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In this thesis we study topological properties of plane algebraic curves. Most of
results concern real curves. The references [P0], [P1], . . . , [P9] refer to the papers
which are included into this thesis as its part.

1. A brief historical survey

Topological study of plane real projective algebraic curves can be traced back
at least to the works of A. Harnack [18] and F. Klein [20]. For a given degree d
there are only finitely many homeomorphism types of pairs (RP2,RA) where RA
is a smooth real algebraic curve of degree d. These homeomorphism types are
known as topological arrangements of real algebraic curves (real schemes of a curve
according to the terminology of V.A. Rokhlin’s school), and a natural question is to
list them all. This problem was popularized by D. Hilbert, and the corresponding
problem became known as the 16th Hilbert problem (more precisely, its first part).
This problem remains one of the few open problems in Hilbert’s famous problem
list. As it was shown in [18], a planar real algebraic curve of degree d may have up
to 1

2 (d − 1)(d − 2) + 1 components. The curves with exactly 1
2 (d − 1)(d − 2) + 1

components are known as M -curves. (Note that g = 1
2 (d − 1)(d− 2) is the genus

of a smooth complex curve of degree d in the plane by the adjunction formula.)
A complete topological classification of smooth plane real algebraic curves of

degree 5 is an elementary consequence of Harnack’s bound combined with an obser-
vation that any line cannot cut a curve of degree d at more than d points. The case
of degree 6 is the first non-trivial case which was especially emphasized by Hilbert
in his 16th problem. The first result on degree 6 was obtained by I. G. Petrovsky
[31]. He proved that 11 ovals of such curve cannot be one outside another. This
was a particular case of the Petrovsky inequality for curves of any even degree d:

−3
8d

2 + 3
4d ≤ p− n ≤ 3

8d
2 − 3

4d + 1

where p (resp. n) is the number of even (resp. odd) ovals, i.e. ovals encircled by
an even (resp. odd) number of another ovals.

Later on, D. A. Gudkov [17] completed the classification for degree 6. Any such
classification naturally splits in two parts: constructions and restrictions (often
called prohibitions in English translations from the Russian). For restrictions, Gud-
kov used the approach proposed by Hilbert and then developed by Rohn and by
himself (Hilbert-Rohn-Gudkov method). Roughly speaking, the idea is the follow-
ing. Suppose by contradiction that a certain arrangement of ovals is realized by
a curve of degree 6 given by F = 0. We consider a continuous family of curves
Ft = 0 where Ft = F + tG2, degG = 3. Then the domain Ft ≥ 0 grows, hence
a singularity appears for some t. Then we replace G by another cubic polynomial
vanishing at the singular point and continue. In this way we arrive to a curve with
10 double points. After this, we continue the deformation already in non-linear
one-dimensional families. At each step there are several a priory possible positions
for newly appearing singularities and their nature. So, we obtain a rather big tree
of possibilities. At each branch of this tree we finally obtain a contradiction either
with Bezout theorem for auxiliary lines and conics or (and this is the main Gud-
kov’s contribution) using the fact that the positions of singular points can be chosen
generically which excludes many cases of splitting the curve into irreducible compo-
nents. For constructions, Gudkov perturbed singular curves obtained by quadratic
Cremona transformations starting with curves of smaller degree.
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Analyzing the available information, Gudkov formulated the conjecture that

p− n ≡ k2 mod 8

for any M -curve of degree 2k. This conjecture stimulated important progress in
the domain. It was proved by Arnold [2] mod 4 and then by Rokhlin [32] mod 8.
They introduced a completely new technique based on the 4-dimensional topology
for the study of the double covering of CP2 branched along the complexification of
the curve.

The Gudkov-Rokhlin congruence and a similar congruence for (M − 1)-curves
yields the restriction part of degree 6 classification as an immediate consequence.
Then Viro considerably simplified the construction part by introducing a very pow-
erful method which later was called patchworking and which was one of the starting
points of the tropical geometry. This method allowed him to complete the construc-
tion part of classification in degree 7 (see [40]). The restriction part in degree 7 was
also done by Viro [38] using a combination of Rokhlin’s formulas for the complex
orientations [33] and Fiedler’s theorem about the alternation of the complex orien-
tations in pencils of lines. By these (and some other) methods Viro also essentially
advanced in the classification of curves of degree 8 which was further continued by
E.I. Shustin, A.B. Korchagin, B. Chevallier using more or less the same methods.
When I started to work on this subject there were 9 unknown cases for M -curves
of degree 8.

I finish my historical sketch here because this is not a survey of all the real al-
gebraic geometry. This is just an introduction to my thesis, thus I do not discuss
many interesting and important results obtained in other branches of the domain
by A.I. Degtyarev, I.V. Itenberg, V.V. Nikulin, V.M. Kharlamov, G.B. Mikhalkin,
G.M. Polotovskii, J.-Y. Welschinger, V.I. Zvonilov, and many other mathemati-
cians.

