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1 Introduction

Topic of the thesis

Scale invariance is one of the key properties inherent in the parameters of most modern

neural network architectures. Provided by the ubiquitous presence of layers of normal-

ization of intermediate activations and/or weights, scale invariance, as the name implies,

consists in the invariance of the function implemented by the neural network when its

parameters are multiplied by an arbitrary positive scalar. In this work, we investigate the

effects of this property on the training dynamics of neural network models, as well as its

influence on the intrinsic structure of the loss landscape.

In the first part of the work, we consider and analyze the effect of periodically re-

peating cycles of convergence and destabilization when neural networks are trained using

normalization and weight decay (WD) techniques. As shown by theoretical and empir-

ical analysis, this behavior is a consequence of the competing influence of weight decay

and scale invariance on the norm of neural network parameters. Thus, there is a periodic

change of the sphere on which the model is trained, which ultimately leads to the observed

periodic behavior of the optimization process.

In the second part of the work, we reveal the intrinsic structure of the loss landscape of

neural networks with scale-invariant parameters by fixing the sphere on which the model

is trained. It has been analytically and experimentally shown that in such a setting, three

training regimes can be distinguished: convergence, chaotic equilibrium, and divergence.

Each regime is characterized by a number of its specific features and allows to highlight

certain properties of the intrinsic loss landscape of scale-invariant neural networks, which

are also reflected in the actual practice of training neural network models, for example,

when designing a learning rate schedule. The described effects of training scale-invariant

models on the sphere are studied in various settings using both the more classical cross-

entropy and Mean Squared Error (MSE) loss functions on classification problems, which

has shown promise in recent studies [1].

Relevance

Despite the tremendous empirical progress in the field of deep learning in recent decades,

the search for a satisfactory justification of the principles of design and inference of deep
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neural network models is still extremely relevant [2]. Many questions are still left unan-

swered. They include both particular issues related to isolated effects of the training pro-

cess and the properties of final solutions, for example, double descent of the test loss [3, 4]

or the so-called grokking [5], and global problems related to the internal structure of the

loss landscape and optimization dynamics of neural networks, e.g., the ability of modern

neural networks to memorize the entire training set [6], the presence of “minefields” [7], the

connectivity of modes [8, 9] in the loss landscape, and similar overparameterized learning

phenomena [10]. The interpretability and predictability of training and inference of deep

learning models is a necessary condition not only for their wider and safer application,

but also for the development of new ways to improve them, which will not only rely on

practical intuition and heuristics, but on a rigorous scientific method as well.

Normalization techniques such as Batch Normalization (BN) [11], Layer Normaliza-

tion [12], or Weight Normalization [13] are commonly used in modern neural network

architectures and are shown empirically to often help stabilize the learning process and

improve the final quality of models. However, their use further complicates the under-

standing of the processes occurring in neural networks. Despite some progress in un-

derstanding certain properties provided by the use of normalization in neural networks,

many questions still remain unsolved [14, 15]. In particular, the role of normalization in

determining the effective structure of the loss function surface is not completely clear,

as well as how exactly it affects the learning dynamics of modern normalized neural net-

works. These issues have gained particular relevance in recent years due to the discovered

effects of singularity and instability in certain modes of application of normalization tech-

niques [16, 17, 18, 19] despite they are believed to provide stabilization of the learning

process of neural networks.

Perhaps the most general, and therefore key, consequence of using arbitrary normal-

ization techniques in a neural network architecture is the scale invariance property of the

weights of this network preceding the normalization layers. Due to the fact that nor-

malization is usually applied after almost every hidden layer of the neural network, in

practice it turns out that the vast majority of model parameters obtain this property.

This circumstance highlights the main difference between normalized neural networks

and networks without the use of normalization techniques, so it cannot be ignored when

studying the impact of normalization on optimization dynamics and the loss landscape.

Thus, the actual research and interpretation of normalization techniques must rely on the
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property of scale invariance and its consequences, as demonstrated by recent work in this

area [18, 19, 20, 21, 22, 23, 24, 25].

The first part of this work is devoted to discovering, researching and explaining the

effect of periodic behavior of neural networks training with normalization and weight decay

techniques. Weight decay is a widely used technique for training machine learning models,

which consists in scalar multiplication of parameters by a given positive coefficient less

than one after each training iteration and acts as a generalized classical L2 regularizer [22,

26, 27]. Despite the fact that scale-invariant models by definition do not depend on

the actual value of the parameters norm, it turns out that weight decay nevertheless

significantly affects the training dynamics of such models due to a non-trivial change in

the so-called effective learning rate (ELR). Prior work dedicated to investigating this effect

has come up with some controversy about how this influence determines the final behavior

of the optimization dynamics. Some share the view that training normalized models using

weight decay must eventually reach a state of equilibrium, when all observable metrics,

including the value of the effective learning rate, the norm of parameters, empirical risk,

etc., stabilize in some fixed value, which generally has a beneficial effect on learning [19,

20, 28, 23]. Others, on the contrary, argue that WD after a certain number of training

iterations will bring the weight norm too close to zero, which will lead to numerical

instabilities and divergence of the optimization process [17, 18, 19]. In this work, the

described contradiction is resolved and it is demonstrated that both positions are valid in

a certain sense. On the one hand, the learning dynamics of normalized models with WD

indeed constantly encounters instabilities for the above reason. On the other hand, such

instabilities are consistent, which leads to periodic behavior of the learning dynamics.

This periodic behavior has a regular structure, which makes it possible, among other

things, to consider it as a kind of generalization of the equilibrium principle. In this work,

we provide a detailed experimental and theoretical analysis, describing and substantiating

the mechanisms behind such periodic behavior. The main paper on this topic also explores

its implications and effects in relation to training modern deep learning models.

