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1 Introduction

Machine learning attempts to recover and describe empirical relationships in data. Of-
ten the interest is in quantifying or attributing observed data to a predetermined set of
categories. For example, how does the price of an apartment depend on its location and
parameters? Will the user want to read this email? These questions can be answered
based on historical data containing details of past transactions or the history of user in-
teraction with previously received emails. Attribution can also be of interest when the
attributes are not known in advance: is it possible, for example, to distinguish several
distinctive categories in the data?

At the same time, in applications there are problems in which the desired dependencies
fall outside the scope of the examples described above. If, for example, we are talking
about a machine translation task, then each text in the source language must be matched
with a text in the target language. In this case, it would be incorrect to represent the
predicted translation as a number or an element of the set of all possible translations. On
the contrary, it would be convenient to represent the text as a sequence of words, where
the translation algorithm must predict each word, focusing both on the original sentence
and on neighboring words of the translation.

Variables in the data, represented as a set of mutually dependent values, are usually
called structured. The area of machine learning devoted to the prediction of structured
variables is called structured prediction. A characteristic feature of structured variables
is the combinatorial growth of the number of possible values (outcomes) depending on
the parameters of the problem. Ignoring the nuances of the problem, in the machine
translation example, with a dictionary size of w and a known translation length l, the
algorithm must choose among wl possible translations. This feature raises questions about
learning guarantees and efficient inference. Namely, how many examples are enough to
reliably restore the required dependence? How to quickly select an element from a possible
set of outcomes? This work is devoted to the study of these issues.

1.1 Relevance

As the area of machine learning application keeps spreading[56], the variety of tasks and
problem setups is also growing, making structured prediction more in demand. In par-
ticular, the deep learning developments have made it possible to bring algorithms for
natural language processing and computer vision to a qualitatively new level. In super-
vised learning problems where the target variables are structured variables, learning is
often reduced to minimizing the cross-entropy loss function. Such a loss function, in
turns, requires defining the distribution of a target structured variable. For example, in
natural language processing tasks, distribution over text outputs is introduced by factor-
izing the distribution into word-level distributions according to the chain rule (for more
details, see [23, Chapter 10]). Another solution, common, for example, in the problem of
semantic segmentation, is to assume that all elements of a structured variable are inde-
pendent given the input image (as, for example, done in [54]). Recent studies are mostly
devoted to the design of neural network architectures for parameterizing distributions in
the described approach, as well as scaling the described approach [8, 30, 72]. Structured
outputs prompted such key developments as recurrent [28, 62] and convolutional neural
networks [22, 43], as well as transformers [67] for sequence processing, UNet architecture
for image processing [54].

The disadvantage of the above approach to structured prediction and deep learning
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in general is the limited interpretability of the recovered dependencies. In the mean-
time, certain governmental regulators introduce the "right to explanation"[68], accord-
ing to which a person can demand an explanation of how the machine learning system
made a decision regarding him. Thus, the problem of interpreting machine learning al-
gorithms becomes especially acute with the development of deep learning systems. As
a result, a designated area of research has emerged, attempting to interpret specific ar-
chitectures [69, 31, 52], as well as to develop interpretation recipes for arbitrary machine
learning algorithms [37, 51, 11]. At the same time, the idea of using latent structured
variables to increase the interpretability of machine learning algorithms has gained popu-
larity [32, 39]. Next, we describe the idea in more detail. Deep neural networks comprise
a sequence of elementary computing blocks, however the combined output of these blocks
is difficult to interpret. On the other hand, network evaluation may be more transparent
if some of these intermediate construction blocks have interpretable (structured) outputs,
and the network architecture itself takes into account the problem specifics. For example,
in a sentiment analysis task one can design a model that chooses a small subset of words,
based on which the model will make a prediction. In practice, the words chosen by such a
model help to interpret the output. Besides that, neural networks with latent structured
variables can be seen as an evolution of latent variable models such as hidden Markov
chains [12] or probabilistic context-free grammars [55] for modeling languages by adding
more expressive neural network models.

However, in the case of discrete latent variables, the standard training approaches
based on backpropagation is not applicable due to the non-differentiability of the block
that returns the latent variable. The solution to this problem usually comes down to
heuristic gradient substitutes [4] or stochastic relaxation [29, 38, 5, 45]. One of the
chapters of this work is devoted to the problem of learning with hidden permutations.
Another problem related to latent structured variables, which does not lose its relevance
to this day, is the design of architectures with latent variables and the choice of objective
functions. As previous work indicates [33, 16], end-to-end learning in such models often
leads to predictive models that ignore hidden variables, learning the dependence only on
the basis of standard neural network components. The standard solution in this case
is learning with partial labeling of latent variables: for a subset of training samples, an
additional loss function is introduced to encourage the desired prediction. An alternative
would be to choose an architecture that does not allow for sufficient prediction accuracy
without using the hidden variable [11].

Along with the development of practical approaches and algorithms for working with
structural variables, it is important to obtain guarantees on the quality of their work. In
the context of structured prediction, the combinatorial growth in the number of possi-
ble predictions and the unequal contribution of erroneous predictions (not all inaccurate
predictions are equally bad) are the two factors that distinguish structured prediction
from the well-studied classification setup [44]. Generalization in the context of structured
prediction is discussed in [17, 36]. In practice, target metric often does not coincide with
the functional being optimized during training (a surrogate loss function); a number of
results on relationship between target and surrogate losses have been obtained for struc-
tural prediction problems. In the paper [14], the authors showed the consistency of a class
of quadratic surrogate loss functions, and the paper [44] obtained an estimate for the dis-
crepancy between the accuracy of the prediction according to the target metric and the
surrogate loss function. Later, [42] generalized these results to smooth convex surrogate
loss functions. The above works assume that the surrogate loss function is consistent, al-
though inconsistent surrogates are also often used in practice: for example, the multi-class
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support vector machine in the Crammer-Singer form [19], as well as its generalizations
to structured variables [63, 65]. As part of the study of inconsistent loss functions, this
dissertation generalized the results [44] by obtaining estimates for quadratic surrogate loss
functions without the additional requirement of consistency.

1.2 Work Goals

As noted above, structured variables often arise in various machine learning applications.
Prospective problem setups may include structured target variables in the case of super-
vised learning, as well as structured latent variables in both supervised and unsupervised
setups. In addition to prediction quality metrics, inference speed becomes a critical perfor-
mance aspect as we shift to structured variables with a combinatorial number of possible
outcomes. The goal of this work was to develop structured prediction methods that
meet the requirements arising in applications: to develop structured prediction methods
for observed and latent structured variables, while emphasising algorithms with feasible
inference time and the availability of learning guarantees for the proposed methods.

Within the framework of the goals described above, the following tasks were set:

1. development prediction methods for such structural variables as permutations and
subsets of a given size,

2. study of consistency and derivation of learning guarantees for supervised learning
tasks with a structured target variable,

3. development and empirical analysis of models with latent structural variables,

4. development of efficient inference methods for structured latent variables

5. the use of latent structured variables for data interpretation, as well as the construc-
tion of interpretable machine learning methods.

Contributions. When solving the tasks above, we obtained the following results.

1. We developed and evaluated a gradient-based method to optimize over a set of per-
mutations or subsets.

2. In supervised structured prediction setup, we carried out analysis of quadratic sur-
rogate loss functions and quantified surrogate consistency in a novel setting.

3. We proposed and studied several approaches to recovering latent structured variables
based on maximum evidence principle and quadratic surrogate loss functions.

4. We proposed a number of efficient inference procedures for such latent structured
variables as permutations and fixed-size subsets.

