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1 Introduction

Topic of the thesis

This dissertation presents a comprehensive study that aims to improve the
efficiency and effectiveness of processing unstructured data in the biomedical do
main. The study introduces novel approaches for classification and information
extraction, including the recognition of various entity mentions such as drugs, dis
eases, genes, and adverse drug reactions, as well as entity linking (also known as
medical concept normalization) and relation extraction.

Natural language processing (NLP) in the biomedical domain poses several
challenges due to the complexity of biomedical language and the vast amount of
data generated in the field. Biomedical data comes from various sources, such
as electronic health records, scientific publications, and clinical trial data, social
media, which can have different formats, structures, and levels of quality. Some
of the major challenges are as follows. Firstly, biomedical language is often am
biguous, with many terms having multiple meanings. E.g., “adenoid hypertrophy”
(“гипертрофия аденоидов”) may be linked to “nasopharyngeal tonsil hypertrophy
(adenoids)” (“гипертрофия глоточных миндалин (аденоиды)”) or “hypertrophy
of adenoids exclusively” (“гипертрофия исключительно аденоидов”), two differ
ent concept unique identifiers (CUIs) in the Unified Medical Language System
(UMLS) [1]. Some concepts have different CUIs while they are synonymous in their
meaning; for example, “acholic stool” (“ахоличный стул”) has a code C2675627
and “pale stool” (“светлый стул”) has a code C0232720. Secondly, the medical
language includes domain-specific terms and expressions that are not commonly
used in everyday language. In the context of this problem, an NLP model has to
be capable of translating layperson language into formal medical language. For ex
ample, the phrase “I can’t fall asleep all night” (“всю ночь не могу уснуть”) should
be translated to “insomnia” (“бессонница”), and “head spinning a little” (“немного
кружится голова”) should be translated to “dizziness” (“головокружение”). This
requires more than the simple matching of natural language expressions and vocab
ulary elements, as string matching approaches may not be effective in linking social
media language to medical concepts when the words do not overlap at all. Thirdly,
medical terminology is vast and continuously evolving, with different ontologies
used across countries and even within different medical specialties. Medical con
cepts may have different types (e.g., drugs, diseases, or genes/proteins) and may be
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retrieved from different single-typed ontologies. The holy grail of modern medical
NLP is to effectively identify and map the same concepts across different ontolo
gies without re-training models. Fourthly, annotated data for biomedical NLP is
often limited, making it difficult to train and evaluate models effectively. Despite
having a large number of resources in the general domain, many languages have
not made significant progress in the biomedical field. Russian is one such example;
it is one of the top 10 languages in the world and has many NLP datasets and
resources, but the biomedical part of Russian NLP is underdeveloped. The Rus
sian UMLS includes translations of Medical Dictionary for Regulatory Activities
(MedDRA) [2], Logical Observation Identifiers Names and Codes (LOINC) [3],
and Medical Subject Headings (MeSH) [4]. However, it only amounts to 1.8%
of the English UMLS in vocabulary and 1.36% in source counts [5]. Addressing
these challenges requires the development of new annotated corpora, advanced
techniques, and models that can handle the complexity and variation of medical
language, as well as the availability of high-quality annotated data for evaluation.
The dissertation addresses these challenges by introducing new annotated corpora
of texts from various sources, proposing novel evaluation strategies and advanced
techniques such as Transformers [6], Bidirectional Encoder Representations from
Transformers (BERT) [7], and metric learning [8–10] for optimizing the models. It
demonstrates the effectiveness and robustness of the proposed approaches through
extensive experiments and evaluations.

Objectives and goals of the dissertation The dissertation has three main
objectives:

1. Development of NLP methods and models in the specialized domain based on
deep neural networks, pre-trained models, and metric learning approaches.

2. Analysis of limitations and development of novel strategies for evaluating
trained models in information retrieval and information extraction tasks.

3. Creation of new annotated corpora of texts from various sources, such as sci
entific abstracts, drug reviews, electronic health records, and clinical trials,
in both English and Russian.

The ultimate objective is to improve the efficiency and effectiveness of biomedical
search engines, pharmacovigilance systems, and medical records management and
analysis in the healthcare field.
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Main results

The following are the main results of this dissertation:

– New models and methods for classification and information extraction were
developed:

1. Multilingual BERT-based models were analyzed for cross-domain drug
and disease named entity recognition in two languages. The investiga
tion of transfer learning strategies between four corpora demonstrated
the effectiveness of pretraining on data with one or both types of trans
fer [11].

2. Classification-based methods were proposed with (i) a set of infor
mative features at an entity level and a context level for relation
extraction [12], and (ii) vectors of semantic similarity for entity link
ing [13;14]. The effectiveness of these approaches was demonstrated in
multiple shared tasks, ranking first in SMM4H 2019 Task 3, SMM4H
2020 Task 3, and SMM4H 2021 Task 1c [13; 14]. The semantic sim
ilarity vectors also proved effective with a proposed encoder-decoder
architecture that ranked first in CLEF eHealth 2017 Task 1 [15].

3. DILBERT (Drug and disease Interpretation Learning with Biomedical
Entity Representation Transformer) was introduced. The model op
timizes the relative similarity of mentions and concept names from a
terminology via metric learning. It was shown that the model is ro
bust to vocabulary switches and can recognize concepts that were not
present in the training set [16;17].

4. A multimodal model combining BERT-based models for language
understanding and molecular property prediction was proposed to im
prove the classification of tweets as potential sources of adverse drug
events or drug reactions. The model achieved first and second place
rankings on SMM4H 2021 Task 2 and Task 1a, respectively [18].

5. Two neural pipelines were developed: (i) a pipeline consisting of two
models as a biomedical search engine that showed superior performance
over a traditional search model on a manually annotated dataset of
abstracts for disease and gene queries [19], and (ii) a pipeline for the
classification, extraction and normalization of adverse drug events on
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realistic, imbalanced data. The identification of optimal training ratios
and undersampling methods was also explored [20].

– New annotated corpora were developed for information extraction. The
following are some of the new corpora developed:

6. The Russian Drug Reaction Corpus (RuDReC), a partially annotated
corpus of consumer reviews in Russian about pharmaceutical products,
and RuDR-BERT models for named entity recognition and sentence
classification tasks were introduced [21].

7. Two annotated datasets were developed for clinical concept normal
ization: a dataset of clinical trials in English for drug and disease
normalization [16; 17], and a RuCCoN corpus, a new dataset of elec
tronic health records in Russian, with entities linked to the UMLS [22].

8. NEREL-BIO, an annotation scheme and corpus of PubMed abstracts in
Russian and English with general-domain and biomedical entity types,
was introduced. The corpus includes the provision of an annotation
for nested named entities [23].

– New evaluation strategies were proposed, as follows:

9. The limitations of existing benchmarks for biomedical entity linking
were analyzed, and several novel evaluation strategies were proposed:
(i) a novel stratified sampling split [13], (ii) in-terminology and
cross-terminology evaluation [24]. Additionally, benchmarks were
established for the cross-lingual task using clinical reports, clinical
guidelines, and medical research papers. A test set filtering procedure
was designed to analyze the “hard cases” of entity linking approaching
zero-shot cross-lingual transfer learning [25].

10. The limitations of existing benchmarks of scientific abstracts and
electronic health records for relation extraction were analyzed. To ad
dress performance differences in in-domain and out-of-domain setup,
a cross-attention neural model was proposed that exhibits better cross
domain performance [26].

Author’s contribution includes the problem formulations, the develop
ment of aforementioned methods and models for processing unstructured data,
the design of annotation schemes for the aforementioned corpora and evaluation

6



strategies, analysis of results; the first versions of programs implementing the pro
posed methods and models for classification and named entity recognition and
their evaluation were personally developed by the author of the dissertation; the
current versions of software modules implementing the methods proposed in the
dissertation within various hardware and software architectures were written under
the direct supervision of the author of the dissertation.

The scientific novelty of the proposed research lies in the development of
new annotated corpora for various texts, the development of novel deep learning
architectures and models for biomedical information extraction and classification
of texts in several languages, and novel evaluation strategies. The improvement
of the quality of the developed methods in comparison with existing methods has
been confirmed experimentally using standard quality metrics of natural language
text analysis systems. It is experimentally shown that the developed methods are
applicable to texts from various sources. The first studies were conducted to solve
the problem of extracting mentions of drug effects and biomedical nested named
entities for the Russian language.

The scope of dissertation is covered in 42 publications [11–52].
According to regulations of the Dissertation Council in Computer Sciences

of Higher School of Economics, at least ten papers are listed below. In this list,
papers are specifically mentioned: [12; 13; 17; 18; 20; 21; 23; 26] in Q1-journals; [11;
16; 19; 22; 24] in proceedings of CORE A/A* conferences, [14; 15; 25] in conference
proceedings indexed on Scopus. The defense is performed based on at least seven
of them (namely, the first nine from the list of first-tier publications).

Publications and probation of the work

First-tier publications

1. Miftahutdinov Z., Alimova I., Tutubalina E. On biomedical named entity
recognition: experiments in interlingual transfer for clinical and social me
dia texts //European Conference on Information Retrieval (ECIR). – 12036
LNCS, Springer, Cham, 2020. – pages 281-288. [Scopus, WOS, CORE A
conf.]
Contribution of the dissertation’s author : main co-author; the author of
this thesis formulated the scientific problem, developed neural models for
named entity recognition, the first versions of programs that implement the
proposed models, and performed an experimental evaluation.
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2. Tutubalina E., Kadurin A., Miftahutdinov Z. Fair Evaluation in Concept
Normalization: a Large-scale Comparative Analysis for BERT-based Mod
els //Proceedings of the 28th International Conference on Computational
Linguistics (COLING). – 2020. – pages 6710-6716. [Scopus, CORE A conf.]
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, proposed novel evaluation strate
gies, the first versions of programs that implement the proposed evaluation,
and performed an experimental evaluation of models.

3. Sakhovskiy A., Tutubalina E. Multimodal model with text and drug em
beddings for adverse drug reaction classification //Journal of Biomedical
Informatics. – 2022. – Vol. 135. – pages 104182. (Q1, Impact Factor 8.0)
[Scopus, WOS]
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, proposed a multimodal model in
collaboration with S.A., and guided the research.

4. Tutubalina E., Miftahutdinov, Z., Muravlev, V., Shneyderman, A. A Com
prehensive Evaluation of Biomedical Entity-centric Search //Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing:
Industry Track. – 2022. – pages 596-605. [Scopus, CORE A conf.]
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, guided the annotation process, de
veloped an information retrieval system, the first versions of programs that
implement the proposed system, and conducted experiments.

5. Miftahutdinov Z., Kadurin A., Kudrin R., Tutubalina E. Drug and Disease
Interpretation Learning with Biomedical Entity Representation Transformer
//European Conference on Information Retrieval (ECIR). – 12656 LNCS,
Springer, Cham, 2021. [Scopus, Core A conf.].
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, proposed evaluation methodology,
proposed a DILBERT model in collaboration with M.Z., designed experi
ments, and guided the research.

6. Miftahutdinov Z., Kadurin A., Kudrin R., Tutubalina E. Medical concept
normalization in clinical trials with drug and disease representation learning
//Bioinformatics. – 2021. – V. 37. – №. 21. – pages 3856-3864 (Q1, Impact
Factor 6.931) [Scopus, WOS]
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Contribution of the dissertation’s author : main co-author; same as [16] (this
is the journal paper based on the conference version [16]).

