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Dissertation topic

Relevance of the research topic. Sensitivity analysis is an important tool for
investigating computational models in engineering and other fields. It allows to find
out how various input parameters of the model influence its output and to quantify this
effect; in particular, it allows to divide the input parameters into important, relatively
important and insignificant [14].

Sensitivity analysis includes a wide range of metrics and techniques including
the Morris method, linear regression-based methods, variance-based methods, and
others (see review by Iooss [8]). Among all the metrics, we focus on Sobol’ sensitivity
indices, which quantify the portions of the output variance explained by the variability
of different input parameters and combinations thereof [16]. The variability of the input
parameters of the model is specified using an a priori chosen probability distribution.
The advantage of the Sobol’ method is that it allows to analyze complex nonlinear
and nonmonotonic models, and its results are easily interpreted (the effectiveness of
the method in engineering is shown in [18]).

The approaches for the evaluation of Sobol’ indices are usually divided into Monte
Carlo and metamodeling approaches. Monte Carlo approaches run the analyzed model
and conduct high-dimensional numerical integration to estimate Sobol’ indices using
explicit formulas, such as those given in the articles of Sobol’ [15], Owen, and others.
The issues of accuracy and convergence of Monte Carlo methods for estimating Sobol’
indices are well studied, and it can be concluded that such methods are simple and
reliable; however, they require a large number of runs of the analyzed model. On
the other hand, metamodeling approaches allow one to reduce the required number of
model runs. Following these approaches, we replace the original computational model
with an approximating metamodel (also known as surrogate model or response surface),
which is constructed based on the training set and is better suited for calculating
Sobol’ indices. For this purpose, metamodels based on Polynomial Chaos Expansion
are often used1, since they allow one to obtain an explicit estimate of Sobol’ indices
from the expansion coefficients [17].

To date, the issues of accuracy and convergence2 of metamodel-based Sobol’
indices estimates are rather poorly understood, and the existing practical methods for
determining their error do not have a rigorous theoretical justification. In particular,
in the case of Polynomial Chaos Approximation, the risk bounds for estimates of
Sobol’ indices are not known, and the only known method for determining the error
of corresponding estimates is not justified mathematically [7].

Another range of issues when using the metamodeling approach is related to
the choice of the design of experiments (DoE) for building a metamodel. Currently,
metamodel-based sensitivity analysis commonly employs DoE techniques that tend to
fill the input parameter space “uniformly” in some sense, such as sampling from a dis­

1The basis of this approximation is polynomials which are orthogonal with respect to the distribution of model
input parameters.

2With an increase in the size of the training sample used to build the metamodel.
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tribution or sampling based on the latin hypercube, as well as quasi-random sequences.
However, such methods do not take into account the features of the metamodel and
are not specially adapted for calculating Sobol’ indices. It would be expected that
the theory of optimal designs would allow the selection of suitable DoE for sensitivity
analysis [13]. However, its classical design methods for regression models (𝐴-, 𝐷-,
𝐼-optimal designs, and others) are associated with maximizing the quality of the ap­
proximation itself and do not directly take into account the accuracy of Sobol’ indices
estimates based on this approximation.

Thus, it is relevant to develop both theoretical and practical methods for quality
control of estimates of Sobol’ indices in the metamodeling approach based on Polyno­
mial Chaos Approximation and effective methods for design of experiments that ensure
high accuracy of these estimates.

The goal of this research is to create quality control and design of experiments
methods for estimating Sobol’ sensitivity indices using Polynomial Chaos Approxima­
tion. To achieve this goal, the following research objectives were identified:

1. Investigate the dependence of the quality of an arbitrary approximation of the an­
alyzed model and the accuracy of estimates of Sobol’ indices obtained on the basis
of this approximation.

2. Develop an algorithm for estimating the error of Sobol’ indices calculated using
Polynomial Chaos Approximation.

3. Perform a theoretical analysis of the accuracy of Sobol’ indices estimates obtained
based on Polynomial Chaos Approximation.

4. Develop a DoE algorithm that is effective for estimating Sobol’ indices based on
Polynomial Chaos Approximation.

5. Implement the proposed algorithms in the software package.

Key results

The main defense points:

1. A relationship has been established between the error of estimates of Sobol’
indices and the error of approximation by which these estimates were obtained.
It is shown that the corresponding upper bound on the error of these estimates
is achievable.

2. For metamodels of the Polynomial Chaos Approximation type, a method has
been developed to control the error of metamodel-based estimates of Sobol’ in­
dices, which uses the proven upper bound on the error of these estimates.
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3. Non-asymptotic upper bounds on the risk of metamodel-based estimates of
Sobol’ indices under the condition of random design for Polynomial Chaos Ap­
proximation are proved. For these bounds, in the case of specific families of
multidimensional orthogonal polynomials, convergence rates are found.

4. An asymptotic distribution of estimates of Sobol’ indices is found and a method
for sequential DoE is developed, which allows improving the average accuracy of
these estimates compared to standard DoE methods.

5. With the help of the developed software package, a number of engineering prob­
lems were solved. In particular, its application to solve the problem of analyzing
the factors that affect the magnitude of the deflection of a bar structure (truss)
under the action of an external load, made it possible to increase the average
accuracy of estimates of Sobol’ indices by 10% compared to standard DoE meth­
ods.

Scientific novelty. This study for the first time raises and resolves the question
of the relationship between the error of the estimates of Sobol’ indices and the the­
oretical error of an arbitrary approximation, with the help of which these estimates
were obtained; which opens up new possibilities for analyzing the accuracy of meta­
model-based Sobol’ indices estimates using arbitrary types of approximations.

Based on the obtained relationship between the error of indices estimates and
the approximation error, an applied method for quality control of Sobol’ indices es­
timates is proposed. This relation also made it possible for the first time to find
the upper bounds of the risk of Sobol’ indices estimates based on Polynomial Chaos
Approximation under the condition of random design.

In addition, the study proposes the idea of using the theory of optimal designs
for regression models for more efficient calculation of Sobol’ indices. In particular, for
the case of Polynomial Chaos Approximation, based on the criterion of 𝐷-optimality,
a new method of sequential design of experiments was developed, which is effective
for estimating sensitivity indices. The proposed approach can be extended to other
optimality criteria.

Author’s contribution to the study. The content of the dissertation and
the main points, submitted for defense, reflect the personal contribution of the author
of the dissertation to the published articles.

The article [10], which analyzes the accuracy of estimates of Sobol’ indices, pro­
poses a method for controlling their quality, and obtains risk bounds for them, was
written without co-authors.