5. We developed methods for interpreting data based on latent structured variables.

1.3 Practical Applications

The developed approach to permutation optimization is applicable for restoring the struc-
ture of the relationship between variables in data, which, in particular, is in demand when
interpreting machine learning models. The prior distribution for convolutional neural net-
work parameters offers a method for rapidly adapting model parameters to a new adjacent
data domain. The method for estimating the parameters of a multi-user communication
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channel finds application in modern cellular networks. A probabilistic model for prepro-
cessing geophysical exploration data provides a convenient way to detect anomalies and
recover gaps in historical data.

1.4 Methodology

Our theoretical analysis of structured prediction is based on sections of probability theory,
statistical learning theory, and optimization. In a general structured prediction setup, we
obtained a result applicable to a number of structured prediction problems. Other con-
sideration are based on probabilistic machine learning formalism, as well as the Bayesian
approach to machine learning. The proposed methods are based on the basic sections of
probability theory and stochastic optimization. Besides a few rigorous proofs, this work
mostly relies on the empirical evaluation methods. We implemented the proposed algo-
rithms in Python, assessed their performance and compared with analogues on synthetic
and real data sets.

1.5 Publications and Probation of the Work

First-tier publications:

1. Struminsky K., Lacoste-Julien S., Osokin A. Quantifying Learning Guarantees for
Convex but Inconsistent Surrogates //Advances in Neural Information Processing
Systems. – 2018. – С. 669-677. Contribution of the thesis author: A general lower
bound on the calibration function in structured prediction setup; calculation of the
lower bound coefficients for hierarchical classification; calculation of the lower bound
coefficients for ranking.

2. Gadetsky, A., Struminsky, K., Robinson, C., Quadrianto, N., & Vetrov, D. P.
(2020). Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribu-
tion. In AAAI (pp. 10126-10135). Contribution of the thesis author: An approach to
optimization over permutations and acyclic graphs based on variational optimization
for Plackett-Luce distributions; generalization of the RELAX gradient estimator to
the case of the Plackett-Luce distribution.

3. Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2018,
September). The Deep Weight Prior. In International Conference on Learning
Representations. Contribution of the thesis author: Adaptation of the variational
auto-encoder to the problem of estimating the prior distribution on the parameters
of the Bayesian neural network.

Standard-tier publications:

1. Struminsky K. et al. A new approach for sparse Bayesian channel estimation in
SCMA uplink systems //2016 8th International Conference on Wireless Communi-
cations & Signal Processing (WCSP). – IEEE, 2016. – С. 1-5. Contribution of the
thesis author: Probabilistic model for estimating the parameters of a multi-user com-
munication channel; improved scheme for approximate inference of parameters of a
multi-user communication channel and estimation of the channel configuration.

2. Struminskiy K. et al. Well Log Data Standardization, Imputation and Anomaly
Detection Using Hidden Markov Models //Petroleum Geostatistics 2019. – European
Association of Geoscientists & Engineers, 2019. – Т. 2019. – №. 1. – С. 1-5.
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Contribution of the thesis author: A probabilistic model for the preprocessing of
geological and physical exploration data.

In all papers, with the exception of "The Deep Weight Prior" [1], the applicant is the
main author.

Conference presentations and seminar talks:

1. Bayesian Deep Learning Workshop, NeurIPS 2019, Vancouver, Canada, 13 Decem-
ber, 2019.
Topic: Low-variance Gradient Estimates for the Plackett-Luce Distribution (spot-
light presentation, poster).

2. 8th International Conference on Wireless Communications and Signal Processing,
Yangzhou, Chine, 13-15 Ocboter, 2016.
Topic: A new approach for sparse Bayesian channel estimation in SCMA uplink
systems (oral presentation).

3. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), New York,
USA, 7-12 February, 2020.
Topic: Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribu-
tion (oral presentation, poster).

4. EAGE Conference on Petroleum Geostatistics, Florence, Italy, 2-6 September, 2019.
Topic: Well Log Data Standardization, Imputation and Anomaly Detection Using
Hidden Markov Models (oral presentation).

5. Thirty-second Annual Conference on Neural Information Processing Systems
(NeurIPS 2018), Montral, Canada, 2-8 December, 2018.
Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates
(poster).

6. Thirty-fifth Annual Conference on Neural Information Processing Systems (NeurIPS
2021), online, 6-14 December, 2021.
Topic: Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Com-
binatorial Spaces (poster).

7. Seventh International Conference on Learning Representations (ICLR 2019), New
Orlean, USA, 6-9 May, 2019.
Topic: The Deep Weight Prior (poster).

8. Bayes Group Research Seminar, Moscow, Russia, 26 October, 2018.
Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates
(oral presentation).

9. Sberbank Data Science Journey, Moscow, Russia, 10 November, 2018.
Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates
(oral presentation, poster).

10. Machines Can See: Computer Vision and Deep Learning Summit, Moscow, Russia,
25 June, 2019.
Topic: The Deep Weight Prior (poster).
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11. International Conference on Analysis of Images, Social Networks and Texts, AIST
2019, Kazan, Russia, 17-19 Jule, 2019.
Topic: A Simple Method to Evaluate Support Size and Non-uniformity of a Decoder-
Based Generative Model (oral presentation).

12. Advances in Approximate Bayesian Inference, NIPS 2016 Workshop, Barcelona,
Spain, 2016.
Topic: Robust Variational Inference (poster).

2 Preliminaries

2.1 Structured Variables in Machine Learning

We start by introducing the concept of a structured variable. In machine learning, a
structured variable is an umbrella term for random variables, united by the following
characteristic properties. Firstly, a structured variable has a large number of possible
values: the support of a random variable is typically a finite set that cannot be quickly
enumerated on a computer. Secondly, these variables are presented as a set of mutually
dependent random variables. The second property can act as a definition of a structured
variable. For clarity, we turn to specific examples below.

In applications, structured variables can act as a target variable in supervised problems
(structured prediction), and can also act as an auxiliary latent variable in models with
latent variables.

One of the standard examples of a structured prediction problem is segmentation in
computer vision [34]. In this case, the structured variable is the segmentation mask of an
image. Segmentation mask components are mutually dependent, since close points of an
image with high probability correspond to the same class. Other examples of structured
prediction problems include ranking [10, 49], extreme classification [13]. Many natural
language processing tasks are also structured prediction tasks. A model that produces a
text output, whether it is a summation, a translation, or an answer to a question, must
predict a sequence of interdependent random variables. In deep learning, such models are
defined by the seq2seq architecture [62], and for prediction they use approximate search
algorithms among all possible options [50].

Before the spread of deep learning methods, structured variables were also in demand
in natural language processing tasks, often playing the role of auxiliary latent variables
there [58]. For example, early machine translation algorithms could rely on the input
sentence parse tree to better convey the sentence meaning. In this example, the structured
variable is the sentence parse tree, and a separate auxiliary model trained on different
data could be used to build the tree.

However, these days machine learning solutions rarely rely on pipelines built with
auxiliary models and tasks. Instead, deep neural networks allow end-to-end learning, pre-
training on unlabeled data [41, 20], and knowledge transfer to small datasets [74]. As a
result, end-to-end learning in models with latent structured variables became a relevant
research topic. Such models allow to take the best of both worlds: on the one hand,
the flexibility of neural networks, on the other hand, reliance on prior knowledge through
structured variables for better interpretability and more efficient use of data.

Popular models with latent structured variables include hidden Markov chains [48] with
sequence markup as a structured variable, probabilistic context-free grammars [15] with a
parse tree as a structured variable, and a temporal sequence classification model [25] with
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latent sequence segmentation mask. These models are based on limiting assumptions on
the model variables that are necessary for efficient learning an inference. More recent
approaches circumvent the limiting assumptions by relying on stochastic gradient descent
for end-to-end learning and fast amortized inference [45]. Some of the examples include
models with hidden parse trees [16], implicit feature subset selection [11], and hidden text
generation order [27].

