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1 Problem statement

Research in the �eld of control theory of systems with distributed parameters has a fairly

long history. For the �rst time, these issues began to be considered, apparently, in the

60s of the 20th century. Pioneering works by such authors as, for example, J. L. Lyons

([1-4]) and A. G. Butkovsky ([5]) and D. L. Russell ([6]) were devoted to the problems

of controlling the vibrations of a string, membrane and thin plate. The problems of both

boundary controllability and global (or local) controllability were considered. The goals of

the control were di�erent. In some studies, the emphasis was given on driving the vibrations

of the system to a given state, in others it was necessary to optimize various functionals

having a physico-mechanical meaning. After that, similar tasks were already set for the heat

equation.

In the problems listed above, additional restrictions can be imposed on the control

function. These restrictions may have a di�erent nature. For example, it is required to stop

the vibrations of the membrane by means of the force action on the boundary (or part of

the boundary) with the limitation of this force according to the norm of space L2.

From the point of view of mechanics, it will be much more natural if the boundary

control force is bounded in absolute value by an arbitrarily small, predetermined number.

This additional condition signi�cantly complicates the task. In this case, all previously used

methods in their original form no longer work.

This dissertation sets and solves precisely this problem � to drive the oscillations described

by classical systems of mechanics (the wave equation and the plate oscillation equation) to

rest in a �nite time by means of a force control action bounded in absolute value applied to

the boundary (or to part of it) of the domain occupied by the system. In addition, the task

is to drive to rest the vibrations of the system described by the ¾plate oscillation¿ equation

on the torus in the case of a local (i.e. applied to part of the domain) force action. There are

no restrictions imposed on the control function.

In addition to classical systems, in the last 15-20 years, research in the �eld of mechanical

systems with so-called ¾memory¿ or integral aftere�ect has become widespread. It all started

with the study of the Gurtin-Pipkin equation ([7]), which can be used to describe, for

example, the process of heat propagation with a �nite velocity (there is a heat front). The

kernel K(t) can have a di�erent form, re�ecting the nature of the physical processes that this

equation also describes. In the two simplest cases, this kernel can be identically equal to one

or equal to a delta-function. In the �rst case, the equation is reduced to a wave equation by

di�erentiating by a time variable, in the second case � turns into the heat equation. Below

we will consider kernels of a more complex type. After the Gurtin-Pipkin equation, classical
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type equations were studied with the addition of integral terms (memory). These additional

terms in some cases make it possible to describe certain processes of mechanics and physics

more e�ectively.

For the Gurtin-Pipkin equation and similar systems, the paper also sets the task of driving

the system to rest in a �nite time. The control can be applied to the boundary, part or the

whole domain. If the control function that drives the mechanical system to rest exists, this

system is called controllable. In contrast, if there is no controllability, i.e. there are initial

perturbations of the mechanical system that cannot be extinguished in a �nite time, then

such a system is called uncontrollable.

An additional di�culty in control problems for systems with memory is the lack of

equivalence of the concepts ¾controllability to rest¿ and ¾null controllability¿. The reason

is the presence of an integral term in the equation. Having reached the zero state at some

point in time, the system can then leave it. As will be established later, most mechanical

systems with memory are uncontrollable.

2 Relevance of the research topic

For classical systems of mechanics (membranes, thin plates), controllability issues are important

in cases where the control action is applied either to the boundary or to a part of the domain.

This is due to the fact that in practice it is di�cult to control the whole system, but it is

possible to in�uence only a part of it. In this regard, there is a problem of choosing this

part, for example, for the wave equation such a choice is determined by a special condition

(Geometric control condition, [8]), which consists in the fact that each optical ray of length T

(control time) in the domain Ω enters the subdomain D (a force control action is applied to

this subdomain). A signi�cant complication in the formulation of control tasks is a restriction

on the absolute value of the control function, such a restriction is due to the impossibility

in real conditions to �nd an arbitrarily large force e�ect. In general, the relevance of the

study of classical systems of mechanics is associated with the mathematical complexity of

the statements in which there are additional restrictions on controls, but these restrictions

are quite natural.

The study of controllability of mechanical systems with integrated memory is relevant due

to the wide range of applications of these systems in practice. Integro-di�erential equations

with non-local convolution-type terms often arise in applications such as heterogeneous media

mechanics, viscoelasticity theory, thermophysics and kinetic theory of gases. For example,

it is strictly proved that in the case of a two-phase heterogeneous medium consisting of a

viscous liquid and elastic additives, the model described by the integro-di�erential equation
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will be e�ective and the corresponding convolution kernel consists of a �nite or in�nite sum

of decreasing exponential functions.

If the viscosity of the liquid is small (high), then the e�ective equation contains (does not

contain) third-order terms corresponding to the Kelvin-Voigt friction. This issue is described

in [9] as well. In the theory of viscoelasticity relaxation kernels are approximated, as a rule,

by sums of exponentials. In thermophysics, the laws of thermal conductivity with integral

memory are the object of study in many research papers, in particular, see [7]. The presence

of an integral memory in the law of thermal conductivity can lead to the appearance of a

thermal front that moves at a �nite speed. This creates a signi�cant di�erence from the heat

equation, whose solution sets the propagation of heat at an in�nite speed. Also, the memory

equations describe the process of di�usion of delayed neutrons in a nuclear reactor, acoustics

in a medium that is a liquid with an admixture of solid particles.

3 The degree of the problem development

To date, the degree of the development of the controllability problem for classical systems

of mechanics (membranes and plates) is very high. Let us note some of the most important

results.