Preparation for publication of a series of articles [3, 4, 5] devoted to the DoE for
sensitivity analysis was carried out jointly with co-authors, and the contribution of
the dissertation author was decisive. In this series of articles, E. V. Burnaev proposed
a general statement of the problem, general approaches to its solution, and ideas for
some experiments. In addition, the proof of Theorem 1 in [5] was obtained jointly
with E. V. Burnaev; the rest of the results in this article, including the proposed
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DoE algorithm, belong personally to the dissertation author. The program code for
finite element computational models for testing the DoE method proposed in [4, 5]
was provided by B. Sudret. The development of a software package that implements
the proposed methods, and all computational experiments were performed by the au­
thor of the dissertation.

Research methods. To achieve research objectives, the methods of mathemat­
ical statistics, probability theory, approximation theory, matrix algebra and Fourier
analysis were used.

Theoretical and practical significance. From a theoretical point of view,
the results of the dissertation provide a basis for analyzing the accuracy of estimates
of Sobol’ indices obtained based on various types of approximations and using various
designs of experiments. From a practical point of view, the results complement and im­
prove existing approaches in sensitivity analysis of mathematical models in engineering
and other fields.
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Contents

The Introduction substantiates the relevance of the dissertation, formulates
the research goal and argues the scientific novelty of the study, and also shows the the­
oretical and practical significance of the dissertation.

In the first chapter, we consider the problem statement of global sensitivity
analysis, give an example of such a problem from engineering practice, and describe
an approach to its solution using Sobol’ sensitivity indices. In addition, a method for
calculating Sobol’ indices using Polynomial Chaos Approximation is considered.

The first part of the chapter introduces basic concepts and describes
the Sobol’ method. Consider a function 𝑦 = 𝑓(x), which corresponds to some physical
model. The vector of input variables x = (𝑥1, . . . , 𝑥𝑑)

𝑇 ∈ X ⊆ R𝑑 is model param­
eters in the design space; and the output variable 𝑦 ∈ R1 is the model response. We
will assume that this function is a “black box” that can be studied by setting differ­
ent values of the input parameters and analyzing the response. It is assumed that
the calculation of the response can take a long time.

An informal statement of the global sensitivity analysis problem is to quantify
the “importance” of various model input parameters and their groups, given some
kind of model input variability; and, thus, to rank parameters according to the degree
of influence on the response of the model, highlighting important and non-essential
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parameters. It is also assumed that the input parameters can vary in some wide
range, and not in a narrow neighborhood.

One of the ways to formalize the concept of “importance” of parameters is asso­
ciated with the method of I. M. Sobol’. Assume that on the set X some a priori
known probability measure 𝜇 is given, which is a product of measures: 𝜇 = ⊗𝑑

𝑖=1𝜇𝑖,
where 𝜇𝑖 is a probability measure on X𝑖 ⊆ R, and the set X can be represented as
Cartesian product X = X1 × . . . ×X𝑑. The corresponding probability distribution
describes the uncertainty and/or variability of the input parameters, modeled by a
random vector x = (𝑥1, . . . , 𝑥𝑑)

𝑇 with independent components. In this setting, the
model output 𝑦 = 𝑓(x) also becomes a stochastic variable.

Assume that the function 𝑓 lies in Hilbert space 𝐿2(X , 𝜇) of real-valued functions
on X that are square-integrable with respect to the measure 𝜇. We have the following
unique Sobol-Hoeffding decomposition [19] of the model output given by

𝑓(x) = 𝑓0 +
𝑑∑︁

𝑖=1

𝑓𝑖(𝑥𝑖) +
∑︁

1≤𝑖<𝑗≤𝑑

𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) + . . .+ 𝑓1...𝑑(𝑥1, . . . , 𝑥𝑑)

=
∑︁

𝒰⊆{1,...,𝑑}

𝑓𝒰(x𝒰)

(1)

with 2𝑑 terms of increasing dimension that satisfy the condition

E𝜇𝑖
[𝑓𝒰 ] =

∫︁
X𝑖

𝑓𝒰(x𝒰)𝑑𝜇𝑖(𝑥𝑖) = 0 for ∀𝑖 ∈ 𝒰 , (2)

where 𝒰 ⊆ {1, 2, . . . , 𝑑} is a subset of indexes of input variables; x𝒰 — the vector with
components (𝑥𝑖, 𝑖 ∈ 𝒰)𝑇 and 𝑓∅ ≜ 𝑓0 = E𝜇[𝑓(x)]. The terms of this decomposition
are orthogonal:

E𝜇

[︀
𝑓𝒰(x𝒰)𝑓𝒱(x𝒱)

]︀
= 0, if 𝒰 ̸= 𝒱 , where 𝒰 ,𝒱 ⊆ {1, 2, . . . , 𝑑},

from which one can obtain the following decomposition of the variance of model re­
sponse:

V𝜇[𝑓(x)] =
∑︁

𝒰⊆{1,...,𝑑}

V𝜇[𝑓𝒰(x𝒰)]. (3)

Assuming V𝜇[𝑓 ] > 0, we introduce Sobol’ sensitivity indices (SI).

Definition 1. The Sobol’ index of the set x𝒰 , 𝒰 ⊆ {1, . . . , 𝑑} of input variables of
a function is defined as

𝑆𝒰 =
V𝜇[𝑓𝒰(x𝒰)]

V𝜇[𝑓(x)]
. (4)

Denote 𝜇𝒰 ≜ ⊗𝑖∈𝒰𝜇𝑖, E𝒰 ≜ E𝜇𝒰 , V𝒰 ≜ V𝜇𝒰 , and ∼𝒰 ≜ {1, . . . , 𝑑}∖𝒰 . Then for
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𝒰 = {𝑖} the Sobol’ index (4) can be represented as

𝑆𝑖 =
V𝑖

[︀
E∼𝑖[𝑓(x)|𝑥𝑖]

]︀
V𝜇[𝑓 ]

, 𝑖 = 1, . . . , 𝑑, (5)

We also define a quantity that characterizes the “total” contribution of a group
of variables to the variability of the model — total-effect index (also known as total
Sobol’ index and total-index ).

Definition 2. The total-effect index of the set x𝒰 , 𝒰 ⊆ {1, . . . , 𝑑} of input variables
of a function is defined as

𝑇𝒰 =
∑︁
𝒰∩𝒱≠∅

𝑆𝒱 =
E∼𝒰

[︀
V𝒰 [𝑓(x)|x∼𝒰 ]

]︀
V𝜇[𝑓 ]

. (6)

Thus, Sobol’ sensitivity indices introduced above offer one of the possible ways
to formalize and solve the problem of global sensitivity analysis.