In the next section, we introduce a general supervised structured prediction setup.

2.2 Structured Prediction Basics

Let us first consider the standard structured prediction setup. Namely, consider a super-
vised learning problem with inputs x ∈ X from an arbitrary set X , and the goal is to
predict a structured variable y ∈ Y , which takes values in a finite set Y . The data is
distributed according to law D, and y is a realization of a random vector Y with support
Y ⊂ Rm. In general, the label of a training sample lie in a Ŷ , which can differ from Y .

To define a prediction algorithm, we define a function f : X → R|Y| that assigns a score
to each possible structure y ∈ Y and then chooses the optimal structure as a prediction

pred(f(x)) := arg max
y∈Y

fy(x). (1)

The difference between structured prediction setup and supervised learning setup is
that the set of possible outcomes Y is large due to the combinatorial growth of possible
outcomes. For example, in ranking, the outcome can be a permutation of elements, and
when segmenting, a sequence of class labels. Therefore, the model should offer a quick
way to solve the problem 1 at inference stage. In addition, we need to store function f
in memory. Typically, one resorts to a low-rank parameterization of the function f(x) =
Fg(x), where F : Rd → R|Y| is a fixed linear operator and g(x) : X → Rd is a function
with we construct during training. Such a parameterization allows to reduce the memory
footprint as we only have to store a function with d� ‖Y‖ outputs and allows to design
efficient algorithms for inference task 1 that rely on the choice of matrix F . At the same
time, the parameterization limits the set of possible predictions, since the score vector
f(x) lies within the linear span of the columns of the matrix F = spanF . Below we refer
to F as the set of feasible scores.

Given a loss function L(·, ·) : Y × Ŷ → R quantifying prediction quality, the goal is to
find f that is optimal in terms of risk (the expected value of the loss):

RL(f) := EX,YL(pred(f(X)), Y ). (2)

Direct optimization of risk is often unfeasible (in particular, a finite sample approximation
of RL(f) is not differentiable with respect to f outputs). For optimization, we introduce
an auxiliary (surrogate) loss function Φ : Rk × Y → R and define the surrogate risk

RΦ(f) := EX,Y Φ(f(x), y). (3)

We emphasize that the function 3 takes the value of f(x) as an argument and makes
gradient optimization feasible, whereas the objective function 2 takes the predictions
from a discrete set. Popular surrogate loss functions include quadratic functions [14, 7],
likelihood-based functions [34] and the surrogates arising in variations of SVM [53, 65].

When replacing the objective function with a surrogate one, the question inevitably
arises of the relationship between the optimum of the surrogate loss function and the
solution of the original problem. To answer this question, the concept of consistency of a
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surrogate loss function was introduced [2]. The concept is closely related to the concept
of Fisher consistency [18, p.287]. Intuitively, a surrogate loss function is consistent if the
optimal f w.r.t. the surrogate risk is also optimal with respect to the original risk.

Let us define consistency in terms of the calibration function that connects the surro-
gate and target loss functions. For a score f ∈ F ⊆ Rk and a distribution q ∈ ∆k on a set
of possible outcomes Y ∼ q, we introduce the conditional risk l(f, q) := EYL(pred(f), Y )
and the conditional surrogate risk φ(f, q) := EY Φ(f, Y ). The excess (surrogate) risk is
the deviation of δl(f, q) (δφ(f, q)) from the optimal risk

δl(f, q) := l(f, q)− inf
f̂∈F

l(f̂ , q) (4)

δφ(f, q) := φ(f, q)− inf
f̂∈F

φ(f̂ , q). (5)

Using these auxiliary functions, we define the calibration function.

Definition 1. For a loss function L, a surrogate loss function Φ, and a set of feasible scores
F , the calibration function HΦ,L,F(ε) at the argument ε ≥ 0 is equal to the surrogate risk
infimum given the target risk is not less than ε:

HΦ,L,F(ε) := inf
f∈F ,q∈∆k

δφ(f, q) (6)

s.t.δl(f, q) ≥ ε (7)

Intuitively, the calibration function estimates how small the error of the surrogate loss
function can be for a fixed loss function value. When loss is high due to prediction error, a
consistent surrogate loss function should also return a high value. The following theorem
connects the surrogate risk and the target risk using the calibration function.

Theorem 1 (Associating RL with RΦ through the calibration function). Let HΦ,L,F be
the calibration function for the loss function L and the surrogate loss function Φ, and let
F be the set of feasible scores. Let ˆΦ, L,F be a convex non-decreasing lower bound for the
calibration function HΦ,L,F . Assume additionally that Φ is a continuous function bounded
from below. Then for any ε > 0 such that ĤΦ,L,F is finite and any score f ∈ F holds

RΦ(f) < inf
f̂∈F

Rφ(f̂) + ĤΦ,L,F(ε)⇒ RL(f) < inf
f̂∈F
RL(f̂) + ε. (8)

Next, we define η-consistency of a surrogate loss function, which is inspired by the
above theorem.

Definition 2 (η-consistency of a surrogate loss function). A surrogate loss function Φ is
consistent up to the level η ≥ 0 (η-consistent) for the objective function L and the set
of feasible scores F if and only if the calibration function satisfies HΦ,L,F(ε) > 0 for any
ε > η and there exists ε̂ > η such that that HΦ,L,F(ε̂) is finite.

For η = 0, the above definition coincides with the notion of consistency common in
the machine learning literature [35, 47]. Thus, one can validate consistency of a surrogate
loss by showing that the calibration function is positive in the punctured neighborhood
of ε = 0. However, in practice consistency may not be sufficient to build realistic learning
guarantees. As Osoking et al. [44] showed, for various problems in structured prediction
the theorem 1 delivers non-trivial guarantees only for practically unattainable surrogate
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risk values. It turns out that the scale of the calibration function plays an important role
as well.

The notion of η-consistency is crucial for the results presented in this work. First, it
allows to obtain learning guarantees in theorem 1 under a weaker assumption of inconsis-
tent surrogate functions, that is, not falling under the definition of 0-consistency. Second,
we construct a tighter calibration function lower bound for inconsistent surrogate losses
and obtain a more optimistic learning guarantees.

2.3 Probabilistic Approach to Structured Prediction

The structured prediction setup in Section 2.2 used the language of probability to intro-
duce assumptions about the data and reformulate learning as an optimization task. In
addition, the language of probability is a convenient tool for defining non-deterministic
prediction models and for modeling various modes of uncertainty such as uncertainty in
the choice of model and uncertainty in the prediction of a particular model. Probabilistic
machine learning is an approach to machine learning that relies on probability theory
to formulate and solve machine learning tasks. Next, we describe this approach in more
detail, starting from common examples of its application.

When formulating a problem within the framework of the probabilistic approach, the
first step is to choose a set of random variables appearing in the problem, as well as their
joint distribution. Treating the data as random variables, we describe the desired patterns
by choosing the appropriate class of distributions.