7. Tutubalina E., Alimova I., Miftahutdinov Z., Sakhovskiy A., Malykh V.,
and Nikolenko S. The Russian Drug Reaction Corpus and Neural Models
for Drug Reactions and Effectiveness Detection in User Reviews //Bioinfor
matics. — 2020. — 07. DOI: 10.1093/bioinformatics/btaa675 (Q1, Impact
Factor 6.931) [Scopus, WOS]
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, wrote a program for data collection,
developed neural models for classification and named entity recognition, the
first versions of programs that implement the proposed models, proposed an
annotation scheme, guided the annotation process, and partially conducted
experiments.

8. Nesterov, A., Zubkova G., Miftahutdinov Z., Kokh, V., Tutubalina E.,
Shelmanov A., Alekseev A., Avetisian M., Chertok A., and Nikolenko S.
RuCCoN: Clinical Concept Normalization in Russian //Proceedings of the
Annual Meeting of the Association for Computational Linguistics. – 2022.
– pages 239-245. [Scopus, Core A* conf.]
Contribution of the dissertation’s author : the author of this thesis formu
lated the scientific problem, wrote a program for additional training data
collection, proposed several types of test sets for various settings, and par
tially conducted experiments.

9. Loukachevitch N., Manandhar S., Elina Baral E., Rozhkov, I., Braslavski
P., Ivanov V., Batura T., and Tutubalina E. NEREL-BIO: A Dataset of
Biomedical Abstracts Annotated with Nested Named Entities// Bioinfor
matics. — 2023. — 04. — btad161. (Q1, Impact Factor 6.931) [Scopus,
WOS]
Contribution of the dissertation’s author : main co-author; the author of this
thesis designed an annotation scheme in collaboration with L.N., wrote a
program for data collection, set up annotation tools, developed models for
initial data annotation as well as the program code that implement these
models.

10. Alimova I., Tutubalina E. Multiple features for clinical relation extraction:
a machine learning approach //Journal of biomedical informatics. – 2020. –
Т. 103. – pages 103382 (Q1, Impact Factor 8.0) [Scopus, WOS]
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Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, proposed a feature-based model in
collaboration with A.I., and guided the research.

11. Tutubalina E., Miftahutdinov Z., Nikolenko S., & Malykh V. Medical con
cept normalization in social media posts with recurrent neural networks
//Journal of biomedical informatics. – 2018. – Vol. 84. – pages 93-102.
(Q1, Impact Factor 8.0) [Scopus, WOS]
Contribution of the dissertation’s author : main co-author; the author of this
thesis formulated the scientific problem, proposed a classification model in
collaboration with M.Z., designed evaluation, and guided the research.

12. Alimova I., Tutubalina E., Nikolenko S. I. Cross-Domain Limitations of
Neural Models on Biomedical Relation Classification //IEEE Access. – 2021.
– Vol. 10. – pages 1432-1439. (Q1, Impact Factor 3.476) [Scopus, WOS]
Contribution of the dissertation’s author : the author of this thesis formulated
the scientific problem, proposed a neural model in collaboration with A.I.,
designed evaluation, and guided the research.

13. Magge A., Tutubalina E., Miftahutdinov Z., Alimova I., Dirkson A., Ver
berne S., Weissenbacher D., Graciela Gonzalez-Hernandez G.. DeepADEM
iner: a deep learning pharmacovigilance pipeline for extraction and
normalization of adverse drug event mentions on Twitter //Journal of the
American Medical Informatics Association. – 2021. – Vol. 28. – №. 10. –
pages 2184-2192. (Q1, Impact Factor 7.942) [Scopus, WOS]
Contribution of the dissertation’s author : the author of this thesis proposed
and developed two information extraction models, and the first versions of
programs that implement the proposed models.

Second-tier publications:

14. Miftahutdinov Z., Tutubalina E. Deep learning for ICD coding: Looking
for medical concepts in clinical documents in English and in French //Inter
national Conference of the Cross-Language Evaluation Forum for European
Languages. – Springer, Cham, 2018. – pages 203-215. [Scopus, WOS]
Contribution of the dissertation’s author : main co-author; the author of
this thesis formulated the scientific problem, proposed an encoder-decoder
architecture with semantic similarity features in collaboration with M.Z.,
designed experiments, and guided the research.
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15. Alekseev A., Miftahutdinov Z.,Tutubalina E., Shelmanov A., Ivanov V.,
Kokh V., Nesterov A., Avetisian M., Chertok A., Nikolenko S. Medical
Crossing: a Cross-lingual Evaluation of Clinical Entity Linking // 2022 Lan
guage Resources and Evaluation Conference, LREC 2022. — 2022. — pages
4212–4220. [Scopus, Core C conf.].
Contribution of the dissertation’s author : the author of this thesis formu
lated the scientific problem, proposed novel evaluation strategies, the first
versions of programs that implement the proposed evaluation, and guided
the research.

16. Mftahutdinov Z., Tutubalina E. Deep neural models for medical concept
normalization in user-generated texts // ACL 2019 - 57th Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Student
Research Workshop. — 2019. — pages 393–399. [Scopus, WOS]
Contribution of the dissertation’s author : main co-author; same as [13] (in
this work, the experimental part from [13] is expanded).

Invited talks at conferences and seminars:

1. 27th Annual Conference on Intelligent Systems for Molecular Biology &
18th European Conference on Computational Biology ISMB/ECCB 2019,
Basel, Switzerland, 21.07-25.07.2019, “Towards the Semantic Interpretation
of User-Generated Texts about Drug Therapy”;

2. Lecture from the cycle “On the edge of science”, Moscow, Russia, 23.11.2021,
“How to train artificial intelligence to identify adverse drug effects from social
media posts”;

3. International Scientific Conference “Machine Learning and Artificial Intel
ligence Technologies” (MLW 2021), Sochi, Russia, 25.11.2021, “Drug and
Disease Interpretation Learning”;

4. Open conference on artificial intelligence Opentalk.AI 2020, Moscow, Russia,
19.02-21.02.2020, “Processing messages from social media about side effects
of drugs”;

5. Educational Intensive “Archipelago 20.35”, Innopolis, Russia, 11.11.2020,
“Processing messages from social networks about side effects of drugs”;

6. 4th Social Media Mining for Health Applications Workshop & Shared
Task (SMM4H 2019), Florence, Italy, 28.07-03.08.2019, “KFU NLP Team
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at SMM4H 2019 Tasks: Want to Extract Adverse Drugs Reactions from
Tweets? BERT to The Rescue”;

7. Data Fest 2018, 28.04.2018, “What’s hurting you? Application of NLP meth
ods in drug discovery”;

8. 3rd Kazan Summer School on Chemoinformatics, Kazan, Russia,
5.07-7.07.2017, “Text Mining in Biomedical Research”.

Contributed reports at conferences and seminars:

9. 2022 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2022), Abu Dhabi, OAE, 7.12-11.12.2022, “A Comprehensive Eval
uation of Biomedical Entity-centric Search”;

10. 60th Annual Meeting of the Association for Computational Linguistics (ACL
2022), Ireland, Dublin, 22.05-27.05.2022, “RuCCoN: Clinical Concept Nor
malization in Russian”;

11. 13th Language Resources and Evaluation Conference (LREC 2022), Marseill,
France, 21.06-23.06.2022, “Medical Crossing: a Cross-lingual Evaluation of
Clinical Entity Linking”;

12. 7th Social Media Mining for Health Applications Workshop & Shared Task
(SMM4H 2022), online, 17.10.2022, “SMM4H 2022 Task 2: Dataset for
stance and premise detection in tweets about health mandates related to
COVID-19”;

13. 43rd European Conference on Information retrieval (ECIR 2021), online,
28.03-1.04.2021, “Drug and Disease Interpretation Learning with Biomedical
Entity Representation Transformer”;

14. 6th Social Media Mining for Health Applications Workshop & Shared Task
(SMM4H 2021), online, 10.06.2021, “KFU NLP Team at SMM4H 2021 Tasks:
Cross-lingual and Cross-modal BERT-based Models for Adverse Drug Ef
fects”;

15. Widening Natural Language Processing Workshop (WiNLP 2021), online,
21.11.2021, “Adverse Drug Reaction Classification of Tweets with Fusion of
Text and Drug Representations”;

16. Ivannikov ISP RAS Open Conference 2021, 02.12-03.12.2021, Moscow, Rus
sia, “Сross-Lingual Transfer in Drug-Related Information Extraction from
User-Generated Texts”;
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17. 28th International Conference on Computational Linguistics (COLING
2020), online, 8.12-12.12.2020, “Fair Evaluation in Concept Normalization:
a Large-scale Comparative Analysis for BERT-based Models”;

18. 5th Social Media Mining for Health Applications Workshop & Shared Task
(SMM4H 2020), online, 12.12.2020, “KFU NLP Team at SMM4H 2020 Tasks:
Cross-lingual Transfer Learning with Pretrained Language Models for Drug
Reactions”;

19. 42nd European Conference on Information retrieval (ECIR 2020), online,
14.04-17.04.2020, “On Biomedical Named Entity Recognition: Experiments
in Interlingual Transfer for Clinical and Social Media Texts”;

20. 8th International Conference on Analysis of Images, Social networks and
Texts (AIST 2019), Kazan, Russia, 17.07-19.07.2019, “Biomedical Entities
Impact on Rating Prediction for Psychiatric Drugs”;

21. Google NLP Summit 2019, 24.06-26.06.2019, “Towards the Semantic Inter
pretation of User-Generated Texts about Drug Therapy”;

22. 57th Conference of the Association for Computational Linguistics (ACL
2019), Florence, Italy, 28.07-03.08.2019, “Deep Neural Models for Medical
Concept Normalization in User-Generated Texts”;

23. 57th Conference of the Association for Computational Linguistics (ACL
2019), Florence, Italy, 28.07-03.08.2019, “Detecting Adverse Drug Reactions
from Biomedical Texts With Neural Networks”;

24. 21th International Conference on Data Analytics and Management in Data
Intensive Domains (DAMDID 2019), Kazan, Russia, 15.10-18.10.2019, “A
comparative study on feature selection in relation extraction from electronic
health records”;

25. VI International Conference “Information technologies, telecommunications
and control systems” (ITTCS 2019), Innopolis, Russia, 6.12.2019, “Compar
ative Analysis of Context Representation Models in the Relation Extraction
Task from Biomedical Texts”;

26. Ivannikov ISP RAS Open Conference 2018, 21.11-22.11.2018, Moscow, Rus
sia, “Comparative analysis of neural networks in the problem of classification
of side effects at the level of entities in English texts”;
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27. 9th International Conference and Labs of the Evaluation Forum (СLEF
2018), Avignon, France, 10.09-14.09.2018, “Deep Learning for ICD Cod
ing: Looking for Medical Concepts in Clinical Documents in English and
in French”;

28. Machine Learning for Health Workshop (ML4H 2018), Montreal, Canada,
2.12-08.12.2018, “Sequence Learning with RNNs for Medical Concept Nor
malization in User-Generated Texts”;

29. Artificial Intelligence and Natural Language Conference (AINL 2018), St.
Petersburg, Russia, 17.10-19.10.2018, “Interactive Attention Network for Ad
verse Drug Reaction Classification”;

30. Russian Summer School in Information Retrieval (RuSSIR 2018), Kazan,
Russia, 27.08-31.08.2018, “Using semantic analysis of texts for the identifica
tion of drugs with similar therapeutic effect”;

31. International Conference on Computational Linguistics and Intellectual
Technologies “Dialog”, Moscow, Russia, 30.05-02.06.2018, “Leveraging Deep
Neural Networks and Semantic Similarity Measures for Medical Concept
Normalization in User Reviews”;

32. Ivannikov ISP RAS Open Conference 2017, 30.11-1.12.2017, Moscow, Russia,
“A machine learning approach to classification of drug reviews in Russian”;

33. 8th International Conference and Labs of the Evaluation Forum (СLEF
2017), Dublin, Ireland, 11.09-14.09.2017, “KFU at clef ehealth 2017 task 1:
Icd-10 coding of english death certificates with recurrent neural networks”;

34. IEEE 30th Neumann Colloquium (NC 2017), Budapest, Hungary,
24-25.11.2017, “End-to-end deep framework for disease named entity recog
nition using social media data”;

35. International Conference on Computational Linguistics and Intellectual
Technologies “Dialog”, Moscow, Russia, 31.05-3.06.2017, “Identifying dis
ease-related expressions in reviews using conditional random fields”.
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2 New models and methods for classification and
information extraction

New models and methods for classification and information extraction (IE)
were proposed and developed by the author of this dissertation [11–20]. Consolidat
ing knowledge about drugs and diseases across different sub-domains is crucial for
effective biomedical applications, especially considering the vast amount of biomed
ical texts that require analysis. Therefore, the use of automated NLP methods is
imperative for efficient information retrieval (IR) or IE. In particular, the following
key scientific problems, addressed in this chapter, are discussed:

– The first problem, as highlighted in [11], is the significant human effort
required to annotate sufficient training examples for each language or subdo
main in modern supervised models. Furthermore, Named Entity Recognition
(NER) models may exhibit exceptionally poor performance when faced with
domain shift or language shift, which is another major challenge in biomed
ical NLP.

