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1 Introduction

Should an organization hire people with similar skills or with different skills?

Prat (2002) argues that teams with similar skills perform better if jobs are strate-

gic complements, while hiring people with different backgrounds are optimal

if their jobs are strategic substitutes. For example, in synchronized swimming,

teams with more similar skills would perform better. In contrast, in a math olym-

piad, teams with more diverse backgrounds will more likely solve all problems

and win.

In reality, many jobs are not pure strategic complements or pure strategic

substitutes. In light of Prat’s results on the two extreme cases, as jobs become

less complementary, does optimal diversity in workers’ skills increase? We show

that this might not be the case.

To illustrate our point, consider the following example. A hospital has two

nurses who can perform CPR and its management has to decide where to locate

each nurse along a lengthy corridor. A good CPR requires a quick initial response

from a single nurse, followed by a quick response from a second nurse (who can

take over to ensure that the first nurse is not fatigued and that high-quality chest

compressions are delivered). If the hospital locates the nurses close to the ends

of the corridor, then all patients have a similar chance of surviving: patients near

the ends receive a very quick response from the first nurse but the second nurse

will be very slow to come, while patients near the center receive relatively timely

responses from both nurses. Now suppose that the nurses are equipped with

a defibrillator. The addition of this technology means that the jobs become less

complementary because a single nurse can have a greater impact when perform-

ing CPR. Then, to ensure that all patients have equal chances of surviving, the

hospital locates the nurses at 1/4 and 3/4 of the corridor length. Indeed, with

such disposition, a single nurse can timely reach any patient in their half of the

corridor. This example shows that the optimal distance between the nurses can

fall as their jobs become less complementary. The distance between the nurses

reflects the difference, or the level of diversity, in nurses’ ability to perform CPR

for a given patient. Thus, the example demonstrates that, contrary to the initial

intuition which is based on studying the extreme cases with pure complements
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and pure substitutes, optimal diversity may decrease as jobs become less com-

plementary.

The example is based on the Rawlsian objective criterion, which maximizes

the chances of surviving for the patient with the worst location. This objective is

reasonable for a public service provider, such as a hospital, which aims to min-

imize the number of complaints from its customers. In contrast, the Utilitarian

objective criterion, which maximizes the expected service quality for a represen-

tative customer and is more appropriate for a profit-maximizing firm, the results

are reversed and more aligned with the initial intuition: optimal diversity always

weakly increases as jobs become less complementary.

We contribute to the stream of literature which study how optimal team com-

position depends on the way the efforts of team members are aggregated. Franco

et al. (2011); Kaya and Vereshchagina (2014); Bel et al. (2015); Glover and Kim

(2021) focus on team incentive problem and thus assume that the choice of ef-

fort is endogenous. In contrast, our paper abstracts from incentive considera-

tions and assume that the team structure and the production function do not

affect the incentives of the team members. The closest paper to us is Prat (2002)

who treat agents’ efforts as exogenous and compares the optimal team composi-

tion for two production functions, submodular and supermodular. We build on

Prat (2002)’s work in two ways. First, using a distant measure of diversity and al-

lowing the production function vary in a continuous way from supermodular to

submodular, we investigate how the optimal diversity changes as the production

function becomes less complementary. Second, in addition to the Utilitarian ob-

jective, we look at the Rawlsian objective, which yields to a qualitatively different

results.

2 Model

A principal must hire a team of two agents to perform a task.

Each agent i = 1,2 has a particular cognitive type, or specialty, modelled as a

point on a unit interval, ti ∈ [0,1]. Without loss of generality, assume that t2 ≥ t1.

The task is also modelled as a point on a unit interval, t ∈ [0,1]. The closer the
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agent’s cognitive type to the location of the task, the higher the agent’s perfor-

mance on that task. Formally, agent ti ’s output on task t is given by a function

v(di ) where di = |t − ti |.

Assumption 1. Function v is strictly decreasing.

The timeline is as follows. First, the principal chooses t1 and t2, with t2 ≥ t1.

Second, task t materializes according to the uniform distribution on the support

[0,1].

In the game, the agents act as dummies in the sense that they decide nothing.

Thus, their payoffs are irrelevant for our analysis.

The principal’s payoff is the joint output of the agents defined as

ω (v(|t − t1|), v(|t − t2|)), where

ω(x1, x2) =β×ωs (x1, x2)+ (1−β)×ωc (x1, x2) , β ∈ [0,1]. (1)

Parameter β captures the degree of complementarity of jobs, which will become

clear after we explain the functions ωs and ωc .

It is natural to assume that higher performance of an agent benefits the prin-

cipal. Formally:

Assumption 2. Functions ωs and ωc are weakly increasing in each argument.

For a given cognitive type, we assume that the identity of an agent does not

affect the principal’s payoff. Formally, functions ωs and ωc are symmetric:

Assumption 3. ωs (x1, x2) =ωs (x2, x1) and ωc (x1, x2) =ωc (x2, x1) for any (x1, x2).

Function ωs is submodular in the agents’ individual outputs: for any (x̂1, x̂2)

and (x̌1, x̌2),

ωs (x̂1, x̂2)+ωs (x̌1, x̌2) ≥ωs (min{x̂1, x̌1},min{x̂2, x̌2})+ωs (max{x̂1, x̌1},max{x̂2, x̌2}) ,

(2)

while function ωc is supermodular in the agents’ individual outputs:

ωc (x̂1, x̂2)+ωc (x̌1, x̌2) ≤ωc (min{x̂1, x̌1},min{x̂2, x̌2})+ωc (max{x̂1, x̌1},max{x̂2, x̌2}) .

(3)
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Submodularity and supermodularity is a generalization of the traditional no-

tions of strategic substitutability and strategic complementarity, respectively (see

Prat (2002)).1,2 Thus, the lower the weight on the submodular component, β, the

less complementary the agents’ cognitive types are.

We may think of a high-β task t as a task that is best suited for type t agent

but also requires significant input from other agents. In contrast, a low-β task t

does not require much input from agents other than type t agent.

Assumption 4. ωs (x1, x2)+ωc (x1, x2) = x1 +x2.

Assumption 4 ensures that atβ= 0.5, the principal’s payoffω(x1, x2) = 0.5(x1+
x2) satisfies (2) as equality (and, therefore, satisfies (3) as equality as well). In

other words, at β= 0.5, submodular and supermodular components cancel each

other, making the agents’ contributions strategically independent. Assumption

4 implies that β= 0.5 corresponds to an additive task, for which the joint output

of the agents is the sum of agents’ contributions.

For example, ωs (x1, x2) = max{x1, x2} and ωc (x1, x2) = min{x1, x2}. Then, β=
0 (β= 1) corresponds to a conjunctive (disjunctive) task, for which the joint out-

put of the agents depends only on the output of the weakest (strongest) agent.

This example corresponds to the extreme form of complementary and substi-

tutability.3

Given assumption 4, we can rewrite (1) as

ω(x1, x2) = (2β−1)×ωs (x1, x2)+ (1−β) (x1 +x2) . (4)

Thus, function ω(x1, x2) is supermodular for β≤ 0.5 and submodular for β≥ 0.5.

Principal’s objective. The principal chooses t1 and t2 that maximize a certain

objective. We consider two different objectives: the Utilitarian objective, defined

1Subscripts "s" and "c" in notations ωs and ωc stand for "substitutes" and "complements".
2For twice differentiable functions, condition (2) is equivalent to ∂2ωs (x1, x2)/∂x1∂x2 ≤ 0, while

condition (3) is equivalent to ∂2ωc (x1, x2)/∂x1∂x2 ≥ 0.
3Categorization of tasks into additive, disjunctive and conjunctive is outlined in Steiner (1972).
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as the expected value of the principal’s payoff,

U =
1∫

0

ω (v(|t − t1|), v(|t − t2|))dt ; (5)

and the Rawlsian objective, defined as the minimal value of the principal’s payoff,

R = min
t∈[0,1]

ω (v(|t − t1|), v(|t − t2|)) . (6)

We define diversity as the distance between the agents’ types, ∆ = t2 − t1.