In the second part of the work, we study the loss landscape structure of scale-invariant

neural networks on their intrinsic domain, i.e., the sphere. Since scale-invariant models

inherently do not change when the parameters move along the radial direction from the

origin, their natural domain can be considered a sphere instead of the entire parameter

space. Accordingly, their training trajectory can also be effectively viewed through the
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projection onto the sphere in order to better understand how the optimization dynamics

works on the true domain. However, the effective learning rate, which is responsible for

the optimization rate on the unit sphere, changes non-trivially during standard training

of scale-invariant models, especially with the use of WD, as, in particular, was shown in

the previous part of the work. Thus, it is difficult to study the intrinsic loss landscape,

since the size of the effective optimization step cannot be controlled even when fixing

the standard learning rate (LR). In this work, we solve this problem by switching to

the optimization of fully scale-invariant neural networks directly on the sphere using

the projected stochastic gradient descent (SGD) method. Such a training procedure

eliminates the effect of a dynamically changing effective learning rate and fixes it to

a given value by construction, since it eliminates the variability of the parameters norm

during training and completely transfers the dynamics to the natural domain. This allows

us to study in detail and in a controlled way the intrinsic structure of the loss landscape

of scale-invariant neural networks. It turns out that training of scale-invariant neural

networks on a sphere can be carried out in three regimes depending on the given ELR

value: convergence, chaotic equilibrium, and divergence. Each regime possesses a number

of distinctive features and reveals certain properties of the actual loss landscape structure,

for example, the presence of a whole spectrum of functionally and geometrically different

global minima corresponding to different ELR values of the first regime, high-sharpness

zones preventing convergence and separating the first regime from the second, as well

as local and global regions of stabilization of the optimization dynamics in the second

training regime. Two papers of the author were dedicated to the study of the features

of these regimes and their consequences on the training dynamics and the loss landscape

of neural networks with scale-invariant parameters: the first one focuses on the study of

the classical cross-entropy loss function and for the first time reveals the main properties

of the three regimes, the second one considers the case of MSE loss for classification

problems [1] and extends the results of the previous work. Among other things, these

papers demonstrate how these regimes manifest themselves in standard training of modern

deep learning architectures and how they can be used in practice, for example, to find

optimal LR schedules.

The goal of this work is to reveal and study the features of the training dynamics

and the structure of the loss landscape of neural networks with scale-invariant parame-
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ters. This will improve the interpretability of modern neural network models that use

normalization techniques.

2 Key results and conclusions

Contributions. The main contributions of this work can be summarized as follows:

1. We investigated the training dynamics of normalized neural networks in the entire

parameter space with weight decay. We discovered and analyzed both experimentally

and theoretically the effect of periodic behavior of such dynamics.

2. We resolved the contradiction that has developed in the literature regarding the

result of this optimization dynamics (equilibrium vs. instability) via the described

periodic behavior. We derived the generalized equilibrium principle.

3. We investigated the training dynamics of fully scale-invariant neural networks on

their natural domain, i.e., the sphere. We discovered and analyzed both experimen-

tally and theoretically three regimes of such training: convergence, chaotic equilib-

rium, and divergence; we also distinguished their main characteristics.

4. By studying these regimes, we revealed a number of properties of the intrinsic loss

landscape of scale-invariant models, including the existence of a spectrum of various

global minima, high-sharpness zones, and regions of stabilization of optimization

dynamics.

5. Additionally, we studied the three regimes in the case of training with MSE loss

function on classification problems.

Theoretical and practical significance. This work continues the general current

trend in the field of deep learning to find and develop satisfactory justifications for the

mechanisms behind the design and inference of neural network models. The focus of this

work is on the principle of scale invariance provided by the use of normalization techniques

that are ubiquitous in most modern architectures. The obtained results not only allow us

to identify and explain the various properties of the training dynamics and the structure

of the loss landscape of normalized models, but also help to generalize previous knowledge

and develop more efficient ways to train neural networks. In particular, with the help of

the revealed periodic behavior from the first part of the work, it was possible to resolve
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the contradiction that has developed in the literature about the learning dynamics of

normalized neural networks with weight decay, while the study of the properties of the

identified three training regimes on the sphere from the second part served as the basis for

interpreting and developing learning rate schedules. The derived theoretical results make

it possible to strengthen and formalize the obtained empirical intuition, and in themselves

are of interest as a working mathematical model describing scale-invariant dynamics.

Key aspects/ideas to be defended:

1. The discovered periodic behavior of training dynamics of normalized neural networks

with weight decay, its experimental and theoretical analysis.

2. The derived principle of generalized equilibrium, resolving the conflict of two contra-

dictory positions regarding the dynamics of such training: equilibrium verses insta-

bility.

3. Three discovered regimes of training fully scale-invariant neural networks on the

sphere using both cross-entropy and MSE loss functions: convergence, chaotic equi-

librium, and divergence; their experimental and theoretical analysis.

4. The revealed properties of the loss landscape of scale-invariant neural networks on

the sphere: the spectrum of different global minima, high-sharpness zones, regions

of stabilization of optimization dynamics, and others.

Personal contribution. In the first paper, the author formulated and proved all the

presented theoretical results. The author made the main contribution to the review of

related work, in particular, he established the existence of a contradiction regarding the

result of the studied training dynamics and proposed its resolution through the discovered

periodic behavior. The author also participated in setting up experiments, analyzing

empirical results and writing the text together with Ekaterina Lobacheva and other co-

authors.

In the second paper, the author also formulated and proved all the presented theo-

retical results. The author made the main contribution to the writing of the text and

the review of related work. He participated with other co-authors in the analysis and

interpretation of empirical results, including establishing the main characteristics of the

three regimes of training on the sphere and their implications for the loss landscape. The
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author also assisted in setting up experiments, in which the main role was played by

Ekaterina Lobacheva and Maksim Nakhodnov.