So, for example, when building a logistic regression model, the class label y ∈ Y =
{−1, 1} is represented as a random variable Y with a Bernoulli distribution depending on
the input object x ∈ X = Rd, and probability PY (y | x; θ) = 1

1+exp(yθT x)
with parameters

θ ∈ Rd. Following the assumptions about the data, we assume that tuples of objects
x and labels y are jointly independent (i.e., data is i.i.d.). Label distribution allows to
model the uncertainty in the prediction of the model, which may be due to lack of data,
the inflexibility of the model or the label being non-deterministic. If uncertainty also
arises when estimating the model parameters, the probabilistic approach allows us to
consider the model parameters as a random variable Θ as well. In the absence of any
knowledge about the values of the Θ parameter, its distribution can be assumed to be
normal Θ ∼ N (| 0, diag σ), σ ∈ Rd with a diagonal covariance matrix with parameters
σ ∈ Rd. Assuming Θ ⊥⊥ Y , we get the joint distribution of Θ parameters and Y labels. The
interpretation of model parameters as random variables underlies the Bayesian approach,
allowing one to estimate the uncertainty in choosing model parameters using the posterior
distribution pΘ(θ | (xi, yi)ni=1;σ) for a data set of n objects.

Note that the above example did not make any assumptions about the distribution
of the input x, as they are not necessary when considering the classification problem.
Such models are called discriminative. At the same time, the probabilistic approach
makes it possible to oppose discriminate models to generative ones, which also model the
distribution of input objects. A classic example of a generative model is the naive Bayes
classifier. It is based on the joint distribution p(x, y | θ) := p(x | y; θ)p(y; θ), and when
classifying objects it relies on the conditional distribution p(y | x, θ).

In addition, the probabilistic approach allows you to introduce additional random
variables, making it possible to simplify the description of the desired dependencies. For
example, Latent Dirichlet Allocation[6] model for texts groups objects x ∈ X according
to topics: for a text corpus, the model defines a set of τ ∈ N topics, and then represents
each individual text p(x | t) based on a vector of topics t ∈ ∆T that are reflected in the
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text. An auxiliary random variable in this case is a set of topics in the text t with a priori
distribution pT (t). Since such auxiliary quantities are not reflected in the data, they are
commonly referred to as latent variables.

The choice of a joint distribution often leads to the choice of a training method. Among
the possible training methods, we distinguish two categories: in the case when the choice
of model parameters is of interest, the parameters can be obtained by maximizing the
likelihood:

max
θ

log p({xi, yi}ni=1 | θ) (9)

If there are latent variables in the model, it is natural to consider the marginal likelihood
instead. In the literature, this approach is referred to as empirical Bayes or type-II
maximum likelihood:

max
θ

log p({xi, yi}ni=1 | θ) (10)

log p({xi, yi}ni=1 | θ) = logETp({xi, yi}ni=1, T | θ). (11)

In the case when one of the hidden quantities is of interest, one can restore their charac-
teristic values based on the posterior distribution p(T | {xi, yi}ni=1, θ). In particular, the
posterior distribution can be used to solve the problem 10. It is often impossible to calcu-
late the posterior distribution explicitly in practice, and one of the common approaches to
its approximation is the variational inference, which reduces the task to the optimization
problem

max
φ

ET log
p({xi, yi}ni=1, T | θ)

q(T | phi)
, (12)

where the expectation is taken over the random variable T with the distribution q(· | φ),
and the optimization is performed over the distribution parameters φ.

The objective functions described above can be interpreted as surrogate loss func-
tions introduced using the probabilistic approach. Since surrogate functions eqs. (9), (10)
and (12) do not depend on the loss function L(·, ·) in any way, these objectives may be
inconsistent. Besides that, in comparison with the classical formulation of structured
learning, the probabilistic approach allows to operate with latent structured variables.
This, in turn, allows to design and train in an "end-to-end" fashion prediction models
that involve auxiliary structured latent variables as intermediate components. For ex-
ample, when solving a discriminative task for texts, the parse trees of sentences can be
incorporated as a hidden auxiliary variable that provides additional information for the
final prediction.

There are a number of general methods for solving the problems described above. In
particular cases, there exists an analytical solution for problems eqs. (9), (10) and (12).
In the general case, when an analytical solution is not available, approximate solution can
be found using stochastic optimization methods. Problem 9 can be reduced to stochastic
optimization in the case when the parameter θ ranges over a discrete structured set and
we are unable to iterate through the whole domain containing θ. In problems eqs. (10)
and (12), stochastic optimization allows you to optimize the mathematical expectation
in the problem statement without resorting to its exact calculation. The two main ap-
proaches to constructing unbiased gradient estimates are the reparameterization trick and
the REINFORCE algorithm. For structured variables, the first is rarely applicable, and
the second often requires careful tuning for each problem.

Below we describe the two main approaches to estimating stochastic gradients. For
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the problem of a form
max
θ

ETf(T ), (13)

where the random variable T has the distribution q(· | θ), the REINFORCE algorithm
constructs an unbiased gradient estimator by using the log-derivative trick

∇θETf(T ) = ETf(T )∇θ log q(T | θ), (14)

which allows us to construct an unbiased gradient estimate based on a sample t of the
random variable T :

g(t, θ) = f(t)∇θ log q(t | θ). (15)

The estimate does not impose restrictions on the form of the function f , but requires
an efficient algorithm for generating t and computing log q(t | θ). The latter imposes
additional restrictions on certain classes of discrete structured variables, such as distribu-
tions based on exponential families. In practice, the convergence of the algorithm can be
hindered by the high variance of the estimate g(t, θ); as a result, the algorithm requires
additional control variates to mitigate the gradient variance.

The reparameterization trick allows us to estimate the gradients in 13 under the as-
sumption that the random variable T can be represented as T = h(U, θ) for a smooth f
and a smooth with respect to the second argument h and some random variable U . As
the name suggests, the gradient estimate is obtained by differentiating the expectation in
a new parameterization

∇θETf(T ) = ∇θEUf(h(U, θ)) = EU∇θf(h(U, θ)), (16)

giving an estimate that depends on the sample u of U as

g(u, θ) = ∇θf(h(u, θ)) =
∂f

∂t

∣∣∣∣
t=h(u,θ)

∂h

∂θ
. (17)

Compared to estimate 15, the reparameterized estimate in practice has a lower variance,
but imposes additional restrictions on f and T as it involves derivatives. In particular,
the estimate 17 is not directly applicable to discrete variables, allowing estimation of
gradients only for their continuous approximations.

3 Main Results

Below we cover the central results of the thesis.

3.1 General Methods

3.1.1 Permutation Prediction Based on Variational Relaxation

Our work [21] focuses on methods for approximate inference in the case when the struc-
tured hidden variable T is a random permutation. We consider variational distributions
within the Plackett-Luce parametric distribution family.

Definition 3. A Plackett-Luce distribution with parameters θ1, . . . , θn is a distribution
on permutations with the probability of outcome t ∈ Sn equal to

PT (T = t; θ) =
n∏
i=1

exp θti∑n
j=i exp θtj

. (18)
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Intuitively, the above formula corresponds to choosing n out of n elements without
replacement, where the probability of choosing the i-th element is proportional to exp θi.
The distribution is also of interest from the point of view of probabilistic relaxation of
optimization problems. We replace the minimum over the function arguments with the
minimum of the average function value over the distribution family parameters

min
t
f(t) ≤ min

θ
ETf(T ), (19)

where T has the Plackett-Luce distribution with parameters θ. This estimate smoothly
depends on the distribution parameters. Importantly, it is possible to find a set of param-
eters that leads to an arbitrarily small gap in the above inequality. Indeed, when we scale
the parameters θ′ = θ/τ by the temperature τ approaching zero, the distribution tends
to degenerate distribution. The distribution mode is the permutation that arranges θ in
descending order, since such sorting delivers the maximum of each factor in formula 18.
Therefore, if the sorting of the vector θ coincides with the optimal permutation of τ ∗,
temperature scaling lead to an arbitrarily small gap.