Previously, the controllability problem of the vibrations of a plane membrane using

boundary forces was considered by many authors (see, for example, review articles [6, 10],

as well as the references there). In [5], the problem of stopping the vibrations of a bounded

string using boundary control is described and it is proved that it is possible to completely

stop the vibrations of the string in a �nite time with a restriction on the absolute value of

the control action. Additionally, an estimation of the time required to completely stop the

vibrations is given. In [1], problems of optimal control of systems with distributed parameters

are considered and optimality conditions similar to the Pontryagin maximum principle are

formulated for systems with a �nite number of the degrees of freedom. At the same time,

these conditions do not always lead to a e�cient way of constructing optimal control. In

[10], the problem of the complete stop of the membrane motion is presented, the existence of

such boundary control is proved, and the time required for the complete stop of oscillations

is estimated. Here, in many problem statements, the authors abandon the requirements of

optimal control and consider only the problem of controllability, which greatly facilitates the

study. The paper does not consider problems with a restriction on the absolute value of the

control forces, and there are no explicit expressions for control actions, but only existence

theorems are proved.

In addition to driving to rest there is a so-called solution stabilization problem for
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distributed oscillatory systems. This task consists in setting some feedback control at the

boundary of the domain, which ¾stabilizes¿ the solution, i.e. the energy of the system tends

to zero when the time t tends to in�nity. For example, in [6], the problem of stabilizing

the membrane energy by friction introduced at the boundary is considered. More precisely,

the boundary of the domain occupied by the membrane consists of two parts: Γ0 and Γ1. A

Dirichlet condition is introduced on Γ0, i.e. this part of the boundary is rigidly �xed, and a

boundary condition of the form is introduced on Γ1

∂w

∂ν
= −k∂w

∂t
,

where ν is the external normal to Γ1, k > 0. The friction set in this way leads to the

dissipation of the energy of the system, and consequently to the stabilization of its oscillations.

Since part of the boundary is �xed, the energy of the system coincides with the square of

the norm of the direct product of spaces: H1 × L2. Hence, with t → +∞ the solution of

the problem and its �rst derivative in t (speed) tend to zero according to the norms of the

spaces H1 and L2, respectively. Note that in this formulation, the initial data of the problem

should be chosen su�ciently smooth and satisfy the conditions of coordination. A similar

formulation was considered for the problem of boundary stabilization of transverse vibrations

of a thin plate [11].

In general, the methods of boundary stabilization are quite e�ective, since they allow to

drive the oscillations of the system in a �nite time to an arbitrarily small neighborhood of

zero, which in practice, as a rule, is equivalent to driving to rest. However, these methods

have a drawback. The time spent on stabilization may be longer than in exact controllability

problems. For example, for a plate, there are known methods that allow to drive the vibrations

of the system to rest in an arbitrarily small time.

Controllability problems for systems with memory, as opposed to classical systems, are

not investigated in such details. Let us give a brief overview of the results on this issue.

The presence of a non-local convolution type term in equations and systems leads to a

large number of interesting qualitative e�ects that are not observed in classical di�erential

equations and systems of di�erential equations. For example, systems of this type contain

properties of both parabolic and hyperbolic equations. In spectral problems for such equations

and systems, the spectrum consists of real and complex parts. The �rst part corresponds to

the energy dissipation in the heat equation, the latter, in turn, corresponds to oscillations.

Such equations can be solved using a method similar to the Fourier method. Moreover,

systems of this type are usually uncontrollable to rest if we apply boundary control or

control that is distributed over parts of the domain.

If the control is distributed over the entire domain, then the integral terms in some case

¾help¿ the control process. In this case, the control time can be signi�cantly reduced. It
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should be noted that the spectral method proposed in [12] is sometimes successfully applied

to the case of systems with non-local convolution type terms (for more details, see [13]).

The above-mentioned uncontrollability was discovered in [14] for a one-dimensional heat

equation with memory.

In most cases, the controllability to rest is impossible. For example, in [14] it was proved

that the solution of the heat equation with memory cannot be driven to rest in a �nite time

if some auxiliary analytical function has zeros. This result is true for boundary and local

controllability. Moreover, the case of local controllability can be reduced to the case of the

boundary control. We obtained similar results for problems with two-dimensional domains.

It should also be noted the paper [15], since uncontrollability is established in it for the

heat equation with memory in some special case.

Positive controllability results for a multidimensional wave equation with memory were

obtained in [13]. There it was shown that the system described by this equation can be

driven to rest with the help of bounded distributed control. In this case, the kernel in the

integral term is the sum of N decreasing exponential functions.

Problems for integro-di�erential equations close to the Gurtin-Pipkin equation

θ̇(t, x) =

t∫
0

K(t− s)∆θ(s, x)ds, (1)

widely studied. The equation (1) was �rst derived in [7]. The issues of solvability and

asymptotic behavior of solutions of equations of this type were investigated in [16, 17].

In [18] it was proved that the energy of some dissipative system decreases polynomially,

while the core decreases exponentially.

Problems related to the solvability of memory systems described by the equation (1) and

the like were considered in [19]. It was proved that the solution belongs to some Sobolev space

on the semiaxis (by the variable t) if the kernel K(t) is the sum of exponential functions,

each of which tends to zero at t→ +∞.

Interesting exact formulas for the solution were obtained in [20] under the assumption

that the kernel K(t) is also the sum of decreasing exponential functions.