– Current neural network-based approaches for detecting adverse drug events
(ADEs) from texts, as discussed in [18], are limited in their ability to leverage
drug structure and mainly rely on capturing textual information from user
posts about drugs.

– The third problem, as studied in [16; 17], is the cross-terminology mapping
of entity mentions to a given lexicon without additional re-training. This is
a common challenge in the biomedical domain, where different terminologies
and ontologies are used to represent biomedical concepts.

– Another challenge, discussed in [19], is the effective retrieval and analysis
of biomedical texts that focus on specific entities such as diseases, genes,
and chemicals. With the overwhelming amount of text data produced in
the biomedical field, coupled with the limitations of state-of-the-art IR
approaches based on dense or sparse embeddings, there is a need for an
entity-centric search engine design and evaluation.

To address the problems highlighted above, several new models and methods are
developed:

– To address the first problem, multilingual transfer learning between elec
tronic health records (EHRs) and user-generated texts (UGTs) in different
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languages is explored, with the goal of investigating whether knowledge can
be transferred from a high-resource language, such as English, to a low-re
source language, such as Russian, to perform NER of biomedical entities [11].
This approach leverages the multilingual capabilities of pretrained models
and incorporates transfer learning.

– To address the second problem, a novel method to utilize both textual and
molecular information for ADE classification is proposed [18]. To fuse the
drug and tweet representations, two strategies are explored, including using
a co-attention mechanism to integrate features of different modalities.

– To address the third problem, a Drug and disease Interpretation Learning
with Biomedical Entity Representation Transformer (DILBERT) model is
proposed that uses metric learning and negative sampling to obtain entity
and concept embeddings. The DILBERT model enables the creation of a
shared semantic vector space for entities and concepts from the knowledge
base, allowing for cross-terminology entity linking (EL) without the need for
re-training [16;17].

– To address the fourth problem, a BERT-based IE system is designed as an
entity-centric search engine [19]. The system consists of two sub-modules,
namely the NER sub-module and the EL sub-module, which are applied
successively. The NER sub-module is responsible for identifying entities of
interest, while the EL sub-module links the extracted entities with concepts
from relevant knowledge bases using the DILBERT model. To evaluate the
approach, a novel search collection of PubMed abstracts for disease and gene
queries is developed, along with corresponding relevance judgments.

The key results and conclusions on transfer learning research [11], which explores
multilingual transfer learning for NER in the biomedical domain, are as follows:

– Based on the evaluation results, it can be concluded that the multi-BERT
approach exhibits the best transfer capabilities in the zero-shot setting when
the training and test sets are either in the same language or in the same
domain.

– Transfer learning is shown to effectively reduce the amount of labeled data
required to achieve high performance. Specifically, trained models were able
to achieve 98-99% of the full dataset performance on both types of entities
after training on only 10-25% of sentences.
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The key results and conclusions on the multimodal research [18] are as follows:

– The proposed approach is effective in utilizing both textual and molecular
information for ADE classification, and achieves state-of-the-art performance
on several benchmark datasets in English, French, and Russian.

– Experiments show that the molecular information obtained from neural net
works is more beneficial for ADE classification than traditional molecular
descriptors.

The key results and conclusions of studies on an information extraction system [16;
17; 19] are as follows:

– Experiments show that the DILBERT model significantly outperforms base
line and state-of-the-art architectures for biomedical EL. Moreover, this
model is effective in knowledge transfer from the scientific literature to clin
ical trial data using a novel annotated dataset for drug and disease linking
for evaluation.

– The neural IE architecture shows superior performance in a zero-shot setup
for search with both disease and gene concept queries. Furthermore, the IE
system can effectively handle out-of-domain abstracts, indicating its poten
tial to be applied to a wide range of biomedical entities.

2.1 Cross-lingual and cross-domain NER with transfer
learning

The results of this section are based on the paper [11].
Experiments are conducted using four datasets: English corpora CADEC

[53] and n2c2 [54], a dataset comprising EHRs in Russian, and an author’s original
dataset consisting of UGTs in Russian. Each corpus is defined by two parameters:
(i) language: English (EN) or Russian (RU); and (ii) domain: EHRs or UGTs.

NER model is based on BERT𝑏𝑎𝑠𝑒 [7] with a softmax layer and the Adam
optimizer with polynomial decay to update the learning rate on each epoch, with
warm-up steps at the beginning. Word labels were encoded using the BIO tag
scheme, and the model was trained on a sentence level. Specifically, multilingual
Cased (Multi-BERT)is used, which is pretrained on 104 languages. LSTM-CRF
with word embeddigs from the Saber library [55] and BioBERT [56] are used
as baselines.
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Figure 1 — Performance of Multi-BERT models with pre-training on the
source dataset (a corpus’s name in a legend) or without pre-training (“No
pretrain” line) for the EN UGT, RU UGT, RU EHR datasets. Y-axis:
F1-scores for detection of Drug or Disease mentions, X-axis: the number
of sentences used for training.

Each of the datasets was randomly split into 70% training set and 30%
test set. 720 models are trained on one machine with 8 NVIDIA P40 GPUs. The
in-corpus (IC) and out-of-corpus (OOC) performances of all models were compared
on the test sets using the CoNLL script for evaluating precision (P), recall (R),
and F1-score (F) with exactly matching criteria.

Across all datasets, BERT-based models outperformed LSTM-CRF in terms
of the IC performance. Furthermore, the difference in performance between
BioBERT and Multi-BERT was not statistically significant (two-tailed t-test with
𝑝 ≤ 0.05). All models achieved significantly higher performance in detecting drugs
than in detecting diseases. This may be attributed to boundary issues in multi
-word expressions, as indicated by the average length of entities.

Zero-Shot Transfer To assess the efficacy of the BERT-based NER model
trained on one corpus for detecting drugs and diseases in another language or
domain in the zero-shot setting, Multi-BERT was trained on one corpus and then
applied it to another language/domain without further training.
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For drug recognition, the best generalizability was achieved by training on
EHRs and evaluating on UGTs in English. When tested on the EN UGT corpus,
the model achieved OOC F1 of 77.08% and 36.31% when trained on the EN EHR
and RU UGT corpora, respectively, while the IC performance was an F1 of 84.88%.
It is worth noting that the number of sentences in the EN EHR corpus is nine times
greater than in the EN UGT corpus, and 78% of Drug tokens in the EN UGT corpus
are found in the EN EHR set. When evaluated on the RU UGT corpus, the model
obtained F1-scores of 26.31% and 34.78% when trained on the EN UGT and EN
EHR corpora, respectively, while the IC performance was an F1-score of 60.45%.

For disease recognition, Multi-BERT exhibited much poorer generalization
to corpora other than the one it was trained on. When evaluated on the RU UGT
corpus, the model obtained OOC F1-scores of 24.12% and 30.86% when trained
on the EN UGT and RU EHR corpora, respectively, while the IC performance
was an F1-score of 49.35%. When tested on the EN UGT corpus, the model
achieved F1-scores of 37.94% and 4.32% when trained on the RU UGT and EN
EHR corpora, respectively, while the IC performance was an F1-score of 67.25%.
This may be attributed to well-known differences between layperson language and
professional medical terminology.

Few-Shot Transfer Next, it was investigated whether the NER model per
forms as well as a model trained on much larger datasets given a small number
of training examples. The investigation began by randomly sampling 50 sentences
from a “target” training set, training the pretrained model on this subsampled
dataset, and testing it on the "target" test set. The sample size was then in
creased by 50 sentences of the “target” training set, and the process was repeated
up to 2000 sentences of the training set. In each round, training was started from
scratch to avoid overfitting, as suggested in [57].

For each pretraining setup, the size of the subset was recorded when the
model achieved at least 99% of the F1-measure achieved on the full dataset. Re
sults for the RU UGT, RU EHR, and EN UGT datasets are presented in Fig. 1.
Multi-BERT pretrained on the EN UGT set and trained on 2000 sentences from
the EN EHR corpus (2.81% of the full corpus) obtained 92% F1 and 76% F1 of
the full dataset performance on drugs and diseases, respectively. As shown in Fig.
1, models with transfer knowledge outperformed models without the pretraining
phase, even in cases where both domain and language shifted between “source”
and “target” sets. Using the transfer learning strategy required up to 550 fewer
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sentences than training from scratch. Notably, models required only 10% and 23%
of the EN UGT and RU URT corpora, respectively, to achieve results as good
as full dataset performances. Note that this observation is particularly significant
for low-resource languages and new domains (e.g., social media, clinical trials).
Additionally, it was observed that the performance of models with pretraining
setup trained on different numbers of sentences became more stable in terms of
deviations between F1-scores.

In summary, the following question was investigated: can additional training
on an existing dataset be helpful for the biomedical NER performance of a multi
lingual BERT-based NER model on a new dataset with a small number of labeled
examples if the domain, the language, or both shift between these datasets? As ex
pected, models with pretraining on data in the same language or domain achieved
better results in zero-shot or few-shot settings. The model with the best pretrain
ing achieved 99% of the full dataset performance using only 23.56% of the training
data on the RU URT corpus, while the model with pretraining on data with two
shifts (the EN EHR set) used 26.1% of the training data. Hence, pretraining on
data with two shifts can be effective.

2.2 Multimodal model with text and drug embeddings

The results of this section are based on the paper [18].
The popularity of social media as a source of health-related information

has increased significantly over the past decade. One well-studied research area
is pharmacovigilance from social media data, which focuses on discovering ADEs
from user-generated texts. Note that the terms ADEs and adverse drug reactions
(ADRs) are often used interchangeably.

A novel method to utilize both textual and molecular information for ADE
classification is proposed, taking inspiration from multimodal studies. The im
pact of using different molecular representation approaches, including traditional
molecular descriptors and neural encoders, is investigated.