The second part is devoted to the method for calculating Sobol’ indices and
total-effect indices using the metamodeling approach; in particular, with the help of
Polynomial Chaos Approximation.

Direct calculation of Sobol’ indices leads to computationally expensive multidi­
mensional integration. To simplify this problem using the metamodeling approach,
one can replace the original function 𝑓(x) with the approximation ̂︀𝑓(x) that is better
suited for computing of Sobol’ indices.

We will mainly consider metamodels of the Polynomial Chaos Approximation
type, which are often encountered in sensitivity analysis problems. Introduce them
formally. Denote scalar product and norm for 𝑔, ℎ ∈ 𝐿2(X , 𝜇) as ⟨𝑔, ℎ⟩𝜇 =∫︀
x∈X 𝑔(x)ℎ(x)𝑑𝜇(x) and ‖𝑔‖2𝜇 ≜ ‖𝑔‖2𝐿2(X ,𝜇) =

∫︀
x∈X 𝑔2(x)𝑑𝜇(x); and supremum

norm as ‖𝑔‖𝐿∞ ≜ ‖𝑔‖𝐿∞(X ) ≜ supx∈X |𝑔(x)|. The norm in Euclidean vector spaces is
denoted as ‖ · ‖.

Assume that there is a function set {𝛹𝛼(x)} in 𝐿2(X , 𝜇) parameterized by mul­
ti-index3 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ N𝑑, which consists of 𝜇-orthonormal functions and has
the form of tensor product of 𝑑 families of 𝜇𝑖-orthonormal one-dimensional functions
{𝜓(𝑖)

𝛼𝑖 , 𝛼𝑖 ∈ N} with 𝜓
(𝑖)
0 ≡ 1 and E𝑖

[︀
𝜓
(𝑖)
𝛼 (𝑥𝑖)𝜓

(𝑖)
𝛽 (𝑥𝑖)

]︀
= 𝛿𝛼𝛽 for 𝛼, 𝛽 ∈ N, where 𝛿 is

the Kronecker symbol. As a result,

𝛹0(x) ≡ 1, 𝛹𝛼(x) =
𝑑∏︁

𝑖=1

𝜓(𝑖)
𝛼𝑖
(𝑥𝑖), x ∈X ,

⟨𝛹𝛼, 𝛹𝛽⟩𝜇 = 𝛿𝛼𝛽, 𝛼,𝛽 ∈ N𝑑.

(7)

Define the metamodel as a linear combination of 𝑁 functions from the set
3Denote N ≜ {0, 1, 2, . . .}, N+ ≜ {0, 1, 2, . . .} and introduce zero multi-index 0 ≜ (0, . . . , 0) ∈ N𝑑.
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{𝛹𝛼(x), 𝛼 ∈ L𝑁} for some set of multi-indices L𝑁 ⊂ N𝑑:

̂︀𝑓(x) = ∑︁
𝛼∈L𝑁

̂︀𝑐𝛼𝛹𝛼(x), x ∈X , ̂︀𝑐𝛼 ∈ R. (8)

If the regressors {𝛹𝛼} are multidimensional polynomials, then (8) corresponds to Poly­
nomial Chaos Approximation4. One of the important advantages of the presented type
of approximation is that it allows calculating Sobol’ indices analytically from the ex­
pansion coefficients [12]. Indeed, if V𝜇[ ̂︀𝑓 ] > 0, then the Sobol’ index of a non-empty
set of input variables x𝒰 , 𝒰 ⊆ {1, . . . , 𝑑} of a function ̂︀𝑓 defined as (8) is expressed as

̂︀𝑆𝒰(̂︀c) = ∑︀
𝛼∈L𝒰

̂︀𝑐2𝛼∑︀
𝛼∈L +

𝑁
̂︀𝑐2𝛼 , (9)

where L +
𝑁 ≜ L𝑁∖0, and L𝒰 ≜ L𝒰 [L𝑁 ] is the subset of L𝑁 that consists of such

multi-indices that only indices corresponding to variables x𝒰 are nonzero: L𝒰 = {𝛼 ∈
L +

𝑁 : 𝛼𝑖 > 0 for all 𝑖 ∈ 𝒰 ; 𝛼𝑖 = 0 for 𝑖 /∈ 𝒰}. The vector of coefficients (̂︀𝑐𝛼, 𝛼 ∈
L𝑁)

𝑇 is denoted as ̂︀c ∈ R𝑁 . Note that V𝜇[ ̂︀𝑓 ] = ∑︀
𝛼∈L +

𝑁
̂︀𝑐2𝛼. Total-effect indices for ̂︀𝑓

are calculated similarly.
In the third part, an observation model is introduced and methods for con­

structing Polynomial Chaos Approximation for a finite training set are considered.
The observation model. We will assume that the only information about

the model 𝑓 comes from the observations; more precisely, for some design of exper­
iments 𝒟 = (x𝑖 ∈X )𝑛𝑖=1 ∈ R𝑛×𝑑 one can obtain a set of model responses and form a
training sample:

𝒮 =
(︀
x𝑖, 𝑦𝑖 = 𝑓(x𝑖) + 𝜂𝑖

)︀𝑛
𝑖=1
, (10)

where 𝜂𝑖 are independent and identically distributed random measurement errors such
that E𝜂𝑖 = 0, V𝜂𝑖 = 𝜎2 <∞; and are independent from x. In matrix form: 𝒮 =

(︀
𝒟 ∈

X 𝑛, 𝑌 = 𝑓(𝒟)+𝜂 ∈ R𝑛
)︀
, where 𝑓(𝒟) ≜

(︀
𝑓(x1), . . . , 𝑓(x𝑛)

)︀𝑇 and 𝜂 =
(︀
𝜂1, . . . , 𝜂𝑛)

𝑇 .
We will consider both the general case of noisy observations and the special noiseless
case corresponding to 𝜎2 = 0.

