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1 Introduction

Should an organization hire people with similar skills or with different skills?
Prat (2002) argues that teams with similar skills perform better if jobs are strate-
gic complements, while hiring people with different backgrounds are optimal
if their jobs are strategic substitutes. For example, in synchronized swimming,
teams with more similar skills would perform better. In contrast, in a math olym-
piad, teams with more diverse backgrounds will more likely solve all problems
and win.

In reality, many jobs are not pure strategic complements or pure strategic
substitutes. In light of Prat’s results on the two extreme cases, as jobs become
less complementary, does optimal diversity in workers’ skills increase? We show
that this might not be the case.

To illustrate our point, consider the following example. A hospital has two
nurses who can perform CPR and its management has to decide where to locate
each nurse along a lengthy corridor. A good CPR requires a quick initial response
from a single nurse, followed by a quick response from a second nurse (who can
take over to ensure that the first nurse is not fatigued and that high-quality chest
compressions are delivered). If the hospital locates the nurses close to the ends
of the corridor, then all patients have a similar chance of surviving: patients near
the ends receive a very quick response from the first nurse but the second nurse
will be very slow to come, while patients near the center receive relatively timely
responses from both nurses. Now suppose that the nurses are equipped with
a defibrillator. The addition of this technology means that the jobs become less
complementary because a single nurse can have a greater impact when perform-
ing CPR. Then, to ensure that all patients have equal chances of surviving, the
hospital locates the nurses at 1/4 and 3/4 of the corridor length. Indeed, with
such disposition, a single nurse can timely reach any patient in their half of the
corridor. This example shows that the optimal distance between the nurses can
fall as their jobs become less complementary. The distance between the nurses
reflects the difference, or the level of diversity, in nurses’ ability to perform CPR
for a given patient. Thus, the example demonstrates that, contrary to the initial
intuition which is based on studying the extreme cases with pure complements
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and pure substitutes, optimal diversity may decrease as jobs become less com-
plementary.

The example is based on the Rawlsian objective criterion, which maximizes
the chances of surviving for the patient with the worst location. This objective is
reasonable for a public service provider, such as a hospital, which aims to min-
imize the number of complaints from its customers. In contrast, the Utilitarian
objective criterion, which maximizes the expected service quality for a represen-
tative customer and is more appropriate for a profit-maximizing firm, the results
are reversed and more aligned with the initial intuition: optimal diversity always
weakly increases as jobs become less complementary.

We contribute to the stream of literature which study how optimal team com-
position depends on the way the efforts of team members are aggregated. Franco
et al. (2011); Kaya and Vereshchagina (2014); Bel et al. (2015); Glover and Kim
(2021) focus on team incentive problem and thus assume that the choice of ef-
fort is endogenous. In contrast, our paper abstracts from incentive considera-
tions and assume that the team structure and the production function do not
affect the incentives of the team members. The closest paper to us is Prat (2002)
who treat agents’ efforts as exogenous and compares the optimal team composi-
tion for two production functions, submodular and supermodular. We build on
Prat (2002)’s work in two ways. First, using a distant measure of diversity and al-
lowing the production function vary in a continuous way from supermodular to
submodular, we investigate how the optimal diversity changes as the production
function becomes less complementary. Second, in addition to the Utilitarian ob-
jective, we look at the Rawlsian objective, which yields to a qualitatively different
results.

2 Model

A principal must hire a team of two agents to perform a task.
Each agent i = 1,2 has a particular cognitive type, or specialty, modelled as a
point on a unit interval, ¢; € [0, 1]. Without loss of generality, assume that #, = £;.

The task is also modelled as a point on a unit interval, ¢ € [0,1]. The closer the



agent’s cognitive type to the location of the task, the higher the agent’s perfor-
mance on that task. Formally, agent #;’s output on task ¢ is given by a function
v(d;) where d; = |t — t;|.

Assumption 1. Function v is strictly decreasing.

The timeline is as follows. First, the principal chooses #; and t,, with £, = 1.
Second, task ¢ materializes according to the uniform distribution on the support
[0,1].

In the game, the agents act as dummies in the sense that they decide nothing.
Thus, their payoffs are irrelevant for our analysis.

The principal’s payoffis the joint output of the agents defined as
o (t—nul), vt - 1)), where

w(x1,x2) = B xws(x1,%2) + (1= B) xwe (x1,x2), BeIO,1]. 1

Parameter f captures the degree of complementarity of jobs, which will become
clear after we explain the functions ws and w.
Itis natural to assume that higher performance of an agent benefits the prin-

cipal. Formally:
Assumption 2. Functions w; and w. are weakly increasing in each argument.

For a given cognitive type, we assume that the identity of an agent does not

affect the principal’s payoff. Formally, functions ws and w, are symmetric:
Assumption 3. w(x1,Xx2) = ws(x2,X1) and wq(x1, X2) = W (X2, x1) for any (x1, x2).

Function w; is submodular in the agents’ individual outputs: for any (%1, %)
and (561) 562)7

ws(X1, X2)+ws(X1, X2) = ws (Min{Xy, X1}, min{Xy, Xo}) +w, (max{x1, X1}, max{X,, ¥2}),
(2)

while function w. is supermodular in the agents’ individual outputs:

W (&1, X2)+wc (X1, X2) < 0 (min{Xy, X1}, min{xy, X2}) + 0. (max{xy, X1}, max{%xy, X2}).

3)



Submodularity and supermodularity is a generalization of the traditional no-
tions of strategic substitutability and strategic complementarity, respectively (see
Prat (2002)).12 Thus, the lower the weight on the submodular component, §, the
less complementary the agents’ cognitive types are.

We may think of a high-f task ¢ as a task that is best suited for type ¢ agent
but also requires significant input from other agents. In contrast, a low-f task ¢
does not require much input from agents other than type ¢ agent.

Assumption 4. wg(x], X2) + W (X1, X2) = X1 + X2.

Assumption 4 ensures that at § = 0.5, the principal’s payoff w(x;, xp) = 0.5(x; +
X,) satisfies (2) as equality (and, therefore, satisfies (3) as equality as well). In
other words, at § = 0.5, submodular and supermodular components cancel each
other, making the agents’ contributions strategically independent. Assumption
4 implies that § = 0.5 corresponds to an additive task, for which the joint output
of the agents is the sum of agents’ contributions.

For example, wg(x1, x2) = max{xy, xo} and w.(x;, X2) = min{x1, x2}. Then, B =
0 (B =1) corresponds to a conjunctive (disjunctive) task, for which the joint out-
put of the agents depends only on the output of the weakest (strongest) agent.
This example corresponds to the extreme form of complementary and substi-
tutability.®

Given assumption 4, we can rewrite (1) as
w(x1,%2) =26 —1) x ws (x1,%2) + (1= ) (x1 +x2). 4)

Thus, function w(x;, x2) is supermodular for § < 0.5 and submodular for § = 0.5.
Principal’s objective. The principal chooses #; and t, that maximize a certain
objective. We consider two different objectives: the Utilitarian objective, defined

nat "non

1Subscripts s" and "c" in notations ws and w, stand for "substitutes" and "complements".