Given the restriction 0 ≤ t1 ≤ t2 ≤ 1, diversity∆ can take any value from the inter-

val [0,1].

Lemma 1 ensures that without loss of generality we can focus on the cogni-

tive types which are symmetric around 0.5.

Lemma 1. For any fixed ∆ = t2 − t1, t1 = (1−∆)/2 and t2 = (1+∆)/2 maximize

both the Utilitarian and the Rawlsian objectives.

Thus, we can rewrite the principal’s objectives (5) and (6) as functions of ∆,

denoted as U (∆) and R(∆), respectively. We refer to the optimal diversity ∆∗ as

the value of ∆, which maximizes one of the above objectives. Our goal is to in-

vestigate how the optimal diversity changes with β and compare the results for

different objectives.

Leading example. To illustrate our model, consider the following example. A

team of students needs to complete an assignment. If any assignment is de-

signed in such a way that it requires knowledge from different subjects, then the

students’ inputs are complementary because no single student can answer all

questions by herself and team work is necessary for a successful performance

— that is, β is high. If any assignment is mostly focused on one subject (which

maybe different for different assignments), then the students’ inputs are less com-

plementary because a single student with the appropriate background can do

the majority of the assignment all be herself — that is, β is low. The content of

the assignment is unknown at the time of team formation. The Rawlsian ob-

jective is better suited for regular class assignments and describes the goal to
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complete any assignment with a positive (but not necessarily the highest) mark.

The Utilitarian objective is better for competitions where the goal is to get a high

mark with a high probability (potentially sacrificing the performance on some

assignments).

3 Utilitarian objective

In line with Proposition 1 in Prat (2002), null diversity is a solution whenever the

principal’s payoff ω(x1, x2) is supermodular, that is, whenever β≤ 0.5.

Proposition 1. If β≤ 0.5, then ∆∗ = 0 maximizes the Utilitarian objective.

According to Proposition 2 in Prat (2002), under additional assumptions, for

submodular ω (that is, for β> 0.5), the set of optimal ∆ contains ∆∗ > 0. In gen-

eral, the uniqueness of the optimal diversity ∆∗ is not guaranteed without addi-

tional assumptions (which should be even more restrictive than the one listed in

Proposition 2 in Prat (2002)). These assumptions, however, are not required for

our main result formulated in Theorem 1.4 We take any local maximizer ∆∗ of

U (∆) and prove that it must increase in β. More precisely, we require ∆∗ to be a

strict local maximizer — that is, ∆∗ uniquely maximizes U (∆) in some neighbor-

hood — for ∆∗(β) to be a well-defined function.5

Theorem 1. Consider β > 0.5 and let ∆∗(β) ∈ (0,1) be a strict local maximizer of

the Utilitarian objective U (∆). Then ∆∗(β) is strictly increasing in β.

Theorem 1 confirms initial expectations that the optimal diversity always in-

creases as jobs become less complementary. According to Theorem 1, once the

4Finding the least restrictive set of sufficient conditions which ensure the uniqueness of the opti-

mal diversity ∆∗ is a challenging task. To stay focused on our main goal — the comparative statics of

∆∗ with respect to β — we set this task aside.
5Alternatively, Theorem 1 can be formulated in terms of minimal and maximal optimal diversity: if

∆∗(β) ∈ (0,1) is a minimum (maximum) diversity that maximizes the Utilitarian objective U (∆), then

it is strictly increasing in β. IN general, as long as function ∆∗(β) is well-defined, the comparative

statics result in Theorem 1 holds.
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optimal diversity becomes positive at some β > 0.5, it strictly increases until ei-

ther ∆∗ = 1 or β= 1, whichever happens first.

Leading example. If the organizers of a student competition commit to ran-

domly choose a single subject for the competition assignment, then, to maxi-

mize the winning chances, the team should be homogeneous, i.e., with a strong

focus on a single subject. Then, if the team is lucky and the chosen subject coin-

cides with the team focus, they have very good chances winning the competition.

However, if the organizers commit to include several subjects in the assignment,

then the successful team must be heterogeneous.

Below we provide an example to illustrate Proposition 1 and Theorem 1. In

this example, the uniqueness of the optimal diversity is easy to establish.

Example 1. Suppose ωs (x1, x2) = max{x1, x2} and ωc (x1, x2) = min{x1, x2}. Then

the optimal diversity is unique for all β ∈ [0,1] and equal to 0 for β ∈ [0,0.5]. For

β ∈ [0.5,1], the optimal diversity increases from 0 to 0.5; at each β ∈ [0.5,1], the

optimal diversity uniquely solves

β

(
v

(
∆∗

2

)
− v

(
1−∆∗

2

))
= (1−β)

(
v

(
∆∗

2

)
− v

(
1+∆∗

2

))
. (7)

The difference v
(
∆∗
2

)
− v

(
1−∆∗

2

)
in left-hand side of (7) is the marginal bene-

fit from increasing diversity when the task is disjunctive. It is equal to the dif-

ference in performance of the most productive agent when the task at at the

center (t = 0.5) and when the task is at the corner (t = 0 or t = 1). Similarly,

the difference v
(
∆∗
2

)
− v

(
1+∆∗

2

)
in right-hand side of (7) is the marginal bene-

fit from decreasing diversity when the task is conjunctive. Thus, equation (7)

equates marginal benefits from increasing and decreasing diversity, with respec-

tive weights. It is intuitive from (7) and consistent with Theorem 1 that higher

weight on the disjunctive task increases the optimal diversity. This monotonic

relationship is illustrated in Figure 1 for v(d) = −d 2, in which case equation (7)

gives ∆∗ =β−0.5 for β> 0.5.
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0 β
0

∆∗

10.5

0.5

β∗

Figure 1: The optimal diversity for ωs (x1, x2) = max{x1, x2}, ωc (x1, x2) =
min{x1, x2}, v(d) =−d 2. Blue graph corresponds to the Utilitarian objective; red

graph corresponds to the Rawlsian objective.

4 Rawlsian objective

The Rawlsian objective may deliver qualitatively different comparative statics.

To illustrate this point, consider an example.

Example 2. Suppose ωs (x1, x2) = max{x1, x2} and ωc (x1, x2) = min{x1, x2}. Sup-

pose function v is twice differentiable and strictly concave. Then the Rawlsian

objective becomes

R = min

{
βv

(
1−∆

2

)
+ (1−β)v

(
1+∆

2

)
, v

(
∆

2

)}
, (8)

where the first term is the joint output of the agents for the corner tasks (t = 0 and

t = 1) and the second term is the joint output for the task at the center (t = 1/2).

The optimal diversity ∆∗ that maximizes (8) is unique for all β ∈ [0,1], and it

is equal to 0 for β ∈ [0,0.5] and equal to 0.5 for β = 1. Moreover, there exists

β∗ ∈ (0.5,1) such that the optimal diversity strictly increases for β ∈ (0.5,β∗) and

strictly decreases forβ ∈ (β∗,1). Figure 1 illustrates the hump-shaped form of the

optimal diversity function ∆∗(β) for v(d) =−d 2, in which case the maximization

of (8) gives∆∗ = 2β−1 for 0.5 <β<β∗ = (2+p
2)/4 ≈ 0.85 and∆∗ = 1/(4β−2) for

β>β∗.
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0 ∆
0

βv
( 1−∆

2

)+ (1−β)v
( 1+∆

2

)v
(
∆
2

)

1

β= 0.4

β= 0.6

β= 0.8

β= 1

β=β∗

∆̂ ∆̂ ∆̂

(a) Agents’ joint output

0 β
0

∆

10.5

1

(b) Diversity at the maximum

Figure 2: The diversity depicted on the right maximizes the joint output de-

picted on the left. Red graphs correspond to the corner tasks (t = 0 and t = 1).

Blue graphs correspond to the center task (t = 1/2). Parameters: ωs (x1, x2) =
max{x1, x2}, ωc (x1, x2) = min{x1, x2}, v(d) =−d 2.
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The intuition is as follows. The joint output for the task at the center, v
(
∆
2

)
,

is maximized at zero diversity (see the blue graphs in Figure 2). Thus, the only

reason for the principal to choose a positive diversity can be to increase the joint

output for the corner tasks (the first term in (8)).

