERTa. Russian SuperGLUEhas received over 2,000 private
submissions from the academic and industrial communities and ranks 28 NLP systems on the

9toloka.ai

10github.com/RussianNLP/RussianSuperGLUE/HumanBenchmark
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Rank Model Overall
LiDiRus RCB PARus MuSeRC TERRa RUSSE RWSD DaNetQA RuCoS

MCC F1/Acc. Acc. F1a/EM Acc. Acc. Acc. Acc. F1/EM

1 Human 81.1 62.6 68.0/70.2 98.2 80.6/42.0 92.0 80.5 84.0 91.5 93.0/89.0
2 FRED-T5 1.7B FT 76.2 49.7 49.7/54.1 84.2 91.6/77.3 87.1 82.3 66.9 88.9 90.0/90.2
3 Golden Transformer v2.0 75.5 51.5 38.4/53.4 90.6 93.6/80.4 87.7 68.7 64.3 91.1 92.0/92.4
4 YaLM p-tune 71.1 36.4 35.7/47.9 83.4 89.2/70.7 84.1 71.0 66.9 85.0 92.0/91.6
5 FRED-T5 large FT 70.6 38.9 45.6/54.6 77.6 88.7/67.8 80.1 77.5 66.9 79.9 87.0/86.3
6 RuLeanALBERT 69.8 40.3 36.1/41.3 79.6 87.4/65.4 81.2 78.9 66.9 76.0 90.0/90.2
7 FRED-T5 1.7B encoder FT 69.4 42.1 31.1/44.1 80.6 88.2/66.6 83.1 72.3 66.9 73.5 91.0/91.1
8 ruT5-large FT 68.6 32.0 45.0/53.2 76.4 85.5/60.8 77.5 77.3 66.9 79.0 86.0/85.9
9 ruRoBERTa-large FT 68.4 34.3 35.7/51.8 72.2 86.1/63.0 80.1 74.8 66.9 82.0 87.0/86.7

Table 4: Top-nine positions on the Russian SuperGLUE leaderboard. Metrics: F1=F1-score; F1a=macro-average
F1 [52]; Acc.=accuracy; EM=exact match; MCC=Matthews Correlation Coefficient [67]. FT stands for finetuning.
All values are scaled by 100. TheOverall column is the mean average benchmark score. The scores in bold reflect
the best performance on dataset.

public leaderboard (see Table 4). Different approaches and LLMs’ configurations have been
evaluated on the benchmark, including standard finetuning of the encoder (ruRoBERTa-large,
RuLeanALBERT) and encoder-decoder (ruT5-large, FRED-T5) LLMs, prompt-tuning (YaLM),
and ensembles (Golden Transformer v2.0). Simple baselines, such as TF-IDF, random guessing,
and majority classifier, take the last three positions. While the systems match or outperform
humans on the word sense disambiguation (RWSD) and MRC tasks (MuSeRC, DaNetQA, and
RuCoS), there is still room for improving the LLMs’ generalisation to the Winograd Schema
Challenge (RWSD), NLI (RCB, TERRa), and causal reasoning tasks (PARus).

3.2 Read and Reason with MuSeRC and RuCoS: Datasets for Machine Reading Compre-
hension for Russian.

MRC is one of the centralNLU taskswithwide real-world applications that incorporates general
language understanding, world knowledge, and logical reasoning to answer a question. Various
task formulations have been proposed [139], including cloze-style (filling in the placeholders),
multiple choice (selecting one answer from given options), span prediction (extracting a text
segment), and free-form answer (answering in any free-text form). However, as in other NLP
areas, this research field focuses on English [89].

At the time of the Russian SuperGLUE release, the task of MRC for Russian was primarily
explored in the context of span prediction in themonolingual and cross-lingual scenarios [35; 7;
24]. In response, we propose MuSeRC and RuCoS, two Russian MRC datasets requiring multi-
sentence reasoning and commonsense knowledge. MuSeRC follows the design ofMultiRC [52],
while RuCoS is modelled after ReCoRD [123]. This section (i) details methodologies for the
RuCoS collection and human evaluation, (ii) provides a comparative analysis of the ReCoRD
andRuCoS general statistics, and (iii) presents the results of evaluating three BERT-based LLMs
and human annotators on RuCoS and MuSeRC.
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3.2.1 Method

Data collection. We describe the methodology for creating the RuCoS dataset, consisting of
passages with titles of related news articles, cloze-style queries, and answer options. The
methodology includes five main steps: (1) collecting Lenta.ru11 and Deutsche Welle12 news ar-
ticles, (2) generating <passage, cloze-style query, answers> triples, (3) filtering out passages with
low-frequency words, (4) discarding samples that out-of-the-boxMRCmodels can answer, and
(5) filtering out samples ambiguous to human annotators.

1. Lenta.ru and Deutsche Welle news article curation. We parse news articles from Lenta.ru
and Deutsche Welle and extract named entities (NEs) in the articles with a BERT-based
named entity recognition model using the DeepPavlov library [19].

2. Passage-query-answers generation. We generate dataset samples in the form of <passage,
cloze-style query, answers> triples. Each passage consists of the first few paragraphs of a news
article and three titles of related news articles ranked by cosine similarity between the TF-IDF
representations of the passage and titles. The titles provide additional context or comple-
mentary summary points. Each query is a sentence that follows the passage, contains at least
one NEmentioned in the passage, and satisfies the criteria defined in [140]. We replace only
one NE in the selected sentence with a placeholder to generate the cloze-style query. The
answer options are the extracted NEs in the passage.

3. Frequency Filtering. We compute the token frequency in each paragraph as the number
of frequently used tokens (i.e., the number of instances per million in the Russian National
Corpus (RNC)13 is higher than one) divided by the number of tokens in a paragraph. We
keep triples that contain passages with more than 70% high-frequency tokens.

4. Machine filtering. We filter out triples correctly answered by at least one of the two extrac-
tiveMRCmodels for Russian available via theDeepPavlov library: ruBERT andR-NET [123].
At this step, we randomly split the triples into train, dev, and private test sets, with the news
source balanced.

5. Human filtering. We validate the resulting dev and test triples with the help of crowd-
sourcing workers on Toloka (see § A.1 in [38] for an example of the annotation instruction).
The project includes an unpaid training phase with explanations, control tasks for tracking
annotation quality, and the main annotation phase. Before starting, the worker is given de-
tailed instructions describing the task and showing annotation examples. The instruction is
available anytime during the training and main annotation phases.