2For twice differentiable functions, condition (2) is equivalent to w s(x1,x2)/0x10x2 < 0, while
condition (3) is equivalent to %we(x1,%2)10x10x2 = 0.

3Categorization of tasks into additive, disjunctive and conjunctive is outlined in Steiner (1972).



as the expected value of the principal’s payoff,

1
szw(vur—tm,vut—tzn)dt; (5)
0

and the Rawlsian objective, defined as the minimal value of the principal’s payoff,
R= min w (v(|t - ), v(t-1t)). (6)
t€[0,1]

We define diversity as the distance between the agents’ types, A = £, — 11.
Given the restriction 0 < f; < f < 1, diversity A can take any value from the inter-
val [0,1].

Lemma 1 ensures that without loss of generality we can focus on the cogni-
tive types which are symmetric around 0.5.

Lemma 1. Forany fixed A =t, —t1, t; = (1-A)/2 and t; = (1 + A)/2 maximize
both the Utilitarian and the Rawlsian objectives.

Thus, we can rewrite the principal’s objectives (5) and (6) as functions of A,
denoted as U(A) and R(A), respectively. We refer to the optimal diversity A* as
the value of A, which maximizes one of the above objectives. Our goal is to in-
vestigate how the optimal diversity changes with  and compare the results for
different objectives.

Leading example. To illustrate our model, consider the following example. A
team of students needs to complete an assignment. If any assignment is de-
signed in such a way that it requires knowledge from different subjects, then the
students’ inputs are complementary because no single student can answer all
questions by herself and team work is necessary for a successful performance
— that is, f is high. If any assignment is mostly focused on one subject (which
maybe different for different assignments), then the students’ inputs are less com-
plementary because a single student with the appropriate background can do
the majority of the assignment all be herself — that is, § is low. The content of
the assignment is unknown at the time of team formation. The Rawlsian ob-

jective is better suited for regular class assignments and describes the goal to
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complete any assignment with a positive (but not necessarily the highest) mark.
The Utilitarian objective is better for competitions where the goal is to get a high
mark with a high probability (potentially sacrificing the performance on some
assignments).

3 Utilitarian objective

In line with Proposition 1 in Prat (2002), null diversity is a solution whenever the

principal’s payoff w(x, x») is supermodular, that is, whenever § < 0.5.
Proposition 1. If < 0.5, then A* = 0 maximizes the Utilitarian objective.

According to Proposition 2 in Prat (2002), under additional assumptions, for
submodular w (that is, for 8 > 0.5), the set of optimal A contains A* > 0. In gen-
eral, the uniqueness of the optimal diversity A* is not guaranteed without addi-
tional assumptions (which should be even more restrictive than the one listed in
Proposition 2 in Prat (2002)). These assumptions, however, are not required for
our main result formulated in Theorem 1.* We take any local maximizer A* of
U(A) and prove that it must increase in 8. More precisely, we require A* to be a
strict local maximizer — that is, A* uniquely maximizes U(A) in some neighbor-
hood — for A*(f) to be a well-defined function.’

Theorem 1. Consider > 0.5 and let A*(B) € (0,1) be a strict local maximizer of

the Utilitarian objective U(A). Then A* (B) is strictly increasing in f.

Theorem 1 confirms initial expectations that the optimal diversity always in-
creases as jobs become less complementary. According to Theorem 1, once the

4Finding the least restrictive set of sufficient conditions which ensure the uniqueness of the opti-
mal diversity A* is a challenging task. To stay focused on our main goal — the comparative statics of
A* with respect to § — we set this task aside.

5Alternatively, Theorem 1 can be formulated in terms of minimal and maximal optimal diversity: if
A*(B) € (0,1) is a minimum (maximum) diversity that maximizes the Utilitarian objective U(A), then
it is strictly increasing in 8. IN general, as long as function A* (f) is well-defined, the comparative
statics result in Theorem 1 holds.



optimal diversity becomes positive at some f > 0.5, it strictly increases until ei-
ther A* =1 or 8 = 1, whichever happens first.

Leading example. If the organizers of a student competition commit to ran-
domly choose a single subject for the competition assignment, then, to maxi-
mize the winning chances, the team should be homogeneous, i.e., with a strong
focus on a single subject. Then, if the team is lucky and the chosen subject coin-
cides with the team focus, they have very good chances winning the competition.
However, if the organizers commit to include several subjects in the assignment,
then the successful team must be heterogeneous.

Below we provide an example to illustrate Proposition 1 and Theorem 1. In
this example, the uniqueness of the optimal diversity is easy to establish.

Example 1. Suppose w;(x1,x2) = max{xy, xp} and w.(x1, X2) = min{x1, x2}. Then
the optimal diversity is unique for all § € [0, 1] and equal to 0 for € [0,0.5]. For
B €10.5,1], the optimal diversity increases from 0 to 0.5; at each 8 € [0.5,1], the

optimal diversity uniquely solves

A* 1-A* A*
i =(1— i O
ﬁ("(z)v(z ))( ﬁ)(U(Z)”
The difference v(%*) - v(%) in left-hand side of (7) is the marginal bene-

fit from increasing diversity when the task is disjunctive. It is equal to the dif-

1+A*
2

| @

ference in performance of the most productive agent when the task at at the
center (¢ = 0.5) and when the task is at the corner (£ = 0 or ¢ = 1). Similarly,
the difference v (%*) -v ( HZA*) in right-hand side of (7) is the marginal bene-
fit from decreasing diversity when the task is conjunctive. Thus, equation (7)

equates marginal benefits from increasing and decreasing diversity, with respec-
tive weights. It is intuitive from (7) and consistent with Theorem 1 that higher
weight on the disjunctive task increases the optimal diversity. This monotonic
relationship is illustrated in Figure 1 for v(d) = —d?

gives A* = f—0.5 for §>0.5.

, in which case equation (7)



A*

0 0.5 6 1 p

Figure 1: The optimal diversity for wg(x;,x2) = max{xy, x2}, wc(x1,%x2) =
min{x;, X2}, v(d) = —d?. Blue graph corresponds to the Utilitarian objective; red
graph corresponds to the Rawlsian objective.

4 Rawlsian objective

The Rawlsian objective may deliver qualitatively different comparative statics.

To illustrate this point, consider an example.