The red graphs in Figure 2a illustrate the first term in (8), βv
( 1−∆

2

)+ (1 −
β)v

( 1+∆
2

)
, which describes the joint output of the agents for the corner tasks.

The red graph in Figure 2b depicts the diversity that maximizes the joint out-

put for the corner tasks illustrated in Figure 2a. Suppose that β≤ 0.5, so that the

agents’ types are complements. Then increasing diversity lowers the joint output

for the corner tasks because it lowers the output for the weakest agent. Thus, the

diversity that maximizes the joint output for the corner tasks is zero. Suppose

that β > 0.5, so that the agents’ types are substitutes. Then the joint output for

the corner tasks is maximized at some positive diversity (for v(d) =−d 2, this di-

versity is equal to 2β−1). As the agents’ types become less complementary (i.e.,

β increases), the diversity that maximizes the joint output is increasing because

the output of the weakest agent become less relevant for the joint output and,

thus, the agents should be located closer to the corners to increase the output

of the strongest agent. At the extreme β = 1, only the output of the strongest

agent contributes to the joint output; thus, the joint output is maximized at the

maximum diversity which locates the agents exactly at the corners.

Under the Rawlsian objective (8), the principal wants to increase the joint

output both for the tasks at the corners and for the task at the center. When the

agents’ types are complements (β ≤ 0.5), there is no conflict between the cor-

ners and the center task (both the blue and the red graphs in Figure 2b are zero)

and the optimal diversity is zero. However, when the agents’ types are substi-

tutes (β > 0.5), the joint output for the corner tasks is maximized at some posi-

tive diversity, while the joint output for the center task is still maximized at zero

diversity.

For 0.5 < β< β∗, the minimum joint output of the agents is achieved only at

the corner tasks. Indeed, according to Figure 2a, for β<β∗, the point ∆̂ at which

the red graph achieves its maximum is located to the left of the point at which

the red graph crosses the blue graph. Hence, the minimum of the two graphs,

12



t0 11
2

t1 t2

agent 1’s

individual output,

v(|t − t1|)

agent 2’s

individual output,

v(|t − t2|)

β= 0.9

β= 0.95

joint output

Figure 3: Agents’ joint and individual outputs for ωs (x1, x2) = max{x1, x2},

ωc (x1, x2) = min{x1, x2}, v(d) = −d 2. The agents’ types are chosen optimally for

β= 0.9 >β∗.

which corresponds to the Rawlsian objective (8), is maximized at ∆̂, which im-

plies that the minimum joint output of the agents is achieved only at the corner

tasks. Thus, for β< β∗, as the agents’ types become less complementary (i.e., as

β increases), the principal increases diversity to increase the performance of the

best agent for the corner tasks.

For β > β∗, the minimum joint output of the agents is achieved both at the

corner tasks and at the center task. Indeed, according to Figure 2a, for β>β∗, ∆̂

is located to the right of the point at which the red graph crosses the blue graph.

Hence, the minimum of the two graphs, which corresponds to the Rawlsian ob-

jective (8), is maximized at the crossing point of the red graph and the blue graph,

which implies that the minimum joint output of the agents is achieved both at

the corner tasks and at the center task. Thus, for β > β∗, the principal faces the

corners/center trade-off: the optimal diversity equalizes the joint output of the

agents at the corner tasks and at the center task. Blue solid graph in Figure 3 illus-

trates the joint output of the agents for all tasks t ∈ [0,1] when the agents’ types

are choices optimally. In agreement with our theoretical result, at the optimal di-

versity, the joint output of the agents achieves the minimum at the corner tasks
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and at the center task. Blue dashed graph in Figure 3 illustrates how the joint

output changes as the agents’ types become less complementary (i.e., as β in-

creases) for a fixed diversity. As β increases, the joint output moves closer to the

functionωs (v(|t − t1|), v(|t − t2|)) = max{v(|t − t1|), v(|t − t2|)}, which is the maxi-

mum of the red graph and the green graph in Figure 3. According to Figure 3, the

joint output of the agents at the corner tasks increases, while their output at the

center task does not change. Thus, for β > β∗, as the agents’ types become less

complementary (i.e., as β increases), the principal optimally lowers the diversity

to reestablish the balance between the corner tasks and the center task.

The intuition behind non-monotonicity of the optimal diversity under the

Rawlsian objective is robust to other functions ωs and ωc . The optimal diversity

decreases whenever the minimum joint output is achieved at both the corners

and the center. Proposition 2 proves that the corners are always in the set of tasks

that minimize the joint output. Proposition 3 states that whenever some task in

the center, i.e., in-between the two types (t ∈ (t1, t2)), is also a minimizer, the

corners/center trade-off emerges and reverses the comparative statics. Proposi-

tion 4 confirms that in the absence of the corners/center trade-off, the compar-

ative statics is the same as for the Utilitarian objective. Theorem 2 establishes

that the corners/center trade-off appears only for sufficiently high β, that is, for

β>β∗, so that the optimal diversity is either monotone (ifβ∗ = 1) or has a hump-

shaped form (if β∗ < 1).

Proposition 2. Let ∆∗ be a strict local maximizer of R(∆). Then, the corner tasks

(t = 0 and t = 1) deliver the minimum in R(∆∗).

Proposition 3. Suppose that β ∈ (0.5,1) and that function v is differentiable and

strictly concave. Let ∆∗(β) be a strict local maximizer of R(∆). Suppose further

that at ∆ = ∆∗(β), there is a task t ∈ (t1, t2) which delivers the minimum in R(∆).

Then ∆∗(β) belongs to the interval (0.5,1] and it is strictly decreasing in β.

Proposition 4. Suppose that β ∈ (0.5,1) and that function v is differentiable and

strictly concave. Suppose that∆∗(β) ∈ (0,1) is a strict local maximizer of R(∆) and

there is no task t ∈ (t1, t2) which delivers the minimum in R(∆). Then ∆∗(β) is

strictly increasing in β.
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Theorem 2. Suppose that function v is differentiable and strictly concave. Sup-

pose∆∗(β) ∈ (0,1) is a strict local maximizer of R(∆). Then, there existsβ∗ ∈ [0.5,1]

such that ∆∗(β) strictly increases for β ∈ (0.5,β∗) and strictly decreases for β ∈
(β∗,1).

Theorem 2 established the existence of threshold β∗ ∈ [0.5,1] beyond Exam-

ple 2: once the optimal diversity becomes positive at some β > 0.5, it is strictly

increasing until either ∆∗ = 1 or β = β∗; after β = β∗, the optimal diversity is

strictly decreasing. Thus, the optimal diversity decreases as jobs become less

complementary (β increases) if and only if β∗ < 1. How common is it to have

β∗ < 1? Example 2 shows that it is possible. Proposition 5 provides sufficient

conditions for β∗ < 1, thus confirming that Example 2 is not an exception.

Proposition 5. Suppose that

1) function v is twice differentiable and strictly concave;

2) functions ωs and ωc are twice differentiable;

3) the following condition holds for all admissible x1 and x2:

∂2ωs (x1, x2)

∂x1∂x2
max

d∈[0,1]

{
v ′(d)

v ′(1−d)

}
< ∂2ωs (x1, x2)

∂x2
1

−∂ωs (x1, x2)

∂x1
max

d∈[0,1]

{
− v ′′(d)

v ′(d)2

}
.

(9)

Then there existsβ∗ < 1 such that for allβ ∈ (β∗,1), R(∆,β) is uniquely maximized

at some ∆∗(β) ∈ (0,1), and ∆∗(β) strictly decreases for β ∈ (β∗,1).

In words, condition (9) requires that the submodular component of the joint

output function is sufficiently submodular. Indeed, by assumption 1, the maxi-

mum on the left-hand side is positive. The submodularity property (2) regulates

the sign of the mixed derivative ∂2ωs (x1,x2)
∂x1∂x2

— see footnote 2. Thus, condition (9)

holds whenever the mixed derivative ∂2ωs (x1,x2)
∂x1∂x2

is sufficiently negative, that is,ωs

is sufficiently submodular.