Let us consider a text 𝑇 that can be represented as a pair of textual modality
𝑡 and a drug modality that is a set of 𝑘𝑇 drug mentions: 𝑇 = (𝑡,𝐷𝑇 ), where
𝐷𝑇 = (𝑑1, 𝑑2,..., 𝑑𝑘𝑇 ). To obtain two unimodal representations of 𝑇 , a random
drug 𝑑𝑖 is sampled from 𝐷𝑇 and encode the 𝑡 and 𝑑𝑖 using two encoders: (i) a
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textual encoder 𝑀𝑡𝑒𝑥𝑡 and (ii) a drug encoder 𝑀𝑑𝑟𝑢𝑔:

𝑢𝑇
𝑡𝑒𝑥𝑡 = 𝑀𝑡𝑒𝑥𝑡(𝑡) 𝑢𝑇

𝑑𝑟𝑢𝑔 = 𝑀𝑑𝑟𝑢𝑔(𝑑𝑖)

where 𝑢𝑇
𝑡𝑒𝑥𝑡 ∈ R𝑑𝑡 is the embedding of textual modality 𝑡 and 𝑢𝑇

𝑑𝑟𝑢𝑔 ∈ R𝑑𝑑 is
the embedding of drug 𝑑𝑖; 𝑑𝑡 and 𝑑𝑑 are the dimensionalities of the obtained
uni-modal vector representations. The multimodal binary text classification task
can be formulated as:

𝑓𝑐𝑙(𝑓𝑚𝑜𝑑(𝑢
𝑇
𝑡𝑒𝑥𝑡, 𝑢

𝑇
𝑑𝑟𝑢𝑔))

where 𝑓𝑚𝑜𝑑 : R𝑑𝑡+𝑑𝑑 → R𝑑𝑏𝑖 is a modality combination function that provides a
bi-modal representation of 𝑇 , 𝑓𝑐𝑙 : R𝑑𝑏𝑖 → R is a fully connected classification
network with sigmoid output activation. 𝑑𝑏𝑖 is the dimensionality of the bi-modal
vector representation.

The final embedding of the classification token (CLS token) is used as the
textual representation of an input text. In the uni-modal approach, the textual
representation 𝑢𝑇

𝑡𝑒𝑥𝑡 is usually directly fed to a classifier, whereas for bi-modal
models, the textual modality with the drug modality are combined. Two ways
are evaluated to combine text and drug modalities: (i) concatenation of text and
drug embedding; (ii) the scaled dot-product attention used in Transformer-based
models. In a first way, textual embedding and drug embedding are concatenated:

𝑓𝑐𝑜𝑛𝑐𝑎𝑡
𝑚𝑜𝑑 (𝑢𝑇

𝑡𝑒𝑥𝑡, 𝑢
𝑇
𝑑𝑟𝑢𝑔) = [𝑢𝑇

𝑡𝑒𝑥𝑡 ⊕ 𝑢𝑇
𝑑𝑟𝑢𝑔]

The attention mechanism allows to learn a multimodal embedding of sample 𝑇 as
a linear combination of two modalities 𝑢𝑇

𝑡𝑒𝑥𝑡 and 𝑢𝑇
𝑑𝑟𝑢𝑔. For text classification:

𝑓𝑎𝑡𝑡
𝑚𝑜𝑑(𝑢

𝑇
𝑡𝑒𝑥𝑡, 𝑢

𝑇
𝑑𝑟𝑢𝑔) = 𝛼 · 𝑢𝑇

𝑡𝑒𝑥𝑡 + (1− 𝛼) · 𝑢𝑇
𝑑𝑟𝑢𝑔

where 𝛼 is the weight of textual modality obtained using the attention mechanism.
To obtain drug information, drug names are mapped to their identifiers in

DrugBank [58]. The following methods are employed as drug encoders: 1) ATC
classification, which is the most widely recognized classification system for drugs.
A drug is encoded as a sparse 14-dimensional vector with zero values for ATC
codes to which a drug does not belong. 2) Molecular descriptors, which are a set
of numeric values that characterize the physicochemical and structural properties
of a drug molecule. Molecular-descriptor calculation library Mordred [59] is used to
calculate 2 thousand descriptors for each drug from Drugbank. 3) MolBERT [60],
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Table 1 — Evaluation results for SMM4H 2021 Task 2 on classification of
Russian tweets. EnRuDR-BERT is trained, a bilingual model pretrained
on a RuDReC corpus.

Model P±std R±std F1±std
Text-only models

TF-IDF+SVM 0.158 0.281 0.202
Fasttext+CNN 0.356 0.465 0.404
BERT 0.548±0.063 0.516±0.072 0.524±0.020

Models with concatenated modalities
BERT+ATC categories 0.529±0.054 0.521±0.058 0.519±0.090
BERT+descriptors 0.543±0.052 0.514 ±0.059 0.523±0.020
BERT+ChemBERTa 0.552±0.061 0.513±0.076 0.524±0.023
BERT+MolBERT 0.538±0.040 0.531±0.040 0.532±0.014

Models with cross-attention
BERT+ATC categories 0.509±0.063 0.542±0.059 0.519 ±0.011
BERT+descriptors 0.527±0.076 0.518±0.073 0.514±0.022
BERT+ChemBERTa 0.515 ±0.049 0.537 ±0.063 0.521 ±0.020
BERT+MolBERT 0.514±0.051 0.553±0.055 0.529±0.011

a BERT-based encoder specifically designed for encoding molecular data. 4) Chem
BERTa [61], another BERT-based encoder that is pretrained on chemical data.

To classify data, a fully-connected classification network is used with one
hidden layer that utilizes GeLU [62] activations. The output layer uses sigmoid
activation and binary cross-entropy is used as the loss function.

Three datasets are used for experiments: the French dataset from the Social
Media Mining for Health (#SMM4H) 2020 task 1b and the English and Russian
datasets from the SMM4H 2021 tasks. For each dataset, 10 BERT-based models
are trained with different initializations of classifier weights. The mean quality
and standard deviation of F1-scores (F1), precision (P), and recall (R) for the
ADE class are computed.

Table 1 shows the performance of uni-modal and bi-modal models on the
Russian tweet corpus of SMM4H 2021. First, the two best-performing models
in terms of F1-score are bi-modal models that utilize MolBERT drug embeddings.
The concatenation-based model slightly outperforms the attention-based model (by
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Table 2 — Official SMM4H 2021 results on the official test set.
Model P R F1

Task 2, Russian
SMM4H 2021 Task 2 submission 0.58 0.57 0.57

Second place 0.54 0.57 0.52
Task 1a, English

SMM4H 2021 Task 1a submission 0.552 0.681 0.61
First/second place, Team 4 0.515 0.752 0.61

0.3%) and unimodal BERT (by 0.8%). Second, bi-modal models with concatenated
modalities outperform those with cross-attention. Finally, the final SMM4H 2021
submission combined the results of ten multimodal models with the same settings
using a simple voting scheme, with the aim of enhancing the robustness of the
final system. As illustrated in Table 2, this model achieved state-of-the-art results,
exhibiting a 4% improvement in terms of F1-measure over a single model.

After analyzing the results on the French set for SMM4H 2020 Task 1b,
several conclusions can be drawn. Firstly, the highest F1-scores were achieved by bi
modal models with concatenated modalities. Specifically, the bi-modal model with
MolBERT drug embedding surpassed the best official results of the SMM4H 2020
competition and the text-only model, achieving a new state-of-the-art with an 8.5%
improvement in terms of F1. Secondly, the performance of models with cross-at
tention is significantly lower than those with modalities concatenation. However,
cross-attention models with ChemBERTa and MolBERT embeddings slightly out
performed the text-only model by 1.8% and 0.9%, respectively. Finally, uni-modal
and bi-modal BERT-based models significantly outperform unimodal SVM and
CNN baselines, thus demonstrating the superiority of complex neural networks
over simple neural models and traditional machine learning algorithms in the task
of ADE text classification.

The top-performing bi-modal models in terms of F1-score for both the
Russian and English corpus of SMM4H 2021 are selected to determine how in
corporating an additional modality affects classification performance on tweets
that mention drugs from different therapeutic groups. Experiments showed that
the performance of the bi-modal classification approach is not dependent on only
ATC groups’ distribution of input data.
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In conclusion, the task of detecting ADEs in user-generated tweets about
drugs has been investigated. The proposed unified approach combines several
state-of-the-art models, including BERT for text representation and MolBERT
for drug representation. The models demonstrated significant improvements in
ADE classification of French texts of SMM4H 2020 Task 1b (achieving an 8%
improvement) and achieved state-of-the-art results on recent SMM4H 2021 Task
1a and Task 2 for English and Russian texts, respectively. It is worth noting
that these impressive results were obtained using only well-known BERT-based
pre-trained models for individual components. The source code for the models are
freely available at https://github.com/Andoree/smm4h_2021_classification.

2.3 Information extraction pipeline for search

The results of this section are based on the paper [19]; a novel DILBERT
model for biomedical EL is based on the papers [16; 17].

The design and evaluation of a BERT-based IE system as an entity-centric
search engine for a target discovery platform called PandaOmics1 is presented. The
following question is aimed to be answered: given the near-excellent performance
on NER and EL [14;56], can models identify relevant publications for disease and
gene queries from diverse biomedical subdomains as real-world applications? A
novel search collection of PubMed abstracts for disease and gene queries with cor
responding relevance judgments has been developed. The IE pipeline is evaluated
using two trained BERT-based models for NER and EL, as well as the standard
document retrieval model BM25 with off-the-shelf Elasticsearch software.

The focus of this study is an extraction of two types of entities, namely
disease and gene. The IE system comprises multiple pipelines, each dedicated to a
specific entity type. These pipelines consist of two sub-modules, namely the NER
sub-module and the EL sub-module, which are applied successively.

Named Entity Recognition BioBERT is trained on a combination of the
NCBI and BC5CDR (BioCreative V CDR) datasets for disease entities [63;64], and
on the DrugProt dataset for gene entities [65]. To create the combined dataset,
predefined train/test subsets are utilized and merged the datasets within these

1https://pandaomics.com/
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splits. The model achieved an F-measure of 88.43% and 90.39% for disease and
gene entities, respectively.

Entity Linking To link a named entity with its corresponding concept in a
knowledge base, the task of named entity linking is performed. A concept in this
scenario refers to an element within the knowledge base that represents a specific
idea or notion related to a particular field of knowledge. The DILBERT model is
utilized to link the extracted entities with corresponding concepts from relevant
dictionaries. Similarly to the NER component, models are trained on BC5CDR
and BioCreative II GN (BC2GN) [66]. The DILBERT model enables the creation
of a shared semantic vector space for entities and concepts from the knowledge
base, where texts with similar meanings are located close to each other. This
characteristic allows ranking of concepts based on the distance function 𝑠.

Following the notation proposed in [67], both entities and concepts are
mapped to vector representations using the following equation:

𝑦𝑚 = 𝑟𝑒𝑑(𝑇 (𝑚)); 𝑦𝑐 = 𝑟𝑒𝑑(𝑇 (𝑐)), (1)

where T is a deep neural network of the transformer architecture whose weights
can be updated during fine-tuning, the function 𝑟𝑒𝑑(·) reduces a sequence of vec
tors into a single vector, where 𝑚 represents an entity that needs to be linked to
the corresponding concept, and 𝑐 denotes the concept name. There are various
implementations of the 𝑟𝑒𝑑(·) function, such as selecting the output correspond
ing to the CLS token or element-wise average pooling over all vectors to obtain a
fixed-size vector. Empirical evidence has established that average pooling is the
optimal option for the 𝑟𝑒𝑑(·) function.