4 Goals and objectives of the study

1. Prove that the oscillations of a mechanical system described by a two-dimensional wave

equation can be stopped in a �nite time by a force control action bounded in absolute value

(Neumann condition) applied to a part of the boundary. More precisely, a two-dimensional

domain with a hole is considered and the control is applied to the outer contour of the border,

the edges of the hole remain �xed. Note that the stopping of oscillations in this case means
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reaching a state with zero displacement and zero velocity at the terminal moment of time.

2. Prove that the oscillations of a mechanical system described by a two-dimensional wave

equation can be stopped in a �nite time by a force control action bounded in absolute value

(Neumann condition) applied to the entire boundary. In this case, a domain without holes

is considered. Note that the stopping of oscillations in this case means reaching a state with

a constant displacement and zero velocity at the terminal moment of time.

3. Prove that the vibrations of a mechanical system described by the equation of vibrations

of a thin plate can be stopped in a �nite time by a force control action bounded in absolute

value (Neumann condition) applied to a part of the boundary. More precisely, it is considered,

as in paragraph 1, a two-dimensional domain with a hole and the control is applied to the

outer contour of the border, the edges of the hole remain rigidly �xed. At the initial moment,

displacement and velocity are �nite functions taken from some Sobolev classes. Note that

the stopping of oscillations in this case means reaching at the terminal moment state time

with zero displacement and zero velocity.

4. Prove local controllability for the ¾plate oscillation¿ equation on the torus. In this case,

the subdomain to which the control is applied is arbitrary, and the order of smoothness of

the control function increases with the smoothness of the initial data.

5. Prove the lack of local controllability for a mechanical system described by the Gurtin-

Pipkin equation for a wide class of kernels. This class consists of functions continuous on the

time semiaxis whose Laplace transform has at least one zero in the domain of holomorphism.

The lack of local controllability in this case means that there are initial perturbations of the

system that cannot be extinguished in a �nite time by the control applied to the subdomain.

6. Prove the lack of global controllability for a mechanical system described by the Gurtin-

Pipkin equation with a kernel represented by a series of decreasing exponential functions

with ¾slowly¿ increasing exponents. The lack of global controllability in this case means

that there are initial disturbances of the system that cannot be extinguished in a �nite time

by the control applied even to the entire domain.

7. Prove global bounded controllability for a special case of a wave equation with integral

memory and a kernel consisting of the sum of a �nite number of decreasing exponential

functions. In this case, ¾bounded controllability¿ means that the control action function is
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bounded in absolute value and at the terminal moment of time the oscillations of the system

will be stopped.

8. Prove the lack of boundary controllability (in the one-dimensional case) for almost all

models of ¾naive mechanics¿ (for details, see section 7, item 6).

5 Scienti�c novelty

The statement of the problem in this dissertation for the problems of controllability of

classical systems di�ers signi�cantly from the statements from [4, 6], since the value of the

controlling boundary force must satisfy the condition:

|u(t, x)| 6 ε.

Note that the goal here is to �nd not optimal, but admissible control, satisfying this condition.

For example, in the �rst part of the dissertation, a membrane is considered in which one

part of the border is �xed and control is applied to the other part. This control function is

determined by the Neumann condition and is bounded in absolute value. Some important

geometric conditions are imposed on both parts of the boundary (for exact formulations, see

section 6, item 1). The purpose of the control process is to achieve a state of the system

such that its displacement and velocity are zero. A similar statement is considered for the

boundary controllability problem of a thin plate.

In the case of systems with memory, the whole spectrum of controllability problems also

arises for various cases: boundary, local and global. For example, for the Gurtin-Pipkin

equation with a kernel in the form of sums of an in�nite number of exponents even global

controllability does not take place. To prove the lack of controllability, the exponents of the

series, which represents the convolution kernel, should slowly tend to minus in�nity. A close

result is proved in [21]. This result indicates the ¾unroughness¿ of the controllability property

in this problem. Namely, the remainder of the series with which the convolution kernel is

de�ned can be arbitrarily small and decrease arbitrarily quickly. If we discard this remainder,

then the system becomes controllable, and its restoration leads to an uncontrollable system.

This is the property of the ¾unroughness¿ of the task. It is in ¾dissonance¿ with the problem

of controllability of linear �nite-dimensional systems. According to the classical Kalman

criterion of controllability of linear �nite-dimensional systems full controllability is equivalent

to the full rank of some rectangular matrix constructed for the problem in question, which

in turn is equivalent to the di�erence from zero of several determinants from the elements of

this matrix. It is clear that with a su�ciently small arbitrary perturbation of the problem
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data, this property of di�erence from zero determinants is preserved, which indicates the

¾roughness¿ of the controllability property.

In general, the properties of controllability problems for integro-di�erential systems are

radically di�erent from the properties of similar controllability problems for di�erential

systems. So, if the problems of the boundary controllability for di�erential systems are

usually solvable (while, of course, there are certain solvability conditions), then the solvability

of similar problems for integro-di�erential systems are exceptional cases. To illustrate this

fact, we can consider the boundary controllability problem for the one-dimensional Gurtin-

Pipkin equation. It turns out that an obstacle to boundary controllability is, for example,

that the density of the spectrum of the problem under consideration is equal to in�nity,

where the density is understood in the sense of some numerical characteristic ([22]). Often

the spectra of integro-di�erential problems have an accumulation endpoint and therefore the

spectrum is ¾dense¿, hence the lack of controllability takes place. So, in the one-dimensional

case for the Gurtin-Pipkin equation with a kernel of the form (34) (see below), the boundary

controllability problem is solvable only if the kernel consists of one decreasing exponential

function; in cases where the kernel is the sum of two or more decreasing exponential functions,

it is unsolvable due to the presence of accumulation endpoints in the spectra.