Example 2. Suppose wg(x1, x2) = max{x, X2} and w.(x1, x2) = min{x1, x2}. Sup-
pose function v is twice differentiable and strictly concave. Then the Rawlsian

Jooome( Bl o
2 )2

where the first term is the joint output of the agents for the corner tasks (f = 0 and

objective becomes

R:min{ﬁv(

t = 1) and the second term is the joint output for the task at the center (£ = 1/2).
The optimal diversity A* that maximizes (8) is unique for all § € [0,1], and it
is equal to 0 for B € [0,0.5] and equal to 0.5 for § = 1. Moreover, there exists
B* € (0.5,1) such that the optimal diversity strictly increases for € (0.5, *) and
strictly decreases for 8 € (8*,1). Figure 1 illustrates the hump-shaped form of the
optimal diversity function A*(B) for v(d) = —d?, in which case the maximization
of (8) gives A* =28—1for0.5< < f* = (2+V/2)/4~0.85and A* = 1/(4—2) for
B>p*.
10



(a) Agents’ joint output (b) Diversity at the maximum

Figure 2: The diversity depicted on the right maximizes the joint output de-
picted on the left. Red graphs correspond to the corner tasks (# =0 and ¢ = 1).
Blue graphs correspond to the center task (# = 1/2). Parameters: ws(x1,x2) =

max {x, X2}, w¢(x1, %2) = min {xy, X2}, v(d) = —d>.
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The intuition is as follows. The joint output for the task at the center, v (%),
is maximized at zero diversity (see the blue graphs in Figure 2). Thus, the only
reason for the principal to choose a positive diversity can be to increase the joint
output for the corner tasks (the first term in (8)).

The red graphs in Figure 2a illustrate the first term in (8), ﬁv(%) +(1-
Bv (%), which describes the joint output of the agents for the corner tasks.
The red graph in Figure 2b depicts the diversity that maximizes the joint out-
put for the corner tasks illustrated in Figure 2a. Suppose that 8 < 0.5, so that the
agents’ types are complements. Then increasing diversity lowers the joint output
for the corner tasks because it lowers the output for the weakest agent. Thus, the
diversity that maximizes the joint output for the corner tasks is zero. Suppose
that 8 > 0.5, so that the agents’ types are substitutes. Then the joint output for
the corner tasks is maximized at some positive diversity (for v(d) = —d?, this di-
versity is equal to 23— 1). As the agents’ types become less complementary (i.e.,
B increases), the diversity that maximizes the joint output is increasing because
the output of the weakest agent become less relevant for the joint output and,
thus, the agents should be located closer to the corners to increase the output
of the strongest agent. At the extreme f = 1, only the output of the strongest
agent contributes to the joint output; thus, the joint output is maximized at the
maximum diversity which locates the agents exactly at the corners.

Under the Rawlsian objective (8), the principal wants to increase the joint
output both for the tasks at the corners and for the task at the center. When the
agents’ types are complements (§ < 0.5), there is no conflict between the cor-
ners and the center task (both the blue and the red graphs in Figure 2b are zero)
and the optimal diversity is zero. However, when the agents’ types are substi-
tutes (B > 0.5), the joint output for the corner tasks is maximized at some posi-
tive diversity, while the joint output for the center task is still maximized at zero
diversity.

For 0.5 < 8 < B*, the minimum joint output of the agents is achieved only at
the corner tasks. Indeed, according to Figure 2a, for f < f*, the point A at which
the red graph achieves its maximum is located to the left of the point at which
the red graph crosses the blue graph. Hence, the minimum of the two graphs,
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joint output

__________
"""""

agent 2's agent 1's
individual output, individual output,
v(lt— 1)) v(lt—nl

Figure 3: Agents’ joint and individual outputs for wg(x1,x2) = max{xy, x»},
we(x1,%2) = min{xy, x2}, v(d) = —d?. The agents’ types are chosen optimally for
B=0.9>p*.

which corresponds to the Rawlsian objective (8), is maximized at A, which im-
plies that the minimum joint output of the agents is achieved only at the corner
tasks. Thus, for 8 < B*, as the agents’ types become less complementary (i.e., as
B increases), the principal increases diversity to increase the performance of the
best agent for the corner tasks.

For § > §*, the minimum joint output of the agents is achieved both at the
corner tasks and at the center task. Indeed, according to Figure 2a, for § > *, A
is located to the right of the point at which the red graph crosses the blue graph.
Hence, the minimum of the two graphs, which corresponds to the Rawlsian ob-
jective (8), is maximized at the crossing point of the red graph and the blue graph,
which implies that the minimum joint output of the agents is achieved both at
the corner tasks and at the center task. Thus, for § > §*, the principal faces the
corners/center trade-off: the optimal diversity equalizes the joint output of the
agents at the corner tasks and at the center task. Blue solid graph in Figure 3 illus-
trates the joint output of the agents for all tasks ¢ € [0,1] when the agents’ types
are choices optimally. In agreement with our theoretical result, at the optimal di-
versity, the joint output of the agents achieves the minimum at the corner tasks
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and at the center task. Blue dashed graph in Figure 3 illustrates how the joint
output changes as the agents’ types become less complementary (i.e., as § in-
creases) for a fixed diversity. As 8 increases, the joint output moves closer to the
function wg (v(|t — 1), v(It — £2])) = max{v(|t — &1]), v(|t — 2])}, which is the maxi-
mum of the red graph and the green graph in Figure 3. According to Figure 3, the
joint output of the agents at the corner tasks increases, while their output at the
center task does not change. Thus, for § > %, as the agents’ types become less
complementary (i.e., as § increases), the principal optimally lowers the diversity
to reestablish the balance between the corner tasks and the center task.

The intuition behind non-monotonicity of the optimal diversity under the
Rawlsian objective is robust to other functions ws and w.. The optimal diversity
decreases whenever the minimum joint output is achieved at both the corners
and the center. Proposition 2 proves that the corners are always in the set of tasks
that minimize the joint output. Proposition 3 states that whenever some task in
the center, i.e., in-between the two types (¢ € (1, 2)), is also a minimizer, the
corners/center trade-off emerges and reverses the comparative statics. Proposi-
tion 4 confirms that in the absence of the corners/center trade-off, the compar-
ative statics is the same as for the Utilitarian objective. Theorem 2 establishes
that the corners/center trade-off appears only for sufficiently high B, that is, for
B> B*, so that the optimal diversity is either monotone (if 8* = 1) or has a hump-
shaped form (if 8* < 1).

Proposition 2. Let A* be a strict local maximizer of R(A). Then, the corner tasks
(t =0 and t = 1) deliver the minimum in R(A*).

Proposition 3. Suppose that ( € (0.5,1) and that function v is differentiable and
strictly concave. Let A*(B) be a strict local maximizer of R(A). Suppose further
that at A = A*(B), there is a task t € (1, t2) which delivers the minimum in R(A).
Then A* (B) belongs to the interval (0.5,1] and it is strictly decreasing in .

Proposition 4. Suppose that § € (0.5,1) and that function v is differentiable and
strictly concave. Suppose that A* () € (0,1) is a strict local maximizer of R(A) and
there is no task t € (t1, t;) which delivers the minimum in R(A). Then A*(B) is
strictly increasing in f.
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Theorem 2. Suppose that function v is differentiable and strictly concave. Sup-
pose A* (B) € (0,1) is a strict local maximizer of R(A). Then, there exists f* € [0.5,1]
such that A*(B) strictly increases for € (0.5, %) and strictly decreases for €
B*1).