The relevance score of the candidate 𝑐𝑖 for the entity 𝑚 is determined by the
distance function, such as the Euclidean distance, applied to the corresponding
vector representations:

𝑠(𝑚, 𝑐𝑖) = ||𝑦𝑚 − 𝑦𝑐𝑖 ||, (2)

To train the network, a triplet objective function is employed that captures
the semantic similarities and differences between concepts and entities. Given a
mention of the entity 𝑚, the name of the corresponding (positive) concept 𝑐𝑔,
and the name of the non-corresponding (negative) concept 𝑐𝑛, the triplet objective
function adjusts the neural network so that the distance between 𝑚 and 𝑐𝑔 is less
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Table 3 — Statistics of the annotated datasets of clinical trials.
Mention #texts #texts

with CUIs
#unique
texts

#unique texts
with CUIs

Intervention 1075 794 838 671
Condition 819 804 638 638

than the distance between 𝑚 and 𝑐𝑛 for a given threshold. The loss function
is expressed as:

𝑚𝑎𝑥(𝑠(𝑚, 𝑐𝑔)− 𝑠(𝑚, 𝑐𝑛) + 𝜖, 0), (3)

where 𝜖 is an offset that ensures that 𝑐𝑔 is at least 𝜖 closer to 𝑚 than to
𝑐𝑛. In the experiments, 𝜖 is set to 1.

To generate positive examples, the dictionary is limited to concepts that
correspond to the entity, while the remaining part of the dictionary is used to
generate negative examples [68]. Several strategies are explored for selecting posi
tive and negative examples: (i) random sampling, (ii) hierarchy random sampling
(random sampling + 𝑛 parents), (iii) resampling of negative cases, (iv) resampling
hierarchy (resampling + 𝑛 siblings).

The metric learning approach’s key feature is its ability to detect entities
that do not have a suitable concept in the vocabulary. The detection methodology
follows naturally from the assumption that similar elements are situated close to
each other in a latent space. Therefore, if all dictionary objects are far enough
from the entity, it implies the out-of-vocabulary case. Thus, if all concepts are at
a distance greater than the threshold value 𝑡, it can be concluded that the entity
is not corresponded by any of them. To determine the threshold, the maximum
distance of true-positive cases 𝑑𝑡𝑝 and the minimum distance of false-positive cases
𝑑𝑓𝑝 is used. The threshold value is set to the weighted sum:

𝑡 = 𝑎1 * 𝑑𝑡𝑝 + 𝑎2 * 𝑑𝑓𝑝, (4)

Here, 𝑎1 represents the proportion of true positive examples among entities whose
closest concept is at a distance of 𝑠 ∈ [𝑑𝑓𝑝; 𝑑𝑡𝑝], and 𝑎2 denotes the proportion
of false positives in the same entity set. If the given set of entities is empty, the
coefficients are set to 1

2
.

The proposed approach was evaluated on the manually annotated clinical
trial corpus. Statistics of annotated clinical trials’ texts are summarized in Table
3. The experimental results are presented in Table 4. As it can be seen from
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Table 4 — The metrics of the DILBERT model on the corpora of clinical
trials. The results are presented for the disease (CT Condition) and drug
(CT Intervention) entity types. Quality metrics are provided for a subset
consisting only of entities with a single concept (single concept) and for
the entire corpus (full set).

Model
CT Condition CT Intervention

single concept full set single concept full set
BioBERT ranking 72.60 71.74 77.83 56.97
BioSyn [69] 86.36 - 79.58 -

DILBERT with different sampling strategies
random sampling 85.73 84.85 82.54 81.16
random + 2 parents 86.74 86.36 81.84 79.14
random + 5 parents 87.12 86.74 81.67 79.14
resampling 85.22 84.63 81.67 80.21
resampling + 5 siblings 84.84 84.26 80.62 76.16

Table 4, the DILBERT model shows the best results on CT Condition and CT
Intervention corpora. The source code of DILBERT and the CT sets are available
on GitHub at https://github.com/insilicomedicine/DILBERT.

Retrieval

Here, the dataset for entity-centric search, which includes queries and the
process used to collect relevance assessments, is described. Table 5 presents the
statistics of the dataset.

Table 5 — Summary of statistics of the proposed dataset.

Subset #queries
avg. number of texts per query

relevant
label

nonrelevant
label

doubtful
label

Disease CUI 73 94.86 63.57 9.78
Gene CUI 79 109.39 21.62 5.93
Ambiguous 27 45.94 11.58 0.53

Total 152 102.41 41.76 7.78
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Queries In the search scenario, a user can input a gene name or symbol, such
as “PSEN1” (ENSG00000080815), and retrieve all relevant publications and asso
ciated diseases, including Alzheimer’s disease (EFO:0000249). An autocomplete
feature suggests search terms from disease or gene dictionaries.

Pooling The standard practice of IR collection building is adopted, using a
pooling approach to combine retrieval results from two main sources:

1. Retrieval results are obtained from Elasticsearch, and the results are pooled
from these runs up to a depth of 100.

2. Retrieval results are obtained from PubMed, and the results are pooled from
these runs up to a depth of 100, excluding abstracts already retrieved by the
first system.

The final assessment pool consists of 23,099 query-abstract pairs, with an average
of 152 abstracts per query.

Relevance Assessment For each query-abstract pair, relevance judgments
are collected from two annotators with biomedical degrees. A list of queries was
created by an expert annotator with a Ph.D. in biology, using logs from the target
discovery platform PandaOmics. The queries are disease CUIs and gene CUIs. In
addition, the annotators selected a list of concepts with at least one ambiguous
concept name (e.g., coad refers to chronic obstructive pulmonary disease and to
colon adenocarcinoma (COAD)).

Each annotator selected a disease or gene query from the list of identified
identifiers, along with an abstract containing information about the publication
year and journal. The abstracts were presented in a random order. Annotators
were then asked to (i) judge relevance on a 3-point scale (relevant, nonrelevant, or
doubtful), and (ii) categorize the reason for relevance or nonrelevance.

Search evaluation

Precision (P), recall (R), and F-measure (F) are used to evaluate the system.
Precision is calculated as the fraction of relevant documents among all retrieved
documents. Similarly, recall is calculated as the fraction of relevant documents
from all possibly relevant documents in the dataset. Query-document pairs are
used with relevant and nonrelevant labels, excluding the doubtful category.
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Table 6 — IR metrics on the full set of queries and on the subset of queries
with ambiguous concepts.

Model
Full Set Ambiguous Concepts

P R F P R F
Queries with Disease CUIs

BERT-based 93.97 84.41 88.93 97.72 93.81 95.73
Elasticsearch BM25 82.19 83.33 82.76 75.67 96.72 84.91

Queries with Gene CUIs
BERT-based 92.24 85.45 88.71 93.02 93.85 93.43
Elasticsearch BM25 89.92 79.93 84.63 79.58 68.88 73.85

Both
BERT-based 92.99 84.99 88.81 94.9 93.83 94.37
Elasticsearch BM25 86.23 81.44 83.77 77.59 80.39 78.96

Table 6 presents the performance comparison of the BERT-based pipeline
and BM25 on the full set of queries and the subset of concepts with ambiguous
names, respectively. The results show that the BERT-based system outperforms
BM25 on both sets of the dataset for both types of entities. As expected, the per
formance difference between the two models is more significant on the subset with
ambiguous concept names. Furthermore, for the BERT-based pipeline, precision
is higher than recall.

A dataset for out-of-domain abstract detection is developed to further in
vestigate search precision. Approximately 30,000 records are included from the
PubMed journal list, which publish papers not only about biological entities, but
also on cultural topics, economics and econometrics, artificial intelligence, law, lin
guistics and language, and so on (out-of-domain categories for us). Out-of-domain
journals were manually selected by the expert annotator on which the IE system
should return zero results. From these journals, 58,790 abstracts containing at least
one gene or disease concept retrieved by Elasticsearch were randomly selected by
us. It was found that in 90% of these abstracts, the BERT-based system did not
identify any entities.

In conclusion, a comprehensive evaluation of a biomedical entity-centric
search engine that utilizes BERT models for disease and gene extraction and linking
has been conducted. This engine is part of a target discovery platform, which allows
users to retrieve a list of relevant publications given a disease or gene concept query.
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3 New annotated corpora for information extraction

New annotated corpora with texts from various sources were proposed and
developed by the author of this dissertation [16;17;21–23]. Developing biomedical
IE systems is challenging due to the lack of comprehensive annotated datasets. In
particular, the following key scientific problems, addressed in this chapter, are
discussed:

– Poorly composed contexts, the ubiquitous presence of colloquialisms, short
ened forms, typing/spelling mistakes, and out-of-vocabulary words introduce
challenges for the effective utilization of user-generated content in the health
domain, as shown in [21]. Furthermore, general-domain language models
may not perform well on biomedical texts since these texts often contain
technical terms, abbreviations, and domain-specific concepts.

– The inherent complexity of the domain and its terminology. The mentions
of diseases, symptoms, drugs, and other concepts are highly variable, and
due to the large medical vocabulary, entity linking/concept normalization
becomes a challenging yet essential problem, as shown in [22].

– The third problem, addressed in [23], is the limited ability of existing datasets
and NER methods to capture the complex nested entity structures that are
common in biomedical texts. Biomedical texts frequently contain mentions
of entities, such as diseases containing body parts or chemicals, that are
nested within each other. However, most existing datasets and NER methods
are designed to capture flat mention structures and are often limited to the
most common entity types like drugs/chemicals and diseases.

To address the problems highlighted above, several novel datasets are presented:

– To address the first problem, the RuDReC [21] corpus was introduced, which
is a partially annotated corpus of consumer reviews in Russian about phar
maceutical products, along with the RuDR-BERT models pre-trained on 1.4
million health-related comments and fine-tuned for named entity recognition
and sentence classification tasks.

– To address the second problem, RuCCoN [22] was introduced, a new man
ually annotated dataset for clinical concept normalization in Russian. It
contains over 16K entity mentions manually linked to over 2K unique con
cepts from the Russian language part of the UMLS. Train/test splits were
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developed for different settings (stratified, zero-shot, and CUI-less) and
present strong baselines obtained with state-of-the-art models.

– To address the third problem, a substantial nested named entity dataset,
NEREL-BIO [23] was created, using PubMed abstracts in Russian and En
glish. This dataset includes manually annotated entity mentions of 37 types,
including nested structures with up to six layers of depth.

The key results and conclusions of the study on a corpus of user-generated texts [21]
are summarized as follows:

– The dataset of health-related consumer reviews in Russian, RuDReC, is
divided into two parts: (i) 1.4 million comments that can be used to train
modern language models, and (ii) 500 richly annotated reviews that can be
used to train downstream task-specific models.

– An annotation scheme is developed that operates on both sentence and entity
levels. The sentence-level labels indicate the presence or absence of health-re
lated issues. Furthermore, the sentences that contain health-related issues
are further annotated at the entity level to identify fine-grained subtypes
such as drug classes and drug forms, drug indications, and drug reactions.

– Two domain-specific BERT-based language models were trained on the raw
RuDReC part.

– The evaluation of several BERT-based models on the classification and ex
traction of health entities.

The key results and conclusions of the study on a corpus of electronic health
records [22] can be summarized as follows:

– The dataset of electronic health records in Russian, RuCCoN, where entity
mentions are linked to concepts from the UMLS.

– The provision of several types of test sets for various settings, including
stratified, zero-shot, and CUI-less settings.

– The evaluation of several state-of-the-art models on RuCCoN, including var
ious fine-tuning variations, and an investigation of the necessity of labeled
data in Russian for cross-lingual concept normalization from English to Rus
sian.

The key results and conclusions of the study on a corpus of abstracts [23], are
as follows:
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– The dataset of biomedical abstracts in Russian and English, NEREL-BIO,
which is annotated with nested entities.

– An annotation scheme which includes 17 specialized biomedical entity types
and 20 general-domain entity types.

– The evaluation of several state-of-the-art models for nested NER.

Overall, these results demonstrate significant advancements in the development of
resources for NLP applications in the specialized domain.