Building a metamodel. Consider some fixed sequence of nested sets of
𝑑-dimensional multi-indices:

{0} = L1 ⊂ . . . ⊂ L𝑁 . . . ⊂ L∞ = N𝑑, (11)

where |L𝑁 | = 𝑁 for all 𝑁 ∈ N+. Each element of this sequence corresponds to
the metamodel of the form (8). We will call each L𝑁 a truncation set, since for
the corresponding 𝑁 -th approximation ̂︀𝑐𝛼 ≜ 0 if 𝛼 /∈ L𝑁 . Fix some truncation
set L𝑁 , and denote the subspace of all linear combinations of {𝛹𝛼, 𝛼 ∈ L𝑁} as
𝑉𝑁 ≜ 𝑠𝑝𝑎𝑛{𝛹𝛼, 𝛼 ∈ L𝑁}. Theoretical orthogonal projection of 𝑓 onto 𝑉𝑁 with

4We can consider not only polynomials. At the same time, this is an important special case.
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respect to 𝜇-norm is defined as

𝑓𝑁 ≜ argmin̂︀𝑓∈𝑉𝑁

‖𝑓 − ̂︀𝑓‖𝜇. (12)

We also define 𝑒𝑁(x) ≜ 𝑓(x) − 𝑓𝑁(x). The function 𝑓𝑁 corresponds to the best
possible approximation of the model 𝑓 in the space 𝑉𝑁 with respect to 𝜇-norm.

Consider now the construction of an approximation for a finite training set. Let
𝛷 ≜ 𝛹 (𝒟) =

(︀
𝛹𝛼(𝒟), 𝛼 ∈ L𝑁

)︀
∈ R𝑛×𝑁 and 𝛹𝛼(𝒟) ≜

(︀
𝛹𝛼(x1), . . . , 𝛹𝛼(x𝑛)

)︀𝑇 ∈
R𝑛. Among all methods for estimating the expansion coefficients, we will consider
the following:

• Projection method based on quasi-regression [1]

̂︀c𝑃 =
1

𝑛
𝛷𝑇𝑌 ∈ R𝑁 . (13)

• Ordinary Least Squares, LS

̂︀c𝐿𝑆 = (𝛷𝑇𝛷)−1𝛷𝑇𝑌, if det(𝛷𝑇𝛷) ̸= 0. (14)

We will refer to the approximations constructed based on these two methods aŝ︀𝑓𝑃 and ̂︀𝑓𝐿𝑆 correspondingly. Related Sobol’ indices, estimated via these two approxi­
mations, are denoted by ̂︀𝑆𝑃 and ̂︀𝑆𝐿𝑆, respectively.

In the second chapter, we perform a theoretical analysis of the error of Sobol’
indices estimates based on arbitrary metamodels and establish the relationship of this
error with the accuracy of metamodels. Based on this analysis, a new quality control
method for such estimates is proposed. It is also shown that obtained upper bounds
for the error of indices estimates are achievable.

All further results are valid for both Sobol’ indices and total-effects of all orders
unless otherwise stated. In order to avoid duplication, we use the notation 𝑆𝒰 for
indices of both types in theorems’ statements.

First, we need to make sure that the closeness of the function and its arbitrary5

approximation 𝑓 ≈ ̂︀𝑓 leads to the closeness of their (total) Sobol’ indices 𝑆𝒰 and ̂︀𝑆𝒰 .
Note that the opposite is not true in general. To characterize the closeness of functions,
we will use the relative error of approximation given by

E ≜
‖𝑓 − ̂︀𝑓‖𝜇
V1/2

𝜇 [𝑓 ]
. (15)

Theorem 1. For any functions 𝑓, ̂︀𝑓 ∈ 𝐿2(X , 𝜇) such that V𝜇[𝑓 ] > 0, V𝜇[ ̂︀𝑓 ] > 0, it
5In particular, the approximation may not be related to polynomial chaos.
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holds for corresponding Sobol’ and total-effect indices for 𝒰 ⊆ {1, . . . , 𝑑}

⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ {︂√︁

𝑆𝒰(1− ̂︀𝑆𝒰) +√︁̂︀𝑆𝒰(1− 𝑆𝒰)}︂ · E , (16)

max
𝒰

⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ E . (17)

Corollary 1. Under the assumptions of Theorem 1, for all 𝒰 ⊆ {1, . . . , 𝑑}⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ min

(︁
1, E + 2

√︀
𝑆𝒰 , E + 2

√︀
1− 𝑆𝒰

)︁
· E . (18)

In particular, if for some 𝒰 ⊆ {1, . . . , 𝑑} the Sobol’ index or the total-effect index
𝑆𝒰 ∈ {0, 1}, then ⃒⃒

𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ E 2. (19)

The following corollary gives the bound for the sum of errors of Sobol’ indices for
all 2𝑑 different subgroups of variables (not valid for total-effects).

Corollary 2. For any functions 𝑓, ̂︀𝑓 ∈ 𝐿2(X , 𝜇) such that V𝜇[𝑓 ] > 0, V𝜇[ ̂︀𝑓 ] > 0, it
holds for corresponding Sobol’ indices for 𝒰 ⊆ {1, . . . , 𝑑}∑︁

𝒰

⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ 2 · E , (20)∑︁

𝒰

(︀
𝑆𝒰 − ̂︀𝑆𝒰)︀2 ≤ 2 · E 2. (21)

Corollary 1 allows us to propose a new method for quality control of estimates of
Sobol’ indices based on metamodels (see Algorithm 1). The method uses the estimate

⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ min

(︂
1, E2 + 2

√︁̂︀𝑆𝒰 , E2 + 2

√︁
1− ̂︀𝑆𝒰)︂ · E2, (22)

where E2 ≜ ‖𝑓 − ̂︀𝑓‖𝜇 · min
{︀
V−1/2𝜇 [𝑓 ],V−1/2𝜇 [ ̂︀𝑓 ]}︀, which follows from the symmetry of

Theorem 1 with respect to 𝑓 and ̂︀𝑓 . The values on the right-hand side of (22), which
cannot be calculated analytically, are replaced by sample estimates. Approximation
error is estimated using hold-out validation.

For simplicity, it is assumed that a metamodel of type (8) is used, and there is no
additional random noise in the responses (𝜎2 = 0). However, the method is easily gen­
eralized to both arbitrary metamodels and the noisy case. Asymptotic computational
complexity6 of Algorithm 1 is 𝒪

(︀
𝑛𝑡
)︀
, 𝑛𝑡 — test sample size.

One can show that the error upper bounds in Theorem 1 are achievable, using
6Number of regressors 𝑁 , dimension 𝑑, and calculation time of the response 𝑓(x𝑖) are assumed to be constant.
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Algorithm 1. Estimation of errors of Sobol’ indices / total-effect indices.

Parameters: test set size 𝑛𝑡; constructed approximation ̂︀𝑓 =
∑︀

𝛼∈L𝑁
̂︀𝑐𝛼𝛹𝛼.

1. Obtain a sample 𝒟𝑡 = (x𝑖 ∈ X )𝑛𝑡

𝑖=1 from the distribution 𝜇 and the responses
𝑓(x𝑖) and ̂︀𝑓(x𝑖) for each x𝑖 ∈ 𝒟𝑡.