11lenta.ru

12www.dw.com/ru/

13ruscorpora.ru/new/en
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Parameter
ReCoRD RuCoS

Train Dev Test Overall Train Dev Test Overall

Num. of samples 65,709 7,481 7,484 80,674 72,193 7,577 7,257 87,027
Num. of queries 100,730 10,000 10,000 120,730 72,193 7,577 7,257 87,027
Num. of unique queries 99,713 9,977 9,968 80,179 72,193 7,577 7,257 87,027
Num. of unique passages 65,258 7,133 7,279 79,670 72,193 7,577 7,257 87,027
|Query vocabulary| 119,069 30,844 31,028 134,397 109,899 30,203 27,813 120,410
|Passage vocabulary| 352,491 93,171 94,386 395,356 279,333 90,699 83,237 303,647
Num. of tokens per query 21.3 22.1 22.2 21.4 22.2 22.1 21.6 22.2
Num. of tokens per passage 169.5 168.6 168.1 169.3 146.6 146.2 142.5 146.2
Num. of NEs per passage 17.2 17.3 17.2 17.2 12.7 14.3 13.3 12.9
NE frequency 7.1 4.4 4.3 7.5 8.9 5.0 5.3 9.6
Answer frequency 6.8 4.7 7 6.5 10.2 4.1 7 10.2
% high-frequency tokens per query 7 7 7 7 86.0 85.0 86.0 86.0
% high-frequency tokens per passage 7 7 7 7 82.0 81.0 82.0 82.0

Table 5: General statistics of the ReCoRD and RuCoS datasets.

Access to the project is granted to workers who (i) have a user rating of more than 60%
and (ii) complete the training phase by labelling at least 7 out of 10 samples correctly. The
annotation task is to (i) validate coherence between the passage and the query, (ii) report
if the answer is not obvious or ambiguous, (iii) select all possible answers, and (iv) report
any inconsistency and errors, e.g., an incomplete entity markup or misspellings. We keep
submissions with more than 30 seconds of response time and discard votes from workers
whose quality on the control tasks is higher than 50%. We collect the majority vote labels
via a dynamic overlap14 from three to five remaining workers. Two authors of the paper
manually validated each submission and corrected all reported drawbacks.

General statistics. We use spaCy for English15 and Russian16 to compute the statistics of
the ReCoRD and RuCoS datasets presented in Table 5. The distribution of samples by
the news source is 44%/56% in ReCoRD (CNN/Daily Mail News) and 67%/33% in RuCoS
(Lenta.ru/Deutsche Welle). RuCoS is larger than ReCoRD by 6.3k samples. Unlike ReCoRD,
RuCoS has unique passages and queries in each dataset sample, meaning there is only one query
for each passage. We observe that (i) passages in RuCoS are shorter, (ii) queries in RuCoS con-
tain fewer NEs, and (iii) ReCoRD tends to be more diverse regarding the entity and answer
vocabularies. This can be attributed to the language peculiarities, specifics of the data sources,
and topic distribution. At the same time, RuCoS requires an understanding of rich inflectional
morphology and high lexical variability in Russian.

14toloka.ai/docs/dynamic-overlap

15github.com/explosion/spaCy

16github.com/aatimofeev/spacy_russian_tokenizer
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Model
MuSeRC RuCoS

F1a/EM F1/EM

TF-IDF 58.9/24.4 25.6/25.1
mBERT 66.8/33.6 30.6/29.6
ruBERT-conv 71.7/32.9 26.4/25.9
ruBERT-base 71.7/33.6 34.4/33.9
Human 80.6/42.0 93.0/92.4

Table 6: Baseline evaluation on the RuCoS and MuSeRC datasets. Metrics: F1=F1-score; F1a=macro-average
F1 [52]; EM=exact match.

3.2.2 Empirical evaluation

Baselines. Weexperimentally evaluate count-basedmodels andBERT-based LLMs for the Rus-
sian language: TF-IDF, ruBERT-base, mBERT, and ruBERT-conv17. Here, the TF-IDF approach
includes (i) building the term vocabulary on the corresponding training set, (ii) replacing the
query with each answer option (RuCoS) or concatenating the passage with each answer option
(MuSeRC), (iii) computing the cosine similarity between the TF-IDF vectors of the passage and
resulting query (RuCoS) or the concatenation and the question (MuSeRC), and (iv) return-
ing the answer option that maximises the similarity. We evaluate the human performance on
Toloka, where the workers are required to (i) read the passage and the cloze-style query with
a placeholder, (ii) select all possible answers that best fit the placeholder, and (3) report am-
biguous samples and errors. The annotation instructions and examples of the web interface for
MuSeRC and ReCoRD are publicly available18.

Metrics. The evaluation design follows the works by [123; 52]. Exact match (EM) measures
the percentage of predictions that match all true answer options (MuSeRC) or any of the true
answer options (RuCoS).Macro-average F1 (F1a) is a harmonicmean of the precision and recall
scores computed over binary decisions for each answer option. F1-score (F1) measures the
overlap between the prediction and true answer options treated as bag-of-words. We compute
themaximum F1 score for all reference answers per query and then average it across all queries.

Key results. Table 6 presents the evaluation results. The monolingual LLMs perform best on
the MuSeRC dataset, while mBERT outperforms ruBERT-conv on the RuCoS dataset. ruBERT-
base receives the best performance among the models on both tasks. We also find a significant
difference between the human and baseline results, specifically on RuCoS.

17hf.co/DeepPavlov/rubert-base-cased-conversational

18github.com/RussianNLP/RussianSuperGLUE/HumanBenchmark
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3.2.3 Retrospective

The empirical evaluation results demonstrate that the most widely-used Russian LLMs when
writing the publication are significantly inferior to humans by up to 58.6 F1-score and 58.5 EM
score. Nowadays, theMuSeRC and RuCoS datasets are saturated, meaning that the LLMsmatch
or outperform humans. The best-performingmodels (see Table 4) rely on finetuning (FRED-T5,
RuLeanALBERT), prompt-tuning (YaLM), and model ensembles (Golden Transformer v2.0).
However, the proposed datasets have contributed to increasing the inclusivity of the Russian
language, making it the third best-resourced language in the context of question answering and
MRC problems [89].

3.3 RuCoLA: Russian Corpus of Linguistic Acceptability

The question of whether neural LLMs acquire grammatical knowledge central to human lin-
guistic competence has been addressed with acceptability judgments, which reflect the degree
to which a sentence is well-formed and natural from the perspective of native speakers [22].
Acceptability judgments have formed an empirical foundation in generative linguistics for eval-
uating humans’ grammatical knowledge and language acquisition [99]. The NLP field has ap-
plied the conventions from linguistic theory to test model robustness [135], interpret the perfor-
mance of downstreammodels [18], and evaluate the grammatical correctness in language gen-
eration [10; 11]. With the release of CoLA (Corpus of Linguistic Acceptability; [126]) included
in the GLUE benchmark, the community has dedicated significant effort to creating similar lin-
guistic acceptability resources in multiple languages, except for Russian [111; 42; 118; 132].