3.1 RuDReC: drug reactions in health-related user reviews

The results of this section are based on the paper [21].
This section presents the design, composition, and construction of a large

dataset of user-generated texts (UGTs) about pharmaceutical products in Russian.
The presented RuDReC corpus is divided into two parts: a larger raw corpus of
1.4 million health-related comments that can be used to train modern language
models based on self-supervised objectives, and a smaller part containing 500 richly
annotated reviews that can be used to train downstream task-specific models. The
primary downstream tasks, in this case, are NER and multi-label classification.
The labeling in the second part consists of two main components: sentence labels
and entity labels. The review posts were split into sentences and labeled for the
presence of drug indications and symptoms of a disease (DI), adverse drug reac
tions (ADR), drug effectiveness (DE), and drug ineffectiveness (DIE). In the entity
identification phase, 6 entity types are identified and extracted: drug names, drug
classes, drug forms, ADR, DI, and Findings. A total of 2,202 sentences and 4,566

entities were labeled in the corpus.
The annotation process involved two stages. In the first stage, annotators

with a background in pharmaceutical sciences were asked to read 400 reviews and
highlight all spans of text, including drug names and the patient’s health conditions
experienced before, during, or after the drug use. In the second stage, annotators
were asked to screen existing annotations and annotate new texts.

The analysis of existing corpora shows two main types of entities: Drug

and Disease. After several discussions, annotators defined the following Disease

subtypes: (1) disease name; (2) indication (Indication); (3) positive dynamics after
or during taking the drug (BNE-Pos); (4) negative dynamics after the start or some
period of using the drug (ADE-Neg); (5) the drug does not work after taking the
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course (NegatedADE); (6) deterioration after taking a course of the drug (Worse).
As Drug subtypes, annotators have chosen: (1) drug names, (2) drug classes,
and (3) drug forms.

Metrics for computing the relaxed agreement for Disease and Drug entities
were used from [53]. The average agreement was approximately 70%.

After completing the first stage of the annotation process, three of the au
thors screened the annotations and identified several issues. There were relatively
few examples of Worse and ADE-Neg types. Additionally, the BNE-Pos entity
types contained many overly broad entities that were not related to medical con
cepts.

To address these issues, several changes were made to the annotation scheme.
Worse and ADE-Neg with NegatedADE entity types were combined into a single
class called Drug Ineffectiveness (DIE) and spanned DIE annotation on the sen
tence level. BNE-Pos entities were spanned on the sentence level and renamed to
Drug Effectiveness (DE). Finally, Indication and Disease entity types were com
bined into a single Drug Indication (DI) type, following the CADEC corpus. At
the second stage of the annotation process, two annotators continued the process
according to sentence classes and entity types.

The annotated corpus contains 500 reviews, including reviews about four
groups of drugs: sedatives, nootropics, immunomodulators, and antivirals. Seda
tives account for 60% of the reviews. Reviews of immunomodulatory drugs have
longer sentences and tokens compared to other drug groups. On average, their
reviews are 30% longer, and their maximum length is twice that of other groups,
although their minimum length is equivalent. The average number of sentences in
Russian reviews is higher than in the English CADEC and PsyTAR corpora, with
an average of 9.71 sentences per review compared to 6 sentences in the other
corpora.

The total number of annotated sentences in the entire corpus is 2,202, dis
tributed among different categories as follows: DI (949), ADR (379), FINDING
(172), DE (424), and DIE (278). The total number of annotated entities in the
entire corpus is 4,566, distributed among different categories as follows: DRUG
NAME (1043), DRUGCLASS (330), DRUGFORM (836), DI (1401), ADR (720),
FINDING (236). The analysis of part-of-speech (PoS) tags for words in entities
revealed that social media users tend to use more verbs to express symptoms and
ADRs compared to formal medical concepts. In the annotated portion of the
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RuDReC corpus, 18.26% of the words in disease-related entities are verbs, while
only 2.53% of words in the MedDRA dictionary from UMLS v. 2020AA are verbs.

User reviews were collected by web page crawling from popular medical web
portals that mostly contain drug reviews about pharmaceutical products, health
facilities, and pharmacies. Duplicate comments were removed, and the result
ing corpus contains 1,4 million texts, 1,104,054 unique tokens, and 193,529,197

tokens in total.
The multilingual version of BERT-base (Multi-BERT) was used as initializa

tion for training domain-specific BERT, which is referred to as RuDR-BERT. It
was observed that 800K and 840K pretraining steps were sufficient, which roughly
corresponds to a single epoch on the corpus.

Classification models were evaluated with 5-fold cross-validation in terms of
the F1 score. Table 7 presents the results of RuBERT, Multi-BERT, and fine-tuned
RuDR-BERT models. Based on the results, several conclusions can be drawn.
Firstly, the RuDR-BERT model achieved the best results among the comparable
models. Secondly, the RuBERT model outperformed the Multi-BERT model by
3.12% in terms of macro F1-score, with the highest improvement observed for
DE (+4.09%) and Finding entity types (+4.19%). Thirdly, the performance of
RuDR-BERT on Finding (36.24%) is significantly lower than on ADR (74.15%)
and DI (85.06%). This could be due to the similarity in contexts and a much
lower number of training examples.

The F1 scores computed by exact matching criteria via a CoNLL script
were used to compare NER models on 5-fold cross-validation. Table 8 shows
the F1-score performance of fine-tuned RuBERT, Multi-BERT, and RuDR-BERT.
Based on the results, several conclusions can be drawn. Firstly, the domain-specific
RuDR-BERT outperforms both RuBERT and Multi-BERT on all entity types. Sec
ondly, RuBERT, with a vocabulary of Russian subtokens generated on Wikipedia
and news, outperforms Multi-BERT. Thirdly, similar to sentence classification, the
performance of RuDR-BERT on Finding is significantly lower than on ADR and
DI. Finally, all models achieve higher performance for drug-related entities than
for disease-related entities, which may be due to boundary problems in multi-word
expressions. RuDR-BERT achieves an F1-score of 81.34% on disease-related en
tities and an F1-score of 94.65% on drug-related entities. The average number
of tokens on drug-related entities is 1.06, while the average number of tokens on
disease-related entities is 1.77.
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Table 7 — Performance of fine-tuned RuDR-BERT on sentence classifica
tion with comparison to multi-BERT and RuBERT.

Model DE DIE ADR DI Finding Macro F1
RuBERT 67.7±2.82 62.27±3.47 66.65±2.96 81.63±2.38 28.51±4.8 61.35±3.28
Multi-BERT 63.61±4.22 60.19±3.52 63.45±2.61 79.58±4.1 24.32±2.85 58.23±3.46
RuDR-BERT 76.61±4.08 72.06±5.29 74.15±5.01 85.06±2.49 36.24±6.91 68.82±4.76

Table 8 — Performance of fine-tuned RuDR-BERT on the NER task in
comparison with Multi-BERT and RuBERT

Model ADR DI Finding Drugclass Drugform Drugname Macro F1
RuBERT 54.51±3.9 69.43±4.98 27.87±5.92 92.78±1.14 95.72±1.38 92.11±1.56 72.07±2.03
Multi-BERT 54.65±2.38 67.63±3.62 25.75±7.86 92.36±2.72 94.89±0.97 91.05±0.61 71.06±2.46
RuDR-BERT 60.36±2.13 72.33±2.12 33.31±7.55 94.12±2.31 95.89±1.82 93.08±1.08 74.85±2.09

In summary, this study discussed the challenges of annotating health-related
Russian comments and presented several baselines for the classification and extrac
tion of health entities. The RuDReC corpus offers opportunities for researchers
to develop and evaluate text mining models for gathering meaningful information
about drug effectiveness and adverse drug reactions from layperson reports. More
over, it allows for the analysis and comparison of variations of reported patient
health conditions and drug reactions of different therapeutic groups of medica
tions. The dataset and pretrained weights of the models have been made freely
available at https://github.com/cimm-kzn/RuDReC.

3.2 RuCCoN: clinical concepts in medical histories of pa
tients

The results of this section are based on the paper [22].
This section describes a mapping of clinical entities from the medical histo

ries of patients to the Russian part of UMLS. In particular, the only large-scale
dataset of clinical free-text notes in Russian with NER labeling [70] was enriched
by adding entity linking labeling. The dataset, created by researchers and practi
tioners from the Scientific Center of Children Health (SCCH), is based on medical
histories of over 60 SCCH patients with allergic and pulmonary disorders and
diseases. It includes discharge summaries, radiology, echocardiography, and ul
trasound diagnostic reports, recommendations, and other records from various
physicians. The deidentified corpus, which is freely available for research purposes,
comprises 160 fully annotated texts with almost 250,000 tokens, 18,200 annotated
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entities, over 7,400 attributes, and 3,500 relations with seven types of entities: “Dis
ease”, “Symptom”, “Drug”, “Treatment”, “Body location”, “Severity”, and “Course”.

Annotators were asked to map an entity mention to a CUI from the UMLS.
The goal of entity normalization is to assign the same identifier to different syn
onyms of a given medical concept; e.g., “anemic heart infarction” and “myocardial
infarction” refer to the same concept with CUI C0027051. Three annotators inde
pendently annotated each entity, and the Inter-Annotator Agreement (IAA) was
calculated as the accuracy of the markups matched by at least two annotators
over all annotated mentions. At least two annotators linked an entity to the same
concept from the ontology in 13,125 cases and annotated 1,032 entities as CUI
less; IAA was 78.37%. In 3,900 cases when all annotators disagreed, the expert
annotator with Ph.D. in medicine was asked to decide whether the CUI selected
by one of the annotators was, in fact, correct. After this procedure, the corpus
with 16,028 entities linked to 2,409 concepts and 1,293 entities linked with no con
cept (CUI-less) was obtained. Best represented in the annotation UMLS semantic
types are Disease or Syndrome (≈ 22%), Body Part, Organ, or Organ Component
(17%), Organic Chemical (14.5%), Finding (7%), Sign or Symptom (6.5%), and
Pathologic Function (4%). Annotation guidelines were created by an expert with
Ph.D. in medicine.

Several annotation challenges are unique to low-resource languages such as
Russian. These challenges include 1) the absence of Russian translations for UMLS
concepts, 2) the need to combine multiple related concepts into one NER fragment,
3) redundancy in the UMLS vocabulary, and 4) complex rephrasing.

30% of the corpus was reserved for test sets using various filtering strategies.
Table 9 shows the statistics for each split.
Stratified. In this case, the set was filtered such that each UMLS concept in the
test set appears at least once in the training set but not the specific mention from
the test set. As a result, all concepts in the test set are covered in the training set,
but none of the mentions in the training set are identical to those in the test set.
Zero-shot. In this case, the set was filtered to contain only novel concepts that
do not appear in the training set at all. In other words, the stratified test set is
designed to ensure that the same concepts appear in the training, development,
and test sets but with varying surface forms. The zero-shot test set exposes the
model to unseen terms and concepts in the development and testing sets, making
it more challenging than the stratified test set.

36



Table 9 — Dataset statistics.
Subset # entities # unique entities # concepts
Full train 12189 5435 2031
In-KB train 11220 4934 2030
Full test 5132 2689 1232
In-KB test 4808 2464 1231
Zero-shot test 434 417 379
Stratified test 1266 1199 576
RWN med. [71] 2319 1666 635
XL-BEL [72] 681 610 510
MCN (English) [73] 13609 5979 3792

CUI-less. The purpose of this test set is to evaluate whether a linking system can
avoid linking to a concept when there is no appropriate concept in the vocabulary
(referred to as the “CUI-less” category in CLEF/SemEval challenges). The study
refers to the subsets that include the CUI-less cases as the “full test set” and “full
train set”, while subsets without CUI-less mentions are known as “in-KB”.