2. M ← 1
𝑛𝑡

∑︀𝑛𝑡

𝑖=1

[︀
𝑓(x𝑖)− ̂︀𝑓(x𝑖)

]︀2, where all x𝑖 ∈ 𝒟𝑡.

3. V1 ← 1
𝑛𝑡

∑︀𝑛𝑡

𝑖=1

[︁
𝑓(x𝑖)− 1

𝑛𝑡

∑︀𝑛𝑡

𝑗=1 𝑓(x𝑗)
]︁2

where all x𝑖, x𝑗 ∈ 𝒟𝑡

4. V2 ←
∑︀

𝛼∈L +
𝑁
̂︀𝑐2𝛼.

5. ̂︀E2 ←
√︀

M /max(V1,V2).

6. For each 𝒰 ⊆ {1, . . . , 𝑑}:

6.1. Calculate ̂︀𝑆𝒰 from the expansion coefficients ̂︀𝑐𝛼.

6.2. Q𝒰 ← min
(︁
1, ̂︀E2 + 2

√︁̂︀𝑆𝒰 , ̂︀E2 + 2

√︁
1− ̂︀𝑆𝒰)︁ · ̂︀E2.

Output: upper bounds for
⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ for all 𝒰 ⊆ {1, . . . , 𝑑}, {Q𝒰}.

two functions of the form

𝑓(x) = 𝑐1 · 𝛹(1,0,0,... )(x) + 𝑐2 · 𝛹(0,1,0,... )(x),̂︀𝑓(x) = ̂︀𝑐1 · 𝛹(1,0,0,... )(x) + ̂︀𝑐2 · 𝛹(0,1,0,... )(x).
(23)

Theorem 2. For any subset 𝒰 ⊆ {1, . . . , 𝑑} and any values 𝑆𝒰 , ̂︀𝑆𝒰 ∈ (0, 1), there are
𝑓, ̂︀𝑓 ∈ 𝐿2(X , 𝜇) with Sobol’ (total-effect) indices for x𝒰 variables equal to 𝑆𝒰 and ̂︀𝑆𝒰
correspondingly, such that⃒⃒

𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ =

{︂√︁
𝑆𝒰(1− ̂︀𝑆𝒰) +√︁̂︀𝑆𝒰(1− 𝑆𝒰)}︂ · E . (24)

Theorem 3. For any 𝜀 ∈ [0, 1] there are 𝑓, ̂︀𝑓 ∈ 𝐿2(X , 𝜇) such that for their Sobol’
indices (and for their total-effect indices) it holds

max
𝒰⊆{1,...,𝑑}

⃒⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒⃒ = 𝜀 · E . (25)

In general, the error bound in Theorem 1 can be overestimated, but it is achievable
in principle. Thus, the problem of accuracy of Sobol’ indices estimates is reduced to
the assessment of approximation quality.
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In the third chapter, non-asymptotic risk upper bounds for Sobol’ indices es­
timates for random design are obtained.

The first part deals with the risk of the estimates ̂︀𝑆𝑃 and ̂︀𝑆𝐿𝑆 associated with
the two methods of calculating the expansion coefficients. All risk bounds in this
chapter are obtained under the condition of random design:

Condition 1 (of random design). Suppose the design of experiments 𝒟 = {x𝑖}𝑛𝑖=1

consists of independent and identically distributed random variables with the distribu­
tion 𝜇.

Assume that there is some fixed deterministic learning procedure that constructs
the approximation based on the given training set (10):

ℒ :
(︀
𝒟, 𝑌 = 𝑓(𝒟) + 𝜂

)︀
→ ̂︀𝑓 (26)

such that a fixed realization of the training sample always leads to the same approxi­
mation ̂︀𝑓 ∈ 𝐿2(X , 𝜇).

The following theorem establishes a relationship between the risk of Sobol’ indices
estimates and the quadratic risk of the approximation E‖𝑓− ̂︀𝑓‖2𝜇, where the expectation
is taken with respect to distributions of design and noise. In what follows, we will
assume that V𝜇[𝑓 ] > 0. Additionally define Sobol’ indices ̂︀𝑆𝒰 = 2−𝑑 if V𝜇[ ̂︀𝑓 ] = 0.

Theorem 4. Let ̂︀𝑓 be an arbitrary approximation of 𝑓 constructed according to the pro­
cedure ℒ satisfying (26). Assume that under Condition 1 of random design there exists
E‖𝑓 − ̂︀𝑓‖2𝜇 < ∞. Then for corresponding Sobol’ indices and total-effect indices of 𝑓
and ̂︀𝑓 for 𝒰 ⊆ {1, . . . , 𝑑}

max
𝒰

E
(︀
𝑆𝒰 − ̂︀𝑆𝒰)︀2 ≤ ℛ2, (27)

E
⃒⃒
𝑆𝒰 − ̂︀𝑆𝒰 ⃒⃒ ≤ ℛ(︁

ℛ+ 2
√︀
𝑆𝒰

)︁
, (28)

where ℛ2 ≜
E‖𝑓 − ̂︀𝑓‖2𝜇

V𝜇[𝑓 ]
. (29)

Corollary 3. Under the assumptions of Theorem 4, it holds for the corresponding
Sobol’ indices7 of functions 𝑓 and ̂︀𝑓 for 𝒰 ⊆ {1, . . . , 𝑑}

E
[︁∑︁
𝒰

(︀
𝑆𝒰 − ̂︀𝑆𝒰)︀2]︁ ≤ 2 · ℛ2. (30)

Projection method. Consider now not a general metamodel, but Polynomial
Chaos Approximation.

7Not valid for total-effect indices.
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Condition 2 (of boundedness). We additionally require 𝑓 to be bounded on X :⃒⃒
𝑓(x)

⃒⃒
≤ 𝐿 for x ∈X . (31)

Theorem 5. Under Condition 1 of random design and Condition 2 of boundedness,
for corresponding Sobol’ (total-effect) indices of functions 𝑓 and ̂︀𝑓𝑃 it holds for 𝒰 ⊆
{1, . . . , 𝑑}

max
𝒰

E
(︀
𝑆𝒰 − ̂︀𝑆𝑃

𝒰
)︀2 ≤ ℛ2

𝑝, (32)

E
⃒⃒
𝑆𝒰 − ̂︀𝑆𝑃

𝒰
⃒⃒
≤ ℛ𝑝

(︁
ℛ𝑝 + 2

√︀
𝑆𝒰

)︁
, (33)

where ℛ2
𝑝 ≜

1

V𝜇[𝑓 ]
· ‖𝑒𝑁‖2𝜇 +

𝐿2 + 𝜎2

V𝜇[𝑓 ]
· 𝑁
𝑛
.