RuCoLA is the first large-scale acceptability classification benchmark in Russian, which com-
bines in-domain sentences manually collected from linguistic literature and out-of-domain sen-
tences generated with nine machine translation and paraphrase generation models. The moti-
vation behind the out-of-domain set is to enable the application of acceptability judgments to
enhance language generation in practical scenarios. RuCoLA provides a website and a pub-
lic leaderboard for testing the linguistic competence of modern and upcoming LLMs for the
Russian language.

3.3.1 Method

The task is framed as a sentence-level binary classification problem, where themodel is required
to predict whether the sentence is acceptable.

• Sentence: "Иван прилёг, чтобы он отдохнул."

• Answer: False (Неприемлемое предложение)

• Category: Синтаксис

• Source: [109]
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Source Size % Content

rusgram 563 49.7 Corpus grammar
[109] 1,335 73.9 General syntax
[65] 193 75.6 Syntactic structures
[72] 54 57.4 Generative grammar
[78] 1,308 84.3 Semantics of tense
[77] 1,374 90.8 Lexical semantics
[79] 1,462 89.5 Aspects of negation
[102] 2,104 80.8 Semantics
[104] 1,444 36.6 Grammar exam tasks

In-domain 9,837 74.5

Machine translation 1,286 72.8 English translations
Paraphrase generation 2,322 59.9 Automatic paraphrases

Out-of-domain 3,608 64.6

Total 13,445 71.8

Table 7: RuCoLA statistics by source. Notations: %=Percentage of acceptable sentences. rusgram is a collection
of materials written by linguists for a corpus-based description of Russian grammar (available at: rusgram.ru).

Data collection. RuCoLA is composed of in-domain and out-of-domain sets (see Table 7). The
in-domain set is created through a manual collection of sentences and the corresponding au-
thors’ acceptability judgments from linguistic textbooks, academic publications, and method-
ological materials on Russian grammar. The out-of-domain set consists of sentences produced
by nine open-source machine translation (MT) and paraphrase generation (PG)models via the
EasyNMT19 and russian-paraphrasers [37] libraries on subsets of four datasets from different
domains: Tatoeba [8], WikiMatrix [100], TED [85], and Yandex Parallel Corpus [5]. The MT
models are OPUS-MT [110], M-BART50 [108] and M2M-100 [36] of 418M and 1.2B parame-
ters. The PG models include ruGPT2-Large20 (760M), ruT521 (244M), and mT5 [134] of Small
(300M), Base (580M) and Large (1.2B) versions. Each machine-generated sentence undergoes
a two-stage annotation procedure on Toloka, as described below.

Data annotation. Each stage includes an unpaid training phase comprising illustrative exam-
ples, control tasks for monitoring annotation performance, and the primary annotation phase.
The worker is provided with comprehensive instructions that outline the task, clarify the labels,
and offer numerous examples. The annotation instructions, examples of the web interface, and
other details can be found in §B.1 and §B.2 [70].

19github.com/UKPLab/EasyNMT

20hf.co/ai-forever/ruGPT2-large

21hf.co/cointegrated/rut5-base-paraphraser
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Figure 1: Distribution of violation categories in RuCoLA's unacceptable sentences.

Stage 1: Acceptability judgments. The first annotation stage defines the acceptability of a given
sentence. Access to the project is granted to workers certified as native speakers of Russian by
Toloka and ranked top 60% workers according to the Toloka rating system. Each worker must
answer at least 21 out of 30 training examples correctly. We collect the majority vote labels via a
dynamic overlap from three to five workers among those whose annotation quality rate on the
control sentences is more than 50%.

Stage 2: Violation categories. The second stage includes validation and annotation of sentences
labelled unacceptable in the first stage according to the following categories: "Morphology",
"Syntax", "Semantics", "Hallucinations" and "Other". The team of annotators is 30 undergrad-
uate BA and MA students in philology and linguistics from several Russian universities. We
hold an online seminar to discuss the annotation task and related works [126; 43; 142]. The stu-
dents undergo training on 15 examples and can communicate with the paper’s authors through
a group chat. We keep submissions with more than 30 seconds of response time per five sen-
tences and collect the majority vote labels for each answer option independently. Sentences that
fall into multiple violation categories or are labelled "Other" are discarded.

Linguistic phenomena. Each unacceptable sentence falls under one of the four violation cat-
egories: morphology, syntax, semantics, and hallucinations. The phenomena are well repre-
sented in Russian theoretical and corpus linguistics and are specific to generative models. Ex-
amples of the phenomena include incorrect word derivation, agreement violations, corruption
of word order, violations of verb transitivity, incorrect use of negation, nonsensical sentences,
irrelevant repetitions, decoding confusions, and others (see § A.1 and § A.2 in [70]).

General statistics. The sentences in RuCoLA are filtered by the 4–30 token range with razdel22.
There are 11 tokens in each sentence on average. Similar to §3.2.1, we estimate the number of
high-frequency tokens in each sentence based on the RNC. The sentences contain, on average
92%, of high-frequency tokens. Figure 1 illustrates the distribution of the categories in RuCoLA.

22github.com/natasha/razdel
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Syntactic violations comprise 53.3% and 40.8% in the in-domain and out-of-domain sets. The in-
domain set includes 40.2% of semantic and 6.6% of morphological violations, while the out-of-
domain set accounts for 11.9% and 9.8%, respectively. 12.7% of the total number of unacceptable
sentences are attributed to model hallucinations.

The in-domain set is split into train, development, and private test splits in the 80/10/10
ratio (7.9k/1k/1k examples). The out-of-domain set is divided into development and private
test splits in a 50/50 ratio (1.8k/1.8k examples).

3.3.2 Empirical evaluation

Baselines. We evaluate three groups of baselines: non-neural models (TF-IDF and a majority
vote classifier), probabilistic acceptability measures (PenLP), and a broad range of monolin-
gual andmultilingual Transformer LLMs (ruBERT-base23, ruRoBERTa-large24, and ruT5-base25,
XLM-R-base [30], and RemBERT [23]). TF-IDF is a Logistic Regression classifier over TF-IDF
features computed on word N-grams with the N-gram range ∈ [1; 3], which results in a total
of 2.5k features. PenLP [58] is computed using ruGPT3-medium26 as the sum of token log-
probabilities P (s) normalised by the sentence length with a scaling factor α (see Equation 1).
The PenLP approach assigns the label to a given sentence based on the threshold defined on the
development set.