Although the conditions 1)-3) are more restrictive than necessary (for exam-

ple, Example 2 does not satisfy all of them), they still cover a large class of func-

tions, such as the one described in Example 3.
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Example 3. Suppose that

v(d) = 2a+1 − (d +1)a+1

2a+1 −1
, ωs (x1, x2) = x1 +x2

2
−k (x1x2 +w(x1)+w(x2)) . (10)

Then conditions 1)-3) from Proposition 5, in addition to all assumptions listed in

Section 2, are satisfied if

a > 0, k > 0, w ′(x) ≥ 0, w ′′(x) ≤ 0, w ′′′(x) ≥ 0, (11)

1+w ′(0) < 1

2k
< w ′(1)+ a +1(

2a+1 −1
)

a

(
2a −w ′′(1)

)
. (12)

For example, if w(x) = 0, then condition (12) becomes k ∈
(

(1−2−a−1)a
a+1 , 1

2

)
, which

is nonempty for any a ∈ (0,1.5]. Another example is w(x) = ln(x + 1), a = 0.01,

k ∈ (0.004,0.25).

Leading example. If a class assignment is known to cover a single but randomly

chosen subject, then, to ensure that any assignment is at least partially com-

pleted, each student in the team should have a wide area of expertise. Then,

the team members can successfully communicate with each other and together

succeed even in a narrowly focused assignment. In contrast, if the assignment

is known to potentially cover several subjects, then the optimal team consists of

students with very different backgrounds. Indeed, if an assignment is mostly fo-

cused on one subject, it will be partially completed by the student with major

in this subject but all other students will neither understand nor contribute to

the task. At the same time, if an assignment equally covers all subjects and for-

mulated in such a way that all students can participate in the discussion, then,

despite that no single member of the team has enough training to complete the

assignment, the students’ joint efforts allow the team to get a positive (though

not highest) mark on this assignment.
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A Proofs

A.1 Proof of Lemma 1

We first split each objective function into four parts:

U =
t1∫

0

ω (v(t1 − t ), v(t2 − t ))dt

︸ ︷︷ ︸
U01

+
t1+t2

2∫
t1

ω (v(t − t1), v(t2 − t ))dt

︸ ︷︷ ︸
U1m

+
t2∫

t1+t2
2

ω (v(t − t1), v(t2 − t ))dt

︸ ︷︷ ︸
Um2

+
1∫

t2

ω (v(t − t1), v(t − t2))dt

︸ ︷︷ ︸
U21

, (A.1)

R = min


min

t∈[0,t1]
ω (v(t1 − t ), v(t2 − t ))︸ ︷︷ ︸

R01

, min
t∈

[
t1,

t1+t2
2

]ω (v(t − t1), v(t2 − t ))

︸ ︷︷ ︸
R1m

,

min
t∈

[
t1+t2

2 ,t2

]ω (v(t − t1), v(t2 − t ))

︸ ︷︷ ︸
Rm2

, min
t∈[t2,1]

ω (v(t − t1), v(t − t2))︸ ︷︷ ︸
R21


. (A.2)

Applying the change of variable τ= t1 + t2 − t and using ω(x1, x2) =ω(x2, x1),

which is followed from assumption 3, we get that the third part of each objective

is equal to the second part:

Um2 =
t1+t2

2∫
t1

ω (v(t2 −τ), v(τ− t1))dτ=U1m , (A.3)

Rm2 = min
τ∈

[
t1,

t1+t2
2

]ω (v(t2 −τ), v(τ− t1)) = R1m . (A.4)

18



We then rewrite each of the remaining three parts so that each depends on t1

and t2 through the sum t1+t2 ≡ s and the difference t2−t1 ≡∆. Since 0 ≤ t1 ≤ t2 ≤
1, the difference t2 − t1 =∆ belongs to [0,1] and, for a fixed ∆, the sum t1 + t2 = s

belongs to [∆,2−∆].

Applying the change of variable τ= t1+t2
2 −t , we get that the first part becomes

U01 =
s/2∫
∆/2

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
dτ, (A.5)

R01 = min
τ∈[∆/2,s/2]

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
.

Applying the change of variable τ= t2−t1
2 − t1 + t , we get that the second part

of each objective depends only on t1 and t2 only through t2 − t1 ≡∆:

U1m =
∆∫

∆/2

ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
dτ, (A.6)

R1m = min
τ∈[∆/2,∆]

ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
.

Applying the change of variable τ = t − t1+t2
2 and using ω(x1, x2) = ω(x2, x1),

we rewrite the forth part of each objective as

U21 =
1−s/2∫
∆/2

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
dτ, (A.7)

R21 = min
τ∈[∆/2,1−s/2]

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
.

Utilitarian objective

To prove that s = 1 is optimal for any fixed ∆ ∈ [0,1], we differentiate (A.1) with

respect to s and use (A.3), (A.5), (A.6) and (A.7) to get

∂U (∆, s)

∂s
= 1

2

{
ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))∣∣∣∣
τ=s/2

(A.8)

− ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))∣∣∣∣
τ=1−s/2

}
.
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Since ω(x1, x2) is weakly increasing in each argument by assumption 2 and v is

strictly decreasing by assumption 1, function

ω
(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
is weakly decreasing in τ. Thus,

∂U (∆, s)

∂s
≥ 0 for s < 1,

∂U (∆, s)

∂s
≤ 0 for s > 1, (A.9)

which implies that s = 1 is optimal.

Rawlsian objective

Since

R(∆, s) = min{R01,R1m ,R21} (A.10)

by (A.2) and (A.4) and since R1m in (A.6) does not depend on s, to prove that

R(∆, s) is maximized at s = 1, it is sufficient to prove that min{R01,R21} is maxi-

mized at s = 1. By (A.5) and (A.7),

min{R01,R21} = min
τ∈[

∆
2 ,max

{ s
2 ,1− s

2

}]ω
(

v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
, (A.11)

which is weakly decreasing in max
{ s

2 ,1− s
2

}
. The minimum of

max
{ s

2 ,1− s
2

}
is achieved at s = 1.

A.2 Proof of Proposition 1

For β≤ 0.5, function ω(x1, x2) is supermodular. Hence, for any t1, t2 and t ,

ω(v(|t − t1|), v(|t − t2|))+ω(v(|t − t2|), v(|t − t1|)) (A.12)

≤ω (v(|t − t1|), v(|t − t1|))+ω (v(|t − t2|), v(|t − t2|)) .

By assumption 3, function ω(x1, x2) is symmetric, which implies

ω(v(|t − t2|), v(|t − t1|)) =ω(v(|t − t1|), v(|t − t2|)). (A.13)

Substitutingω(v(|t−t2|), v(|t−t1|)) from (A.13) into (A.12), taking the expectation

of (A.12) over t and using the definition (5) of the Utilitarian objective, we get

2U (t1, t2) ≤U (t1, t1)+U (t2, t2), (A.14)
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which implies

U (t1, t2) ≤ max{U (t1, t1),U (t2, t2)} ≤ max
t∈[0,1]

U (t , t). (A.15)

Since (A.15) holds for any 0 ≤ t1 ≤ t2 ≤ 1 and the right-hand side of (A.15) does

not depend on t1 and t2, we can take the maximimum over t1 and t2 of the left-

hand side of (A.15) and get

max
0≤t1≤t2≤1

U (t1, t2) ≤ max
t∈[0,1]

U (t , t). (A.16)

The right-hand side of (A.16) is obviously less or equal the left-hand side of (A.16).

Hence, inequality (A.16) must always hold as equality. Result (A.16) implies that

there always exist t∗1 and t∗2 such that t∗1 = t∗2 and they maximize U (t1, t2) over

0 ≤ t1 ≤ t2 ≤ 1. By Lemma 1, for any given t1 = t2 = t , t = 0.5 maximizes U (t , t).

Hence, t∗1 = t∗2 = 0.5 maximize U (t1, t2) over 0 ≤ t1 ≤ t2 ≤ 1.