One feature should be pointed out in controllability problems for integro-di�erential

equations. If the control is presented by force applied to the subdomain, then in most cases

there is no controllability ([23]). At the same time, in this work it is proved that even if

an arbitrarily small neighborhood inside the domain is not contained in the domain of the

application of the control force, then the system is not controllable, i.e. there is an initial

condition that we cannot drive to complete rest in a �nite time, no matter what control

action we apply that satis�es the conditions of the problem.

Recently, research has been quite actively conducted on the controllability problem for

an integro-di�erential system when control force is applied to a moving sub-section (in the

one-dimensional case). In this research controllability is established for some cases ([24]).

Such a statement of the problem is, in some sense, intermediate between the problem of

stopping vibrations using a force applied to a �xed part of the domain (interval) and the

controllability problem in the case when the force is applied to the entire domain (interval).

This formulation leads to interesting spectral problems about the existence of a biorthogonal

system of functions for a system of exponents on a segment and about estimates for elements

of this system, if it exists. At the same time, the study of the problem of full controllability

is signi�cantly more complicated compared to the case of a �xed subdomain, and positive

results are obtained only for special cases. So, in [24], the equation of string vibrations with a

convolution type term is considered, and the convolution kernel is equal to 1. The transition
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to a decreasing exponential function as the convolution kernel is not at all obvious. The

paper also considers the boundary conditions of periodicity, and the transition to Dirichlet

conditions is also not obvious.

6 Description of the research methodology

To prove the controllability of classical systems, the main methods known in the scienti�c

literature are used. Namely, D. L. Russell's methods ([6]) on the construction of control

through the extension of the solution to an unbounded domain or through the construction

the friction (or its ¾counterparts¿) at the boundary of the domain. There is also a combination

of these methods. To prove the local controllability of the system described by the ¾plate

oscillation¿ equation on the torus, the cascade splitting method of the original problem and

the HUM (Hilbert Uniqueness Method) are used.

To study the controllability of memory systems, the method of moments is used, and

various methods of complex analysis that are used to prove the lack of controllability. We

are talking about obstacles to the controllability of various mechanical systems. As such

obstacles, one can, for example, indicate the existence of a limit point in the spectrum of

the problem, the ¾slow¿ growth of the spectrum, the presence of the so-called ¾branching

point¿, etc.

It should be noted that in many cases the direct application of the methods mentioned

above (in their original form) was either impossible or di�cult, therefore, in the presented

work they often had to be adapted or signi�cantly modi�ed.

We will brie�y describe the application of these methods to solve some problems of the

thesis. In the �rst part of it, it is proved that a two-dimensional membrane can be driven

to rest in a �nite time using an absolute-bounded control force applied to the boundary

of the membrane. In the formulation of the controllability problem, smoothness conditions

and some boundary conditions are imposed on the initial data functions (displacement and

velocity). The boundary force is determined by the inhomogeneous Neumann condition and

in one case it is applied to the entire boundary of the domain, and in the other case � to its

part. The solution of the problem is divided into two stages. At the �rst stage, the solution

is stabilized into a su�ciently small neighborhood of the rest state by means of friction

introduced at the boundary of the domain. At the same time, a su�cient smallness of the

control value is achieved by choosing a value of the friction coe�cient close to zero. In this

case, the results from [6, 25, 26] are used. These works deal with the stabilization of membrane

energy by means of boundary conditions of a special kind. At the second stage of control, the

vibrations of the membrane are completely stopped. Here, a signi�cant role is played by the
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method of extending the initial data to some bounded domain and considering some special

initial-boundary value problem for a two-dimensional wave equation in this domain. Then

the control is the derivative with respect to the normal to the boundary of the initial domain

occupied by the membrane, taken from the solution of the speci�ed initial boundary value

problem. Note that the control method at this stage is actually determined by the way of

the extension of the initial data to the mentioned bounded domain. The reversibility of the

classical wave equation in time plays a decisive role in such a construction. Control of this

kind was used in the works of many authors of the 70s-90s. In this case, the restriction on

the absolute value of the control force action is carried out due to the fact that the solution

of the original problem was brought into a su�ciently small neighborhood according to the

norm of some Sobolev space at the �rst stage.

The possibility of stopping transverse vibrations of a thin plate is also investigated

precisely in the case when the boundary control actions are bounded in absolute value.

At the same time, signi�cant restrictions are imposed on the geometry of the boundary

of the domain occupied by the plate (see section 7, item 2). In addition, some conditions

are also imposed on the initial data of the problem, namely the conditions of smoothness

and agreement (see section 7, item 2). Controllability issues related to the weakening of

these restrictions remain open. For example, in the presented study boundary of the domain

occupied by the plate should consist of two parts. Namely, a plate with a hole is considered.

It remains unclear whether vibrations can be driven to rest (by a bounded boundary control)

if there is no hole and the region is simply connected. There is also a problem of reducing

the degree of smoothness of the initial data. In this study, su�ciently strong smoothness

conditions are imposed on the initial perturbation.

The second part of the theses deals with the problems of distributed (including local)

and boundary controllability of oscillations of the systems described by the Gurtin-Pipkin

equation and its counterparts. This equation contains a convolutional (by time variable) type

term, this term is often called memory. The question is raised about the possibility of driving

such systems to rest by means of various methods of control, namely, boundary, local and

applied to the entire domain. Note that, generally speaking, the concept of ¾controllability

to rest¿ for systems with memory is not equivalent to driving the system to a zero state.