Explicit formula for the outcome probability 18 and generation using sampling without
replacement allow using the REINFORCE [71] algorithm for approximate inference in the
class of Plackett-Luce distributions. However, the default algorithm converges slowly due
to high variance, so as part of our work, we adapted the RELAX [24] algorithm to obtain
low variance gradient estimates.

Definition 4. Let a discrete random variable T be a function T = H(Z) of a reparame-
terizable random variable Z with parameters θ. Then the estimate

gRELAX(f) = [f(t)− cφ(z̃)]
∂

∂θ
logPT (T = t; θ) +

∂

∂θ
cφ(z)− ∂

∂θ
cφ(z̃) (20)

for a realization z of a random variable Z, a discrete variable t = H(z), and an independent
realization z̃ of a conditional random variable Z | T = t is an unbiased estimate of ETf(T ).

Initially, a similar estimate was proposed in [66], where cφ(·) was considered to be a
smooth extension of function f to the domain of Z, containing the domain of T . In the
paper [24], the authors proposed using an arbitrary cφ(·) (assuming differentiability with
respect to the argument z and the parameters φ) while adjusting the parameters φ as
it is optimized to reduce the variance. Both papers considered the case of a categorical
distribution, while we generalized the method to the case of the Plackett-Luce distribution.

Our generalization is based on the equivalent definition of the Plackett-Luce distribu-
tion [73].

Definition 5. Let Z1, . . . , Zn be independent random variables with the Gumbel distri-
bution with the corresponding parameters θ = (θ1, . . . , θn). Then the sorting of these
random variables T has the Plackett-Luce distribution:

P(zt1 ≥ · · · ≥ ztn ; θ) =
n∏
i=1

exp θti∑n
j=i exp θtj

. (21)

Thus, the random variable T can be represented as a deterministic function of Z, and
in order to use the bound 20, it suffices to find a reparameterization for the conditional
distribution Z | T = t. In our work, we propose an algorithm for reparameterization and
efficient generation from this distribution:
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Theorem 2. Consider mutually independent realizations of the uniform distribution
v1, . . . , vn ∼ U [0, 1] and realizations of the Gumbel distribution z1, . . . , zn with param-
eters θ1, . . . , thetan. Then for the permutation t = arg sort(z1, . . . , zn) the vector
z̃ = (z̃1, . . . , z̃n) defined as

z̃ti =

{
− log(− log(vi)) i = 1

− log
(

log vi∑n
j=i exp θtj

+ exp(−z̃ti−1
)
)

i ≥ 2
(22)

is a realization of the conditional distribution Z | T = t.

We studied the performance of the proposed method on the problem of finding a causal
data structure, considering several problem settings. First, we considered synthetic data
generated from the Structured Equation Model, [46]. To generate data, we chose a random
directed acyclic graph G = (E, V ) with a weighted adjacency matrixW ∈ Rn×n, and then
generated data X ∈ Rn×N satisfying the equation

X = W TX + ε, (23)

where ε is homoscedastic Gaussian noise. This equation describes a linear dependence in
which each component of Xi depends on the parents of the vertex i in the graph G, as
well as on the random noise. The task was to restore the structure of the graph G from
the data X.

To reduce the problem to the problem of inferring a permutation, we parameterized
the desired adjacency matrix W based on topological sorting: W = PAP T , where A ∈
Rn×n was a strictly upper triangular matrix, and P was the permutation matrix for the
topological sorting of the graph. For the chosen parameterization, we solved the problem

min
P∈P

min
A∈A

1

2N
‖X − PAP TX}2

F + λ‖ vec(A)‖1 = Q(P,A), (24)

where P is the set of permutation matrices and A is the set of strictly upper triangular
matrices.

To optimize over the set of permutations, we switched to the probabilistic relaxation

min
θ

ET min
A∈A

Q(P (T ), A). (25)

We compared our method with the previously proposed Gumbel-Sinkhorn [40] and
URS [26] algorithms based on P permutation matrix relaxation. The table 1 shows the re-
sults of experiments for four families of graphs with 20 vertices. The algorithms proposed
for comparison are significantly inferior to our approach both in terms of the quality of
optimization of the objective function and in terms of the structural metrics SHD, SHD-
CPDAG, and SID. We have also improved the Sinkhorn and URS algorithms by adding
additional optimization constraints, obtaining comparable results. A full description of
this experiment, as well as other experiments, can be found in the corresponding chapter
of the thesis.

3.1.2 Learning Guarantees for Quadratic Surrogate Losses

In the paper [61] we analyzed surrogate loss functions with a specific focus on structured
prediction. The main theoretical result of the work is a strengthened lower bound on the
calibration function for a quadratic surrogate loss, which allows one to obtain non-trivial
guarantees in the case when the surrogate loss is not consistent.
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ER1

Val Q - Ql SHD SHD-CPDAG SID
PL-RELAX 15.7±27.3 14.4±5.3 16.0±6.2 61.0±48.7
SINKHORN_{ECP} 10.4±8.7 15.8±4.7 17.0±6.0 84.8±56.3
URS_{ECP} 27.5±34.2 20.6±6.3 21.4±7.2 96.8±74.6
SINKHORN 1651.2±3050.4 24.0±6.1 25.0±6.7 131.2±76.5
GREEDY-SP N/A 18.6±13.5 18.0±16.6 74.0±53.5
RANDOM 895.1±1270.3 37.8±5.2 38.8±4.9 146.8±79.9

SF1

Val Q - Q* SHD SHD-CPDAG SID
PL-RELAX -1.5±0.2 4.0±0.6 4.6±0.5 4.2±0.7
SINKHORN_{ECP} 1.9±4.3 6.6±2.2 6.6±2.4 10.4±5.0
URS_{ECP} 3.0±2.0 10.6±2.0 10.6±1.6 14.4±4.0
SINKHORN 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4
URS 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4
GREEDY-SP N/A 2.0±1.4 0.0±0.0 7.0±5.1
RANDOM 94.0±36.4 36.2±2.6 36.6±2.3 48.6±14.7

ER4

Val Q - Q* SHD SHD-CPDAG SID
PL-RELAX 468.8±208.4 71.0±5.9 72.6±3.9 289.6±9.1
SINKHORN_{ECP} 2519.0±3715.2 78.0±6.1 78.8±5.5 302.2±15.8
URS_{ECP} 1011.4±745.5 75.8±2.9 76.6±2.9 300.2±20.3
SINKHORN 126284.6±194386.3 88.8±6.0 91.0±5.7 330.0±14.1
GREEDY-SP N/A 103.4±10.9 105.6±10.5 288.6±14.7
RANDOM 109891.2±74968.7 113.0±4.9 114.4±4.1 330.6±9.2

SF4

Val Q - Q SHD SHD-CPDAG SID
PL-RELAX -5.8±1.2 20.0±4.3 20.0±4.1 48.4±16.2
SINKHORN_{ECP} -0.4±2.4 25.6±5.6 25.8±5.9 58.6±19.7
URS_{ECP} 8.5±11.8 30.2±5.8 30.6±5.2 72.2±25.0
SINKHORN 158.2±99.9 44.6±5.8 44.8±6.1 103.6±20.8
URS 140.7±140.6 42.0±5.4 42.8±5.1 89.8±20.4
GREEDY-SP N/A 50.6±31.5 49.8±32.3 69.0±43.2
RANDOM 635.5±182.6 98.2±6.1 99.2±5.5 168.8±29.6

Table 1: Метрики для графов из 20 вершин
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Following the notation introduced in Section 2.2, we introduce a quadratic surrogate
loss function

Φquad(f, y) :=
1

2k
‖f + L(:, y)‖2

2 =
1

2k

∑
ŷ∈Y

(
f 2
ŷ + 2fŷL(ŷ, y) + L(ŷ, y)2 + L(ŷ, y)2

)
. (26)

As noted above, the prediction f is often parameterized using an additional matrix
F : f(x) = Fg(x). Earlier Osokin et al. [44] obtained a calibration function lower bound
under the assumption that the linear span F of the columns of the matrix F coincides
with the linear span of the columns of the loss function.