The following ranking models based on several different embeddings were
used for comparison: (1) Tf-idf : standard sparse tf-idf representations constructed
on character-level unigrams and bigrams; (2) BERT : multilingual BERT embed
dings with no fine-tuning [7]; this is a cross-lingual baseline that has not been
trained on biomedical texts; (3) RuBERT : Russian BERT embeddings [74] trained
on the Russian part of Wikipedia and news data; (4) SapBERT : a BERT-based
metric learning framework that generates hard triplets based on the UMLS for
large-scale pre-training [75] and also allows for a cross-lingual variant trained on
XL-BEL [72].

Additionally, several variations of fine-tuning on datasets with training
sets were used via synonym marginalization as suggested by the authors of
BioSyn [69]: (1) SapBERT+RuCCoN, with fine-tuning on the target train
set of EHRs; (2) SapBERT+MCN, with tuning on the MCN set; (3) Sap
BERT+WRN, on the dataset extracted from the medical part of the RuWordNet
thesaurus; (4) SapBERT+XL-BEL, on the the Russian part of XL-BEL; (5) Sap
BERT+RuCCoN+RWMXL-BEL, on the combination of all three sets.

As shown in Tab. 10, SapBERT outperforms other models and steadily
improves results as more datasets are included for fine-tuning. SapBERT trained
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Table 10 — Evaluation results with test set filtering.
Model In-KB test Full test Stratified test Zero-shot test

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5
Tf-Idf 37.58% 46.98% - - 25.83% 34.20% 26.27% 41.01%
Multilingual BERT 29.01% 33.74% 29.15% 33.16% 12.32% 16.35% 15.90% 19.35%
RuBERT 25.17% 28.22% 24.05% 25.66% 11.53% 14.53% 13.82% 17.51%
SapBERT 45.84% 56.41% 37.18% 37.47% 30.02% 40.44% 29.49% 40.78%
+MCN 46.51% 56.45% 43.67% 53.23% 30.41% 40.60% 27.88% 41.47%
+WN 45.47% 55.12% 43.30% 50.19% 29.94% 39.42% 29.03% 38.48%
+XL-BEL 47.77% 58.74% 40.80% 42.30% 32.54% 42.97% 29.95% 45.16%
+RuCCoN 59.26% 68.99% 53.39% 60.02% 47.31% 61.45% 32.95% 47.47%
+RuCCoN+RWN 57.84% 68.55% 52.67% 58.79% 47.79% 63.67% 32.49% 46.31%
+RuCCoN+XL-BEL 58.78% 68.05% 53.20% 59.80% 46.52% 59.08% 33.41% 48.85%
+RuCCoN+RWN+XL-B. 58.55% 67.82% 52.65% 59.20% 50.32% 62.48% 33.41% 45.85%

on RuCCoN is notably superior to SapBERT trained on other data when tested on
the full test set, but the difference diminishes on the zero-shot test, indicating that
it is mostly due to specific entities labeled in the training set. This highlights the
importance of labeling additional data to enhance the performance of even the most
sophisticated entity linking models, which is facilitated by RuCCoN for the Russian
language. Note that fine-tuning on additional medical data is generally beneficial,
with SapBERT fine-tuned on English clinical notes consistently outperforming
basic SapBERT across all datasets.

In summary, this section introduces RuCCoN, a novel clinical concept nor
malization dataset in Russian, labeled by medical professionals and accompanied
by several train/test splits for fair evaluation in various settings. The dataset
and annotation guidelines are available at https://github.com/AIRI-Institute/
RuCCoN.

3.3 NEREL-BIO: nested named entities in biomedical ab
stracts

The results of this section are based on the paper [23].
This section introduces NEREL-BIO – an annotation scheme for nested

named entity recognition and a corpus of PubMed abstracts in Russian and in
English. The choice of biomedical entity types for annotation in NEREL-BIO is de
termined by their appearance in the UMLS taxonomy and other annotated datasets
in the biomedical domain. The NEREL-BIO annotation scheme incorporates 17
specialized biomedical entity types (see Tab. 12 for details) in addition to 20 entity
types from the general NEREL dataset [76]. The following NEREL general entity
types were incorporated: 8 basic entity types (e.g., PERSON, ORGANIZATION,
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Table 11 — Statistics of NEREL-BIO.
Collection #Doc #Entities #Non-zero

entity types
Abstracts in Russian 766 66,888 37
Abstracts in English 105 10,651 32

Table 12 — Frequencies of top ten entity types with nested entities in full
Russian collection and in parallel documents in English and Russian for
comparison.

Entity Type Description Full RU,
in %

EN,
in %

FINDING conveys the results of scientific study, experiments
described

65.7 71.2

PHYS biological function or process in organism includ
ing organism attribute (temperature) and excluding
mental processes

38.3 40.7

INJURY POI
SONING

damage inflicted on the body as the direct or indirect
result of external force including poisoning

37.7 49.0

DISO any deviations from normal state of organism:
diseases, symptoms, dysfunctions, abnormality of or
gan, excluding injuries or poisoning

37.3 41.2

DEVICE manufactured objects used for medical purposes 33.9 42.5
LABPROC testing body substances and other diagnostic proce

dures such as ultrasonography
30.2 34.8

MEDPROC procedures concerned with remedial treatment of dis
eases, including surgical procedures

30.0 44.7

ANATOMY organs, body part, cells and cell components, body
substances

27.3 28.3

SCIPROC scientific studies including mathematical methods or
clinical studies, scales, classifiers, etc.

23.9 32.1

CHEM chemicals including legal and illegal drugs, biological
molecules

22.5 20.1

LOCATION), 7 numerical entities (e.g., DATE, AGE), and tags for characteriz
ing persons (NATIONALITY, PROFESSION, and FAMILY), PRODUCT, and
EVENT. The EVENT entity is utilized to label events like epidemics, military
conflicts, and tsunamis, which are mentioned in connection with the spread of
diseases or the need for additional medical care.

Note that entities annotated in NEREL-BIO can be absent in
UMLS. For example, the term left-sided congenital diaphragmatic her
nia is absent in UMLS. This phrase is annotated as follows: [𝑙𝑒𝑓𝑡 −
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𝑠𝑖𝑑𝑒𝑑 [𝑐𝑜𝑛𝑔𝑒𝑛𝑖𝑡𝑎𝑙 [[𝑑𝑖𝑎𝑝ℎ𝑟𝑎𝑔𝑚𝑎𝑡𝑖𝑐]𝐴𝑁𝐴𝑇𝑂𝑀𝑌 [ℎ𝑒𝑟𝑛𝑖𝑎]𝐷𝐼𝑆𝑂]𝐷𝐼𝑆𝑂]𝐷𝐼𝑆𝑂]𝐷𝐼𝑆𝑂

Although the whole term can’t be linked in UMLS, the sub-terms mapped to:
Hernia (C0019270), Diaphragmatic Hernia (C0019284), Respiratory Diaphragm
(C0011980), Congenital diaphragmatic hernia (C0235833).

The annotation scheme was developed through multiple rounds of pre
liminary annotation of parallel Russian and English abstracts. Experienced
terminologists with expertise in terminological studies, including the biomedical
domain, were responsible for the annotation process. Additionally, a moderator
reviewed all annotated abstracts to ensure accuracy.

Table 11 summarizes the statistics of NEREL-BIO in terms of documents
and entity mentions. Table 12 summarizes the frequency of nested entities in
NEREL-BIO. The table includes the top ten entity types and their correspond
ing nestedness frequency. To calculate the nestedness frequency, the number of
times an entity of a specific type appears as an outer entity (excluding multiple
occurrences of the same entity) was divided by the total occurrences of the entity
type in the corpus.

To conduct experiments, NEREL-BIO was divided into three subsets: train,
dev, and test, with 612, 77, and 77 documents, respectively. A Machine Reading
Comprehension (MRC) model [77] was fine-tuned for entity recognition experi
ments using the train set. As expected, depending on entity type, the performance
of the MRC model varies greatly: F1 scores on ANATOMY, CHEM, DISO en
tities are 83.99%, 81.32%, 81.03%, respectively, while F1 scores on LABPROC,
MEDPROC, DISO entities are 66.47%, 73.96%, 60.31%, respectively.

In summary, NEREL-BIO has been introduced, the first dataset of biomedi
cal Russian abstracts annotated with nested entities. The annotation demonstrates
that nested entities provide a more effective foundation for extracting relations
that would otherwise be lost, as well as facilitating more complete entity linking
to knowledge bases. The dataset is available at https://github.com/nerel-ds/

NEREL-BIO.

4 New evaluation strategies

New evaluation strategies were proposed and developed by the author of this
dissertation [13; 24–26]. Linking mentions of biomedical entities like chemicals,
diseases, genes, and adverse drug reactions to terminologies is challenging and
often requires non-syntactic interpretation. This is due to the complexity and
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variability of biomedical language, which can involve a wide range of terms and
abbreviations. In particular, the following key scientific problems, addressed in
this chapter, are discussed:

– The first scientific problem addressed in [24;25] is the lack of consistent and
reliable evaluation strategies for entity linking/concept normalization. Meth
ods are often evaluated on test sets of widely differing sizes and domains and
a narrow subsample of concepts from specific terminologies. Additionally,
reported results of neural networks vary substantially on different corpora,
resulting in a range of accuracy scores.

– The second scientific problem addressed in [24] is that neural models are
typically trained and evaluated on entities of the same type from a single
domain. This limits the generalizability of the models and makes it difficult
to reuse them for different purposes, as this requires coding to a specific
terminology.

To address the problems highlighted above, several evaluation strategies are
proposed:

– To tackle the first problem, one proposed strategy is to use a stratified sam
pling split to evaluate the ability of systems to recognize known concepts
even with novel mentions [13]. Additionally, a test set filtering procedure
was introduced to assess the “hard cases” of entity linking and approach
zero-shot cross-lingual transfer learning [25].

– To tackle the second problem, another proposed strategy is to use both
in-terminology and cross-terminology evaluations to account for the variety
of biomedical entities and terminologies [24].

The key results and conclusions of this section are as follows:

– The evaluation shows a great divergence in performance between official
train/test splits and with the proposed filtered test sets that represent refined
samples of entity mentions [24;25].

– Supervised models trained on a target domain set demonstrate significantly
better performance on stratified test sets compared to models trained on
other data [13;22].

– Knowledge transfer can be effective between diseases, chemicals, and genes
with a small average drop of accuracy in the performance on sets of scientific
abstracts [24].
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– The effectiveness of transfer learning varies significantly across different do
mains. For instance, when applied to datasets with ADRs derived from drug
labels and social media, supervised models trained on other corpora exhibit
a substantial decline in performance compared to models trained specifically
on the target domain [24].

4.1 In-terminology and cross-terminology evaluation

The results of this section are based on the paper [24].
There are no established guidelines for evaluating models on biomedical cor

pora in different terminology contexts. Models are usually evaluated on narrow
subsamples of concepts, and the reported results vary across corpora. Reusing
trained models for different terminologies is also difficult with supervised models.
To address these issues, this study compares benchmarks and neural architectures
using BERT for linking entities across three domains: research abstracts, drug
labels, and user-generated texts on drug therapy in English.

This study presents an extensive evaluation of five biomedical corpora man
ually annotated with concepts regarding diseases, chemicals, human genes, and
adverse drug reactions (ADRs). Two models are utilized: (i) a baseline that ranks
concepts for a given mention by comparing biomedical BERT vectors [56] with the
Euclidean distance; (ii) BioSyn [69]. Models are based on BioBERT𝑏𝑎𝑠𝑒 v1.1 that
was pre-trained on PubMed abstracts (4.5B words in total) for 1M steps.