In addition, controllability to rest for such models is not always possible even if the control

action is applied to the entire domain occupied by the mechanical system (see section 7, item

5). This is where the obstacles to controllability mentioned at the beginning of this section

apply.
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7 Main problems solved in the thesis

1. On the problem of boundary controllability for a system described by a two-

dimensional wave equation. Let Ω be a bounded domain in R2 with an in�nitely smooth

boundary, ν � external unit normal to the boundary of the domain Ω, Σ � lateral surface of

the cylinder QT = (0, T )× Ω.

Here and further we will assume that Ω (or any other domain under consideration) is

located locally on one side of its boundary.

Let also the boundary of Ω consist of two connected parts Γ0 and Γ1, i.e.

∂Ω = Γ0 ∪ Γ1.

We suppose additionally that

Γ0 ∩ Γ1 = ∅

and Γ0 is the boundary of some bounded domain Ω∗, such that Ω ∩ Ω∗ = ∅ (Pic. 1).

Pic. 1

We denote

Σi = (0, T )× Γi, i = 0, 1.

Let us consider the initial boundary value problem for the equation of membrane vibrations

wtt(t, x)−∆w(t, x) = 0, (t, x) ∈ QT , (2)

w|t=0 = ϕ(x), wt|t=0 = ψ(x), x ∈ Ω, (3)

w(t, x) = 0, (t, x) ∈ Σ0, (4)

∂w

∂ν
= u(t, x), (t, x) ∈ Σ1. (5)
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Let ε > 0 be an arbitrary number. The task is to construct such a control function u

satisfying the inequality

|u(t, x)| 6 ε, (6)

that the corresponding solution w and its �rst derivative with respect to t vanish at some

point in time T , i.e. w(T, x) = 0, wt(T, x) = 0 for all x ∈ Ω. If this problem has a solution,

then the system (2)�(5) will be called controllable.

Consider the space

H3
0(Ω) = {(w1, w2) ∈ H3(Ω)×H2(Ω) : w1(x) = w2(x) = ∆w1 = 0, x ∈ Γ0}.

Theorem 1. Let additionally the boundary Ω satis�es the condition: there exists a point

x0 ∈ R2 such that

1) (x− x0) · ν 6 0, x ∈ Γ0,

2) (x− x0) · ν > β > 0, x ∈ Γ1,

besides (ϕ(x), ψ(x)) ∈ H3
0(Ω) and

∂ϕ

∂ν
= ψ =

∂ψ

∂ν
= ∆ϕ = 0 on Γ1. (7)

Then the system (2)�(5) is controllable.

Consider the case when a part of the boundary of the domain is not �xed. Consider the

initial boundary value problem for a two-dimensional wave equation

wtt(t, x)−∆w(t, x) = 0, (t, x) ∈ QT = (0, T )× Ω, (8)

w|t=0 = ϕ(x), wt|t=0 = ψ(x), x ∈ Ω, (9)

∂w

∂ν
= u(t, x), (t, x) ∈ Σ, (10)

where Ω ⊂ R2 is a bounded, star-shaped relative to some closed disk domain with an in�nitely

smooth boundary. The initial data ϕ(x) and ψ(x) are given and will be selected from suitable

Hilbert spaces, u(t, x) is a control function de�ned on the boundary Γ = ∂Ω.

Let ε > 0 be an arbitrary given number. We will impose a restriction on the control

function

|u(t, x)| 6 ε. (11)

The problem is to construct a control u(t, x) satisfying the inequality (11) such that the

corresponding solution w(t, x) of the initial boundary value problem (8)�(10) and its the

�rst derivative of t achieves the state (C, 0) at some point in time T , i.e.

w(T, x) = C, wt(T, x) = 0, (12)
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for all x ∈ Ω. In this case, C is some constant. If we succeed to construct a control u(t, x)

such that the conditions (12) are reached, then the system (8)�(10) is called controllable to

rest.

Note that the constant C in this case is not arbitrary, but depends on the choice of initial

data and the parameter ε,

C =
1

|Γ|

∫
Γ

ϕ(x)dΓ +
1

k(ε)|Γ|

∫
Ω

ψ(x)dx, (13)

where |Γ| � the length of Γ and k(ε)→ 0 if ε→ 0.

Theorem 2. Let ϕ(x) ∈ H6(Ω) and ψ(x) ∈ H5(Ω) such that

∂ϕ(x)

∂ν
= ∆ϕ(x) =

∂∆ϕ(x)

∂ν
= ∆2ϕ(x) =

∂∆2ϕ(x)

∂ν
= 0, x ∈ Γ,

ψ(x) =
∂ψ(x)

∂ν
= ∆ψ(x) =

∂∆ψ(x)

∂ν
= ∆2ψ(x) = 0, x ∈ Γ. (14)

Then the system (8)�(10) is controllable to rest.

Let us explain the meaning of the initial data smoothness conditions and conditions

(14). The proof of the 2 theorem consists of two stages. At the �rst stage, the solution

under consideration and its �rst derivative with respect to the variable t are stabilized in

a small neighborhood of the equilibrium state (C, 0) according to the norm of the space

C4(Ω) × C3(Ω), the second stage allows one to drive the system to rest from this small

neighborhood. The �rst part of the proof (solution stabilization) is related to the introduction

of friction at the boundary of the domain. This friction creates energy dissipation, which in

turn leads to stabilization. This friction is the control. In this case, the restriction (11) will be

ful�lled due to the su�cient ¾smallness¿ of this friction, and this ¾smallness¿ is achieved by

varying a certain coe�cient. The conditions (14) are imposed so that the problem statement

remains correct for any selected coe�cient of friction.