Theorem 3. For any loss matrix L, the corresponding quadratic surrogate Φquad, and
the prediction space F containing the columns of the matrix L, the calibration function
HΦquad,L,F satisfies

HΦquad,L,F(ε) ≥ ε2

2kmaxi 6=j ‖PF∆ij‖2
2

≥ ε2

4k
, (27)

where PF is the orthogonal projection operator onto F and the vector ∆ij = ei− ej ∈ Rk,
where ec denotes c- th standard basis vector in Rk.

The latter inequality is trivial and leads to the estimate obtained by Ciliberto et al. [14].
On the other hand, as F ( Rk decreases, the projection norm ‖PF∆ij‖2

2 drops, resulting
in more accurate lower bounds for the calibration function. The minimum set of scores
that satisfies the conditions of the theorem is F = spanL.

In our work, we have relaxed the constraint spanL ⊂ F , obtaining the following
estimate.

Theorem 4. For any loss matrix L, the corresponding quadratic surrogate Φquad, and the
prediction space F , the calibration function HΦquad,L,F satisfies

HΦquad,L,F(ε) ≥ min
i 6=j

max
v≥0

(εv − ξij(v))2
+

2k‖PF∆ij‖2
2

, where ξij(v) := ‖LT (vIk − PF)∆ij‖∞, (28)

the operator PF defines an orthogonal projection onto F , the function (x)2
+ := [x > 0]x2

defines the right branch of the parabola and ∆ij := ei − ej ∈ Rk, where ec denotes the cth
standard basis vector in Rk.

Assuming v = 1 in the estimate introduced above, we can also obtain a simplified
expression

HΦquad,L,F(ε) ≥ min
i 6=j

(ε− ξij)2
+

2k‖PF∆ij‖2
2

, where ξij := ‖LT (Ik − PF)∆ij‖∞. (29)

Importantly, for spanL ⊂ F the new lower bound 28 is at least as tight as the old
one 27. Indeed, the expression inside coincides with the old estimate for v = 1, but can
deliver a tighter bound when v 6= 1. In the case when F does not contain the columns
of F , the lower one will be the envelope of the family of curves with parameter v. Each
of the curves is the right branch of a parabola shifted to the right. Near zero, the lower
bound is zero due to the inconsistency of the surrogate when F 6⊂ spanL. The leftmost
point with positive bound is equal to η =

ξij(v)

v
and determines the level of consistency of

the surrogate in a broad sense.
In addition to deriving a general estimate, we calculate the constants in the inequality

and analyze several popular loss functions. As an illustration, we present the loss function
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Figure 1: Left: consistent calibration function for FmAP ; right: inconsistent calibration function for Fsort

mAP (mean average precision) used in ranking problems [10, 9, 49]. In this case, the model
prediction σ ∈ Ŷ = Sr is a permutation of r elements, and the labels y ∈ Y = {0, 1}r are
binary vectors of length r. The loss function LmAP (σ, y) averages the ranking accuracy
for different recall levels:

LmAP (σ, y) := 1− 1

|y|

r∑
p:yo=1

1

σ(p)

σ(p)∑
q=1

yσ−1(q) = 1−
r∑
p=1

p∑
q=1

1

max(σ(p), σ(q))

ypyq
|y|

. (30)

Above, the norm of a binary vector is |y| =
∑r

p=1 yp. The second expression for
the loss matrix leads to two natural definitions of F , which we present below. For the
first parameterization, we define FmAP = spanFmAP in terms of the linear span of the
columns of the matrix FmAP ∈ Rr!×1

2
r(r+1) with elements (FmAP )σ,pq := 1

max(σ(p),σ(q))
. It

follows from the definition of LmAP that spanLmAP = spanFmAP , and the quadratic
surrogate loss function is consistent. On the other hand, the derivation to this model
reduces to the integer quadratic programming problem maxσ∈Sr(FmAP θ)σ, which is NP-
hard. For the second parameterization, we define Fsort = spanFsort as the linear span
of the matrix Fsort ∈ Rr!×R with elements (Fsort)σ,p := 1

σ(p)
. In this parameterization,

inference task maxσ∈Sr(Fsortθ)σ is equivalent to sorting the elements of θ, which makes the
second parameterization preferable to the first. On the other hand, Fsort does not contain
the columns of the matrix LmAP , which makes the quadratic surrogate inconsistent.

The figure 1 shows the graphs of the estimates described above for the loss function
LmAP . Due to the inconsistency of the surrogate loss function, the graph for Fsort is zero
up to a certain ε > 0. At the same time, for some values of ε, the calibration function
lower bound for Fsort turns out to be higher than the calibration function lower bound for
FmAP . In practice, this means that for lower optimization precision, our bound provides
stronger learning guarantees for the parameterization Fsort with the efficient inference
algorithm.

3.2 Applications

3.2.1 Structured Priors for Convolutional Neural Network Kernels

Our work [1] proposes to interpret the parameters of a convolutional neural network as
a structured latent variable. Compared to basic Bayesian neural networks, the struc-
tured prior distribution of network parameters takes into account dependencies between
individual weights of convolutional filters. In experiments, the proposed modification im-
proved the classification quality in a setup with a limited training set, allowed to speed
up network training, and allowed to extract low-dimensional data representations without
additional training.
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Figure 2: Left: Trained convolutional network filters. Right: filters obtained from approximation.

Bayesian neural network is a discriminative model at the intersection of Bayesian meth-
ods of machine learning and deep learning. The joint distribution

p(y1, . . . , yn, θ | x1, . . . xn) =

[
n∏
i=1

p(yi | xi, θ)

]
p(θ) (31)

on class labels y1, . . . , yn and model weights θ typically consists of a set of independent
distributions for each individual weight p(θ) =

∏
j p(θj) and the likelihood of the label

p(yi | xi, θ) given the input object xi and the weights θ. For prediction the model combines
the weights posterior distribution p(θ | {xi, yi}ni=1) the label distribution p(yi | xi, θ) into
a posterior predictive distribution:

p(ytest | {xi, yi}ni=1, xtest) =

∫
p(ytest | xtest, theta)p(θ | {xn, yn}Nn=1)dθ. (32)

In practice, the posterior distribution is approximated via variational inference, i.e. by
solving the problem

max
φ

[
EΘ log p(y1, . . . , yn | Θ, x1, . . . , xn)−KL(q(Θ;φ)||p(Θ))

]
, (33)

where the expectation is taken with respect to the variational distribution with density
q(θ;φ) and parameters φ. The assumption of the independence of the parameters in the
prior distribution simplifies the parameterization of the model. However, the weights
of the convolutional filters of a trained neural network do not behave like independent
random variables. Qualitatively, the weights smoothly change depending on the location
in the filter (Figure 2 illustrates the argument). Moreover, in applications, the trained
parameters of the convolutional network can be used in a new task on a similar domain [74,
57]. For example, in the case of images, ImageNet-trained convolutional networks can be
adapted to other computer vision tasks.