PenLP(s) = P (s)

((5 + |s|)(5 + 1))α
(1)

We conduct a human evaluation on the entire in-domain test set and 50% of the out-of-
domain test set. The annotation design is similar to Stage 1: Acceptability judgments, with the
exception that (i) we remove the "Not confident" answer option, (ii) the annotators are 16 un-
dergraduate BA and MA students, and (iii) the votes are aggregated using the Dawid-Skene
method [32], which is available directly from the Toloka interface. The average quality rate on
the control tasks exceeds 75%.

Metrics. The acceptability classification performance is measured by the accuracy score (Acc.)
andMatthews Correlation Coefficient (MCC). We train and finetune the baselines by maximis-
ing theMCC score on the development set and report the results on the private test set averaged
over ten experiment runs from different random seeds.

23hf.co/ai-forever/ruBERT-base

24hf.co/ai-forever/ruRoBERTa-large

25hf.co/ai-forever/ruT5-base

26hf.co/ai-forever/ruGPT3-medium
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Baseline
Overall In-domain Out-of-domain

Acc. MCC Acc. MCC Acc. MCC

Non-neural models

Majority 68.05 ± 0.0 0.0 ± 0.0 74.42 ± 0.0 0.0 ± 0.0 64.58 ± 0.0 0.0 ± 0.0

Linear 67.34 ± 0.0 0.04 ± 0.0 75.53 ± 0.0 0.17 ± 0.0 62.86 ± 0.0 -0.02 ± 0.0

Acceptability measures from LLMs

ruGPT-3 55.79 ± 0.0 0.27 ± 0.0 59.39 ± 0.0 0.19 ± 0.0 53.82 ± 0.0 0.30 ± 0.0

Russian LLMs

ruBERT 75.9 ± 0.42 0.42 ± 0.01 78.82 ± 0.57 0.4 ± 0.01 74.3 ± 0.71 0.42 ± 0.01

ruRoBERTa 80.8 ± 0.47 0.54 ± 0.01 83.48 ± 0.45 0.53 ± 0.01 79.34 ± 0.57 0.53 ± 0.01

ruT5 71.26 ± 1.31 0.27 ± 0.03 76.49 ± 1.54 0.33 ± 0.03 68.41 ± 1.55 0.25 ± 0.04

Cross-lingual LLMs

XLM-R 65.73 ± 2.33 0.17 ± 0.04 74.17 ± 1.75 0.22 ± 0.03 61.13 ± 2.9 0.13 ± 0.05

RemBERT 76.21 ± 0.33 0.44 ± 0.01 78.32 ± 0.75 0.4 ± 0.02 75.06 ± 0.55 0.44 ± 0.01

Human 84.08 0.63 83.55 0.57 84.59 0.67

Table 8: Results for acceptability classification. The best score is in bold, the second best one is underlined.

Acceptability classification

Key results. Table 8 presents the results for acceptability classification. The key findings are:
(i) ruRoBERTa and RemBERT achieve the best and second best overall performance among
LLMs, which is up to 19 points behind humans in terms of overall MCC score, (ii) the non-
neural models receive near-zero performance, (iii) the best-performing LLMs generalise well
to the out-of-domain set, with an absolute difference of 0 to 0.04 in terms of MCC, and (iv) the
human performance is higher on the out-of-domain set, indicating that unacceptable generated
sentences are easier to identify.

Error analysis. The results ofmanual quantitative analysis of 250misclassified sentences reveal
that (i) classifiers judge ungrammatical sentences with morphological and syntactic violations
as acceptable, (ii) humans make mistakes in long sentences with comparative and subordinate
clauses and prepositional government, and (iii)most acceptability classifiers achieve high recall
on hallucinated sentences, highlighting an application potential for RuCoLA.

Effect of length. The key finding is that the performance is consistent across all methods. How-
ever, while the model performance is unstable and slightly degrades as the length increases, the
human annotators outperform the LLMs, which is consistent with [124].

Cross-lingual knowledge transfer

RuCoLA contributes to analysing how well the grammatical knowledge in multilingual LLMs
is transferred between different languages. We experiment with zero-shot cross-lingual accept-
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ability classification, where the train and development sets are provided in one language and
the test data in another one. Here, we use analogous benchmarks in English (CoLA) and Ital-
ian (ItaCoLA; [111]) and four multilingual models: mBERT, XLM-R-base, XML-R-large, and
RemBERT.

Key results. We observe that (i) there is little difference in performance depending on the
source language, (ii) the monolingual scenarios outperform cross-lingual transfer by a large
margin, which aligns with the results of [111], (iii) RemBERT performs best in both scenarios
among themultilingual LLMs, (iv) RemBERT andXLM-R-large generalisewell to the RuCoLA’s
out-of-domain set when finetuned on English and Italian.

3.3.3 Retrospective

The results on the public leaderboard27 demonstrate that RuCoLA remains a challenging bench-
mark for Russian LLMs, with a performance gap of five and eight points of MCC on the in-
domain and out-of-domain sets, respectively. More than 30 different approaches to performing
acceptability judgments in Russian have been evaluated, including distilled LLMs28 and TDA-
based classifiers [21; 84]. RuCoLAhas spurred the practical use of acceptability judgments, e.g.,
filtering out unacceptable translations of image captions in the ruDALL-E29 pretraining corpus.

3.4 Findings of the RuATD Shared Task 2022 on Artificial Text Detection in Russian

The LLMs are capable of generating human-like texts among many languages and text do-
mains. However, the LLMs can be misused for malicious purposes [128], e.g., generating fake
news [138] and extremist content [68]. The niche field of artificial text detection (ATD) aims to
develop resources and computational methods to mitigate the risks of misusing TGMs.

To address this line of research for Russian, we propose the RuATD benchmark, which was
organised as a shared task in the framework of the annual "Dialogue" evaluation initiative30.
RuATD focuses on two task formulations modelled after the Turing test [113] and authorship
attribution [114], covering diverse text domains, generative models, and language generation
tasks. We host two public leaderboards on theKaggle competition platform, which remain open
to submissions from the community.

27rucola-benchmark.com/leaderboard

28hf.co/cointegrated/ruBERT-tiny

29hf.co/ai-forever/ruDALL-E-Malevich

30www.dialog-21.ru/en/evaluation
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3.4.1 Method

Detection of neural texts is the first task aimed at predicting whether a given text is generated
or written by a human. The task is framed as a binary classification problem.