In the third work, the author was one of the initiators of the study of three training

regimes with MSE loss function, and also assisted the main author Maksim Nakhodnov

in interpreting and systematizing the results, reviewing the literature, and setting up

experiments.

Publications and probation of the work

The author is the main author in two first-tier publications and the second author in one

second-tier publication on the dissertation topic.

* — authors with equal contribution.

First-tier publications

1. Ekaterina Lobacheva*, Maxim Kodryan*, Nadezhda Chirkova, Andrey Malinin,

Dmitry Vetrov. On the Periodic Behavior of Neural Network Training with Batch

Normalization and Weight Decay. In Advances in Neural Information Processing

Systems, 2021 (NeurIPS 2021). Vol. 34, pages 21545-21556. CORE A* conference.

2. Maxim Kodryan*, Ekaterina Lobacheva*, Maksim Nakhodnov*, Dmitry Vetrov.

Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three

Regimes. In Advances in Neural Information Processing Systems, 2022 (NeurIPS

2022). Vol. 35, pages 14058-14070. CORE A* conference.

Second-tier publications

1. Maksim Nakhodnov, Maxim Kodryan, Ekaterina Lobacheva, Dmitry Vetrov.

Loss Function Dynamics and Landscape for Deep Neural Networks Trained with

Quadratic Loss. Published in Doklady Mathematics in 2022. Vol. 106, issue 1

(supplement), pages 43-62. The journal contains English translations of papers pub-

lished in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences),

indexed in Scopus.

Reports at scientific conferences and seminars

1. Conference on Neural Information Processing Systems, December 2021. Topic: “On

the Periodic Behavior of Neural Network Training with Batch Normalization and

Weight Decay”.
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2. Seminar Mathematical Machine Learning MPI MIS + UCLA, December 2021. Topic:

“On the Periodic Behavior of Neural Network Training with Batch Normalization

and Weight Decay”.

3. Machine Learning Summer School by EMINES School of Industrial Management,

July 2022. Topic: “On the Periodic Behavior of Neural Network Training with

Batch Normalization and Weight Decay”.

4. Seminar of the Bayesian methods research group, October 2022. Topic: “Training

Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes”.

5. Conference Fall into ML, November 2022. Topic: “Training Scale-Invariant Neural

Networks on the Sphere Can Happen in Three Regimes”.

6. Conference on Neural Information Processing Systems, December 2022. Topic:

“Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three

Regimes”.

7. Seminar AIRI AIschnitsa, December 2022. Topic: “Training Scale-Invariant Neural

Networks on the Sphere Can Happen in Three Regimes”.

8. Conference of the Faculty of Computer Science in Voronovo, June 2023. Topic:

“Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three

Regimes”.

Volume and structure of the work. The thesis contains an introduction, contents of

publications, and a conclusion. The full volume of the thesis is 103 pages.

3 Content of the work

3.1 Periodic behavior of normalized neural networks training with weight

decay

Normalized neural networks are those whose architecture uses either normalization layers,

such as Batch Normalization [11] or Layer Normalization [12], or directly normalization of

weights [13]. The vast majority of modern deep neural networks are normalized, including,

for example, the popular ResNet [29] and Transformer [30] architectures. The modern

standard for training neural networks has become stochastic methods using the weight
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ConvNet on CIFAR-10 ResNet-18 on CIFAR-100
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Figure 1: Periodic behavior of ConvNet on CIFAR-10 and ResNet-18 on CIFAR-100 trained using SGD

with WD of 0.001 and different learning rates. Each panel on the left shows training loss vs. epoch, on

the right — scale-invariant parameters norm vs. epoch.

decay technique, which stabilizes the optimization process and also plays the role of a

regularizer, improving generalization of the final solutions [22, 26, 27].

As mentioned above, normalization induces scale invariance of neural network weights

that precede normalization layers or that are directly normalized. Due to the ubiquity

of the use of normalization techniques in modern architectures, such weights are in the

majority, so studying the effect of scale invariance on optimization dynamics turns out to

be an urgent problem. This is of particular importance due to the non-trivial and even

unexpected interplay between scale invariance and weight decay, as will be shown below.

In this section, we present a study of the periodic behavior of the dynamics of nor-

malized models training with weight decay (Fig. 1), which, among other things, can be

considered as a generalization of two conflicting points of view about the outcome of such

training: equilibrium versus instability. To simplify the presentation and to exhibit the

most representative case, here we consider experiments with convolutional neural networks

using BN and trained using the SGD algorithm with a constant learning rate; however,

in the main paper, we show that the above results are also valid when using other archi-

tectures, normalization techniques, optimization algorithms, including classical gradient

descent or the Adam [31] optimizer, and even more general scale-invariant models.

Background and formulation of the problem

To clarify the formulation of the problem, we describe the main consequences of scale

invariance on the dynamics of training and its interaction with weight decay. Consider
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an arbitrary scale-invariant function f(x) such that

f(αx) = f(x), ∀x, ∀α > 0. (1)

The equation (1) is essentially the definition of scale invariance. By differentiating both

parts of the equality (1) with respect to x and with respect to α, one can obtain the

following fundamental properties of the gradient of arbitrary scale-invariant functions

(see Lemma 1.3 in Li and Arora [18]):
⟨∇f(x), x⟩ = 0, ∀x (2a)

∇f(αx) =
1

α
∇f(x), ∀x, ∀α > 0. (2b)

Consider the gradient descent optimization of f(x) with learning rate η and weight de-

cay λ:

xt+1 = (1− ηλ)xt − η∇f(xt). (3)

" kxk

�⌘rf(xt)

# kxk

xt

�⌘�xt

Figure 2: Illustration of “cen-

tripetal force” of weight de-

cay and “centrifugal force” of

gradient when optimizing scale-

invariant functions.