Theorem 2 established the existence of threshold * € [0.5,1] beyond Exam-
ple 2: once the optimal diversity becomes positive at some f > 0.5, it is strictly
increasing until either A* = 1 or g = §*; after § = §*, the optimal diversity is
strictly decreasing. Thus, the optimal diversity decreases as jobs become less
complementary (f increases) if and only if 8* < 1. How common is it to have
B* < 1? Example 2 shows that it is possible. Proposition 5 provides sufficient
conditions for f* < 1, thus confirming that Example 2 is not an exception.

Proposition 5. Suppose that
1) function v is twice differentiable and strictly concave;
2) functions ws and w. are twice differentiable;

3) the following condition holds for all admissible x, and x,:

Pws(n, %) { v'(d) }< Pws (0, %) 0ws (x1,%) {_ v"(d) }
0x10x, deo,) | v(1—d) 0x? 0x; dejo] | v'(@)? )
9

Then there exists B* < 1 such that forall f € (f*,1), R(A, B) is uniquely maximized
at some A*(B) € (0,1), and A* (B) strictly decreases for p € (f*,1).

In words, condition (9) requires that the submodular component of the joint
output function is sufficiently submodular. Indeed, by assumption 1, the maxi-

mum on the left-hand side is positive. The submodularity property (2) regulates

0w (x1,%p) L
“onan,  —see footnote 2. Thus, condition (9)

0w (x1,X)
0x10x2

the sign of the mixed derivative

holds whenever the mixed derivative is sufficiently negative, that is, w;
is sufficiently submodular.

Although the conditions 1)-3) are more restrictive than necessary (for exam-
ple, Example 2 does not satisfy all of them), they still cover a large class of func-

tions, such as the one described in Example 3.
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Example 3. Suppose that

_ 29t —(a+1)t! X+ X
- fa+l _q , ws(x1,X2) =

Then conditions 1)-3) from Proposition 5, in addition to all assumptions listed in

v(d)

—k(x1x + w(x1) + w(xz)). (10)

Section 2, are satisfied if

a>0, k>0, w'x=0, w'(x)<0, w"(x)=0, (11
!/ 1 ! a+1 "
1+w(0)<§<w(1)+m(2“_w(1)). (12)

For example, if w(x) = 0, then condition (12) becomes k € (%, %), which
is nonempty for any a € (0,1.5]. Another example is w(x) =In(x +1), a = 0.01,

k € (0.004,0.25).

Leading example. If a class assignment is known to cover a single but randomly
chosen subject, then, to ensure that any assignment is at least partially com-
pleted, each student in the team should have a wide area of expertise. Then,
the team members can successfully communicate with each other and together
succeed even in a narrowly focused assignment. In contrast, if the assignment
is known to potentially cover several subjects, then the optimal team consists of
students with very different backgrounds. Indeed, if an assignment is mostly fo-
cused on one subject, it will be partially completed by the student with major
in this subject but all other students will neither understand nor contribute to
the task. At the same time, if an assignment equally covers all subjects and for-
mulated in such a way that all students can participate in the discussion, then,
despite that no single member of the team has enough training to complete the
assignment, the students’ joint efforts allow the team to get a positive (though
not highest) mark on this assignment.
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A Proofs

A.1 ProofofLemma 1
We first split each objective function into four parts:
htty

n
U= fw(v(tl —0,v(tr—1)dr+ f w(t—1), vt —1)dt
0

h
Uo1 U‘lrm
%) 1
+ f w(t-1n),v(t— t))dt+fw(v(t—tl),v(t—tg))dt, (A.1)
n+ity t2
2 N
~ U
Um2 21
R=min{ min w (v(f; — 1), v(ta — 1)), min w@(t—1t),v(H—1),
te[0,] te[tl f+ip
v~ T2
Roy Vv g
le
min @ w@({—-t),v(t—1), min ww(t-n),vt—-106)) ;. A.2)
te[tﬁfz t] te(tz,1]
2z 2 ~
s Ry
RmZ

Applying the change of variable 7 = ; + #, — ¢ and using w(x1, x2) = w(x2, X1),
which is followed from assumption 3, we get that the third part of each objective
is equal to the second part:

Lt
Une = f o V(2 —1),v(T-1))dr = Urm, (A.3)
5]
Ryp= min owW(-1),v(t—-1))=Rinm. (A4)
TE[Z’I,%]

18



We then rewrite each of the remaining three parts so that each depends on #;
and f, through the sum f; + #, = s and the difference f,—#; = A. Since0< ) < fp <
1, the difference 1, — t; = A belongs to [0, 1] and, for a fixed A, thesum #; + t, = s
belongs to [A,2 - Al.

Applying the change of variable 7 =

Ltk ertz —t, we get that the first part becomes

s/2

Up = a A d A.5
01—fw(v(r—5),v(r+g)) T, (A.5)

A2

A
T+—
2

TE[A/2,5/2]

. A
Ry1= min w|v T—E , U

Applying the change of variable 7 = % — 11 + t, we get that the second part
of each objective depends only on #; and #, only through £ - #; = A:

A
A 3A
Ulmsz vit——=|,v|— —1]|dr, (A.6)
2 2
A72
n0(t(=2) (% )
Riypp= min wlvlft—-=|,v|—-7]].
T€[A/2,A] 2 2
Applying the change of variable 7 = # - % and using w(x1, x2) = w(x2, x1),

we rewrite the forth part of each objective as

1-s/2

A A
Uo = w|vlt—-=]|,v|[t+—=]|]|dr, (A.7)
2 2
A2
. A A
Ry = min wlvltT—=|,v|T+—=]].
T€[A/2,1-5/2] 2 2

Utilitarian objective

To prove that s = 1 is optimal for any fixed A € [0, 1], we differentiate (A.1) with
respect to s and use (A.3), (A.5), (A.6) and (A.7) to get

“a el )
———=—jo|v|t-=|,v|T+ =
0s 2 2 2

3o

19

(A.8)

T=5/2

T:l—S/Z}




Since w(xy, x,) is weakly increasing in each argument by assumption 2 and v is

strictly decreasing by assumption 1, function

w(v(r- %) v(t+ %)) is weakly decreasing in 7. Thus,

AU(A, AU(A,
VA S otors<1, YA _porss1, (A.9)
0s 0s

which implies that s = 1 is optimal.

Rawlsian objective

Since
R(A, s) = min{Ro1, R1m, R21} (A.10)

by (A.2) and (A.4) and since R, in (A.6) does not depend on s, to prove that
R(4, s) is maximized at s = 1, it is sufficient to prove that min{Rp;, Ro1} is maxi-
mized at s = 1. By (A.5) and (A.7),

min{Ry;,Ro1} = min w(v(r—é),v(r+é)), (A.11)
re[5 max{§,1-35}] 2 2

which is weakly decreasing in max{3,1 - 3}. The minimum of
max{3,1 -3} isachieved at s=1.