• Text: "Я был готов помочь ему в опасности своей жизни."

• Answer: Machine

Authorship attribution is the second task aimed at identifying the author of a given text.
The task is a multi-class classification problem with 14 target classes: a human and 13 models.

• Text: "Я был полон решимости помочь ему, даже рискуя собственной жизнью."

• Answer: Human

Data collection. RuATD is composed of 215k human-written and artificial texts generatedwith
13 models. The methodology for creating RuATD includes three main steps: (i) collecting
human-written texts, (ii) text generation, and (iii) post-processing and filtering. We provide
a brief description below and refer the reader to §2 in [103] for details on model and data spec-
ification, model finetuning hyperparameters, and text generation hyperparameters.

1. Human-written text curation: We collect human-written texts from task-specific datasets
and publicly available resources among multiple text domains: RNC, social media posts,
Wikipedia articles (top-100 most viewed pages in 2016-2021), news articles (Lenta.ru, KP,
Interfax, Izvestia, and others), digitalised diaries [69], and strategic documents from the
Ministry of Economic Development of the Russian Federation [48]. We also collect gold
standard translation references from WikiMatrix and Tatoeba.

2. Artificial text generation: Weuse human-written texts as the input to the generativemodels
finetuned for one or more language generation tasks: MT, PG, text simplification, and text
summarisation. In addition, we consider back-translation and open-ended generation.

• MT & back-translation: We translate subsets of Tatoeba and WikiMatrix in three lan-
guage pairs (English/French/Spanish-Russian) with three models from the EasyNMT li-
brary: OPUS-MT, M-BART50, and M2M-100. In the back-translation setup, the sentence
in Russian is translated into a target language and then translated back into Russian.

• PG: paraphrases are generated by models via the russian-paraphrasers library: ruGPT2-
large, ruT5-base, and mT5 of Small and Large versions.

• Text simplification: We finetune ruGPT3-small, ruGPT3-medium, ruGPT3-large, mT5-
large, and ruT5-large on the RuSimpleSentEval dataset [95].

• Text summarisation: We use two summarisation models finetuned on Gazeta [41]: ruT5-
base and M-BART.
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Task Model Size N % Domain Task Model Size N % Domain

Back-translation

Human

35,588 12.9 88.0

RNC, Wikipedia,
news, diaries,
WikiMatrix,
Tatoeba, SD

Machine

translation

Human

35,860 11.5 89.0
WikiMatrix,
Tatoeba

M-BART50 M-BART50
M2M-100 M2M-100
OPUS-MT OPUS-MT

Open-ended

generation

Human

37,499 141.5 85.0
RNC, Wikipedia,
news, diaries,
SD, social media

Text

summarisation

Human

17,164 33.5 86.0
RNC, Wikipedia,
news, diaries, SD

ruGPT3-small M-BART
ruGPT3-medium M-BART50
ruGPT3-large ruT5-base

Paraphrase

generation

Human

44,298 13.0 85.0

RNC, SD,
social media,
Wikipedia,
news,
diaries

Text

simplification

Human

44,700 18.3 86.0

RNC, SD,
social media,
Wikipedia,
news,
diaries

mT5-small mT5-large
mT5-large ruGPT3-small
ruGPT2-large ruGPT3-medium
ruGPT3-large ruGPT3-large
ruT5-base ruT5-large

Table 9: General statistics of the RuATD benchmark. Notations: N=average number of tokens; %=percentage of
high-frequency tokens; SD=strategic documents; RNC=Russian National Corpus.

• Open-ended generation: We generate texts in a zero-shot manner by prompting the
ruGPT3-small, ruGPT3-medium, and ruGPT3-large models with the text beginning.

3. Post-processing & filtering: We use a set of heuristics to (i) discard text duplicates, copied
inputs, empty outputs, (ii) discard texts containing obscene lexis, (iii) keep translations clas-
sified as Russian by the language detection model31, and (iv) filter the texts by the token
range: 5-to-25 (MT, back-MT, PG), 10-to-30 (text simplification), 15-to-60 (text summarisa-
tion), and 85-to-400 (open-ended generation).

General statistics. Table 9 presents the general statistics of the RuATD benchmark by language
generation task, generativemodel, and text domain. There are 37.9 tokens on average, with vari-
ations depending on the language generation task. The fraction of high-frequency tokens based
on the RNC is similar among the human-written and machine-generated texts: 86% and 87%,
respectively. We split the corpus into four sets in the 60/10/15/15 proportion ratio: train (130k),
development (21k), public test (32k), and private test (32k). The public test set is available dur-
ing the competition, allowing the participants to develop and improve their submissions. The
private test set defines the final rankings of the participants, preventing overfitting on the public
test set. The train, development, and public and private test sets are utilised in both task for-
mulations, with the only difference in the target classes. Specifically, the machine label in the
binary classification task is broken into 13 model names in the multi-class classification task.

3.4.2 Empirical evaluation

Baselines. We provide two baseline solutions to the shared task participants: TF-IDF and
ruBERT-base. TF-IDF refers to a Logistic Regression classifier over TF-IDF features computed
on word N-grams with the N-gram range ∈ [1; 3]. The feature dimensionality is reduced with

31github.com/fedelopez77/langdetect
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Rank
Detection of neural texts Authorship attribution

Team Acc. Team Acc.

1 MSU 0.829 Posokhov Pavel 0.650
2 Igor 0.827 Yixuan Weng 0.647
3 Orzhan 0.826 Orzhan 0.646
4 mariananieva 0.824 MSU 0.628
5 Ivan Zakharov 0.822 ruBERT baseline 0.598
6 Yixuan Weng 0.818 Nikita Selin 0.590
7 ilya koziev 0.817 Victor Krasilnikov 0.550
8 miso soup 0.811 Petr Grigoriev 0.458
9 Eduard Belov 0.810 TF-IDF baseline 0.443

Table 10: Top-nine positions on the RuATD leaderboards.

Singular Value Decomposition to 5k. ruBERT-base is fine-tuned on the corresponding task. We
also establish a human baseline for detection of neural texts using stratified subsets of 2.5k sam-
ples from the public and private tests. § A in [103] presents the annotation instruction given to
crowdsourcing workers on Toloka. We grant access to the project to workers ranked top 70% .
Each worker must finish the training stage by answering at least 27 out of 32 examples correctly.
We aggregate the majority vote labels via dynamic overlap from three to five trained workers
after (i) discarding votes fromworkers whose annotation quality rate on the control tasks is less
than 50% and (ii) filtering out submissions with less than 15 seconds of response time per five
texts.