The above properties lead to two important implications re-

garding the dynamics of the optimization process. First,

according to the property (2a), the shift of x in the direc-

tion of −∇f(x), i.e., gradient descent step, always increases

∥x∥, while weight decay, on the contrary, decreases ∥x∥ (see

Fig. 2 for an illustration). The interaction of these “cen-

tripetal” and “centrifugal” forces can lead to a non-trivial

change in ∥x∥ during optimization. Secondly, according to

the property (2b), despite the fact that the value of the func-

tion f(x) itself is invariant under the multiplication of x by

α, the dynamics changes significantly when optimization is

performed on different scales of the parameters norm. For

smaller norms, the optimization takes larger steps, which can

lead to instability, while for larger norms, the steps are smaller and the optimization pro-

cess may be slow to converge.

Since the scale-invariant f(x) can be considered as a function on the sphere, its op-

timization dynamics is often analyzed on the unit sphere, that is, for ∥x∥ = 1. It can

be shown that the training dynamics in the entire parameter space can be equivalently

represented on the unit sphere using the notions of effective gradient and effective learning

rate instead of similar concepts in optimization [18, 19, 20, 21, 22, 23, 24]. The effective

12



gradient is defined as the gradient at a point projected onto the unit sphere and can be

obtained from (2b) as ∇f(x/ ∥x∥) = ∇f(x) ∥x∥. The effective learning rate is defined as

η̃ = η/ ∥x∥2 [21, 24]. A change in ∥x∥ does not affect the effective gradient by definition

and is reflected only in the effective learning rate: the lower the norm, the higher the ELR

and, in fact, the greater the actual optimization steps. In what follows, the following no-

tation will be used for the norm of parameters, gradient, effective gradient, and the ELR

at iteration t, respectively: ρt ≡ ∥xt∥, gt ≡ ∥∇f(xt)∥, g̃t ≡ ∥∇f(xt/ ∥xt∥)∥ = ρtgt, and

η̃t ≡ η/ρ2t .

Existing contradiction in the literature

Let us briefly outline the essence of the controversy that has formed in the community

regarding the training of normalized models with scale-invariant parameters using the

weight decay technique (3). As shown earlier, the dynamics of such training non-trivially

changes the norm of parameters due to the interaction of “centrifugal force” of the gra-

dient and “centripetal force” of weight decay, which in turn affects the step size of the

optimization process. Thus, in the literature, there are two contradictory points of view

regarding the result of the corresponding dynamics.

On the one hand, works like Li et al. [19] or Wan et al. [23] claim that such training leads

to the equilibrium state, where the “centripetal force” is compensated by the “centrifugal

force” and, ultimately, the norm of scale-invariant weights (together with other training

statistics) will tend to some constant value. Several other works take a similar view [20,

28].

On the other hand, a number of works emphasize that due to the weakening of the role

of the gradient with training progress, the use of weight decay can bring the parameters

too close to the zero point, which leads to instability due to an excessive increase in the

effective learning rate. In particular, the work of Li et al. [17] shows that approaching the

zero point in normalized neural networks leads to numerical errors after the optimization

step and subsequent training failure. Li and Arora [18] also emphasize that scale-invariant

functions are ill-conditioned near the origin, and in a simplified way prove that convergence

is impossible if both normalization and weight decay are used (however guaranteed if

either of them is absent). Moreover, despite their equilibrium presumption, Li et al. [19]

empirically demonstrate that the loss function constantly fluctuates between low and high

values when gradient descent with weight decay is used.
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Figure 3: Periodic behavior of training a scale-invariant neural network ConvNet on CIFAR-10.

One of the key results of this thesis is the discovered periodic behavior of training

normalized models with weight decay, which, as shown below, allows us to resolve the

described fundamental contradiction through the principle of generalized equilibrium.

Periodic behavior and the underlying mechanisms

For the sake of clarity, the experimental results presented here and below cover the case

of fully scale-invariant convolutional neural networks (ConvNet, ResNet-18) trained using

stochastic gradient descent with weight decay on natural image classification problems

CIFAR [32]. To ensure full scale invariance, after each convolutional layer, a BN layer

with non-trainable affine parameters is added, and the last linear layer is set fixed. This

guarantees scale invariance of all trainable parameters of the model, while practically

does not worsen its quality [33, 18]. The main work additionally investigates the case of

standard architectures with the presence of non-scale-invariant parameters trained in more

conventional settings using momentum, learning rate schedule and data augmentation; in

short, all results, including periodic behavior, hold true as long as training is long enough

and the LR schedule is not too aggressive (see also Fig. 1).

Figure 3 demonstrates the periodic behavior of training a scale-invariant neural network

ConvNet on the CIFAR-10 dataset for different learning rates. In the optimization process,

instabilities are clearly encountered, which, however, do not lead to complete divergence,

but cause a new training cycle; the observed periodicity of destabilizations, as well as

the behavior of the learning dynamics within each period, is regular and obeys some

generalized equilibrium law. Thus, one can empirically conclude that the presumptions

of equilibrium and instability turn out to be simultaneously valid in one way or another.

More rigorous theoretical results supporting this conclusion are given below.

The observed periodic behavior arises from the interplay between normalization and

weight decay, namely, due to their competing influence on the norm of the scale-invariant

14



Figure 4: One training period of the scale-invariant ConvNet on CIFAR-10: three phases can be dis-

tinguished. The rightmost plot compares the empirically observed cosine distance between weights at

adjacent iterations with the theoretically derived bounds.

weights. As discussed earlier, WD tends to decrease the norm of the parameters, while gra-

dients from the loss function tend to increase it (see Fig. 2). These two forces alternately

outweigh each other over fairly long training periods, resulting in periodic behavior.