A.3 Proof of Theorem 1

By the first and the second order conditions, interior ∆∗(β) is a strict local maxi-

mizer of the Utilitarian objective U (∆,β) if and only if

∂U (∆∗(β),β)

∂∆
= 0,

∂2U (∆∗(β),β)

∂∆2 < 0. (A.17)

By the implicit function theorem applied to the equality in (A.17),

d∆∗(β)

dβ
=− ∂2U (∆∗(β),β)

∂∆∂β

/
∂2U (∆∗(β),β)

∂∆2 . (A.18)

The denominator in (A.18) is negative by the inequality in (A.17). Hence, ∆∗(β)

is strictly increasing if
∂2U (∆∗(β),β)

∂∆∂β
> 0. (A.19)

Denote by Us (∆) = U (∆,1) the Utilitarian objective when the weight on the

submodular component is one, and by Ua(∆) = U (∆,0.5) the Utilitarian objec-

tive for an additive task. Then, decomposition (4) implies that for any β ∈ [0,1],

U (∆,β) is a weighted sum of Us (∆) and Ua(∆):

U (∆,β) = (2β−1)Us (∆)+2(1−β)Ua(∆). (A.20)
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Using (A.20), we can rewrite the equality in (A.17) as

(2β−1)U ′
s (∆∗(β))+2(1−β)U ′

a(∆∗(β)) = 0 (A.21)

and inequality (A.19) as

U ′
s (∆∗(β)) >U ′

a(∆∗(β)). (A.22)

Thus, it is sufficient to show that (A.21) implies (A.22). Substituting

U ′
s (∆∗(β)) from (A.21) into (A.22), we get

− 2(1−β)

2β−1
U ′

a(∆∗(β)) >U ′
a(∆∗(β)). (A.23)

Sinceβ> 0.5 by assumption, (A.23) is equivalent to U ′
a(∆∗(β)) < 0. Thus, to prove

the theorem, it is sufficient to prove that

U ′
a(∆) < 0, for all ∆ ∈ (0,1). (A.24)

We calculate the Utilitarian objective for an additive task by substituting s = 1

and ω(x1, x2) = 0.5(x1 + x2) into the expression (A.1), which is simplified using

(A.3), (A.5), (A.6) and (A.7):

Ua(∆) =
1/2∫
∆/2

(
v

(
τ− ∆

2

)
+ v

(
τ+ ∆

2

))
dτ+

∆∫
∆/2

(
v

(
τ− ∆

2

)
+ v

(
3∆

2
−τ

))
dτ. (A.25)

Differentiating (A.25) yields

U ′
a(∆) = 1

2

(
v

(
1+∆

2

)
− v

(
1−∆

2

))
, (A.26)

which is negative for all ∆> 0 by assumption 1.

A.4 Example 1

Rewriting the expression (A.1) using (A.3), (A.5), (A.6) and (A.7), and then substi-

tuting s = 1 andω(x1, x2) =βmax{x1, x2}+(1−β)min{x1, x2}, we get the following

expression for the Utilitarian objective

U (∆,β) = 2

1/2∫
∆/2

(
βv

(
τ− ∆

2

)
+ (1−β)v

(
τ+ ∆

2

))
dτ (A.27)

+2

∆∫
∆/2

(
βv

(
τ− ∆

2

)
+ (1−β)v

(
3∆

2
−τ

))
dτ.
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Differentiating (A.27) yields

∂U (∆,β)

∂∆
=β

(
v

(
1+∆

2

)
− v

(
1−∆

2

))
+ (1−2β)

(
v

(
1+∆

2

)
− v

(
∆

2

))
. (A.28)

Suppose β ∈ [0,0.5]. Since function v is strictly decreasing by assumption 1,

the derivative (A.29) is negative for all∆> 0. Thus, the optimal diversity is unique

and equal to 0.

Suppose β ∈ [0.5,1]. Rewriting the derivative (A.29) as

∂U (∆,β)

∂∆
= (1−β)v

(
1+∆

2

)
−βv

(
1−∆

2

)
+ (2β−1)v

(
∆

2

)
, (A.29)

we can see that it is strictly decreasing in∆ because function v is strictly decreas-

ing by assumption 1. Thus, U (∆,β) is concave in ∆ and, therefore, the optimal

diversity is unique. Moreover, the optimal diversity is equal to 0.5 for β = 1 and

belongs to the interval (0,0.5) for β ∈ (0.5,1) because

∂U (0,β)

∂∆
= (2β−1)

(
v

(
0

)
− v

(
1

2

))
︸ ︷︷ ︸

>0

,
∂U (0.5,β)

∂∆
= (1−β)

(
v

(
3

4

)
− v

(
1

4

))
︸ ︷︷ ︸

<0

, (A.30)

where the signs follow from assumption 1. Thus, the optimal diversity solves
∂U (∆∗,β)

∂∆ = 0, which is equivalent to (7). The optimal diversity increases in β be-

cause from (A.29),

∂2U (∆,β)

∂∆∂β
= 1

β

∂U (∆,β)

∂∆
+ v

(
∆

2

)
− v

(
1+∆

2

)
︸ ︷︷ ︸

>0

 , (A.31)

which implies that the mixed derivative is positive whenever ∂U (∆,β)
∂∆ = 0.

A.5 Example 2

Rewriting the expression (A.2) using (A.4), (A.5), (A.6) and (A.7), and then substi-

tuting s = 1 andω(x1, x2) =βmax{x1, x2}+(1−β)min{x1, x2}, we get the following

expression for the Rawlsian objective

R(∆,β) = min
{
R01(∆,β),R1m(∆,β)

}
, (A.32)
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R01(∆,β) = min
τ∈[

∆
2 , 1

2

]
{
βmax

{
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

)}
(A.33)

+ (1−β)min

{
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

)}}
,

R1m(∆,β) = min
τ∈[

∆
2 ,∆

]
{
βmax

{
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

)}
(A.34)

+ (1−β)min

{
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

)}}
.

By assumption 1, function v is strictly decreasing. Hence,

v

(
τ− ∆

2

)
≥ v

(
τ+ ∆

2

)
for all τ, v

(
τ− ∆

2

)
≥ v

(
3∆

2
−τ

)
for τ≤∆, (A.35)

which allows to rewrite (A.33) and (A.34) as

R01(∆,β) = min
τ∈[

∆
2 , 1

2

]
{
βv

(
τ− ∆

2

)
+ (1−β)v

(
τ+ ∆

2

)}
, (A.36)

R1m(∆,β) = min
τ∈[

∆
2 ,∆

]
{
βv

(
τ− ∆

2

)
+ (1−β)v

(
3∆

2
−τ

)}
. (A.37)

Since v is decreasing, the objective function in (A.36) is decreasing in τ and the

minimum in (A.36) is achieved at τ= 1/2:

R01(∆,β) =βv

(
1−∆

2

)
+ (1−β)v

(
1+∆

2

)
. (A.38)

The second derivative w.r.t. τ of the objective function in (A.37) is negative be-

cause v is strictly concave by assumption. Hence, the minimum in (A.37) is achieved

either at τ=∆/2 or at τ=∆:

R1m(∆,β) = min

{
βv (0)+ (1−β)v (∆) , v

(
∆

2

)}
. (A.39)

Substituting (A.38) and (A.39) into (A.32) and using assumption 1 to claim that

v(0) ≥ v
( 1−∆

2

)
and v (∆) ≥ v

( 1+∆
2

)
, we get

R(∆,β) = min

{
βv

(
1−∆

2

)
+ (1−β)v

(
1+∆

2

)
, v

(
∆

2

)}
. (A.40)
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Since v is strictly concave by assumption, the first term in (A.40),

βv
( 1−∆

2

)+ (1−β)v
( 1+∆

2

)
, is strictly concave in ∆. In other words, there exists

∆̂(β) ∈ [0,1] such that the first term in (A.40) is strictly increasing in ∆ ∈ [0,∆̂(β))

and strictly decreasing in ∆ ∈ (∆̂(β),1].