2. Suppression of Oscillations of a Thin Plate by Bounded Control Acting to

the Boundary. Let Ω be a bounded domain on the plane R2 with an in�nitely smooth

boundary Γ consisting of two connected parts: Γ0 and Γ1, i.e. Γ = Γ0 ∪ Γ1 and ν = (ν1, ν2)

� the outer unit normal to the boundary of the domain Ω. Let the additional condition be

met

Γ0 ∩ Γ1 = ∅.

Suppose that Γ0 should also be the boundary of some bounded domain Ω∗, such that

Ω ∩ Ω∗ = ∅.

Consider the initial boundary value problem for the equation of transverse vibrations of

thin plates

wtt(t, x) + ∆2w(t, x) = 0, (t, x) ∈ QT = (0, T )× Ω, (15)
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w|t=0 = ϕ(x), wt|t=0 = ψ(x), x ∈ Ω, (16)

w =
∂w

∂ν
= 0, (t, x) ∈ (0, T )× Γ0, (17)

∆w+ (1− µ)B1w = u1(t, x),
∂∆w

∂ν
+ (1− µ)

∂B2w

∂τ
= u2(t, x), (t, x) ∈ (0, T )× Γ1, (18)

where µ is the Poisson constant (0 < µ < 1/2), τ = (−ν2, ν1) is a tangent vector, and B1,

B2 are boundary operators de�ned by formulas

B1w = 2ν1ν2
∂2w

∂x1∂x2

− ν2
1

∂2w

∂x2
2

− ν2
2

∂2w

∂x2
1

,

B2w = (ν2
1 − ν2

2)
∂2w

∂x1∂x2

+ ν1ν2

(
∂2w

∂x2
2

− ∂2w

∂x2
1

)
.

Here and further we will assume that inequalities are met on the Γ boundary

x · ν = x1ν1 + x2ν2 6 0 íà Γ0,

x · ν = x1ν1 + x2ν2 > 0 íà Γ1.

Let ε > 0 be an arbitrary number. The problem is to build such control actions u1 and

u2 satisfying inequalities

|ui(t, x)| 6 ε, i = 1, 2, (19)

that the corresponding solution w and its derivative with respect to t vanish at some point

in time T , i.e. w(T, x) = 0, wt(T, x) = 0 for all x ∈ Ω. Zero displacement and zero velocity

will be called the state of rest of the system under consideration.

Theorem 3. Let the functions ϕ(x) ∈ H6(Ω) and ψ(x) ∈ H4(Ω), such that they are zero

near the boundary of Γ (i.e. they are �nite in the domain of Ω). Then there will be a moment

T and control actions u1(t, x) and u2(t, x) satisfying the constraint (19), such that the system

(15)�(18) is driven to the state of rest.

3. Controllability to rest for the ¾plate oscillation¿ equation on the torus in

the case of local force action. Consider the local distributed controllability problem for

the ¾plate oscillation¿ equation on the torus

wtt(t, x) + ∆2w(t, x) = u(t, x), (t, x) ∈ QT = (0, t∗]× T 2, (20)

w|t=0 = w0(x), wt|t=0 = w1(x), x ∈ T 2. (21)

Here T 2 is a two-dimensional torus (a smooth, compact manifold without an edge), which is

conveniently understood as a square [−π, π]2 with identi�ed opposite sides, u � control with

a support by the variable x that does not coincide with T 2, t∗ > 0 is a predetermined time.

The problem is to construct such a control function u, that the corresponding solution w

and its �rst derivative with respect to t vanish at time t∗, i.e. w(t∗, x) = 0, wt(t∗, x) = 0 for
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all x ∈ T 2. Zero displacement and zero velocity will be called the state of rest of the system

under consideration.

For the initial data in the problem (20)�(21), we require that the following conditions are

met

w0 ∈ H4(T 2), w1 ∈ H2(T 2), w1 − i∆w0 ∈ H4(T 2). (22)

Recall that the Sobolev space is Hs(T 2) (s ∈ R) on T 2 can, for example, be understood as

the domain of the operator As/2 = (1−∆)s/2, which is provided with the norm

‖w‖s = ‖As/2w‖L2(T 2). (23)

It is convenient to write the norm (23) in terms of Fourier coe�cients when decomposing w

into a series (formal series for s < 0) according to the exponent system {eiαx}α∈Z2(∑
(1 + |α|2)s|cα|2

)1/2

.

Theorem 4. Let an arbitrary domain ω be set on the torus T 2 for which ω̄ 6= T 2 and the

conditions (22) are met. Then there will be a force control action u, identically equal to zero

on the set T 2�ω̄, such that the system (20)�(21) is controllable to the state of rest during

t∗.

Note that the control construction method for the equation (20) implies the possibility

of regularization of the control u(t, x) for the original problem. That is, by increasing the

Sobolev smoothness of the initial data, we can do u(t, x) is arbitrarily smooth both in time

and in spatial variables. For example, if we select the initial data satisfying the inclusions:

w0 ∈ H6(T 2), w1 ∈ H4(T 2), w1− i∆w0 ∈ H6(T 2), then one can construct a control for which

the following will be true:

u ∈ C([0, t∗];H
4(T 2)), ut ∈ C([0, t∗];H

2(T 2)), utt ∈ C([0, t∗];L2(T 2)).