Corollary 4. Under the assumptions of Theorem 5, suppose additionally
lim𝑁→∞ ‖𝑒𝑁‖𝜇 = 0. Let 𝑁 = 𝑁(𝑛),

𝑁

𝑛
→ 0 and 𝑁 →∞ as 𝑛→∞,

Then
E
(︀
𝑆𝒰 − ̂︀𝑆𝑃

𝒰
)︀2 −→

𝑛→∞
0.

Ordinary least squares. Introduce the numerical characteristic often used in
the random design setting to control the “stability” of LS estimates:

Definition 3. For the orthonormal set of functions {𝛹𝛼, 𝛼 ∈ L𝑁} that satisfies (7),
and for some fixed sequence of truncation sets (11), define

𝐾𝑁 ≜ sup
x∈X

[︁ ∑︁
𝛼∈L𝑁

𝛹 2
𝛼(x)

]︁
. (34)

Denote the spectral norm of matrix 𝐴 ∈ R𝑚×𝑝 as

|||𝐴||| = max
z∈R𝑝 : ‖z‖≠0

‖𝐴z‖
‖z‖

. (35)

We need the following result obtained by Cohen [6].

Lemma 1 (Cohen, 2013). Under Condition 1 of random design, for 𝛿 ∈ (0, 1)

𝑃
{︁
|||𝛷𝑇𝛷/𝑛− 𝐼𝑁 ||| > 𝛿

}︁
≤ 2𝑁 · exp

[︂
−𝑐𝛿 · 𝑛
𝐾𝑁

]︂
, (36)

where 𝑐𝛿 ≜ (1 + 𝛿) ln(1 + 𝛿)− 𝛿 > 0.
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Lemma 1 leads to the condition on the size of the training sample 𝑛 and the num­
ber of regressors 𝑁 that excludes the possibility of ill-conditioned normalized informa­
tion matrix 𝛷𝑇𝛷/𝑛 with high probability.

Condition 3 (of stability). Let for some fixed 𝑟 > 0 the relation of 𝑁 and 𝑛 satisfies

𝐾𝑁 ≤ κ𝑟 ·
𝑛

ln𝑛
, where κ𝑟 =

3 · ln(3/2)− 1

2 + 2𝑟
. (37)

Under Condition 3 of stability, we have based on Lemma 1

𝑃
{︁
|||𝛷𝑇𝛷/𝑛− 𝐼𝑁 ||| > 1/2

}︁
≤ 2𝑛−𝑟. (38)

Theorem 6. Under Condition 1 of random design and Condition 3 of stability
for corresponding Sobol’ indices and total-effect indices of 𝑓 and ̂︀𝑓𝐿𝑆 it holds for
𝒰 ⊆ {1, . . . , 𝑑}

max
𝒰

E
(︀
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
)︀2 ≤ ℛ2

𝐿𝑆 + 2𝑛−𝑟, (39)

E
⃒⃒
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
⃒⃒
≤ ℛ𝐿𝑆

(︁
ℛ𝐿𝑆 + 2

√︀
𝑆𝒰

)︁
+ 2𝑛−𝑟, (40)

where ℛ2
𝐿𝑆 ≜

1.2

V𝜇[𝑓 ]
· ‖𝑒𝑁‖2𝜇 +

4𝜎2

V𝜇[𝑓 ]
· 𝑁
𝑛
.

Corollary 5. Under the assumptions of Theorem 6 for the case of noiseless observa­
tions, i.e. 𝜎2 = 0, it holds

E
(︀
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
)︀2 ≤ 1.2

V𝜇[𝑓 ]
‖𝑒𝑁‖2𝜇 + 2𝑛−𝑟, (41)

E
⃒⃒
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
⃒⃒
≤ 1.2

V𝜇[𝑓 ]
‖𝑒𝑁‖2𝜇 +

2.2 · 𝑆1/2
𝒰

V1/2
𝜇 [𝑓 ]

‖𝑒𝑁‖𝜇 + 2𝑛−𝑟. (42)

Corollary 6. Under the assumptions of Theorem 6, except Condition 3, suppose ad­
ditionally that lim𝑁→∞ ‖𝑒𝑁‖𝜇 = 0. Let 𝑁 = 𝑁(𝑛),

𝐾𝑁 · ln𝑁
𝑛

→ 0 and 𝑁 →∞ as 𝑛→∞,

Then
E
(︀
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
)︀2 −→

𝑛→∞
0.

In the second part, we perform an asymptotic analysis of the obtained risk
upper bounds with increasing sample size for approximations based on specific families
of multidimensional polynomials. We will assume that the analyzed function 𝑓 is
𝑝-smooth.
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Table 1: Asymptotic upper bounds for the quadratic risk of Sobol’ and total-effect
indices estimates, depending on sample size 𝑛, input dimension 𝑑, and smoothness 𝑝.

Polynomials Legendre Chebyshev Trigonometric

Distribution U ([−1, 1]𝑑) Arc ([−1, 1]𝑑) U ([0, 1]𝑑)

𝜎
2
=

0 E
(︀
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
)︀2

≲
(︀

𝑛
ln𝑛

)︀−𝑝/𝑑 (︀
𝑛
ln𝑛

)︀−2𝑝/𝑑 (︀
𝑛
ln𝑛

)︀−2𝑝/𝑑
E
(︀
𝑆𝒰 − ̂︀𝑆𝑃

𝒰
)︀2

≲ 𝑛−
2𝑝

2𝑝+𝑑

𝜎
2
>

0 E
(︀
𝑆𝒰 − ̂︀𝑆𝐿𝑆

𝒰
)︀2

≲
𝑛−

2𝑝
2𝑝+𝑑 , 𝑝/𝑑 > 1/2(︀

𝑛
ln𝑛

)︀−𝑝/𝑑, 𝑝/𝑑 ≤ 1/2

𝑛−
2𝑝

2𝑝+𝑑 𝑛−
2𝑝

2𝑝+𝑑

E
(︀
𝑆𝒰 − ̂︀𝑆𝑃

𝒰
)︀2

≲ 𝑛−
2𝑝

2𝑝+𝑑

As a basis for approximations, we consider three families of polynomials: Legen­
dre, Trigonometric and Chebyshev, the first two of which are orthogonal with respect
to the continuous uniform distribution, and the last — with respect to the arcsine
distribution. In accordance with (7), the non-constant elements of these families are
additionally normalized to have unit variance with respect to the corresponding distri­
butions.