Since v is strictly decreasing by assumption 1, the second term in

(A.40), v
(
∆
2

)
, is strictly decreasing in ∆ ∈ [0,1]. Thus, both terms in (A.40) are

strictly decreasing in ∆ ∈ (∆̂(β),1], which implies that

R(∆̂(β),β) > R(∆,β) for all ∆ ∈ (∆̂(β),1]. (A.41)

Suppose β ≤ 0.5. Then, at ∆ = 0, since v is strictly decreasing, the first term

in (A.40) is weakly decreasing in ∆ because its derivative (0.5−β)v ′(0.5) is non-

positive. Hence, ∆̂(β) = 0 and both terms in (A.40) are strictly decreasing in ∆ ∈
[0,1], which implies that ∆∗ = 0 uniquely maximizes R(∆,β).

Suppose β> 0.5. Then, at ∆= 0, the first derivative of the first term in (A.40),

(0.5−β)v ′(0.5), is positive. Hence, ∆̂(β) > 0. For ∆ ∈ [0,∆̂(β)), the first term in

(A.40) is strictly increasing, while the the second term in (A.40) is strictly decreas-

ing. At∆= 0, since v is strictly decreasing, the first term in (A.40), v(0.5), is strictly

less than the second term in (A.40), v(0). Thus, there exists∆∗(β) ∈ (0, ∆̂(β)] such

that R(∆,β) is equal to the first term and strictly increasing for∆ ∈ [0,∆∗(β)), and

equal to the second term and strictly decreasing for∆ ∈ (∆∗(β),∆̂(β)]. This∆∗(β)

uniquely maximizes R(∆,β) on∆ ∈ [0,∆̂(β)] and, therefore, by (A.41), on∆ ∈ [0,1].

Suppose β = 1. Then, ∆̂(β) = 1 because the first term in (A.40) is strictly in-

creasing in ∆ ∈ [0,1] since v is strictly decreasing. At ∆ = 0.5, the first and the

second terms in (A.40) are equal. Hence, ∆∗(β) = 0.5.

Consider the optimal diversity function ∆∗(β) on β ∈ (0.5,1).

At ∆= 1, the first derivative of the first term in (A.40) is equal to

−0.5βv ′ (0)+0.5(1−β)v ′ (1). Since v is strictly decreasing, this derivative is posi-

tive for β> β̄ and negative for β< β̄, where

β̄= v ′ (1)

v ′ (0)+ v ′ (1)
. (A.42)

Note that β̄ ∈ (0.5,1) because v ′(1) < v ′(0) < 0 since v is strictly decreasing and

strictly concave.

Suppose β ∈ [β̄,1). Then, the first term in (A.40) is strictly increasing for all

∆ ∈ [0,1), which means that ∆̂(β) = 1. At∆= 1, the first term in (A.40), βv(0)+(1−
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β)v(1), is strictly greater than the second term in (A.40), v(0.5), because

βv(0)+ (1−β)v(1)− v(0.5) (A.43)

v(0)>v(1),β≥β̄≥ β̄ (v(0)− v(0.5))+ (1− β̄) (v(1)− v(0.5))

d̄∈(0.5,1), d∈(0,0.5)= −β̄v ′(d)0.5+ (1− β̄)v ′(d̄)0.5

v ′′<0> −β̄v ′(0)0.5+ (1− β̄)v ′(1)0.5
(A.42)= 0.

Suppose β ∈ (0.5, β̄). Then, the maximum of the first term in (A.40) is interior,

which means that ∆̂(β) ∈ (0,1) satisfies

(1−β)v ′
(

1+∆
2

)
=βv ′

(
1−∆

2

)
at ∆= ∆̂(β). (A.44)

By the implicit function theorem applied to (A.44),

d∆̂(β)

dβ
= v ′ ( 1−∆

2

)+ v ′ ( 1+∆
2

)
β
2 v ′′ ( 1−∆

2

)+ 1−β
2 v ′′ ( 1+∆

2

) v ′<0, v ′′<0> 0 at ∆= ∆̂(β). (A.45)

Consider the difference between the first and the second terms in (A.40) at ∆ =
∆̂(β). This difference is increasing in β because

d

dβ

{
βv

(
1− ∆̂(β)

2

)
+ (1−β)v

(
1+ ∆̂(β)

2

)
− v

(
∆̂(β)

2

)}
(A.46)

(A.44)= v

(
1− ∆̂(β)

2

)
− v

(
1+ ∆̂(β)

2

)
︸ ︷︷ ︸

>0 since v ′<0

−1

2
v ′

(
∆̂(β)

2

)
d∆̂(β)

dβ︸ ︷︷ ︸
>0

> 0,

positive at β= β̄ by (A.43) and negative at β= 0.5 because ∆̂(0.5) = 0 and v(0.5) <
v(0).

Thus, there exists a unique β∗ ∈ (0.5, β̄) such that at∆= ∆̂(β), the first term in

(A.40) is strictly greater than the second term in (A.40) for all β ∈ (β∗,1), and the

first term is strictly lower than the second term for all β ∈ (0.5,β∗).

Suppose β ∈ (0.5,β∗). Then, the optimal diversity ∆∗(β) is equal to ∆̂(β) and,

thus, strictly increasing by (A.45).

Suppose β ∈ (β∗,1). Then, the optimal diversity ∆∗(β) is less than ∆̂(β) and

equalizes the first and the second terms in (A.40):

βv

(
1−∆∗(β)

2

)
+ (1−β)v

(
1+∆∗(β)

2

)
= v

(
∆∗(β)

2

)
. (A.47)
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By the implicit function theorem applied to (A.47),

d∆∗(β)

dβ
=

v
(

1−∆∗(β)
2

)
− v

(
1+∆∗(β)

2

)
β
2 v ′

(
1−∆∗(β)

2

)
− 1−β

2 v ′
(

1+∆∗(β)
2

)
+ 1

2 v ′
(
∆∗(β)

2

) . (A.48)

The numerator in (A.48) is positive because v is strictly decreasing and∆∗(β) > 0.

The denominator in (A.48) is negative because v ′
(
∆∗(β)

2

)
< 0 and the first term in

(A.40) is increasing at ∆=∆∗(β) < ∆̂(β). Thus, (A.48) is negative.

A.6 Proof of Proposition 2

Due to the symmetry (t1 = (1−∆)/2 and t2 = (1+∆)/2, R01 = R21 when s = 1 by

(A.5) and (A.7), Rm2 = R1m by (A.4)), we can focus on t ∈ [0,0.5]:

R(∆) = min{R01(∆),R1m(∆)} , (A.49)

R01(∆) = min
t∈[

0, 1−∆
2

]ω
(

v

(
1−∆

2
− t

)
, v

(
1+∆

2
− t

))
, (A.50)

R1m(∆) = min
t∈[ 1−∆

2 , 1
2

]ω
(

v

(
t − 1−∆

2

)
, v

(
1+∆

2
− t

))
. (A.51)

Function R1m(∆) is weakly decreasing in ∆ because the objective function in

(A.51) is weakly decreasing in∆ by assumptions 1 and 2 and the interval
[ 1−∆

2 , 1
2

]
over which the objective function is minimized expands as ∆ increases.

Suppose ∆ = ∆∗ > 0 is a strict local maximizer of R(∆). Then, choosing ∆

slightly lower than∆∗ must hurt the principal (i.e., must lower R(∆)). Since R1m(∆)

is weakly decreasing in ∆, choosing ∆ slightly lower than ∆∗ strictly lowers R(∆)

only if R1m(∆∗) ≥ R01(∆∗).

If ∆∗ = 0, then the interval
[

1−∆∗
2 , 1

2

]
collapses to a single point t = 1−∆∗

2 ,

which also belongs to the interval
[

0, 1−∆∗
2

]
in (A.50). Thus,

R1m(∆∗) ≥ R01(∆∗).

Thus, if ∆∗ is a strict local maximizer of R(∆), then R1m(∆∗) ≥ R01(∆∗), which

implies that the minimum under the Rawlsian objective is achieved at t ∈ [
0, 1−∆

2

]
.

For the interval t ∈ [
0, 1−∆

2

]
, the minimum is achieved at t = 0:

R01(∆) =ω
(

v

(
1−∆

2

)
, v

(
1+∆

2

))
, (A.52)

27



because the objective function in (A.50) is increasing in t by assumptions 1 and

2. Thus, the minimum under the Rawlsian objective is achieved at t = 0.

A.7 Proof of Proposition 3

Before we proceed to the main argument, we prove the following claim:

Claim A.1. For β ∈ (0.5,1), function ω is strictly increasing in each argument.