4. Exact controllability of the system described by the wave equation with

integral memory. Consider the initial boundary value problem

θtt(t, x)−K(0)∆θ(t, x)−
t∫

0

K ′(t− s)∆θ(s, x)ds = u(t, x), (24)

x ∈ Ω, t > 0.

θ|t=0 = ϕ0(x), θt|t=0 = ϕ1(x), (25)

θ|∂Ω = 0, (26)

here

K(t) =
N∑
j=1

cj
γj
e−γjt, N > 2,
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where cj, γj given positive constants, u(t, x) is a control function de�ned on some bounded

domain (by x) Ω ⊂ Rn with an in�nitely smooth boundary. and

|u(t, x)| 6 ε,

ε > 0 is the speci�ed constant. It is required to drive the system to rest in a �nite time.

Let A := −∆ � operator with the domain

Dom(A) := H2(Ω) ∩H1
0 (Ω),

Following [19], we denote byW 2
2,γ(R+, A) the Sobolev space of functions θ : R+ = (0,+∞)→

Dom(A), equipped with the norm:

‖θ‖W 2
2,γ(R+,A) =

 +∞∫
0

e−2γt
(∥∥θ(2)(t)

∥∥2

L2(Ω)
+ ‖Aθ(t)‖2

L2(Ω)

)
dt

 1
2

, γ > 0.

De�nition 1. A function θ(t, x) is called a strong solution of the problem (24)�(26) if for

some γ > 0 such a function belongs to the space W 2
2,γ(R+, A), satis�es the equation (24)

almost everywhere (in t) on the positive semiaxis R+ and satis�es the initial conditions

(25).

Su�cient conditions for the solution of the problem (24)�(26) within the de�nition 1 are

given in [19].

Theorem 5. Let ϕ0 ∈ D(Aβ+ 1
2 ) and ϕ1 ∈ D(Aβ) where β > n

2
. Then, depending on the

value of ε, there are control u(t, x) ∈ C([0, T ] × Ω) and time T > 0 such that the following

equalities are true for the solution of (24)�(26)

θ(T, x) = θ′t(T, x) = 0, (27)

and the restriction

|u(t, x)| 6 ε,

for any t ∈ (0, T ], x ∈ Ω is ful�lled. If the constructed control u(t, x) is extended by zero at

t > T , then the system will remain in the zero state for t > T .

5. Lack of controllability to rest for the Gurtin-Pipkin equation. Consider the

distributed controllability problem

θt(t, x) =

t∫
0

K(t− s)∆θ(s, x)ds+ u(t, x), x ∈ Ω, t > 0. (28)

θ|t=0 = ϕ(x), (29)

θ(t, x) = 0, x ∈ ∂Ω. (30)
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The kernel K(t) can, for example, have the form

K(t) =
+∞∑
j=1

cj
γj
e−γjt, K(t) =

N∑
j=1

cj
γj
e−γjt,

where cj, γj are given positive constants such that

0 < γ1 < γ2 < ... < γj < ..., γj → +∞, j → +∞.

Let Ω ⊂ R2 be a bounded simply connected domain with an in�nitely smooth boundary.

For brevity, we will also write θ(t) and u(t) instead of θ(t, x) and u(t, x) respectively. This

means that θ(t) and u(t) are functions of the variable t with values in some appropriate

spaces.

Consider the control function u(t) ∈ Lloc2 ([0,+∞);L2(Ω)) and the initial condition ξ ∈
H1

0 (Ω). Assume additionally that K(t) is an arbitrary twice continuously di�erentiable

function on [0,+∞) such that K(0) = µ > 0.

We say that for the problem (28)�(30) there is no controllability to rest if there is an

initial condition ϕ such that for any control u (u is chosen from a suitable functional class),

which is identically equal to zero (by the variable t) outside of some �nite segment [0, T ],

the corresponding solution is not identically equal to zero outside of any �nite segment (by

t).

De�nition 2. A function

θ(t) ∈ H1
loc([0,+∞);L2(Ω)) ∩ Lloc2 ([0,+∞);DomA)

is called a solution of the problem (28)�(30) if θ(t) satis�es (28):

θt(t)−
t∫

0

K(t− s)∆θ(s)ds = u(t)

and also satis�es the initial condition (29): θ(0) = ξ.

Note that the solution of (28)�(30) in terms of the de�nition 2 may not exist in general,

but due to the assumed smoothness of K(t), problem (28)�(30) will be solvable if we impose

additional smoothness conditions on ξ and u(t) (see [27]).

Let D be an arbitrary bounded domain such that D ⊂ Ω. Let us de�ne L̃2(D) as the

space of all elements from L2(D), extended by zero on the set Ω \D.

Theorem 6. If the control function u(t, x) is an element of the space

Lloc2 ([0,+∞); L̃2(D))

and K̂(λ) has at least one zero λ0 in the domain of holomorphism, then in the problem

(28)�(30) there is no controllability to rest.
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Here K̂(λ) is the Laplace transform of the function K(t).

There are examples of kernels for which there is no global controllability to rest, i.e. in

the case when the control action is applied to the entire domain occupied by the system.

This is the Abel kernel and a series of exponents with slowly growing indicators. Consider

the kernel

K(t) =
+∞∑
j=1

cj
γj
e−γjt, (31)

such that
+∞∑
j=1

cj
γj
< +∞.