2. Real algebraic and real pseudo-holomorphic curves

2.1. Quasipositive braids and pseudo-holomorphic curves.
In [P1] I proposed (and further developed in [10, P2, P3, P6]) a new approach to

the study of the topology of plane real algebraic curves. This approach is based on
the obvious observation that the boundary braid of a multivalued algebraic function
in a disk without poles is a quasipositive braid, i.e., a braid which is a product of
conjugates of the standard generators of the braid group. Any algebraic curve can
be viewed as a graph of a multivalued function as soon as we fix a pencil of lines
which plays the role of the pencil of vertical lines when speaking of graphs. On the
other hand, if the algebraic function is real and the disk is contained in the upper
half-plane and its boundary is sufficiently close to the real axis (in fact, if the disk
contains all branching points which are in the upper half-plane), then sometimes
the braid can be recovered from the embedded type of the real curve, maybe up
to some unknown parameters. More precisely, if the d-valued function has at least
d − 2 real values (counted with multiplicities) at each real point, then the braid
is uniquely determined by the fiberwise arrangement of the curve with respect to
the pencil. This is so, for example, when the center of the pencil is chosen inside
(d − 2)/2 nested ovals. If the center of the pencil is inside (d − 4)/2 nested ovals,
then the braid is determined up to k unknown integer parameters where k is the
number of segments of the pencil with 4 non-real intersections with the curve.
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Thus in such cases (when the braid can be recovered from the topology of the
curve) the problem of realizability of an arrangement of a real curve with respect to
some pencil of lines is partially reduced to the quasipositivity of certain collection
of braids. “Partially” because the quasipositivity is a necessary but not sufficient
condition of algebraic realizability. However this condition is necessary and suffi-
cient for pseudo-holomorphic realizability which is the subject of the rest of this
section.

Let X be a compact 4-manifold endowed with a symplectic form ω and an
almost complex structure J tamed by ω, i.e. ω(v,J v) > 0 for any nonzero tangent
vector v. A smooth embedded surface is called a J -holomorphic curve (or pseudo-
holomorphic curve when J is not specified) if all its tangent planes are J -invariant.
The famous theory of pseudoholomorphic curves created by M. L. Gromov in [15]
shows that such curves share many important properties with algebraic curves.

Assume now that X = CP
2, ω is the Fubini-Studi symplectic form, and J is

anti-invariant under the complex conjugation: conj∗ ◦J = J−1 ◦ conj. We say that
a J -holomorphic curve A is real if conj(A) = A. In this case we set RA = A∩RP

2.
Then RA is a disjoint union of embedded circles. Due to Gromov’s theory real
pseudo-holomorphic curves are very similar to real algebraic curves in many aspects.
In particular, they are flexible curves in the sense of Viro (see [39]) which implies
that most of general restrictions of topological nature are valid for them. In fact
Viro in [39] gave a formal definition of topological restrictions as those which are
valid for his flexible curves. A long list of such restrictions can be found in [40].
In particular, it includes Gudkov-Rokhlin congruence (and its analog for (M − 1)-
curves), Petrovsky inequality, Arnold inequalities, Rokhlin and Rokhlin-Mishachev
formulas for complex orientations, all restrictions based on construction of many
2-cycles on the double coverings.

Almost all non-topological restrictions discussed in the survey [40] were based
either on Bezout theorem for auxiliary lines or conics, or on consideration of aux-
iliary pencils of lines, maybe, after Cremona transformation. Anyway, only these
restrictions were applied for the classification in degree up to 9 (the only cases where
it was done or at least started). It was observed in [P2] that all these restrictions
extend to the pseudoholomorphic case as well.

Thus one of the reasons why the study of real pseudoholomorphic curves is
important in the context of the 16th Hilbert Problem, is that is shows the limits of
applicability of the standard methods commonly being used in the domain. Namely,
if a certain configuration of ovals is realized pseudo-holomorphically, then nobody
will waste time and efforts trying to prohibit it by standard methods.

However pseudo-holomorphic curves also allow one to advance in classification
problem in both directions: restrictions and constructions. The reason in both
cases is that sometimes a hypothetically existing smooth algebraic curve can be
degenerated to a singular pseudo-holomorphic curve. This idea was used in [P2]
for restrictions and in [27], [28] for constructions. However, the usage of pseudo-
holomorphic curves for constructions needs some comments. Formally speaking,
they have not been used in [27] and [28]. Even the word “pseudo-holomorphic”
never occurs in these papers. However, it was hardly possible to find the needed
singular curve to be perturbed without knowledge that this is one of a few deep
degenerations which are pseudo-holomorphically realizable.
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2.2. Classification of M-curves of degree 8. When I started my research on
plane real algebraic curves, 9 cases remained open for configuration of ovals of a
real algebraic M -curve of degree 8 (see Figures 1–3 where each number n means
that there are n unnested ovals in the corresponding region). I realized one of
them in [28]1 and excluded two in [P2]. Moreover, all the remaining 6 cases I
realized in [P1], [P2] pseudo-holomorphically thus completing the classification of
real pseudoholomorphic M -curves of degree 8 up to isotopy.