Metrics. We use the accuracy score to evaluate systems in each task.

Key results. We outline the key findings of evaluating the baselines and 38 shared task solu-
tions (see Table 10): (i) the performance of the detectors depends on the text length (the longer
the text, the higher the accuracy), (ii) identifying the author of the given text is not trivial, mean-
ing that human-written texts and texts generated by different models have similar properties,
and (iii) humans underperform the systems on detection of neural texts by up to 0.169 accuracy
score, which is consistent with [51; 115].

3.4.3 Retrospective

The ATD field remains focused on three languages: English, Chinese, and Russian. The ATD
benchmarks are becomingmore complex, covering various domains, architectures of generative
LLMs, decoding methods, and strategies for generating texts. The rapid proliferation of gener-
ative LLMs necessitates continuous updating of the ATD benchmarks and the development of
more generalisable artificial text detectors since the detection performance decreases with the
LLMs’ scaling [106]. In §3.5, we present a novel neural text detector, which outperforms existing
detectors, and demonstrates more robust generalisation to unseen larger GPT-2 models.
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(a) Attention map (left); Barcode (right).

(b) Attention graph filtration.

Figure 2: An example of attention maps, barcodes, and filtration procedure [21].

3.5 Artificial Text Detection via Examining the Topology of Attention Maps

With recent advances in language generation, the problem of low human performance in de-
tecting neural texts becomes more prominent, stimulating the development of reliable neural
text detectors to assist humans. Different computational approaches have been proposed, such
as training linear classifiers over count-based and linguistic features [47; 9], utilising statisti-
cal properties computed by pretrained Transformer LLMs [40; 34], and finetuning Transformer
LLMs [106]. The Transformer-based detectors are highly effective in ATD tasks but lack inter-
pretability and robustness towards unseen generative models [49].

We introduce a hybrid artificial text detector that combines the advantages of feature-based
and Transformer-based detectors – interpretability and strong performance. We make one of
the first attempts to adapt methods from applied topology and computational geometry to the
Transformer’s attention mechanism. Our approach includes (i) extracting three types of TDA
features from a graph representation of the Transformer’s attention map and (ii) training a
linear classifier over the concatenation of the features.

3.5.1 Method

We treat the Transformer’s attention map (see Figure 2a; left) as a weighted graph, where the
vertices are text tokens, and the edges’ weights correspond to the attention weights. This repre-
sentation is used to obtain "filtration", i.e., an ordered set of attention graphs filtered by increas-
ing attention weight thresholds τi (see Figure 2b). Filtering edges lower than the given thresh-
old affects the graph structure and features. TDA techniques track these changes, identifying
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Domain Model
|Train| |Dev| |Test| |Vocab| Length

H M H M H M H M H M

Reddit
GPT-2-small
pure sampling

20k 20k 2.5k 2.5k 2.5k 2.5k 220k 532k 593 ± 177 515 ± 322

Amazon
reviews

GPT-2-XL
pure sampling

5k 5k 1k 1k 4k 4k 47k 49k 179 ± 170 177 ± 171

RealNews
GROVER

top-p sampling
5k 5k 1k 1k 4k 4k 98k 75k 721 ± 636 519 ± 203

Table 11: Statistics for the datasets used in the experiments on the artificial text detection task. Nota-

tions: H=Human; M=Machine.

the moments when the features appear (i.e., their "birth") and disappear (i.e., their "death").
The feature’s lifetime is encoded as a set of intervals called a "barcode" (see Figure 2a; right),
where each interval ("bar") lasts from the feature’s birth to its death. The barcode characterises
the stability of the graph features.

We extract three types of TDA features from the Transformer’s attention maps. The features
are computed over pre-defined thresholds using each attention head and further concatenated.

1. Topological features. Topological features include the first two Betti numbers of the undi-
rected graph β0 and β1 and standard properties of the directed graph, such as the number
of strongly connected components, edges, and cycles.

2. Features derived from barcodes. Barcode is the representation of the graph’s persistent ho-
mology. We compute 0/1-dimensional barcodes from the attention graph and their descrip-
tive characteristics: the sum/average/variance of lengths of bars, the number of bars with
the time of birth/death greater/lower than a threshold, and the entropy of the barcodes.

3. Features based on the distance to patterns. The shape of attention graphs has various at-
tention patterns: attention to the previous/current/next token, attention to the [SEP]/[CLS]
token, and attention to punctuationmarks [25]. Figure 2b shows an example of the attention
to the [SEP] token pattern. We represent attention patterns as binary matrices and calculate
the Frobenius norm of the difference between the matrices normalised by the sum of their
norms.

3.5.2 Empirical evaluation

Datasets. We conduct the experiments using subsets of three datasets from different domains
(see Table 11): (i) Reddit & GPT-2-small [86], (ii) Amazon reviews & GPT-2-XL [4; 106], and
(iii) RealNews & GROVER [138].
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Model
Reddit &

GPT-2 Small

Amazon Reviews &

GPT-2 XL

RealNews &
GROVER

TF-IDF, N-grams 68.1 54.2 56.9
BERT [CLS trained] 77.4 54.4 53.8
BERT [Fully finetuned] 88.7 60.1 62.9

BERT [SLOR] 78.8 59.3 53.0

Topological features 86.9 59.6 63.0
Features derived from barcodes 84.2 60.3 61.5
Features based on the distance to patterns 85.4 61.0 62.3

All features 87.7 61.1 63.6

Table 12: The results of the artificial text detection experiments. The values are scaled by 100.

Baselines. The BERT-based32 baselines include: (i) BERT [CLS trained] is a linear layer trained
over [CLS]-pooled text representations, with the BERT’s weights frozen, (ii) BERT [Fully fine-
tuned] is a finetuned BERT model. In addition, we train a Logistic Regression classifier over
(iii) TF-IDF N-grams with the N-gram range ∈ [1, 2] and (iv) BERT [SLOR] [82], a pseudo-
perplexity-based acceptability measure [58].

Models. We train a Logistic Regression classifier over TDA features derived from the attention
matrices from the BERTmodel: (i) Topological features, (ii) Features derived from barcodes, (iii) Fea-
tures based on distance to patterns, and (iv) All features, which is the concatenation of all features.
The performance is evaluated with the accuracy score.

Detection of neural texts

Key results. Table 12 presents the results for detecting artificial texts. The key findings are
that the TDA-based detectors (i) outperform the count-based and BERT-based baselines by up
to 10% accuracy score, and (ii) achieve performance comparable with the finetuned BERT.