Remark 1. For the case of Trigonometric polynomials, we additionally require that
the function 𝑓 can be extended outside X = [0, 1]𝑑 to become 1-periodic in each input
argument.

For asymptotic analysis, the truncation scheme will be used based on the maxi­
mum degree of one-dimensional polynomial factors. For some 𝛼𝑚𝑎𝑥 ∈ N+ we define

L𝑁 = {𝛼 ∈ N𝑑 : max
𝑖=1,...,𝑑

{𝛼𝑖} ≤ 𝛼𝑚𝑎𝑥}, (43)

where 𝑁 = |L𝑁 | = (𝛼𝑚𝑎𝑥 + 1)𝑑.
Table 1, based on the results of Theorems 5 and 6, summarizes the asymptotic8

risk bounds for estimates of Sobol’ indices and total-effect indices for the two meth­
ods for calculating the expansion coefficients and three types of polynomials. When
deriving these bounds, it was assumed that the number of regressors 𝑁 is chosen
asymptotically optimally to minimize the resulting risk.

8If two sequences of positive numbers {𝑎𝑛} and {𝑏𝑛} are given, then 𝑎𝑛 ≲ 𝑏𝑛 means that the sequence {𝑎𝑛/𝑏𝑛}
is bounded.
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It can be concluded that the key factors that provide the possibility for fast
convergence of Sobol’ indices estimates are the absence of random noise in the output
of the analyzed function, its high smoothness, and low dimension.

In the fourth chapter, we consider another – asymptotic – approach for ana­
lyzing the quality of estimates of Sobol’ indices and propose a method of sequential
design of experiments based on it, which ensures high accuracy of these estimates.

In this chapter, we only consider Sobol’ indices of the type 𝑆𝑖 ≜ 𝑆{𝑖}, 𝑖 = 1, . . . , 𝑑,
called first-order sensitivity indices. In addition, we use a simplified9 data model in
which DoE is fixed (not random), and the analyzed function has the form of Polynomial
Chaos Approximation (8) with a finite number of terms 𝑓(x) =

∑︀
𝛼∈L𝑁

𝑐𝛼𝛹𝛼(x),
where V𝜇[𝑓 ] =

∑︀
𝛼∈L +

𝑁
𝑐2𝛼 > 0. The response of the model is formed as

𝑦 = c𝑇𝛹 (x) + 𝜂, (44)

where 𝜂 ∼ N (0, 𝜎2), 𝜎2 > 0 is independent Gaussian noise, and 𝛹 (x) ≜
(︀
𝛹𝛼(x), 𝛼 ∈

L𝑁

)︀𝑇 ∈ R𝑁 , and the metamodel has the form ̂︀𝑓(x) = ̂︀c𝑇𝛹 (x). The expansion
coefficients are estimated from the training sample with the help of LS method only.

Define information matrix 𝐴𝑛 ∈ R𝑁×𝑁 as

𝐴𝑛 =
𝑛∑︁

𝑖=1

𝛹 (x𝑖)𝛹
𝑇 (x𝑖). (45)

Define a vector-valued function of first-order sensitivity indices with components of
the form (9) as S(c) ≜

(︀
𝑆1(c), . . . , 𝑆𝑑(c)

)︀𝑇 with the corresponding Jacobian matrix
(of size 𝑑×𝑁)

𝐵 ≜ 𝐵(c) =
𝜕S(c)

𝜕c
. (46)

Theorem 7.
Let the following conditions be satisfied:

1. There is some infinite deterministic sequence of points in the design space {x𝑖 ∈
X }∞𝑖=1 such that

1

𝑛
𝐴𝑛 −→

𝑛→∞
𝐻, (47)

where 𝐻 ∈ R𝑁×𝑁 — some symmetric positive definite matrix.

2. The points from this sequence {x𝑖 ∈X }∞𝑖=1 and the corresponding responses (44)
are iteratively added to the training set.

3. For the true coefficients c, det
(︀
𝐵(c)𝐻−1𝐵𝑇 (c)

)︀
̸= 0 holds.

9Thus, the difference from the previously presented data model is that here 𝑒𝑁 (x) ≡ 0, the noise is Gaussian,
and Condition 1 of random design is not imposed. In addition, the structure of the metamodel is fixed.
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Algorithm 2. DoE for estimating Sobol’ indices.

Parameters: initial number of points in the design of experiments 𝑚 and the final
number 𝑛 > 𝑚; set of candidate points 𝛯.

Initialization: initial training set (𝒟, 𝑌 ) of 𝑚 examples such that the design 𝒟 =
{x𝑖}𝑚𝑖=1 ⊂ 𝛯 leads to a nonsingular information matrix 𝐴𝑚 = 𝛹𝑇 (𝒟) · 𝛹 (𝒟);
estimates ̂︀c𝑚 = 𝐴−1𝑚 𝑇𝑚, where 𝑇𝑚 = 𝛹𝑇 (𝒟)𝑌 .

Iterations: while the design 𝒟 contains less than 𝑛 examples:

1. x← argminx∈𝛯 det
[︁
𝐵(̂︀c) · {︀𝐴+ 𝛹 (x) · 𝛹𝑇 (x)

}︀−1 ·𝐵𝑇 (̂︀c)]︁. // see (49)

2. 𝒟 ← 𝒟 ∪ {x}, 𝑌 ← 𝑌 ∪ {𝑓(x)}.
3. 𝐴← 𝐴+ 𝛹 (x) · 𝛹𝑇 (x), 𝑇 ← 𝑇 + 𝑓(x) · 𝛹 (x).

4. ̂︀c← 𝐴−1𝑇 . // update estimates according to (14)

Output: design of experiments, 𝒟.