We consider the distribution of convolutional filters on a certain domain. We propose
an empirical approximation to the distribution. In particular, we train several convolu-
tional networks on an auxiliary task in the same domain. The auxiliary task must be
representative of the given domain: training examples must be diverse, and the network
representations must be sufficiently informative. In this work, we considered image clas-
sification, the auxiliary task was a classification task with a different training set and
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a different set of labels. Having trained several convolutional networks, we can build
an empirical approximation of filter distribution. However, there are two problems with
empirical approximation. First, to work with the distribution, it is necessary to store
many convolutional networks in memory. Secondly, the density required to calculate the
objective function of the Bayesian neural network is not available for the approxima-
tion. Therefore, we propose to approximate the distribution of filters using an auxiliary
generative model based on a variational auto-encoder.

When training, we propose to replace the prior distribution of p(W ) with an estimate
obtained on the basis of a variational auto-encoder. Thus, we arrive at a lower bound on
the marginal likelihood

log p({yi}ni=1 | {xi}ni=1) ≥ EΘ

[
log p({yi}ni=1 | Θ, {xi}ni=1) (34)

+ EZ log
p(Θ | Z;χ)p(Z)

r(Z | Θ;ψ)
(35)

− log q(Θ;φ)] , (36)

where q(Θ;φ) is a variational approximation of the network parameters, the distributions
of p(Θ | Z;χ) and r(Z | Θ;ψ) are determined by the variational auto-encoder , and
the expectation with respect to the random vector Z is calculated with respect to the
distribution r(Z | Θ;ψ). When training a Bayesian neural network, we will use this
estimate as an objective function. The first term in the estimate corresponds to the
standard cross-entropy loss function, and the second term pulls the approximate posterior
distribution q(Θ;φ) towards the empirical prior distribution of the convolutional network
parameters for the given domain p(Θ).

To evaluate the proposed approach, we conducted a series of experiments that evaluated
the learning ability with limited training data, the representations the network obtains
after the initialization from the prior distribution, and the learning time depending on
the weight prior distribution. Here we restrict ourselves to the first experiment, a detailed
description of the others can be found in the corresponding chapter.

While studying Bayesian network training with limited data, we considered the classi-
fication problem on MNIST and CIFAR-10. As a model, we took convolutional networks
consisting of several convolutional layers along with several fully connected output layers.
For convolutional layers, we trained the prior distribution on NotMNIST and CIFAR-100
data. We trained the fully connected layers with backpropagation without resorting to
variational inference. For comparison, we considered the prior distributions for network
parameters common in the literature: the Gaussian distribution and the log-uniform dis-
tribution, among which the latter guarantees the invariance of the prior distribution to
the scale of the parameters.

For the three prior distribution families we trained classifiers with varying sizes of
training data. As Figure 3 shows, the network with the proposed prior distribution
performs better. On the MNIST data, the difference in quality disappears when the
training sample size is sufficient. On CIFAR-10 data, the quality is uniformly higher. We
assume that the difference can be explained by the simplicity of the classification task on
the MNIST data: thousands of examples are enough to extract the necessary information
from the data.

3.2.2 Bayesian Estimation of Multiple Access Channel Configuration

Probabilistic Model. In the paper [60], we consider the problem of estimating the
parameters of a multi-user communication channel. To establish a connection on dedicated
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Figure 3: Classification quality depending on the size of the training sample. Left: MNIST, right:
CIFAR-10.

frequencies, users send special code signals, which are then received and processed by
a cellular communication station. The communication channel is multi-user, so some
frequencies can be occupied by several users and the system must be able to detect users
by receiving a superposition of the sent code signals. In practice, to simplify the task, it
is assumed that there are quite a few users.

In fact, the problem can be interpreted as a structured prediction problem, where,
based on the received signals, it is necessary to choose a sparse binary vector with a
block structure. Standard solutions are based on modifications of compressed sensing
algorithms. The work [70] proposed an approach based on Bayesian linear regression.
Bayesian linear regression allows finding sparse solutions to linear systems of equations,
which is required in this problem. In our work, we adapted the standard Bayesian linear
regression model to the specifics of the problem, taking into account the block structure
of the desired solution, and also proposed a faster algorithm for solving the task.

Mathematical model of the communication process is a system of linear equations

y = κθ + z, (37)

where the vector y corresponds to the received signal, the matrix κ is fixed and speci-
fied by the communication protocol, the vector θ is unknown and describes the channel
configuration, and z models the noise that occurs during signal transmission. As a noise
model, we used a Gaussian distribution with a known variance ρ. In addition, the vector
θ has a block structure

θ = (c11t1, . . . , c1Qt1, c21t2, . . . , c2Qt2, . . . , cN1tN , . . . , cNQtN), (38)

where the binary variables t1, . . . , tN ∈ {0, 1} are equal to one if the user is active, and
the values c11, . . . , cNQ ∈ R reflect the physical parameters of the communication channel.
Within this model, we are primarily interested in recovering the t1, . . . , tN values that
indicate active users in the channel. In addition, we are also interested in estimating the
vector θ, since it contains signal fading parameter.

To solve the problem, we consider a Bayesian linear regression model with the following
joint distribution

p(y, θ; ρ, γ) = p(y | θ; ρ)p(θ; γ) (39)
p(Y = y | Θ = θ; ρ) = N (y | κθ; ρI) (40)

p(Θ = θ; γ) = N (θ | 0, diag(γ1, . . . , γ1︸ ︷︷ ︸
Q

, . . . , underbraceγN , . . . , γNQ)). (41)
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Figure 4: Dependence of the UDER (user detection error) on the number of iterations of the EM algorithm

The density p(Y = y | Θ = θ; ρ) specifies the observations likelihood, and p(Θ = θ; γ)
specifies the prior distribution with the block structure. Note that in the previously
proposed works, the basic regression model was used, which did not take into account the
block structure of the prior distribution.

To estimate the channel configuration, we maximize the evidence p(y; ρ, γ) with respect
to the prior distribution parameters γ. Similarly to [70], we use the EM -algorithm for
the derivation, alternately estimating the posterior distribution p(θ | y, ρ, γ) at the E-step
and maximizing the evidence estimate with respect to γ at the M -step. At the M -step,
we use the iterative scheme proposed in [64]. For our problem, the scheme improved the
inference speed in model experiments compared to the previously considered schemes [70].

Simulation results. We ran a simulation to evaluate the performance of the proposed
scheme. We compared reconstruction error of a model with a custom probabilistic model
and the improved iterative scheme against the solution proposed in [70]. We used the
Rayleigh fading model to model the signal amplitude, considered a channel with 6 active
users out of N = 36, each using Q = 5 frequencies. We used Zadov-Chu sequences of
length 20 to construct the codebook matrix κ. The graph 4 shows the dependence of the
average proportion of incorrectly identified users UDER = E

[
frac

∑N
n=1[ân 6= anN

]
on

the number of iterations of the EM -algorithm for different signal-to-noise ratio levels in
the communication channel. In all four cases, the proposed scheme converges faster than
the original scheme. Moreover, for high noise levels, the original scheme does not converge
on average. The graph 5 shows the dependence of the average Θ estimation error on the
number of iterations of the EM -algorithm. As in the previous experiment, the proposed
scheme shows the best convergence. It is noteworthy that in terms of the MSE metric,
the original scheme achieves comparable results even for high noise levels.

3.3 Pre-processing of Geological Survey Data with Hidden Markov Chains

Probabilistic model. The last chapter focuses on the analysis of geological survey data.
In our work [59], we adapt the hidden Markov chain to the task of pre-processing and
imputation for missing data in well logging. The Hidden Markov Chain is one of the
classic probabilistic models with a latent structured variable: the hidden variable is given
by a Markov chain with discrete states, the observations are independent under given
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Figure 5: Dependence of the Θ communication channel parameters estimation error on the number of
iterations of the EM algorithm

the hidden variable, and the EM -algorithm is used to tune the parameters and infer the
hidden variable.