A.2 Proof of Proposition 1

For f < 0.5, function w(x, x») is supermodular. Hence, for any #;, #, and ¢,

o(t-u,v(t—))+w(t- &), v(t-n1l) (A.12)
sow(t-nu,v(t-u))+w@(t- ), v(t-1nl).

By assumption 3, function w(x;, x2) is symmetric, which implies
w@(t- ), vlt-u)) =w@(r-u,v(- ). (A.13)

Substituting w(v(|t—t1), v(|t— 1)) from (A.13) into (A.12), taking the expectation
of (A.12) over t and using the definition (5) of the Utilitarian objective, we get

2U(n, ) = U, 1)+ U(f, ), (A.14)
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which implies
Uy, ) =max{U(f, 1), U(fz, )} = Hh% Ut . (A.15)
telo,

Since (A.15) holds for any 0 < 1; < t, < 1 and the right-hand side of (A.15) does
not depend on #; and f,, we can take the maximimum over #; and ¢, of the left-
hand side of (A.15) and get

max U(f;, ) < max U(t,1). (A.16)

0<ti<fp<l 1€[0,1]

The right-hand side of (A.16) is obviously less or equal the left-hand side of (A.16).
Hence, inequality (A.16) must always hold as equality. Result (A.16) implies that
there always exist £; and ¢; such that ¢; = ¢; and they maximize U(fy, f2) over
0<1t <t <1. ByLemma 1, for any given #; = £, = ¢, £ = 0.5 maximizes U(t, t).
Hence, t = t; = 0.5 maximize U(t], ;) over0< f; < fp < 1.

A.3 Proofof Theorem 1

By the first and the second order conditions, interior A*(f) is a strict local maxi-
mizer of the Utilitarian objective U(A, p) if and only if

oUW B _ *U(A*(B), )
oA - A2

<0. (A.17)

By the implicit function theorem applied to the equality in (A.17),

dA*(B) . PUWL(B),P) /*UL(B),B)
g RIS 02 '

(A.18)

The denominator in (A.18) is negative by the inequality in (A.17). Hence, A*(B)
is strictly increasing if
U (), B)
0AGpB
Denote by Ug(A) = U(A, 1) the Utilitarian objective when the weight on the
submodular component is one, and by U,(A) = U(A,0.5) the Utilitarian objec-
tive for an additive task. Then, decomposition (4) implies that for any g € [0, 1],
U(A, B) is a weighted sum of Us(A) and U, (A):

> 0. (A.19)

UA B =2-1UsAN)+21-BU,4(A). (A.20)
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Using (A.20), we can rewrite the equality in (A.17) as
(2,3—I)U;(A*(ﬁ))+2(1—ﬁ)U£Z(A*(,6)) =0 (A.21)
and inequality (A.19) as
U;(A* p) > UL’I(A* (B). (A.22)
Thus, it is sufficient to show that (A.21) implies (A.22). Substituting
UL (A*(B)) from (A.21) into (A.22), we get
_ 2(1-P)
2f-1
Since > 0.5 by assumption, (A.23) is equivalent to U, L’I(A* (8)) <0. Thus, to prove
the theorem, it is sufficient to prove that

Uy (D™ (B)) > Uy (A*(B)). (A.23)

U,(A) <0, forallA€(0,1). (A.24)

We calculate the Utilitarian objective for an additive task by substituting s = 1
and w(x1, x2) = 0.5(x] + x») into the expression (A.1), which is simplified using
(A.3), (A.5), (A.6) and (A.7):

1/2 A
A A A
Uy(A) = vit—=|+v|t+—=||dTt+ vit—=1|+v
2 2 2
A/2

Al2
Differentiating (A.25) yields
U’(A)—l(v(1+A) u(l_A)) (A.26)
a2 2 2 ) '

which is negative for all A > 0 by assumption 1.

% - r)) dr. (A.25)

A.4 Examplel

Rewriting the expression (A.1) using (A.3), (A.5), (A.6) and (A.7), and then substi-
tuting s = 1 and w(x1, x2) = fmax{x;, X2} + (1 - f) min{x, x»}, we get the following
expression for the Utilitarian objective

Uua,p = ZAZZ(ﬁU(T - %) +1-pv (r+ %)) dr (A.27)
o2 ] pufe-2Jea-m 3o
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Differentiating (A.27) yields

oU(A, B) 1+A 1-A 1+A A
— —|-v[—=||+a-2 —|-v|=]||]. A28
oA ﬁ(”( 2 ) ”( 2 ))” ﬁ)(”( 2 ) "(2)) *-20)
Suppose B € [0,0.5]. Since function v is strictly decreasing by assumption 1,
the derivative (A.29) is negative for all A > 0. Thus, the optimal diversity is unique
and equal to 0.
Suppose f € [0.5, 1]. Rewriting the derivative (A.29) as

—ﬁv(I;A

we can see that it is strictly decreasing in A because function v is strictly decreas-
ing by assumption 1. Thus, U(A, f) is concave in A and, therefore, the optimal
diversity is unique. Moreover, the optimal diversity is equal to 0.5 for § =1 and
belongs to the interval (0, 0.5) for § € (0.5, 1) because

ouw.p _ . _ (1)) Usp ( (§)_ (1))
=P 1)(1;(0) u(z)), —on =a-plv|7|-v|5]) @30
>0 <0

1+A
2

ou(A, p)
0A

:(l—ﬁ)v(

A
+(2,3—1)1/(E), (A.29)

where the signs follow from assumption 1. Thus, the optimal diversity solves
W = 0, which is equivalent to (7). The optimal diversity increases in 8 be-
cause from (A.29),

UMl p  1|oUn,Pp) A 1+A
—— == ——+v|=|-v|[—]| ]|, A.31
onop  B|  on ”(2) 172 ) (A-31)
>0
which implies that the mixed derivative is positive whenever aUgﬁ’ﬁ ) — 0.

A.5 Example 2

Rewriting the expression (A.2) using (A.4), (A.5), (A.6) and (A.7), and then substi-
tuting s = 1 and w(x1, x2) = fmax{x, X2} + (1 - B) min{x, x»}, we get the following
expression for the Rawlsian objective

R(A, B) = min{Ro1 (A, B), Rim(A, B}, (A.32)
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A A
msp= mn Jomacfofr-2 o2} s
01 (A, B TerF%n,l%]ﬁmaxvrzvrz
cv-aminf -3 2)
Byminsv|t 5 vt > ,
. A 3A
Ripm(A,B) = min {ﬁmax{v(r——),v(——r)} (A.34)
re[3 4] 2)\ 2

+(1—ﬁhnm{v(r—%)ﬁmé§—ﬂ)}}

By assumption 1, function v is strictly decreasing. Hence,

A A A 3A
v(r——)zv(r+—) for all 7, v(r——)zv(——r) fort<A, (A.35)
2 2 2 2

which allows to rewrite (A.33) and (A.34) as

Ro1 (A, ) = min {ﬁv(r—é)+(l—ﬁ)v T+é }, (A.36)
re[4,1 2 2
A 3A
le(A,ﬁ)zrer?%i?A]{ﬂv(r—5)+(l—ﬁ)v(?—‘r)}. (A.37)