Proof. By decomposition (4), for β ∈ (0.5,1), ω is strictly increasing in each argu-

ment by assumption 2.

By assumption, there exists a task t ∈ [t1, t2] which delivers the minimum

in R(∆) at ∆ = ∆∗(β). Thus, since t = 0 also delivers the minimum in R(∆) by

Proposition 2, (A.51) is equal to (A.50):

F (∆,β) ≡ R1m(∆,β)−R01(∆,β) = 0 at ∆=∆∗(β). (A.53)

Function F (∆,β) can be equal to 0 only for ∆ > 0.5. To see it, we use expres-

sions (A.5) (with s = 1) and (A.6) for R01 and R1m , respectively:

R01 = min
τ∈[∆/2,1/2]

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
, (A.54)

R1m = min
τ∈[∆/2,∆]

ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
.

Since function v is strictly decreasing by assumption 1,

v
(
τ+ ∆

2

) < v
( 3∆

2 −τ) for all τ>∆/2. Then, since function ω is strictly increasing

in the second argument by Claim A.1,

ω

(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
<ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
, for all τ> ∆

2
. (A.55)

Consider any ∆≤ 0.5. Then, (A.54) and (A.55) imply

R1m
(A.54),∆≤0.5≥ min

τ∈[∆/2,1/2]
ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
(A.54),(A.55)≥ R01. (A.56)

Moreover, the second inequality in (A.56) becomes equality only if τ=∆/2 deliv-

ers the minimum in R01. However, τ = ∆/2 never delivers the minimum in R01

because ω
(
v

(
τ− ∆

2

)
, v

(
τ+ ∆

2

))
is strictly decreasing in τ by assumption 1 and
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Claim A.1. Thus, R1m > R01 for all ∆ ≤ 0.5, which implies that ∆∗(β) belongs to

the interval (0.5,1].

Following the above logic, we also argue that function F (∆,β) can be equal to

0 only if

R1m = min
τ∈[1/2,∆]

ω

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
; (A.57)

that is, given that τ=∆−0.5+ t by the change of variables described before (A.6),

the task at which the minimum in R1m is achieved must belong to the interval

[2t1,0.5]. Since by (A.53), F (∆,β) = 0 at∆=∆∗(β), equality (A.57) holds whenever

∆=∆∗(β).

Function F (∆,β) is strictly decreasing in ∆ at point ∆=∆∗(β). Indeed, as we

argue after (A.51), R1m(∆,β) is weakly decreasing in∆. Thus, to prove that F (∆,β)

is strictly decreasing in∆ at point∆=∆∗(β), it is sufficient to argue that R01(∆,β)

is strictly increasing in ∆ at point ∆ = ∆∗(β). Towards contradiction, suppose

R01(∆,β) is weakly decreasing in ∆ at point ∆ = ∆∗(β). Then, since R1m(∆,β)

is weakly decreasing in ∆ and since ∆∗(β) is positive, choosing ∆ slightly lower

∆∗(β) is feasible and must weakly increase both R01(∆,β) and R1m(∆,β) — hence,

weakly increase R(∆,β). Thus, choosing ∆ slightly lower ∆∗(β) weakly benefits

the principal, which contradicts the assumption that ∆∗(β) is a strict local maxi-

mizer.

Since function F (∆,β) is strictly decreasing in ∆ at point ∆=∆∗(β), to prove

that∆∗(β) is strictly decreasing, by the implicit function theorem applied to (A.53),

it is sufficient to show that F (∆,β) is strictly decreasing in β at point ∆=∆∗(β).

Applying decomposition (4) to (A.52) and to (A.57), we get

R01(∆,β) = (2β−1)ωs

(
v

(
1−∆

2

)
, v

(
1+∆

2

))
+ (1−β)

(
v

(
1−∆

2

)
+ v

(
1+∆

2

))
,

(A.58)

R1m(∆,β) = min
τ∈[1/2,∆]

(2β−1)ωs

(
v

(
τ− ∆

2

)
, v

(
3∆

2
−τ

))
(A.59)

+ (1−β)

(
v

(
τ− ∆

2

)
+ v

(
3∆

2
−τ

))
at ∆=∆∗(β).

Expressions (A.58) and (A.59), together with the definition (A.53) of F (∆,β),
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imply

∂F (∆,β)

∂β
= 2

2β−1
F (∆,β)+ 1

2β−1

(
v

(
1−∆

2

)
+ v

(
1+∆

2

)
(A.60)

− v

(
τ(∆)− ∆

2

)
− v

(
3∆

2
−τ(∆)

))
at ∆=∆∗(β),

where τ(∆) ∈ [1/2,∆] delivers the minimum in (A.59). Since F (∆,β) = 0 by (A.53),

the derivative (A.60) becomes

∂F (∆,β)

∂β
= f (τ(∆),∆)

2β−1
at ∆=∆∗(β), (A.61)

where

f (τ,∆) ≡ v

(
1−∆

2

)
+ v

(
1+∆

2

)
− v

(
τ− ∆

2

)
− v

(
3∆

2
−τ

)
. (A.62)

Function f (τ,∆) is strictly convex in τ since v is strictly concave. Then, since

the derivative ∂ f (τ,∆)
∂∆ is equal to 0 at τ= ∆, function f (τ,∆) is strictly decreasing

in τ ∈ [1/2,∆]. At τ = 1/2, f
( 1

2 ,∆
) = v

( 1+∆
2

)− v
( 3∆−1

2

)
is negative for ∆ < 1 by

assumption 1 and equal to 0 at ∆= 1. Thus, f (τ,∆) < 0 for all τ ∈ [1/2,∆] if ∆< 1,

and f (τ,∆) < 0 for all τ ∈ (1/2,∆] if ∆= 1.

Suppose∆=∆∗(β) < 1. Then, the derivative (A.61) is negative because 1
2β−1 >

0 since β> 0.5 by assumption and because f (τ,∆) < 0 for all τ ∈ [1/2,∆].

Suppose ∆ = ∆∗(β) = 1. Then there exists τ > 1/2 which delivers the mini-

mum in (A.59). This follows from the assumption that there is a task t ∈ (t1, t2)

which delivers the minimum in R(∆). Indeed, the interval (t1, t2) becomes (0,1)

at ∆ = 1; then, given that τ = ∆− 0.5 + t = 0.5 + t by the change of variables

described before (A.6), a minimizer t ∈ (0,0.5] corresponds to a minimizer τ ∈
(0.5,1]. Then, the derivative (A.61) is negative because 1

2β−1 > 0 since β > 0.5 by

assumption and because f (τ,∆) < 0 for all τ ∈ (1/2,∆].

A.8 Proof of Proposition 4

Since there is no task t ∈ (t1, t2) which delivers the minimum in R(∆), R01 < R1m .

Thus, ∆∗(β) is a strict local maximizer of R01(∆,β). Hence, to show that ∆∗(β)

is strictly increasing, it is sufficient to show that the mixed derivative ∂R01(∆,β)
∂β is

positive at ∆=∆∗(β).
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By (A.58),

∂R01(∆,β)

∂β
= 2

2β−1
R01(∆,β)− 1

2β−1

(
v

(
1−∆

2

)
+ v

(
1+∆

2

))
. (A.63)

Hence,

∂2R01(∆,β)

∂β∂∆
= 2

2β−1

∂R01(∆,β)

∂∆
+ 1

2(2β−1)

(
v ′

(
1−∆

2

)
− v ′

(
1+∆

2

))
. (A.64)

At∆=∆∗(β), the mixed derivative (A.64) is positive because ∂R01(∆,β)
∂∆ = 0 by opti-

mality of ∆ = ∆∗(β), β > 0.5 by assumption, and v ′ ( 1−∆
2

) > v ′ ( 1+∆
2

)
because v is

strictly concave and ∆=∆∗(β) > 0.