For analysis, publicly available benchmarks with official train/dev/test splits
were used: NCBI Disease corpus [63], BioCreative V CDR (BC5CDR) [64], BioCre
ative II GN (BC2GN) [66], TAC 2017 ADR [78], SMM4H 2017 ADR [79]. The
analysis of datasets showed that approximately 80% entity mentions in the test
set are textual duplicates of other entities in the test set or entities presented in
train+dev sets. In order to obtain more realistic results, this study presents refined
test sets without duplicates or exact overlaps. Note that some concepts appearing
in the refined test set also appear in the respective training set.

BioSyn was trained on the train/dev set of each corpus with a source
dictionary and evaluated on the respective test set (in-domain performance). Cross
domain evaluation includes models trained on source data on the test sets of all
other corpora (i.e., the target). Both BioSyn and BioBERT ranking models retrieve
the closest concept name in a target dictionary for a given mention representation
during inference. Note that cross-terminology evaluation is a challenging scenario
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Table 13 — Single-terminology normalization results in terms of acc@1 on
the official and refined test sets. CDR is BC5CDR, GN is BC2GN, M4H is
SMM4H

Model
NCBI Disease CDR Dis CDR Chem GN Gene TAC ADR M4H ADR
test refined test refined test refined test refined test refined test refined

BioSyn 90.7 72.5 93.5 74.1 96.3 83.8 90.8 85.8 95.6 83.2 83.8 60.5
BioBERT
ranking

83.9 47.5 91.3 65.1 94.7 79.3 74.7 68.4 87.8 54.7 33.9 14.3

Difference -6.8 -25.0 -1.9 -7.7 -1.6 -4.5 -16.1 -17.4 -7.8 -28.5 -49.9 -46.2

Table 14 — Comparison of BioSyn for single- and cross-terminology
MCN on refined test sets. In-domain results are on the diagonals (with
a dark gray background). Other cells contain results of a given model
and differences in results between that model and the in-domain model
in parentheses (by row). Light gray cells show cross-terminology experi
ments.

Train set
Test set NCBI Dis BC5CDR Dis BC5CDR Chem BC2GN Gene TAC ADR SMM4H ADR
NCBI Disease 72.5 67.6 (-4.9) 64.7 (-7.8) 67.2 (-5.4) 67.6 (-4.9) 48.5 (-24.0)
BC5CDR Dis 74.7 (+0.6) 74.1 73.4 (-0.8) 73.1 (-1.1) 74.9 (+0.8) 58.3 (-15.8)
BC5CDR Chem 82.4 (-1.4) 84.2 (+0.5) 83.8 82.6 (-1.2) 82.4 (-1.4) 73.9 (-9.9)
BC2GN Gene 83.1 (-2.6) 81.7 (-4.1) 83.7 (-2.1) 85.8 82.6 (-3.1) 73.2 (-12.6)
TAC ADR 74.3 (-8.9) 77.5 (-5.7) 70.1 (-13.0) 69.9 (-13.3) 83.2 51.5 (-31.7)
SMM4H ADR 27.3 (-33.2) 35.6 (-24.9) 24.8 (-35.7) 21.9 (-38.6) 30.1 (-30.4) 60.5

for developing supervised models, particularly for linking to concepts that were
not encountered during training (i.e., zero-shot concepts).

The task of finding the top-𝑘 concepts for every entity mention in a text
is evaluated in an IR scenario, where a dictionary of concept names and their
identifiers is used. The accuracy at 𝑘 is defined as 1 if the correct identifier is
retrieved at rank 𝑘, otherwise 0. For composite entities, the accuracy at 𝑘 is
defined as 1 if every prediction for a single mention is correct.

Table 13 presents the results of the models trained and evaluated on enti
ties of the same type from a single domain in six sets. Table 14 compares the
performance of BioSyn in single- and cross-terminology normalization tasks. The
models were trained on the training set from a source dataset and evaluated on
the target test set with different terminology.

In order to determine whether current benchmark test sets may be leading to
an overestimation of performance, the results obtained by models on both official
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and refined test sets were compared, as shown in Table 13. The significant decrease
of averaged acc@1 from 91.8% to 76.7% for BioSyn and averaged acc@1 from 77.7%
to 54.9% for BioBERT ranking highlights the great need for external evaluation
datasets, where the same entity mentions will not be used for both training and
testing. These observations also mean that there is room for improvement in the
transferability of developed methods, that is, the ability to maintain performance
for entirely unseen domains or entities.

Table 13 provides insights that help answer the question of how surface
characteristics of entity mentions impacting the performance of the BERT-based
baseline. Based on these results, the following conclusions can be drawn. First,
the simple ranking of BioBERT representations achieves strong results on CDR
Disease and Chemical sets. On two refined sets with larger mentions (NCBI, TAC)
and the BC2GN corpus with mentions containing numerals, the difference between
BioBERT ranking and BioSyn is significant (average decrease of 23.6%). The
qualitative analysis uncovered that BERT representations of mentions differing
by one numeral (e.g., genes TP53 and TP63) are close in the latent space. As
expected, results on SMM4H are significantly lower than on abstracts due to the
gap between the language of lay public and medical professionals.

In order to determine whether a model trained on one corpus can be used for
the linking of entity mentions in another type or domain in the zero-shot setting,
performance differences are compared in Tables 13 and 14. The models trained
on NCBI, CDR Disease, BC2GN, and TAC data perform on par with the model
trained on the CDR Chemical train set (approx. 74% acc@1), while the model
trained on CDR Chemical showed a 6% drop on these subsets. BioSyn trained on
SMM4H achieves lower results on abstracts and drug labels than simple BioBERT
ranking, while all supervised models performed better on SMM4H data than the
BioBERT ranking.

To conclude, this study presents a comprehensive comparative evaluation
of medical concept normalization datasets, including NCBI Disease, BC5CDR Dis
ease & Chemical, BC2GN Gene, TAC 2017 ADR, and SMM4H 2017 ADR corpora.
Two BERT-based models across six datasets were evaluated, with official train/test
splits and refined test sets representing entity mentions. The evaluation revealed
significant differences in performance, indicating that the state-of-the-art model
BioSyn achieved up to 15% lower accuracy on the refined test set. The cross-ter
minology MCN task was introduced, demonstrating effective knowledge transfer
between diseases, chemicals, and genes. However, models trained on four other
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corpora performed poorly on TAC and SMM4H sets, with accuracy dropping by
10.2% and 33.1%, respectively. Results and source code are available on GitHub
at https://github.com/insilicomedicine/Fair-Evaluation-BERT.
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5 Conclusion

The main results of this dissertation are based on the following published
papers [11–26].

The studies [21–23] focused on the development of annotation schemes for
biomedical information extraction tasks, as well as the creation of annotated cor
pora in both English and Russian for a range of biomedical sources, including
scientific abstracts, drug reviews, electronic health records, and clinical trials.
Through a series of experiments, baselines for these corpora were established.

In papers [24–26], limitations of existing benchmarks in two tasks were an
alyzed to propose solutions for the improvement of evaluation strategies. The
study [26] focused on the limitations of existing benchmarks for relation extrac
tion in scientific abstracts and electronic health records. The work proposes a
cross-attention neural model that shows better cross-domain performance. In [24],
limitations of existing benchmarks for biomedical entity linking are analyzed, and
novel evaluation strategies are proposed for in-terminology and cross-terminology
evaluation.

The studies [11–18] proposed several neural architectures for different tasks
in the biomedical domain. These include DILBERT, which optimizes the simi
larity of mentions and concepts via triplet loss, multilingual BERT-based models
for named entity recognition, a classification-based approach to biomedical entity
linking, a multimodal model for adverse drug reaction detection, a sequence-to-se
quence learning framework for ICD coding, and a feature-based model for clinical
relation extraction. These models and methods have demonstrated their effective
ness on several information extraction benchmarks and shared tasks.

In papers [19; 20], developed models were combined into an IE pipeline for
a biomedical search over abstracts and for mining ADEs from user comments
about drugs. The experiments on zero-shot retrieval described in [19] showed
the neural IE architecture shows superior performance for both disease and gene
concept queries. The experiments described in [20] showed that mining ADEs
from Twitter posts using a pipeline architecture requires the different components
to be trained based on input data imbalance to ensure optimal performance on
the end-to-end resolution task.

The main results submitted for defense are as follows:

– New models and methods for classification and information extraction were
developed:
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1. Multilingual BERT-based models were analyzed for cross-domain drug
and disease named entity recognition in two languages. The investiga
tion of transfer learning strategies between four corpora demonstrated
the effectiveness of pretraining on data with one or both types of trans
fer [11].

2. Classification-based methods were proposed with (i) a set of infor
mative features at an entity level and a context level for relation
extraction [12], and (ii) vectors of semantic similarity for entity link
ing [13;14]. The effectiveness of these approaches was demonstrated in
multiple shared tasks, ranking first in SMM4H 2019 Task 3, SMM4H
2020 Task 3, and SMM4H 2021 Task 1c [13; 14]. The semantic sim
ilarity vectors also proved effective with a proposed encoder-decoder
architecture that ranked first in CLEF eHealth 2017 Task 1 [15].

3. DILBERT (Drug and disease Interpretation Learning with Biomedical
Entity Representation Transformer) was introduced. The model op
timizes the relative similarity of mentions and concept names from a
terminology via metric learning. It was shown that the model is ro
bust to vocabulary switches and can recognize concepts that were not
present in the training set [16;17].

4. A multimodal model combining BERT-based models for language
understanding and molecular property prediction was proposed to im
prove the classification of tweets as potential sources of adverse drug
events or drug reactions. The model achieved first and second place
rankings on SMM4H 2021 Task 2 and Task 1a, respectively [18].

5. Two neural pipelines were developed: (i) a pipeline consisting of two
models as a biomedical search engine that showed superior performance
over a traditional search model on a manually annotated dataset of
abstracts for disease and gene queries [19], and (ii) a pipeline for the
classification, extraction and normalization of adverse drug events on
realistic, imbalanced data. The identification of optimal training ratios
and undersampling methods was also explored [20].

– New annotated corpora were developed for information extraction. The
following are some of the new corpora developed:
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6. The Russian Drug Reaction Corpus (RuDReC), a partially annotated
corpus of consumer reviews in Russian about pharmaceutical products,
and RuDR-BERT models for named entity recognition and sentence
classification tasks were introduced [21].

7. Two annotated datasets were developed for clinical concept normal
ization: a dataset of clinical trials in English for drug and disease
normalization [16; 17], and a RuCCoN corpus, a new dataset of elec
tronic health records in Russian, with entities linked to the UMLS [22].

8. NEREL-BIO, an annotation scheme and corpus of PubMed abstracts in
Russian and English with general-domain and biomedical entity types,
was introduced. The corpus includes the provision of an annotation
for nested named entities [23].

– New evaluation strategies were proposed, as follows:

9. The limitations of existing benchmarks for biomedical entity linking
were analyzed, and several novel evaluation strategies were proposed:
(i) a novel stratified sampling split [13], (ii) in-terminology and
cross-terminology evaluation [24]. Additionally, benchmarks were
established for the cross-lingual task using clinical reports, clinical
guidelines, and medical research papers. A test set filtering procedure
was designed to analyze the “hard cases” of entity linking approaching
zero-shot cross-lingual transfer learning [25].

10. The limitations of existing benchmarks of scientific abstracts and
electronic health records for relation extraction were analyzed. To ad
dress performance differences in in-domain and out-of-domain setup,
a cross-attention neural model was proposed that exhibits better cross
domain performance [26].
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