Since v is decreasing, the objective function in (A.36) is decreasing in 7 and the

minimum in (A.36) is achieved at 7 = 1/2:

1-A
2

&u&m=ﬁ4 1+A)

+(1- ﬁ)v( (A.38)

The second derivative w.r.t. 7 of the objective function in (A.37) is negative be-
cause v is strictly concave by assumption. Hence, the minimum in (A.37) is achieved
eitheratt=A/2oratt =A:

le(A,ﬁ):min{ﬁv(0)+(l—ﬁ)v(A),v(%)}. (A.39)

Substituting (A.38) and (A.39) into (A.32) and using assumption 1 to claim that

v(0) = v(152) and v (A) = v(12), we get

2

1+A A
SIS IS

)+(1—ﬁ)v 5
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Since v is strictly concave by assumption, the first term in (A.40),
Bv(152) + @ - Pyv(4$2), is strictly concave in A. In other words, there exists
A(PB) € [0,1] such that the first term in (A.40) is strictly increasing in A € [0, A(B))
and strictly decreasing in A € (A(B), 1].

Since v is strictly decreasing by assumption 1, the second term in
(A.40), v(%), is strictly decreasing in A € [0,1]. Thus, both terms in (A.40) are
strictly decreasing in A € (A(f), 1], which implies that

R(A(B), B) > R(A,B) forall A€ (A(B),1]. (A.41)

Suppose B < 0.5. Then, at A = 0, since v is strictly decreasing, the first term
in (A.40) is weakly decreasing in A because its derivative (0.5 - 8)v'(0.5) is non-
positive. Hence, A(B) = 0 and both terms in (A.40) are strictly decreasing in A €
[0,1], which implies that A* = 0 uniquely maximizes R(A, §).

Suppose > 0.5. Then, at A = 0, the first derivative of the first term in (A.40),
(0.5— B)v'(0.5), is positive. Hence, A(B) > 0. For A € [0,A(B)), the first term in
(A.40) is strictly increasing, while the the second term in (A.40) is strictly decreas-
ing. At A = 0, since v is strictly decreasing, the first term in (A.40), v(0.5), is strictly
less than the second term in (A.40), v(0). Thus, there exists A*(f) € (0, A(,B)] such
that R(A, B) is equal to the first term and strictly increasing for A € [0, A*(f)), and
equal to the second term and strictly decreasing for A € (A*(B), A(8)]. This A*(B)
uniquely maximizes R(A, ) on A € [0, A(B)] and, therefore, by (A.41), on A € [0,1].

Suppose B = 1. Then, A(f) = 1 because the first term in (A.40) is strictly in-
creasing in A € [0,1] since v is strictly decreasing. At A = 0.5, the first and the
second terms in (A.40) are equal. Hence, A*(f) = 0.5.

Consider the optimal diversity function A*(8) on § € (0.5,1).

At A =1, the first derivative of the first term in (A.40) is equal to
—0.58v' (0) +0.5(1 — B)v' (1). Since v is strictly decreasing, this derivative is posi-
tive for > f8 and negative for 8 < B, where

v ()

= ——— . A.42
p v (0)+v'(1) ¢ )
Note that f € (0.5,1) because v/(1) < v'(0) < 0 since v is strictly decreasing and
strictly concave.

Suppose B € [B,1). Then, the first term in (A.40) is strictly increasing for all

A€ [0,1), which means that A(B) = 1. At A = 1, the first term in (A.40), fv(0) + (1 —
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B)v(1), is strictly greater than the second term in (A.40), v(0.5), because

Bv0)+1-pPv1)-v(0.5) (A.43)

v(0)>v(1), B=h _
> B (w(0)—-v(0.5)+ (- pB)(v(1)—v(0.5)

de(0.5,1),de(0,0.5) _ -
= —pv'(d)0.5+ (1 - p)v'(d)0.5

1" 0 _ . ,
> pr 005+ - pr'mes =7,

Suppose g € (0.5, ,B). Then, the maximum of the first term in (A.40) is interior,
which means that A(B) € (0,1) satisfies

1+A 1-A o
(1—ﬁ)v’(T) =ﬁv’(T) at A=A(B). (A.44)
By the implicit function theorem applied to (A.44),
A v (22 4+ o (LA 1<, 0" .
dAp) _ (G +v' (5 <oy 0 atA=Ap). (A.45)

B B () ()

Consider the difference between the first and the second terms in (A.40) at A =
A(B). This difference is increasing in  because

e e ]

(Aém)v(1—A(ﬁ))_v(1+A(ﬁ))_%v,(A(_ﬁ)) dA(B)

(A.46)

>0,
2 2 2

dp
~ ——
>0 since v'<0 >0

positive at 8 = B by (A.43) and negative at 8 = 0.5 because A(0.5) = 0 and v(0.5) <
v(0).

Thus, there exists a unique §* € (0.5, B) such thatat A = A(ﬁ), the first term in
(A.40) is strictly greater than the second term in (A.40) for all § € (8*,1), and the
first term is strictly lower than the second term for all § € (0.5, 8).

Suppose f € (0.5, 8*). Then, the optimal diversity A* () is equal to A(8) and,
thus, strictly increasing by (A.45).

Suppose B € (f*,1). Then, the optimal diversity A*(f) is less than A(,B) and
equalizes the first and the second terms in (A.40):

ﬁv(1_A2*(ﬁ))+(l_ﬁ)y(1+A2*(ﬁ)): U(A*Z(ﬁ)).
26
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By the implicit function theorem applied to (A.47),

o o[EEE) e

R E R )

(A.48)

The numerator in (A.48) is positive because v is strictly decreasing and A* (f) > 0.
The denominator in (A.48) is negative because v’ (AT(ﬁ)) < 0 and the first term in

(A.40) is increasing at A = A* () < A(ﬁ). Thus, (A.48) is negative.

A.6 Proof of Proposition 2

Due to the symmetry (f; = (1-A)/2 and t, = (1+ A)/2, Ry; = Ry when s =1 by
(A.5) and (A.7), Ry = Ry, by (A.4)), we can focus on ¢ € [0,0.5]:

R(A) = min{Roy (A), Rim ()}, (A.49)
Roi(A)= min w(v(l_A—t),v(l+A—t)), (A.50)
ref0,152] 2 2
Rim(A) = r?_iAn1 w(v(t—%),v(%—t)). (A.51)
22

Function Ry, (A) is weakly decreasing in A because the objective function in
(A.51) is weakly decreasing in A by assumptions 1 and 2 and the interval [%, %
over which the objective function is minimized expands as A increases.