Then the following convergence in distribution takes place:

√
𝑛
(︀
S(c)− S(̂︀c𝑛))︀ 𝑑−→

𝑛→∞
N
(︀
0, 𝜎2𝐵𝐻−1𝐵𝑇

)︀
. (48)

Theorem 7 leads to the idea of Algorithm 2 of sequential DoE for estimating
Sobol’ indices. The algorithm uses the 𝐷-optimality criterion, and at each iteration
of the algorithm, the current estimates of the expansion coefficients and the current
normalized information matrix are used to calculate the determinant of the covariance
matrix 𝜎2 ·𝐵(c)𝐻−1𝐵𝑇 (c). Instead of calculating the determinant for each candidate
point at step 1. of Algorithm 2, we use an equivalent optimization problem with
a computationally efficient solution:

𝛹𝑇 (x) ·
{︀
𝐴−1𝐵𝑇 (𝐵𝐴−1𝐵𝑇 )−1𝐵𝐴−1

}︀
· 𝛹 (x)

1 + 𝛹𝑇 (x) · 𝐴−1 · 𝛹 (x)
→ max

x∈𝛯
. (49)

Asymptotic computational complexity10 of Algorithm 2 is 𝒪
(︀
𝑛), where 𝑛 is the fi­

nal size of the design after adding all new points.
In general, our approach to DoE is to obtain an (asymptotic) normal distribution

of Sobol’ indices with a design-dependent covariance matrix and apply one of the opti­
mality criteria. Algorithm 2 illustrates this idea using the 𝐷-optimality criterion, but

10Number of regressors 𝑁 , dimension 𝑑, number of candidate points |𝛯|, and calculation time of the response
𝑓(x𝑖) are assumed to be constant.
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other criteria can be used. For example, Pronzato [12] applied the proposed approach
using the 𝐴- and 𝑀𝑉 -criteria. The choice of a specific criterion for the design opti­
mality should be carried out by the researcher based on the specifics of the problem.
In particular, the 𝐷-optimality criterion can be recommended when the “mean” error
of the estimates of Sobol’ indices is more important than its maximum value over all
groups of input parameters.

The fifth chapter describes the software package developed by the author and
gives the results of computational experiments for the proposed algorithms.

The first part is devoted to the developed software package in the Python
language, which includes the algorithms for quality control and design of experiments
created in the study. In addition to the algorithms, the package also includes a test
environment (test analyzed functions and alternative methods from the literature),
which allows you to compare the proposed approaches with analogues.

In the second part, we test the quality control method for Sobol’ indices
(Algorithm 1). For comparison, we use sample error bounds based on the bootstrap
method [7]. An example of results for the 2-dimensional Sobol’ 𝑔-function is shown in
Figure 1a. When assessing the quality of the approximation, 15% of the samples are
used for hold-out validation.

In the third part, an experimental analysis of the risk bounds obtained in
Theorems 5 and 6 is given, and it is shown that the metamodeling approach does
allow one to achieve a high rate of convergence of estimates of Sobol’ indices to their
true values.

As an illustration, Figure 1b shows the empirical estimate of risk max𝒰
{︀
E(𝑆𝒰 −̂︀𝑆𝒰)2, E(𝑇𝒰 − ̂︀𝑇𝒰)2}︀ and the components of its bounds from the mentioned theorems

‖𝑒𝑁‖2𝜇/V𝜇[𝑓 ] and 𝑛−𝑟 for Sobol’ 𝑔-function in the noiseless case.
The fourth part presents the results of applying the proposed method of se­

quential design of experiments (Algorithm 2) to solve a series of artificial and real
engineering problems (using finite element models), the dimension of the design space
varies from 2 to 53. The experiment setting assumes that new points are iteratively
added to some initial random design. The proposed method is compared with the fol­
lowing DoE techniques:

• Random design, the sequential addition of random points from a set of candi­
dates 𝛯.

• Sequential 𝐷-optimal design [13] based on iterative maximization of determinant
of the information matrix: x𝑛+1 = argmaxx∈𝛯 det

[︀
𝐴𝑛 + 𝛹 (x) · 𝛹𝑇 (x)

]︀
.

• LHS — sampling based on latin hypercube. Note that at each iteration all points
of the design are updated.

The effectiveness of the proposed approach is illustrated by Figure 1c, which shows
the results of the listed DoE techniques for the model of deflection of a bar structure
(truss) under the action of external forces [2, 9], in which 𝑑 = 10 input parameters
have a continuous uniform distribution. The metric of DoE quality is the error of
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Sobol’ indices
√︁∑︀𝑑

𝑖=1(𝑆𝑖 − ̂︀𝑆𝑖)2 averaged over several runs of the DoE technique with
different initial designs. For convenience, the figure also shows the error values for all
techniques relative to Algorithm 2. In addition, we use Welch’s 𝑡-test to verify that
the difference in the mean errors of the indices is statistically significant. It can be
seen that the estimates of Sobol’ indices obtained on the basis of Algorithm 2 are,
on average, more accurate at all iterations; in particular, after adding 29 new points,
the average accuracy of these estimates by 10% exceeds the result that gives the most
accurate of the other methods in comparison, the sequential 𝐷-optimal design.
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(a) Estimation errors of the three Sobol’ indices and their sample-based error bounds for Algorithm 1 and the bootstrap
method. Metamodels based on Legendre polynomials, 𝑁 = 91 regressors, LS.

(b) Quadratic risk of Sobol’ and total-effect indices max𝒰
{︀
E(𝑆𝒰 − ̂︀𝑆𝒰 )

2, E(𝑇𝒰 − ̂︀𝑇𝒰 )
2
}︀

and the components of its
bounds according to Theorem 6. Metamodels based on Legendre and Trigonometric polynomials with different number
of regressors. LS. Noiseless case, 𝜎2 = 0.

(c) The mean error of Sobol’ indices estimates and its normalized version; and 𝑝-value of Welch’s 𝑡-test for different
DoE. Legendre polynomials, 𝑁 = 176 regressors, LS. Initial design size 𝑚 = 176.

Figure 1: Some results of computational experiments.
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Conclusion

1. A relationship has been established between the error in estimates of Sobol’
indices and the error of the approximation, on the basis of which these estimates
were obtained. This relationship is valid for Sobol’ indices and total-effect indices
of all orders. In particular, it is shown that the maximum absolute error of
estimates of Sobol’ indices for all groups of variables is bounded by the relative
error of the corresponding approximation, and this bound is achievable.

2. Thanks to the obtained theoretical error bound, a method for controlling
the quality of metamodel-based estimates of Sobol’ indices has been developed.

3. Under the condition of random design of experiments for Polynomial Chaos
Approximation, non-asymptotic upper bounds on the risk of metamodel-based
estimates of Sobol’ indices are obtained. In addition, estimates for the rate
of convergence are found for these bounds in the case of analyzed functions
of different smoothness and approximations that use Legendre, Chebyshev and
Trigonometric polynomials.

4. An asymptotic distribution of estimates of Sobol’ indices was found, which made
it possible to develop a method for sequential design of experiments for estimat­
ing sensitivity indices using Polynomial Chaos Approximation.

5. A software package has been developed for solving problems related to modeling
in engineering design, which includes the proposed methods for quality control
of estimates of Sobol’ indices and the design of experiments.

6. The effectiveness of the developed software package was demonstrated in solving
a number of engineering problems; particularly, in the analysis of factors that
affect the deflection of a bar structure (truss) under the action of external forces.
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