Robustness to unseen generativemodels. Here, the detectors are trained on human-written texts
and texts generated by the smallest GPT-2 and used to detect texts generated by unseen GPT-
style models with pure sampling: GPT-2-medium (345M), GPT-2-large (762M) and GPT-2-xl
(1542M). The key finding is that detector trained Topological features is more generalisable than
the baselines but performs slightly worse than the finetuned BERT on the GPT-2-small test set.

Probing analysis

Key results. Figure 3 presents the results of the probing analysis on two probing tasks: pre-
dicting the sentence length and the depth of the syntax tree. We find that the TDA features
(i) are sensitive to the properties, (ii) can lose information about properties, which is indicated

32hf.co/bert-base-uncased
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(a) Sentence length (b) Depth of the syntax tree

Figure 3: Heat maps of attention head-wise probin. Attentions=Frozen attention weights. X-axis=Head index
number. Y-axis=Layer index number. The brighter the color, the higher the accuracy score for the attention head.

by different performance scores for the same attention heads, and (iii) do not encode semantic
properties (e.g., verb tense), but this information is sufficient for the ATD task.

3.5.3 Retrospective

TDAhas found broad application in differentML tasks, such as human action recognition [107],
image segmentation [26], text classification [98; 129] and language generation evaluation [28].
Multiple follow-upworks have reported that ourmethodology can be adapted to promote state-
of-the-art results on speech processing tasks [112] and reach the human-level performance on
linguistic acceptability tasks [21].

3.6 Vote'n'Rank: Revision of Benchmarking with Social Choice Theory

The appropriateness of the arithmetic mean aggregation procedure in multi-task ML bench-
marks is questioned for its properties: (i) implying that all task metrics are homogeneous [29],
(ii) ignoring task complexity [71], (iii) relying on the absolute score difference [83], and
(iv) ranking systems higher when they outperform the others only on the outlier tasks [1].

To address these limitations, we introduce Vote’n’Rank, an alternative tool for ranking NLP
systems in multi-task andmulti-criteria evaluation setups based on the social choice theory [2].
Vote’n’Rank includes eight interpretable aggregation procedures that rely on rankings in each
criterion (e.g., task performance, computational efficiency, and fairness) and allow aggregat-
ing heterogeneous information. This section briefly describes the aggregation procedures and
experimental design and outlines the key findings.

3.6.1 Method

We adopt the conceptual definitions from the social choice theory to the objectives of selecting
the best-performing system and ranking a set of systems as follows: (i) a voter or a criterion is a
task in a given benchmark, and (ii) an alternative is a system candidate.
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Figure 4: Three ways to run the aggregation procedures. A: Basic aggregation. B: Weighted aggregation.
C: Two-step aggregation.

Aggregation procedures. The Vote’n’Rank aggregation procedures belong to three classes of
voting rules: scoring rules (Plurality, Borda, and Dowdall), iterative scoring rules (Threshold and
Baldwin), and majority-relation based rules (Condorcet, Copeland, and Minimax). The rules’ de-
sign is based on the mathematical foundations of the social choice theory and is generally ac-
cepted in the community [3; 6; 76]. We offer recommendations for choosing the rule below and
refer the reader to §2 and § A for a formal description of the rules and their properties, and
illustrative examples on how they work.

• The Plurality rule is a good choice if the user wants only the best systems in each criterion.

• Borda and Dowdall are most suitable when all ranking positions matter. Note that Dowdall
assigns higher weights to the top positions.

• TheThreshold rule is helpful in caseswhen the userwants tominimise the number of the low-
performance criteria: the rule assigns the highest rank to the alternative that is considered
the worst in the least amount of criteria.

• The Baldwin, Condorcet, Copeland, or Minimax rules should be used when the goal is to se-
lect the alternative that beats all the others in pairwise comparison. The main difference is
how the rules behave when there is no such alternative. In particular, Baldwin selects the
alternative that is left after elimination according to the Borda scores. Copeland chooses the
alternative that dominates the others in more cases and is dominated by the least. In turn,
Minimax selects the alternative with minimum defeat in pairwise comparison.

Framework. Figure 4 describes three scenarios to run the aggregation procedures. The toy
benchmark has three evaluated alternatives and consists of seven voters grouped by the task,
e.g., MRC, text classification, and question answering.

A Basic aggregation: the aggregation procedure is applied to the leaderboard as is.
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B Weighted aggregation: each voter in the group is assigned a group weight equal to
1/|Tgroup|. The blue group weights are 1/3, and the orange and the violet group weights
are 1/2. Each group contributes equally to the final ranking, regardless of the number of
voters.

C Two-step aggregation: each voter group is treated as a standalone leaderboard. We inde-
pendently apply a procedure to each voter group and compute an interim ranking shown
as “elector”. Next, we aggregate the group-wise rankings by applying the same procedure
one more time and compute the final ranking.

3.6.2 Empirical evaluation

We design four application-oriented case studies to compare our framework with three rank
aggregation procedures: (i) σam is the arithmetic mean aggregation procedure, (ii) σgm is the
geometric mean aggregation procedure, and (iii) σog [1] is an aggregationmetric that identifies
the amount by which the system fails to get a minimum score of γ = 0.95 (lower is better). The
experiments are conducted using the GLUE, SuperGLUE, and VALUE public leaderboards.

Re-interpreting benchmarks

Case study description. The first case study considers two experiment settings: (i) re-ranking
systems on the leaderboards using the scoring and majority-relation based rules, and (ii) se-
lecting the single-winner systems using all rules. We compare the rankings with the baselines
by computing (i) the agreement rate (AR; in %), i.e., the intersection of the top/least-k systems
between the given procedure and σam, (ii) the Kendall Tau correlation (τ) between the total
rankings, (iii) the discriminative power (DP) or the number of equivalent alternatives [16], and
(iv) the independence of irrelevant alternatives (IIA), i.e., how often the new system changes
the ranking.

Key results. We find that (i) the procedures agree with one another on particular top/least-
k systems, but output different rankings, (ii) Dowdall and Borda produce zero ore only one
tied alternative, while Plurality and Minimax treat a larger number of systems equivalent, (iii)
Copeland, Minimax, and Plurality are least impacted by introducing a new system, (iv) Human
may still take leading positions on GLUE according to Plurality and Dowdall, since Human an-
notators receive the best performance on RTE [120] and MNLI [131], (v) Human is declared
the winner on SuperGLUE by the Copeland, Plurality, and Dowdall procedures, and (vi)Human
is ranked first on VALUE by the Copeland, Minimax, and Condorcet procedures, meaning that
Human beats any other model in pairwise comparison.
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Figure 5: Spearman correlation (ρ) between top-7 model rankings with and without omitted leaderboard values.