Suppose A = A* > 0 is a strict local maximizer of R(A). Then, choosing A
slightly lower than A* must hurt the principal (i.e., must lower R(A)). Since Ry, (A)
is weakly decreasing in A, choosing A slightly lower than A* strictly lowers R(A)
only if le(A*) = Ro1 (A™).

If A* = 0, then the interval [%, %] collapses to a single point ¢ = 1=A°

2

which also belongs to the interval [O, %] in (A.50). Thus,
Rim(A*) = Ro1 (AY).
Thus, if A* is a strict local maximizer of R(A), then Ry, (A*) = Ry (A*), which
implies that the minimum under the Rawlsian objective is achieved at ¢ € [0, %] .
For the interval 7 € [0, % ], the minimum is achieved at ¢ = 0:

Rt (A) = 1-A 1+A A52
01( )_w(U(T)'U(T))’ (A.52)
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because the objective function in (A.50) is increasing in ¢ by assumptions 1 and
2. Thus, the minimum under the Rawlsian objective is achieved at ¢ = 0.

A.7 Proof of Proposition 3
Before we proceed to the main argument, we prove the following claim:
Claim A.1. For € (0.5,1), function w is strictly increasing in each argument.

Proof. By decomposition (4), for € (0.5,1), w is strictly increasing in each argu-
ment by assumption 2. O

By assumption, there exists a task t € [#1, fo] which delivers the minimum
in R(A) at A = A*(f). Thus, since t = 0 also delivers the minimum in R(A) by
Proposition 2, (A.51) is equal to (A.50):

F(A,B)=Rim(A, )~ Ror(A,B) =0 at A=A"(f). (A.53)

Function F(A, §) can be equal to 0 only for A > 0.5. To see it, we use expres-
sions (A.5) (with s = 1) and (A.6) for Ry; and Ry, respectively:

A A
Ro1 = min w(v(r——),v T+—), (A.54)
T€[A/2,1/2] 2 2

R min ofofr- 2] 02 1)).

T€[A/2,A] 2

Since function v is strictly decreasing by assumption 1,
v(t+%)<v(32 -1)forall T > A/2. Then, since function w is strictly increasing

in the second argument by Claim A.1,

A A A 3A A
w(v(r——),v(r+—))<w(v(r——),v(——1)), forall 7> —. (A.55)
2 2 2 2 2

Consider any A < 0.5. Then, (A.54) and (A.55) imply

(A.54), A<0.5 . A 3A (A.54)
Ry, = min ow|v|lt—-—=|,v|—-T
T€[A/2,1/2] 2 2

Moreover, the second inequality in (A.56) becomes equality only if T = A/2 deliv-

ers the minimum in Ry;. However, T = A/2 never delivers the minimum in Ry;

because w (v (- %), v(t+%)) is strictly decreasing in 7 by assumption 1 and

(A.55)

v

Ro;. (A.56)
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Claim A.1. Thus, Ry, > Ro; for all A < 0.5, which implies that A*(f) belongs to
the interval (0.5, 1].

Following the above logic, we also argue that function F(A, 8) can be equal to
0 only if

. A 3A
le:Telllll}?A]w(v(T—E),v(7—‘r)); (A.57)
that s, given that 7 = A—0.5+ ¢ by the change of variables described before (A.6),
the task at which the minimum in R;,, is achieved must belong to the interval
[211,0.5]. Since by (A.53), F(A, B) = 0at A = A*(f), equality (A.57) holds whenever
A=A*().

Function F(A, f) is strictly decreasing in A at point A = A*(f). Indeed, as we
argue after (A.51), Ry (A, B) is weakly decreasing in A. Thus, to prove that F(A, )
is strictly decreasing in A at point A = A* (), it is sufficient to argue that Ry; (A, §)
is strictly increasing in A at point A = A*(8). Towards contradiction, suppose
Ro1(A, B) is weakly decreasing in A at point A = A*(fB). Then, since Ry, (A, B)
is weakly decreasing in A and since A*(f) is positive, choosing A slightly lower
A* () is feasible and must weakly increase both Ry; (A, B) and Ry, (A, B) —hence,
weakly increase R(A, f). Thus, choosing A slightly lower A* () weakly benefits
the principal, which contradicts the assumption that A* () is a strict local maxi-
mizer.

Since function F(A, B) is strictly decreasing in A at point A = A*(f), to prove
that A* () is strictly decreasing, by the implicit function theorem applied to (A.53),
it is sufficient to show that F(A, B) is strictly decreasing in § at point A = A* ().

Applying decomposition (4) to (A.52) and to (A.57), we get

s =0 52 152 p 15352
(A.58)

Rim(AB) = in 26-1) ( ( —A) (3A— )) (A.59)
1m(8,f LY N p-Daos|v(r 2)% 2 7° ’

+(1—ﬁ)(u(r—§)+v(%—r)) at A=A"(f).

Expressions (A.58) and (A.59), together with the definition (A.53) of F(A, ),

29



imply

2

B 2ﬁ—1F(A’ﬁ)+2ﬁ—1

A 3A «
- U(T(A)—E)— v(?—T(A))) at A=A*(f),

OF(A,B) 2 1 (U(I—A)+v(1+A) A60)

where 7(A) € [1/2, A] delivers the minimum in (A.59). Since F(A, 8) = 0 by (A.53),
the derivative (A.60) becomes

OF(A B _ f@(A),A)

t A=A"(fB), A.61
3P 261 a (B) ( )
where
F,A) (1—A)+ (1+A) ( A) (SA ) (A62)
T,A)=v v -v|lt—-=|-v|—-1]. .
2 2 2 2
Function f(r,A) is strictly convex in 7 since v is strictly concave. Then, since

the derivative of ‘;ZA) is equal to 0 at T = A, function f(z,A) is strictly decreasing

in7e(1/2,Al AtT=1/2, f(3,A) = v(H22) - v(352) is negative for A < 1 by
assumption 1 and equal to 0 at A = 1. Thus, f(7,A) <0forallT € [1/2,A]ifA <1,
and f(r,A)<0forallTe (1/2,A]ifA=1.

Suppose A = A*(f) < 1. Then, the derivative (A.61) is negative because 2ﬁ+1 >
0 since > 0.5 by assumption and because f(z,A) <0forall 7 € [1/2,A].

Suppose A = A*(B) = 1. Then there exists T > 1/2 which delivers the mini-
mum in (A.59). This follows from the assumption that there is a task t € (¢, £)
which delivers the minimum in R(A). Indeed, the interval (f;, ) becomes (0, 1)
at A = 1; then, given that T = A - 0.5+ ¢ = 0.5+ ¢ by the change of variables
described before (A.6), a minimizer ¢ € (0,0.5] corresponds to a minimizer 7 €
(0.5,1]. Then, the derivative (A.61) is negative because Zﬁ;—l > 0 since 8 > 0.5 by
assumption and because f(r,A) <0Oforall T € (1/2,A].