To clarify the details, let us take a closer look at one training period by analyzing

Figure 4. At the beginning of the period, high values of the training loss are observed,

and therefore, large gradients outweigh the effect of weight decay. This leads to a rapid

decrease in training loss, an increase in the parameters norm, and a decrease in the ELR

value. The described phase is indicated by the letter A in the plots. Further, as the

training loss decreases, there comes a point where the gradients become small enough to

be outweighed by WD. As a result, the weight norm begins to decrease, and the effective

learning rate increases, which is indicated as the B phase in the plots. Finally, when the

weight norm becomes too small and the ELR, on the contrary, too high, the optimization

takes several large steps and leaves the vicinity of the minimum point. Effective gradients

sharply increase with the value of the loss function and, multiplied by a high ELR, lead

to a rapid increase in the weight norm (phase C). The detailed plots for the C phase (the

third panel from the left in Figure 4) confirm that the training loss begins to increase

earlier than the norm of the parameters. Eventually, when the weight norm becomes

large, the effective learning rate decreases and stops the divergence process, leading to a

new period of training.

The main paper also provides additional ablation studies demonstrating that periodic

behavior can indeed be eliminated by fixing the norm of the parameters (see also the

next section of this thesis). This reconfirms the proposed substantiation of the periodic
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behavior mechanisms via the dynamics of the weight norm and, consequently, the effective

learning rate.

Theoretical analysis

This subsection presents the main theoretical results concerning the optimization dynam-

ics of scale-invariant functions with weight decay (3), which supplement and reinforce the

above empirical observations. Mainly, concepts and results are formulated to explain the

causes of destabilization between phases B and C of the period, and a theorem is presented

that formally generalizes the equilibrium presumption [19, 23]. The exact formulations

together with the proofs are given in the main work.

First of all, the dynamics (3) is reformulated in terms of the dynamics of the norm of

parameters and gradients:

ρ2t+1 = (1− ηλ)2ρ2t + η2g̃2t /ρ
2
t . (4)

Next, the notion of a δ-jump is introduced, which reflects the necessary condition for the

occurrence of destabilization in the analysis of dynamics (3) using (4).

Definition 1. The dynamics (3) performs a δ-jump if the cosine distance between ad-

jacent iterations exceeds a given threshold δ > 0:

1− cos(xt, xt+1) > δ.

The first result on necessary and sufficient conditions for the occurrence of a δ-jump is

formulated as follows.

Proposition 1. Let the effective gradient norm be locally bounded: ℓ ≤ g̃t ≤ L. Then the

following approximate conditions for a δ-jump hold:
ρ2t ⪅

ηL√
2δ

=⇒ δ-jump is possible, (5a)

ρ2t ⪅
ηℓ√
2δ

=⇒ δ-jump is guaranteed. (5b)

The fulfillment of these conditions in practice are depicted in the right panel of Figure 4.

It can be seen that the actual dynamics of the cosine distance between adjacent iterations

remains within the δ-jump bounds derived from Proposition 1. It can also be seen that

the general trend of this dynamics demonstrates an increase in δ-jumps towards the end

of the B phase, which indicates accumulating instability.
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The following proposition helps to predict the time of the occurrence of a δ-jump, and

hence destabilization, depending on the choice of the learning rate η and the weight decay

factor λ.

Proposition 2. Denote κ =
√

η
2λ
. Under the assumptions of Proposition 1:

• ρ20 > κℓ ∧ δ < ηλL2

ℓ2
⇒ minimal δ-jump time is tmin = O(1/4ηλ);

• ρ20 > κL ∧ δ < ηλ ℓ2

L2 ⇒ maximal δ-jump time is tmax = O(1/2ηλ).

Corollary 1. Thus, we can conclude that instabilities, and hence periods, occur with a

frequency directly proportional to the learning rate × weight decay product ηλ.

Finally, the final and main theoretical result — the generalized equilibrium principle —

generalizes the previous equilibrium presumption [19, 23] and thus resolves the contra-

diction with the position of instability: in the course of training, periodic behavior must

stabilize within certain limits.

Theorem 1. Under the assumptions of Proposition 2, if 2ηλL ≤ ℓ, then the following

bounds on parameters norm hold:

κℓ ≤ ρ2t ≤ κL, t≫ 1.

If ρ20 > κL, then ρ2t converges linearly to the interval [κℓ, κL] in O (1/ηλ) time.

Empirical confirmation of the above statements is given in detail in the main work,

but it can also be seen in Figure 3. One can notice that as the hyperparameter η in-

creases at fixed λ, the periods become more frequent in accordance with Proposition 2

and Corollary 1. One can also notice that, despite the periodic behavior, from a cer-

tain training epoch, the norm of parameters (as well as other metrics) clearly lies within

certain boundaries, confirming the statement formulated in Theorem 1.

Conclusion and other results

In this part of the thesis, the phenomenon of periodic behavior of the dynamics of training

normalized neural networks with weight decay is analyzed in detail. An explanation of

the mechanisms behind this periodic behavior is given, as well as theoretical results that

reinforce empirical intuition. Finally, through the principle of generalized equilibrium of

periodic behavior, the contradiction was resolved regarding such dynamics: equilibrium

or instability.
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The main work also provides many additional results, omitted here, including empirical

analysis of the consequences of periodic behavior, such as the warm-up stage and minima

achieved at different training periods, and ablation studies of periodic behavior in different

settings of conventional neural network training.

3.2 Three regimes of training scale-invariant neural networks on the sphere

In the previous section, it was mentioned that scale-invariant functions (1) are inherently

defined on a sphere, which is their natural domain. As a rule, the unit sphere is implied, for

which the notions of effective gradient and effective learning rate are introduced. However,

in this work, a broader definition is considered and the natural, or intrinsic, domain of

scale-invariant functions will be understood as a sphere of arbitrary fixed radius in the

parameter space. When studying neural networks with scale-invariant weights, therefore,

the question arises about the structure of the loss landscape on the natural domain in

order not to take into account symmetries that do not essentially affect the function

implemented by the model.