The Condorcet winner

Case study description. The Condorcet method declares a system the winner if it dominates
all other alternatives in pairwise comparison [14]. In practice, the method is hard to destabilise
and easy to interpret. In the second case study, we aim to find the weight vector which makes
a given alternative the Condorcet winner or determine that no such weights exist.

Key results. There are nine, ten, and three alternatives that can be declared the Condorcet
winners in specific evaluation protocols on GLUE, SuperGLUE, and VALUE, respectively. The
existence of the Condorcet winner weight vectors allows practitioners to simulate real-world
scenarios where the system is the best across the given evaluation criteria.

Robustness to omitting scores

Case study description. The third case study provides a more detailed analysis of the majority-
relation based procedures that handle missing performance scores. We evaluate robustness of
Copeland, Minimax, σam, and σog to omitting scores. First, we compute the rankings on each
benchmark without omitting scores and use them as references. Next, we randomly replace N
scores with empty values and find top-7 systems over the corrupted leaderboards. We calculate
the Spearman correlation (ρ) between the final rankings and the references. Note thatweuse the
median values when omitting scores for σam and σog as the baselines. The results are averaged
over 100 experiment runs.

Key results. Figure 5 presents the results of the experiment. σam and σog demonstrate lower
stability, and Copeland performs the best on GLUE and SGLUE. However, we observe thatMin-
imax is the least stable on VALUE, whilst Copeland, σam, and σog perform on par. We attribute
the low stability of Minimax on VALUE to its limitations. There are minor differences between
the alternatives on VALUE, which causeMinimax to score them very similar and be sensitive to
any missing value.
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Ranking based on user preferences

Case study description. The fourth case study aims at ranking NLP systems based on the user
utility. We simulate a practical scenario, where the user preferences include task performance,
computational efficiency, and fairness. In this experiment, we consider BERT-base, RoBERTa-
base, ALBERT-base, DeBERTa-base [44], DistilBERT-base [97], DistilRoBERTa-base [97], and
GPT2-medium. We finetune and evaluate the LLMs on the GLUE benchmark, estimate their
computational efficiency during finetuning via the Impact tracker toolkit [45], and measure
fairness on three social bias evaluation datasets: CrowS-Pairs [74], StereoSet [73], and Wino-
bias [141].

Key results. We report the key findings when using the Borda procedure, with the weights vec-
tor (0.4, 0.3, 0.3) assigned to performance, computational efficiency, and fairness. The distilled
LLMs (DistilRoBERTa and DistilBERT) are declared the winners, while the best-performing
LLMs (e.g., DeBERTa) is ranked in the middle positions due to sub-optimal computational ef-
ficiency and satisfying performance on detecting social biases. Comparing our results with the
Dynascore [66], we find that the average performance ranking is not preserved when using our
voting rules. This is due to the fact that Dynascore assigns aweight of 0.5 to performance, which
blocks substantial changes in re-ranking.

3.6.3 Retrospective

The nuanced question of how to aggregate results inmulti-task benchmarks applies to each pro-
posed standardised evaluation resource. Vote’n’Rank allows re-interpreting saturated bench-
marks, which undergo stagnation in improvements of the state-of-the-art results after surpass-
ing or reaching the human-level performance. The problem of benchmark saturation is widely
discussed in the NLP community, particularly in light of the state-of-the-art chasing tenden-
cies with minor performance gains [91; 88; 54]. While the criticism is of utmost importance,
it relies on the conclusions drawn from utilising the arithmetic mean aggregation procedure.
Vote’n’Rank highlights that – at the moment of writing the publication – humans still outper-
form the LLMs when accounting for preferences in each task.

The comparison of systems with Vote’n’Rank is hindered by the absence of the correct rank-
ing, specifically when performances are incomplete (e.g., the absence of human performance
scores on the VALUE text-to-video retrieval and video captioning tasks33). However, we make
application-oriented contributions, offering alternative aggregation procedures for evaluating
systems irrespective of the ML area. Our framework is relevant in view of the emerging bench-
marking paradigm, which aims evaluate LLMs exhaustively on user-oriented scenarios [62].

33value-benchmark.github.io/leaderboard.html
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4 Conclusion

The final section summarises contributions of this thesis. The benchmarks, source code, leader-
boards, human evaluation projects, and othermaterials are publicly available under the Apache
2.0 license.

1. We propose the Russian SuperGLUE, RuCoLA, and RuATD benchmarks, which have be-
come standardised evaluation resources formeasuring the advancement of Russian LLMs.
The benchmarks cover 11 diverse NLU tasks in various formulations, including machine
reading comprehension, question answering, word sense disambiguation, natural lan-
guage inference, coreference resolution, acceptability classification, detection of neural
texts, and authorship attribution. We establish methodologies for evaluating human an-
notators and collecting and annotating data, which account for specifics of the Russian
language. Each benchmark provides a public leaderboard for comparing the results of
the state-of-the-art LLMs against the human level.

2. We introduce a novel TDA-based artificial text detector that utilises three types of inter-
pretable features extracted from the graph representation of the Transformer’s attention
maps. The features display sensitivity to the surface and syntactic properties of the text.
Our approach outperforms existing detectors on three datasets from different text do-
mains and demonstrates more robust generalisation to unseen GPT-2 LLMs.

3. We develop Vote’n’Rank, a flexible framework for ranking and determining single-winner
LLMs with eight interpretable aggregation procedures stemming from the social choice
theory. Vote’n’Rank addresses the fundamental limitations of the arithmetic mean ag-
gregation procedure in multi-task benchmarks and multi-criteria evaluation setups. We
offer recommendations based on the procedures’ properties and the intended application
scenarios of the framework.

4. We conduct a detailed empirical evaluation of more than 100 LLMs and their configura-
tions using the proposed evaluation resources and tools. The experiment results show that
(i) the LLMs fall behind humans by a large margin on most of the NLU tasks, while hu-
mans significantly underperform the LLMs on the detection of neural texts, (ii) the LLMs
for Russian struggle to judge unacceptable sentenceswithmorphological and semantic vi-
olations but generalise well to machine-generated sentences, (iii) the cross-lingual knowl-
edge transfer on acceptability classification across Russian, English, and Italian is challeng-
ing, (iv) the best-performing LLMs on standardised benchmarks are less preferred when
accounting for their computational efficiency and fairness, and (v) humans can take the
leading positions on the saturated benchmarks according to the Vote’n’Rank procedures
since they still receive the best performance on particular tasks.
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