A.8 Proof of Proposition 4

Since there is no task t € (1, 2) which delivers the minimum in R(A), Ry1 < Rip.
Thus, A*(f) is a strict local maximizer of Ry; (A, ). Hence, to show that A* ()
is strictly increasing, it is sufficient to show that the mixed derivative M%%A'm is

positive at A = A*(f).
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By (A.58),

O0Ro1 (A, B) 2 1 ((I—A) (1+A))
= Ro1(A, B) - . A.63
3p 261 01(A, B) 1" 2 vl (A.63)
Hence,
0%Ro1 (A, B) 2 0Ry1(A,P) 1 J(1-A (1+A
= -v|{——||]. (Ab4
3pon  2p-1_ on +2(2ﬁ—1)( ( 2 ) v( 2 )) (64
At A = A*(p), the mixed derivative (A.64) is positive because W = 0 by opti-

mality of A = A*(f), f > 0.5 by assumption, and v’ (152) > v/ (132) because v is
strictly concave and A = A*(f) > 0.

A.9 Proofof Theorem 2

Suppose there exist 0.5 < § < f < 1 such that A*(8) = A*(f) = A € (0,1) and A*(B)
is weakly decreasing at ﬁ_z B. Then, by Proposi?ion 4, there is a task t € (#1, )
which delivers the minimum_in R(A, B). Hence, F (A, B) =0, where F is defined in
(A.53). Following the argument in the proof of Prop_osition 3, we conclude that
F(A, p) is decreasing in § whenever

F(A,B) = 0 and B € (0.5,1). Then, since F(A, ) = 0, F(A, B) must be negative.
Hence, there is a task f € (#1, &) which delivers the minimum in R(A, B). Then, by
Proposition 3, A* () is strictly decreasing at § = .

A.10 Proof of Proposition 5

In light of Proposition 3 and Theorem 2, to prove Proposition 5, it is sufficient
to show that there exists f* € (0.5,1) such that for all 8 € (8*,1), conditions in
Proposition 3 hold, that is, R(A) is uniquely maximized at some A* € (0,1) and
there is a task ¢ € (11, ) which delivers the minimum in R(A*).

By decomposition (4), there exists §* € (0.5,1) such that for all g € (*,1),
inequality (9) translates to

Pox,x) { v'(d) } Pox,x) dobax) {_ v"(d) }
0x10xy dejo1) | v'(1—d) axf 0x; deoy | v(d)?]’
(A.65)
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By (A.49), sufficient conditions for R(A) to be uniquely maximized at some
A* € (0,1) and for the existence of a task ¢ € (#;, t2) which delivers the minimum
in R(A*) are the following:

a) Ro;(A) is strictly increasing in A € (0, 1);
b) Rin(A) is strictly decreasing in A € (0, 1);
€) Ro1(0) < Rym(0);

d) Ro1(1) > Ry (1).

Condition a) holds for all 8 € (*,1) because

(A.52) %vl (l) (a‘” (v(3).v(z) d0(v(z).v(3))

2 6)61 6JC2

Ry, (0) ) (A.66)
is equal to 0 by the symmetry assumption 3, and

(A.67)

is positive: each line in (A.67) is positive by assumptions 1 and 3 and condition
(A.65); differentiation in (A.66) and (A.67) is a valid operation because functions
v and w are twice differentiable by assumptions 1) and 2) of Proposition 5.

Condition b) holds for all § € (0.5, 1) because the objective function in (A.51)
is strictly decreasing in A by assumption 1 and Claim A.1 and the interval | %, %
over which the objective function is minimized expands as A increases.

Condition c) holds for all § € (0.5,1) because

52),(A.5 1 1
Ro1(0) = Ry (0) 7721 ”w(u(i),v(i))—w(vw),v(on (A.68)
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is negative by assumption 1 and Claim A.1.
Condition d) holds for all S € (8*,1). Indeed,

(A.52),(A.51)

Ro1(1) — Ry (1) w((0),v1) - mil} w@@®,vd-1), (A.69)

t€[0,3
is positive because function w (v (), v (1 — 1)) is strictly decreasing in ¢ € [0, %]
do (v (8),v (1- 1)) :v'(l) 00 (v(3).v(z)) _9w(v().v()) .0,
dr t=1/2 2 6x1 0x2
is equal to 0 by the symmetry assumption 3, and
Eow®,vd-0)  , (V@) 0w @), vl-1)
a2 =v (1) (v’(t)z %, (A.71)
. FPo@®,vd-1) VA-1Fo@®,vd- t)))
Oxf l/'(l‘)2 0x10x;
"1-1) dw (1), v1-1)
"q—t 2( v
rria=n v (1-1)? axp
. FPow®,vd-1) v©®) Fo@®,vd- t)))
0x3 v'(1-1 0x10x

is positive by the argument similar to the one we use to show that (A.67) is posi-
tive.

A.11 Example 3
Assumption 1 holds because

+1)(d+D*
o)W et D+ D7 zai(l — ) (A.72)

is negative forall a >0, d € [0, 1].
Given that function v(d) defined in (10) is decreasing in d € [0,1] from 1 to
0, the range on which the joint output function w(x;, x2) must satisfy the desired
properties is
0<sx1<1, 0sxp=<L (A.73)

Assumption 3 holds because function w; (x1, x2) defined in (10) is symmetric
in its arguments.
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By symmetry, to verify assumption 2, it is sufficient to show the monotonicity
of functions w; and w, with respect to the first argument:

Ows (x1,%2) 10) 1
dxl

(A.73),01 1 (11), (12)
k(xz+w' (x)) = 5—k(1+w’(0)) >0, (A74)

(A.73), (11)

Ow, (x1,x i Ows (x1, X; 74y 1
O (0, Xp) assumprion 9005 L1, X2) 020 Ly k(4 10/ () 4720, (a75)

0x; 0x1 2

Function w; (x1, x2) defined in (10) is submodular because

0w (x1,X2)

(11
=-k <
0x16x2

0. (A.76)

Condition 1) from Proposition 5 holds because

1 1 a-1
V' (d) 1o _ ala +2a)+(1d_+1 ) (A77)

is negative forall a >0, d € [0, 1].
Condition 2) from Proposition 5 holds if function w is twice differentiable.
Condition 3) from Proposition 5 holds because

/Id 2(l+1_1 a 2a+1_1 a
max {_ v"(d) }(A.72),:(A.77) m ( ) _ ( ) ’ (A78)
acon | v'(d)? delo1] (a+1)(d + 1)@+ a+1
v'(d) } (A.72) ( 1+ d)“ 4
_— = —_— =2 y A79
drél[%{v’(l—d) drg[éa,)f] 2-d ¢ )
Pws (01, X%)  dws (1, %) 2™ -a  Pos(n,x)_,
ox? 0x; a+1 0x10x
1 2a+1_1 a
(1:0)—kw”(xl)—(——k(x2+w'(x1)))¥+2“k
2 a+1
(A.73), (11) 1 2¢t1 _1)q (1n,12)
= —kw”(l)—(é—kw’(l))( +1) +2%% > 0. (A.80)
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