Usually, studies of loss landscape structure and/or training dynamics of neural networks

are conducted in controlled experiments, when all hyperparameters, including the learning

rate, are set to fixed or at least controlled values [34, 35, 36, 37, 38]. As was discussed

in detail earlier, in the case of training neural networks with scale-invariant parameters

in the entire space, the effective learning rate turns out to be a non-trivially changing

value, even if all learning hyperparameters are fixed. This complicates and even distorts

the understanding of the intrinsic structure of the loss landscape of such models.

In order to correct this shortcoming, in this section we consider the training of com-

pletely scale-invariant models on the sphere of fixed radius using projected (stochastic)

gradient descent. In this case, the ELR value turns out to be completely controlled at the

stage of setting up the experiment; in particular, it can be fixed to a given constant value.

It turns out that, depending on the ELR value, such optimization on the sphere can be

carried out in three regimes: convergence, chaotic equilibrium, and divergence (see Fig. 5).

The first regime (low ELR values) can be considered as a typical case of convergence to a

minimum with a monotonically decreasing value of the training loss. The second regime

(medium ELR values) demonstrates a consistent oscillatory behavior of the loss function

around some value, separated from both the global minimum and random guessing. This
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Figure 5: Three regimes of training a scale-invariant neural network on the sphere: (1) convergence for

low ELRs, (2) chaotic equilibrium for medium ELRs, and (3) divergence for high ELRs. ConvNet on

CIFAR-10. Dashed lines indicate boundaries between regimes.

regime is called chaotic equilibrium as it resembles the equilibrium state described in some

previous works [19, 23], as mentioned before. The last third regime (high ELR values) is

a destabilized, divergent training mode associated with an excessively large optimization

step size. Each regime allows revealing certain features of the loss landscape structure on

the sphere, which expand and deepen the previous results.

Further in this section, we adopt the specified training protocol using fully scale-

invariant neural networks, which are obtained from standard architectures by the method

described in the previous section. In the two main papers on the topic of this section, the

case of training scale-invariant models in the entire space, as well as conventional training

of neural networks, including learning rate schedules, is additionally investigated from the

perspective of three regimes.

Theoretical analysis

The emergence of the above regimes of training models with scale-invariant parameters

on the sphere by the gradient projection method can be analytically confirmed. To sub-

stantiate it, we derived the following theoretical results, clarifying the general properties

of such optimization dynamics and analyzing in detail the example of a concrete scale-

invariant function. Specific formulations and proofs of the above statements are described

in the second of the three mentioned works of the author, related to this thesis.

Consider the function F (θ) of the parameter vector θ ∈ RP , which can be divided into

n groups: θ = (θ1, . . . ,θn), where each θi ∈ Rpi and
∑n

i=1 pi = P . We will assume that

each of these groups is scale-invariant, i.e., multiplication of any of θi by a positive scalar,

with the others fixed, does not change the value of the function F . Note that this is a
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typical case for neural networks with several normalized layers, since each of these layers

individually is scale-invariant. Naturally, if a function is scale-invariant with respect to

several groups of parameters, then it is also scale-invariant with respect to their union, so

the entire parameter vector θ is also scale-invariant.

Let us write the algorithm for minimizing F (θ) on the sphere of radius ρ with a fixed

learning rate η: 
θ̂
(t) ← θ(t) − η∇F (θ(t)),

θ(t+1) ← θ̂
(t) · ρ∥∥∥θ̂(t)

∥∥∥ .
(6)

By analogy with the previously considered case of a single scale-invariant group, the

notions of an individual effective gradient and an individual effective learning rate for

each group θi are introduced as analogs of the regular gradient and learning rate, but

calculated at the point θ̃ = (θ1, . . . ,θi/ρi, . . . ,θn), where ρi ≡ ∥θi∥. Denote the effective

gradient norm for the group θi as g̃i = giρi, where gi ≡ ∥∇θi
F (θ)∥, and the corresponding

effective learning rate as η̃i = η/ρ2i . We also denote the norm of the total effective gradient

and the total (fixed) effective learning rate as g̃ = gρ, where g ≡ ∥∇θF (θ)∥, and η̃ = η/ρ2.

From the parameters norm relation
∑n

i=1 ρ
2
i = ρ2, the following fundamental relation

is derived, which connects individual effective learning rates with the total one:

n∑
i=1

1

η̃i
=

1

η̃
. (7)

Further, the notion of effective step size (ESS) is introduced, which is a complete analogue

of the regular optimization step size, but calculated on the unit sphere. By definition, the

effective step size is equal to the product of the effective learning rate and the effective

gradient norm: η̃ig̃i for an individual group θi and η̃g̃ for the full parameter vector θ.

This value indicates how much the parameters actually change after the optimization

step, taking into account their scale invariance. It turns out that the total ESS can be

represented as a convex combination of the individual ones after squaring:

(η̃g̃)2 =
n∑

i=1

ωi(η̃ig̃i)
2,

n∑
i=1

ωi = 1, ωi ∝
1

η̃i
. (8)

Thanks to the above equations, it is possible to derive the dynamics of individual ELRs

update during the process (6):

η̃
(t+1)
i ← η̃

(t)
i

1 + (η̃g̃(t))2

1 + (η̃
(t)
i g̃

(t)
i )2

. (9)
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This central result of the analysis of the training dynamics on the sphere allows us to

conclude that with a high/low value of the individual ESS at a given iteration, the ELR

value at the next iteration must decrease/increase. Thus, since the values of the effective

step size and the effective learning rate are closely related by definition, the negative

feedback principle arises, when large ELRs should become smaller, and small ones should

become larger. This principle is general and key to the analysis of the training regimes.

To visually explain the differences between the three training regimes, we present the

following example of a function with several scale-invariant parameter groups, for which

optimization properties were studied depending on the chosen total ELR value:

F (x,y) =
n∑

i=1

αif(xi, yi) =
n∑

i=1

αi
x2
i

x2
i + y2i

, (10)

where x = (x1, . . . , xn), y = (y1, . . . , yn), αi > 0. Thus, each of the n pairs (xi, yi) forms

a separate scale-invariant group of parameters.