In the first stages, the goal of a geological survey is to build a model of the deposit.
The model is based on number wells drilled on the territory of the field, the survey data is
collected with a number of sensors that are lowered into each well. As you move deeper,
the sensors read different physical characteristics of the well depending on the depth. The
acquired data form sequences referred to as "logs". Then, based on this data, an expert
petrophysicist labels segments of wells that are of interest from the viewpoint of field
development. To produce the labels the expert also performs data alignment, additional
calibration and anomaly search.

The goal of this study is to automate data processing steps of an expert petrophysicist.
The results of the work of experts accumulated over many years make it possible to
solve well labeling as a supervised learning task, however, the predictions of experts are
subjective and may not provide an insufficiently reliable training signal. Therefore, we
considered an unsupervised learning setup that could provide consistent predictions across
all the wells.

Next we describe the proposed probabilistic model. Let x1, . . . , xK be logs for for K
wells, xk ∈ Rlk×d. For each well at a given depth level, the sensor reading is primarily
determined by the soil characteristics. We assume that soil characteristics can be described
by a sequence of m states of a Markov chain. To define the Markov chain we introduce
random vectors T 1, . . . , TK , T kl ∈ {1, . . . ,m}, l = 1, . . . , Lkk, initial distribution P (T k1 =
t; π) ∝ πk, π ∈ Rm

+ and consecutive pair distributions P (T kl = t | T kl−1 = s; τ) ∝ τts, τ ∈
Rm2

+ . The dependence of the elements of the chain allows to promote identical states
for adjacent segments. Continuous segments of the chain with a constant latent state
correspond to homogeneous sections of the well, along which soil characteristics do not
change. In practice, soil characteristics are unknown, so the Markov chain acts as a latent
variable in the model. However, we know the sensor readings in the logs. We assumed that
for each type of soil, the sensor readings follows the multivariate Gaussian distribution
p(xkl | T kl = t;µ,Σ) = N (xkl | µt,Σt), µ ∈ Rm×d,Σ ∈ Rm×d2 .

Besides that, sensor readings are affected by instrument calibration prior to recording.
Assuming that sensor calibration can be represented as a linear transformation of the
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Figure 6: An illustration of how the model works for one well. Left: Example of observed logs (blue) and
their approximation (green); right: expert labels compared to the found states of the Markov chain.

readings xkl = αk� x̂kl +βk for a given observation xkl and a calibrated observation x̂kl , we
introduce additional calibration parameters α ∈ RK×d

∗ , β ∈ RK×d for each well. For the
parameters Θ = (π, τ, α, β), the final observational model is

p(xi, ti
K

i=1; Θ) = (42)
K∏
k=1

[(πtk1

Lk∏
l=2

τtkl tkl−1
)× (43)

Lk∏
l=1

N (xkl | αk � µtkl + βk, diag(αk)Σtkl
diag(αk))]. (44)

To tune the model parameters, we use the Baum-Welch algorithm to maximize the
evidence lower bound of the model. We maximize the lower bound with stochastic gra-
dient descent, starting from a hand-crafted initialization to avoid local optima. Since the
observations in the model follow the Gaussian distribution, we could incorporate data
with gaps using marginal distributions as a likelihood, without taking into account the
missing data. We used the Viterbi algorithm to predict the hidden states of the circuit.
Below we present the results of the model operation on synthetic fields, as well as on the
Priobskoye field [3].

Empirical results. We started with a synthetic field, for which we both have mea-
surements for wells, and the ground truth labels for soil types. As a result, we were able to
qualitatively compare the hidden states of the Markov chain with the ground truth labels,
thus eliminating the factor of subjective data interpretation by an expert. On the left,
the graph 6 contains the logs (blue lines) as well as the predictions of our model (green
line). While we were able to accurately replicate the behavior of the logs, we did not
get a one-to-one correspondence between latent states and soil types. The ground truth
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Figure 7: Correspondence between soil types and hidden states of the Markov chain

labels and hidden states of the well is shown in the graph 6 on the right. The selected
number of latent states exceeded the number of soil types: increasing the number of latent
states improves the approximation of logs, but makes the latent states less interpretable.
On the graph 7 we have shown the correspondence between latent states and soil types
throughout the field. Most of the latent states correspond to the argillite prevailing in
the deposit. The model was also able to separate tight rocks and sandstones, but none of
the hidden states correspond to siltstone.

We then applied the model to pre-process the data at the Priobskoye field. The base
model predicted reservoir layers (layers of interest in terms of oil production) using a
binary classification based on a recurrent neural network [3]. In the base model, instru-
ment readings were standardized to account for miscalibration. We, in turn, calibrated
the reading using the calibration parameters α, β obtained with a hidden Markov model
instead of standardizing the data. The new pre-processing algorithm did not give a sig-
nificant improvement in the quality of the prediction, increasing the F1 score from 0.72
to 0.74.

Next, we used the model to fill the gaps in the data. We considered test wells for which
there are no ILD (deep induction log) and LLD (lateral log) log values in the sample. We
then compared two gap recovery strategies: replacing the log with the average across
the field, and our approach of restoring the log from the rest of the logs using a Markov
chain. The proposed solution improved the prediction quality for the considered wells
from F1=0.37 to F1=0.56. Thus, the proposed approach allows us to improve the quality
of finding reservoir layers due to joint calibration and recovery of gaps in the data.

4 Conclusion

The results described above cover various aspects of structured prediction, including theo-
retical analysis of the standard structured prediction setup, models with latent structured
variables based on a probabilistic approach, as well as applications of the described solu-
tions to real problems. In conclusion, we briefly summarize the presented results.

1. We proposed a permutation optimization method based on probabilistic relaxation
and the REINFORCE algorithm; we developed control variates to improve the con-

25



vergence of the method. We evaluated the method on the problem of identifying
causal links in data, where the topological sorting of a directed acyclic link graph
acts as a structured variable. The proposed method significantly improved structure
reconstruction metrics in comparison with relaxation-based gradient optimization
methods. Since the considered optimization method does not introduce additional
assumptions about the objective function and is actually a zero-order optimization
method, in the future it can also be used for direct optimization of the objective
function in structured prediction problems (without using auxiliary surrogate loss
functions), as well as for amortized inference of permutations.

2. In a supervised structured prediction setup, we analyzed a training approach based
on quadratic surrogate loss functions. In particular, we considered the case of incon-
sistent surrogate loss function, for which we obtained guarantees for the accuracy of
the expected risk optimization. Assuming a fixed number of training samples and
early optimization stopping, the analysis delivers tighter upper bounds on the ex-
pected risk values. From a practical point of view, the above formulation also leads
to more efficient inference algorithms.

3. We considered a number of applications based on a probabilistic approach to struc-
tured prediction. First, we applied the variational auto-encoder model to infer the
parameters of a convolutional neural network based on a priori knowledge about
the network parameter distribution for a given domain. In this case, the parame-
ters of the convolutional filters act as a latent structured variable, and the proposed
approach improves the prediction accuracy of Bayesian neural networks for similar
domains. Second, we considered the task of estimating the parameters of a multi-user
communication channel, where the subset of active users acts as a hidden structured
variable. In this case, we proposed an improved probabilistic model to estimate the
structured variable, and accelerated the inference algorithm. Finally, we proposed
a probabilistic model based on hidden Markov chains to model and interpret geo-
physical survey data. The proposed model uses structured variables, in this case
the Markov chain hidden states, to infer and cluster the physical characteristics of
the wells while modeling the joint distribution of these characteristics. Based on
the reconstructed hidden states, we proposed an approach to data imputation and
anomaly detection.
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