Now let Ω be a bounded domain in Rn with an in�nitely smooth boundary. Existence

and uniqueness of a solution to the problem (28)�(30) under additional conditions imposed

on the kernel (31), ξ and the right part u are proved in [19].

De�nition 3. A number {zk}

τ = inf

{
α > 0 :

+∞∑
k=1

1

|zk|α
< +∞

}
.

is called the convergence index of a sequence of complex numbers.

Theorem 7. Suppose that τ > 1 for a sequence of indicators {γk} of the kernel (31). Then
there is no controllability to rest for the problem (28)�(30) if the control is applied even to

the entire domain.

6. Three exceptional cases in boundary controllability problems for models of

¾naive mechanics¿. A wide class of models with integral memory can be obtained within

the framework of the so-called ¾naive mechanics¿. The problem is to de�ne the determining

relation between stress and deformation (we consider here a one-dimensional case in terms

of a spatial variable). This relation, in turn, is written based on various ways of connecting

¾springs¿ and ¾plungers¿ (terminology of A. A. Ilyushin and B. E. Pobedrya, [28]). As a

result of this connection, an element is formed, which is the simplest cell of a continuous

medium and the determining relation for this element is then in a number of cases (with

a certain type of connection between these elements) transferred to the entire continuous

medium. It is proved ([28]) that in the framework of ¾naive mechanics¿ the determining

ratio has the form

Pσ = Qε, (32)

where

P =
n∑
i=0

ai
di

dti
, Q =

n+1∑
i=0

bi
di

dti
,
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ai > 0, bi > 0, i = 1, 2, ..., n, bn+1 > 0. Consider the polynomial

P (λ) =
n∑
i=0

aiλ
i.

Let the roots be λ1, λ2, ..., λn P (λ) are real, negative and pairwise distinct, and there is no

zero among them. Then we formally express σ(t, x) from the determining relation (32)

σ = C0ε+ C1ε̇+

t∫
0

K(t− s)ε(s, x)ds. (33)

Here the kernel K(t) has the form

K(t) =
n∑
i=1

Kie
λit. (34)

Suppose that C0 > 0, C1 > 0 and all constants Ki, i = 1, 2, ..., n, are less than or equal to

zero. This condition is due to the fact that in all such viscoelastic models the signs are taken

exactly like this.

Let θ(t, x) be the state of the system, then its relation to stress and deformation has the

form

σx = θ̈, ε = θx. (35)

Using (35), we obtain from (33) the integro-di�erential equation

θ̈ = C0θxx + C1θ̇xx +

t∫
0

K(t− s)θxx(s, x)ds. (36)

The equation (36) describes a fairly wide class of models in mechanics. Moreover, this

class directly or indirectly includes the basic classical equations (string, heat and telegraphic

equations).

For (36), one can set a controllability problem. For example, put the null condition of

the solution θ at the right end of the segment [0, π], and the function v(t) ∈ Lloc2 (0,+∞)

(control) at the left end. At the zero moment of time there are two initial conditions ξ1,

ξ2 (displacement, velocity, respectively). We say that in this problem there is no boundary

controllability to rest, if there are initial conditions ξ1, ξ2 such that for any control v(t) that

is identically equal to zero outside of some �nite segment [0, T ], the corresponding solution

is not identically equal to zero outside any �nite segment (by t).

Theorem 8. There is no boundary controllability to rest in all but three cases

a) C0 > 0, C1 = K1 = K2 = ... = Kn = 0,

b) C1 > 0, C0 = K1 = K2 = ... = Kn = 0,

c) K1 > 0, C0 = K1

λ1
, C1 = K2 = ... = Kn = 0.
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The Case (a) de�nes the string equation. It is a well known fact that boundary controllabi-

lity takes place for this equation. For (b) and (c), the situation is more complicated. Formally

there is no boundary controllability for the equations described by these cases if the de�nition

of controllability is understood as it was introduced above. Meanwhile, if we consider a

narrower class of initial data: we set the second initial condition ξ2 equal to zero, then by

means of the integration by the variable t the equation in the case of (b) reduces to the

heat equation, and in the case of (c) to the Gurtin-Pipkin equation, which can be further

investigated for controllability. Note that the equation in the case (b) for ξ2 = 0 can also be

reduced to a telegraphic equation.

8 Personal contribution of the author to the study of the problem

Most of the published scienti�c papers, which re�ect the scienti�c results of the thesis, were

written in collaboration with professor A. S. Shamaev. He mainly worked on the problem

statements and general considerations related to the methods and techniques of constructing

control and lack of controllability. The author has made precise formulations of the theorems,

carried out proofs and indicated the main consequences of the results obtained.

9 General conclusions of the study

In the presented dissertation, the issues of controllability for two broad classes of systems

with distributed parameters are comprehensively investigated: classical (membranes, plates)

and systems with memory (the Gurtin-Pipkin equation and its counterparts).

For membranes and plates the issues of boundary controllability are investigated in the

case when a restriction is imposed on the absolute value of the force control action, which

signi�cantly complicates the task. In all cases, additional conditions must be met for the

initial data and for the geometry of the domains (boundaries). In addition, the issue of local

controllability for the system described by the ¾plate oscillation¿ equation on the torus is

investigated.

For systems with memory, the absence of boundary controllability (in the one-dimensional

case) is proved for all viscoelastic models of ¾naive mechanics¿, except the three cases. The

absence of local and boundary controllability is also proved for the Gurtin-Pipkin equation

and a wide class of kernels in the integral term of the equation, examples of kernels for which

there is no global controllability are found.
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