For simplicity, let ρ = 1, that is, the optimization (6) is carried out on the unit sphere,

and hence η̃ = η. To facilitate the analysis of the optimization dynamics of the general

function (10), we derive the following result on the convergence of each of its constituent

subfunctions αif(xi, yi) = αi
x2
i

x2
i+y2i

.

Proposition 3. For a function fα(x, y) = α x2

x2+y2
optimized on a sphere with an effective

learning rate η̃:

1. if η̃ < 1
α
, there is a linear convergence to a minimum;

2. if η̃ > 1
α
, there is a stabilization at level 1

2

(
α− 1

η̃

)
.

Now, knowing the conditions for the convergence of the F subfunctions, namely, when

the individual effective learning rate is less than 1/αi, by taking into account the rela-

tion (7), we can conclude that the first regime, i.e., convergence, is observed under the

following condition:

η̃ <
1∑n

i=1 αi

. (11)

Otherwise, the situation in which all individual ELRs are below the convergence threshold

is impossible, and therefore the dynamics of their update (9) turns out to be undamped

and must converge to some equilibrium according to the negative feedback principle.

Naturally, the state of equilibrium of such dynamics is the situation in which all individual

ESS values become equal, which is equivalent to reaching the following levels for individual
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Figure 6: Verification of theoretical results. Left: optimization dynamics of the function (10) using

different ELRs corresponding to the three regimes. Right: equilibration of individual ESS values in the

second regime when training a scale-invariant neural network on the sphere.

ELR values:

η̃∗i ≡
η̃
∑n

j=1 αj

αi

. (12)

Thus, the system has to enter a state of chaotic equilibrium, that is, the second training

regime. Finally, if the value of η̃ is too high, chaos will dominate over the equilibrium and

the optimization will switch to the third regime of divergence.

Figure 6 depicts some results of experimental verification of the obtained theoretical

derivations. On the left is the behavior of the function (10) when optimizing on the

unit sphere with three different effective learning rates corresponding to the three regimes

according to the threshold rule (11). It can be seen that the smallest value makes the

function converge quickly, the medium one causes the function to stabilize at a certain

level, and the largest one leads to the most chaotic behavior. On the right is the predicted

equilibration of effective step sizes in the second regime for individual scale-invariant

groups of a real ConvNet neural network trained on the sphere. It can be seen that the

effective step sizes, which are the product of the effective learning rates and the effective

gradients norm, do actually concentrate around a certain value indicated by the dotted

black line on the plot.

Empirical results

This subsection contains the main experimental results regarding the loss landscape struc-

ture of scale-invariant neural networks on the sphere, obtained by analyzing three training

regimes. The details of the experiments, as well as additional results, are given in the

second and third works of the attached list of articles by the author of this thesis. Here, to

simplify the presentation, we will consider a scale-invariant convolutional neural network
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First regime training Fine-tuning with lower/higher ELR

Figure 7: First training regime. Left: training with fixed ELR converges to areas with different sharpness

and generalization. Right: fine-tuning with a smaller ELR remains on the same trajectory, but with an

increased one jumps out and converges to a more optimal basin.

ConvNet, trained on the task of classifying natural images CIFAR-10 using the specified

projected SGD method of the form (6). The main displayed metrics are: training loss,

test error, and average norm of the effective stochastic gradient of the model, which si-

multaneously plays the role of a measure of the optimization progress and the sharpness

of the found minimum, as justified in the main text of the papers. All training launches

were carried out from the same initialization point and with the same data order to ensure

complete fixation of the experiment setting and leveling the effect of training stochasticity

when comparing the results. First, we consider the case of the classical cross-entropy loss

function.

Training with small values of the effective learning rate leads to the first regime, called

convergence. The optimization shows typical convergence behavior (see Fig. 5): after a

few epochs, the model is able to reach an area with very low training loss and continues to

converge to the minimum point. The rate of convergence directly depends on the value of

the ELR. In addition, training with different ELR values leads to solutions with different

sharpness (mean effective gradients norm) and generalization (test error): higher values

lead to a solution with lower sharpness and better generalization. Additional results

from the main work of the author also confirm that the optima achieved after training

with different ELR values not only differ in the described characteristics, but also are

geometrically located in distinct linearly disconnected basins of the loss landscape.

The chosen ELR value affects not only the rate of convergence and the properties

of the final solution: the entire optimization trajectory differs significantly for runs with

different values. To analyze training trajectories regardless of optimization speed, consider

the evolution of sharpness and generalization versus training loss. The corresponding

plots are shown for various ELR values in Figure 7, left. For the lowest values, the
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Fine-tuning to regime 2 Fine-tuning to regime 1

Figure 8: Fine-tuning from the second regime with a different ELR value. Left: to the second regime,

leads to stabilization at a new level. Right: to the first regime, leads to convergence to different optima

when starting from a high ELR and to the same type of minimum when starting from a low ELR.

trajectories coincide, while training is too slow to converge to the optimum. For other

values, as the effective learning rate increases, the trajectories begin to shift down and

to the left on the diagrams, while in the region of low loss values, they appear parallel.

Such differences demonstrate that training at a higher ELR not only leads to a better

endpoint in terms of sharpness and generalizing, but also better conditions the entire

optimization trajectory. We also conducted an experiment with fine-tuning from the end

of the trajectory attributed to a given ELR value with a different ELR (see Fig. 7, right).

Fine-tuning with a lower value remains in the same basin and continues to move along

the same trajectory without finding other minima. Fine-tuning with a higher value after

a short time goes beyond the neighborhood of the current optimum and converges into a

new basin, the characteristics of which correspond to the new effective learning rate.