A.9 Proof of Theorem 2

Suppose there exist 0.5 <β< β̄< 1 such that∆∗(β) =∆∗(β̄) ≡ ∆̌ ∈ (0,1) and∆∗(β)

is weakly decreasing at β = β. Then, by Proposition 4, there is a task t ∈ (t1, t2)

which delivers the minimum in R(∆̌,β). Hence, F (∆̌,β) = 0, where F is defined in

(A.53). Following the argument in the proof of Proposition 3, we conclude that

F (∆̌,β) is decreasing in β whenever

F (∆̌,β) = 0 and β ∈ (0.5,1). Then, since F (∆̌,β) = 0, F (∆̌, β̄) must be negative.

Hence, there is a task t ∈ (t1, t2) which delivers the minimum in R(∆̌, β̄). Then, by

Proposition 3, ∆∗(β) is strictly decreasing at β= β̄.

A.10 Proof of Proposition 5

In light of Proposition 3 and Theorem 2, to prove Proposition 5, it is sufficient

to show that there exists β∗ ∈ (0.5,1) such that for all β ∈ (β∗,1), conditions in

Proposition 3 hold, that is, R(∆) is uniquely maximized at some ∆∗ ∈ (0,1) and

there is a task t ∈ (t1, t2) which delivers the minimum in R(∆∗).

By decomposition (4), there exists β∗ ∈ (0.5,1) such that for all β ∈ (β∗,1),

inequality (9) translates to

∂2ω (x1, x2)

∂x1∂x2
max

d∈[0,1]

{
v ′(d)

v ′(1−d)

}
< ∂2ω (x1, x2)

∂x2
1

− ∂ω (x1, x2)

∂x1
max

d∈[0,1]

{
− v ′′(d)

v ′(d)2

}
.

(A.65)
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By (A.49), sufficient conditions for R(∆) to be uniquely maximized at some

∆∗ ∈ (0,1) and for the existence of a task t ∈ (t1, t2) which delivers the minimum

in R(∆∗) are the following:

a) R01(∆) is strictly increasing in ∆ ∈ (0,1);

b) R1m(∆) is strictly decreasing in ∆ ∈ (0,1);

c) R01(0) < R1m(0);

d) R01(1) > R1m(1).

Condition a) holds for all β ∈ (β∗,1) because

R ′
01(0)

(A.52)= 1

2
v ′

(
1

2

)(
∂ω

(
v

( 1
2

)
, v

( 1
2

))
∂x1

− ∂ω
(
v

( 1
2

)
, v

( 1
2

))
∂x2

)
(A.66)

is equal to 0 by the symmetry assumption 3, and

R ′′
01(∆)

(A.52)= v ′ ( 1−∆
2

)2

4

(
v ′′ ( 1−∆

2

)
v ′ ( 1−∆

2

)2

∂ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x1

(A.67)

+ ∂2ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x2

1

− v ′ ( 1+∆
2

)
v ′ ( 1−∆

2

) ∂2ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x1∂x2

)

+ v ′ ( 1+∆
2

)2

4

(
v ′′ ( 1+∆

2

)
v ′ ( 1+∆

2

)2

∂ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x2

+ ∂2ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x2

2

− v ′ ( 1−∆
2

)
v ′ ( 1+∆

2

) ∂2ω
(
v

( 1−∆
2

)
, v

( 1+∆
2

))
∂x1∂x2

)
is positive: each line in (A.67) is positive by assumptions 1 and 3 and condition

(A.65); differentiation in (A.66) and (A.67) is a valid operation because functions

v and ω are twice differentiable by assumptions 1) and 2) of Proposition 5.

Condition b) holds for all β ∈ (0.5,1) because the objective function in (A.51)

is strictly decreasing in∆by assumption 1 and Claim A.1 and the interval
[ 1−∆

2 , 1
2

]
over which the objective function is minimized expands as ∆ increases.

Condition c) holds for all β ∈ (0.5,1) because

R01(0)−R1m(0)
(A.52),(A.51)= ω

(
v

(
1

2

)
, v

(
1

2

))
−ω (v (0) , v (0)) (A.68)
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is negative by assumption 1 and Claim A.1.

Condition d) holds for all β ∈ (β∗,1). Indeed,

R01(1)−R1m(1)
(A.52),(A.51)= ω (v (0) , v (1))− min

t∈[
0, 1

2

]ω (v (t ) , v (1− t )) , (A.69)

is positive because function ω (v (t ) , v (1− t )) is strictly decreasing in t ∈ [
0, 1

2

]
:

dω (v (t ) , v (1− t ))

dt

∣∣∣∣
t=1/2

= v ′
(

1

2

)(
∂ω

(
v

( 1
2

)
, v

( 1
2

))
∂x1

− ∂ω
(
v

( 1
2

)
, v

( 1
2

))
∂x2

)
(A.70)

is equal to 0 by the symmetry assumption 3, and

d2ω (v (t ) , v (1− t ))

dt 2 = v ′ (t )2
(

v ′′ (t )

v ′ (t )2

∂ω (v (t ) , v (1− t ))

∂x1
(A.71)

+ ∂2ω (v (t ) , v (1− t ))

∂x2
1

− v ′ (1− t )

v ′ (t )2

∂2ω (v (t ) , v (1− t ))

∂x1∂x2

)
+ v ′ (1− t )2

(
v ′′ (1− t )

v ′ (1− t )2

∂ω (v (t ) , v (1− t ))

∂x2

+ ∂2ω (v (t ) , v (1− t ))

∂x2
2

− v ′ (t )

v ′ (1− t )

∂2ω (v (t ) , v (1− t ))

∂x1∂x2

)
is positive by the argument similar to the one we use to show that (A.67) is posi-

tive.

A.11 Example 3

Assumption 1 holds because

v ′(d)
(10)= − (a +1)(d +1)a

2a+1 −1
(A.72)

is negative for all a > 0, d ∈ [0,1].

Given that function v(d) defined in (10) is decreasing in d ∈ [0,1] from 1 to

0, the range on which the joint output function ω(x1, x2) must satisfy the desired

properties is

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. (A.73)

Assumption 3 holds because function ωs (x1, x2) defined in (10) is symmetric

in its arguments.
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By symmetry, to verify assumption 2, it is sufficient to show the monotonicity

of functions ωs and ωc with respect to the first argument:

∂ωs (x1, x2)

∂x1

(10)= 1

2
−k

(
x2 +w ′(x1)

) (A.73), (11)≥ 1

2
−k

(
1+w ′(0)

) (11), (12)> 0, (A.74)

∂ωc (x1, x2)

∂x1

assumption 4= 1− ∂ωs (x1, x2)

∂x1

(A.74)= 1

2
+k

(
x2 +w ′(x1)

) (A.73), (11)> 0. (A.75)

Function ωs (x1, x2) defined in (10) is submodular because

∂2ωs (x1, x2)

∂x1∂x2
=−k

(11)< 0. (A.76)

Condition 1) from Proposition 5 holds because

v ′′(d)
(10)= −a(a +1)(d +1)a−1

2a+1 −1
(A.77)

is negative for all a > 0, d ∈ [0,1].

Condition 2) from Proposition 5 holds if function w is twice differentiable.

Condition 3) from Proposition 5 holds because

max
d∈[0,1]

{
− v ′′(d)

v ′(d)2

}
(A.72), (A.77)= max

d∈[0,1]

(
2a+1 −1

)
a

(a +1)(d +1)a+1 =
(
2a+1 −1

)
a

a +1
, (A.78)

max
d∈[0,1]

{
v ′(d)

v ′(1−d)

}
(A.72)= max

d∈[0,1]

(
1+d

2−d

)a

= 2a , (A.79)

∂2ωs (x1, x2)

∂x2
1

− ∂ωs (x1, x2)

∂x1

(
2a+1 −1

)
a

a +1
− ∂2ωs (x1, x2)

∂x1∂x2
2a

(10)= −kw ′′(x1)−
(

1

2
−k

(
x2 +w ′(x1)

)) (
2a+1 −1

)
a

a +1
+2ak

(A.73), (11)≥ −kw ′′(1)−
(

1

2
−kw ′(1)

) (
2a+1 −1

)
a

a +1
+2ak

(11), (12)> 0. (A.80)
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Каково оптимальное разнообразие экспертизы в команде? Прат (2002) показы­
вает, что супермодульная производственная функция (описывающая стратегическую 
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