Thus, the analysis of the first regime allows us to conclude that the intrinsic structure

of the loss landscape of scale-invariant neural networks contains a variety of optima that

differ in the characteristics of sharpness and generalization, which form a one-to-one

correspondence with the chosen value of the effective learning rate.

In the second regime, the optimization noisily stabilizes around a certain value for

various training metrics, for example, for the training loss (see Fig. 5), which is called

chaotic equilibrium. In this regime, the value of the effective learning rate is too high

to converge to the optimum, but still not enough to diverge completely. Thus, the op-

timization process stabilizes in a certain region of the loss landscape with a practically

fixed level of training metrics, which is determined by the chosen ELR value. Additional

experiments from the main works show that this region is locally convex for moderate

values of the effective learning rate in the second regime.
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To demonstrate that the value of the effective learning rate uniquely determines the

loss stabilization level, we conducted an experiment with fine-tuning with a different

ELR value of the second regime (see Fig. 8, left). Changing the value of the effective

learning rate appropriately changes the optimization dynamics, namely, brings it to a

level corresponding to the new value. We also conducted experiments with fine-tuning

from different starting ELR values of the second regime with a new value of the first

regime. As can be seen from the right plots of Figure 8, the resulting optima are highly

dependent on the starting value. Fine-tuning of models pretrained with low ELR values

of the second regime always converges to points with the same sharpness/generalization

characteristics. For large starting values, fine-tuning leads to a variety of trajectories

depending on the chosen effective learning rate from the first regime.

Thus, after analyzing the second training regime, we can conclude that in the loss land-

scape on the sphere, stabilization regions can be distinguished, in which the optimization

dynamics is fixing at a certain level depending on the chosen value of the effective learning

rate. Such regions can be either local (convex, allow convergence into a single type of

minimum) or global (non-convex, contain many different minima).

In addition to the above, it can be assumed that the main difference between the first

and second optimization regimes is associated with the presence of zones of increased

sharpness in the optimization trajectories of neural networks. In the effective gradient

norm versus training loss diagram in Figure 5, right, one can observe that sharpness

reaches its peak exactly at the transition point between the first two regimes. This

allows us to conclude that training with only sufficiently small ELR values makes it

possible to pass this bottleneck and enter the convergence regime. In the main papers, this

reasoning is additionally substantiated with the help of a detailed analysis of transitions

between regimes and the relationship between these transitions and the epoch-wise double

descent [4].

For the highest values of the effective learning rate, the most unstable optimization

behavior is observed, corresponding to random guessing (see Fig. 5). This is how the third

training regime, called divergence, manifests itself. In the main works of the author, this

regime is directly compared with the random walk and the gradient ascent method: in all

three cases, adjacent iterations turn out to be uncorrelated, but the random walk gives a

lower bound for the training loss value, and gradient ascent gives an upper bound. Thus,
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Full CIFAR-10 training Subset of CIFAR-10 training

Figure 9: Training loss versus mean effective gradient norm diagrams. Training with an MSE loss function

on the sphere. Left: training on a full dataset does not allow optimization to converge and detect the

first training regime. Right: training on a subsample of 5000 objects allows all three training regimes to

be distinguished.

the behavior of the model in the third regime can be considered as something between

random guessing and divergence.

MSE loss function case

In conclusion of this section, we briefly touch the main results obtained when training on

the sphere using an MSE loss function.

As can be seen from Figure 9, training the scale-invariant ConvNet model on the

sphere using MSE loss did not allow optimization to converge to the optimum for the

given iteration budget. Thus, only the second and third optimization regimes can be

clearly identified. However, after reducing the sample size to 5000 objects, the model

was able to converge for certain values of the effective learning rate and demonstrate the

presence of the first regime as well, in full accordance with the case of the cross-entropy

loss function. In the second work of the author on the topic of this section, additional

experiments are presented based on the analysis of cosine distances between adjacent

iterations, which allow one to more subtly distinguish between the regimes and show the

presence of an analogue of the first regime even without convergence.

Conclusion and other results

In this section, we analyzed the case of training fully scale-invariant models on the sphere

using the projected SGD method with a fixed effective learning rate value. We identi-

fied three regimes of such training depending on the specific ELR value: convergence,
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chaotic equilibrium, and divergence. We analyzed these regimes both theoretically and

experimentally, identified their main characteristics, and obtained information on the in-

trinsic structure of the loss landscape of scale-invariant neural networks. Among them

is the presence of a whole spectrum of various global optima, high-sharpness zones, and

regions of stabilization of optimization dynamics, both local and global. In addition to the

classical cross-entropy function, the case of using an MSE loss function on classification

problems was also studied from the point of view of three training regimes.

The author’s two main papers on this topic (second and third in order in the list)

provide many additional results omitted in this section, including the manifestation of

three regimes in conventional training of neural networks, the interpretation and search

for optimal learning rate schedules with their help, linear connectivity in different regimes,

analysis of transitions between regimes, ELR schedules, etc.

4 Conclusion

The final section summarizes the main results of the work.

1. We investigated the dynamics of standard training of neural networks using normal-

ization and weight decay techniques. We discovered, explained and analyzed both

experimentally and theoretically periodic behavior of such training dynamics.

2. We proposed to resolve the contradiction that has developed in the literature about

the result of such training dynamics (equilibrium versus instability) via the principle

of generalized equilibrium in periodic behavior. This argument is substantiated both

experimentally and theoretically.

3. We investigated the dynamics of training fully scale-invariant neural networks on

the sphere of fixed radius using both cross-entropy and MSE loss functions. We

discovered and analyzed both experimentally and theoretically three regimes of such

training: convergence, chaotic equilibrium, and divergence.

4. Thanks to the study of these regimes, we revealed in more detail the loss landscape

structure of scale-invariant models on the natural domain. In particular, we showed

the presence of a whole spectrum of global minima, different in their properties, high-

sharpness zones, local and global regions of optimization dynamics stabilization.
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