Theorem 2.1. (Theorem 1.2 in [P2].) The isotopy types in Figure 2 are not real-
izable by real pseudoholomorphic curves of degree 8. The isotopy types in Figure 3
are realizable by real pseudoholomorphic curves of degree 8.

211 7

Figure 1. Algebraic curve constructed in [28]
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Figure 2. Pseudoholomorphically unrealizable configurations [P2]
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Figure 3. Pseudoholomorphic curves constructed in [P1], [P2]

A complete list of the isotopy types realizable by real pseudoholomorphic M -
curves of degree 8 is given in Table 1. The encoding of the isotopy types is described
in [39], [40]. The isotopy types whose algebraic realizability remains unknown are

1This result is not included in the thesis by formal requirements.
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Table 1. Isotopy types of pseudo-holomorphic M -curves of degree 8

p=19, n=3 p=15, n=7 p=11, n=11 p=7, n=15 p=3, n=19

〈18⊔1〈3〉〉Ha 〈14⊔1〈7〉〉G 〈10⊔1〈11〉〉V 〈6⊔1〈15〉〉V 〈2⊔1〈19〉〉V

〈17⊔1〈1〉⊔1〈2〉〉Ha 〈13⊔1〈1〉⊔1〈6〉〉V 〈9⊔1〈1〉⊔1〈10〉〉K 〈5⊔1〈1〉⊔1〈14〉〉V 〈1⊔1〈1〉⊔1〈18〉〉O ∗

〈13⊔1〈2〉⊔1〈5〉〉G 〈9⊔1〈2〉⊔1〈9〉〉V 〈5⊔1〈2〉⊔1〈13〉〉V 〈1⊔1〈2〉⊔1〈17〉〉V

〈13⊔1〈3〉⊔1〈4〉〉V 〈9⊔1〈3〉⊔1〈8〉〉V 〈5⊔1〈3〉⊔1〈12〉〉V

〈9⊔1〈4〉⊔1〈7〉〉V 〈5⊔1〈4〉⊔1〈11〉〉V 〈1⊔1〈4〉⊔1〈15〉〉O ∗

〈9⊔1〈5〉⊔1〈6〉〉V 〈5⊔1〈5〉⊔1〈10〉〉V 〈1⊔1〈5〉⊔1〈14〉〉V

〈5⊔1〈6〉⊔1〈9〉〉V

〈5⊔1〈7〉⊔1〈8〉〉V 〈1⊔1〈7〉⊔1〈12〉〉O ∗

〈1⊔1〈8〉⊔1〈11〉〉V

〈1⊔1〈9〉⊔1〈10〉〉O ∗

〈17⊔3〈1〉〉W 〈12⊔2〈1〉⊔1〈5〉〉V 〈8⊔1〈1〉⊔1〈1〉⊔1〈9〉〉V 〈4⊔1〈1〉⊔1〈1〉⊔1〈13〉〉S 〈1〈1〉⊔1〈1〉⊔1〈17〉〉S

〈12⊔1〈1〉⊔2〈3〉〉V 〈8⊔1〈1〉⊔1〈3〉⊔1〈7〉〉V 〈4⊔1〈1〉⊔1〈3〉⊔1〈11〉〉S 〈1〈1〉⊔1〈7〉⊔1〈11〉〉S

〈8⊔1〈1〉⊔1〈5〉⊔1〈5〉〉V 〈4⊔1〈1〉⊔1〈5〉⊔1〈9〉〉V 〈1〈5〉⊔1〈7〉⊔1〈7〉〉S

〈8⊔1〈3〉⊔1〈3〉⊔1〈5〉〉V 〈4⊔1〈1〉⊔1〈7〉⊔1〈7〉〉S

〈4⊔1〈3〉⊔1〈5〉⊔1〈7〉〉V

〈4⊔1〈5〉⊔1〈5〉⊔1〈5〉〉S

〈1⊔1〈2⊔1〈17〉〉〉Hi 〈1⊔1〈6⊔1〈13〉〉〉V 〈1⊔1〈10⊔1〈9〉〉〉V 〈1⊔1〈14⊔1〈5〉〉〉Hi 〈1⊔1〈18⊔1〈1〉〉〉V

〈2⊔1〈2⊔1〈16〉〉〉C 〈2⊔1〈6⊔1〈12〉〉〉K 〈2⊔1〈10⊔1〈8〉〉〉K 〈2⊔1〈14⊔1〈4〉〉〉K

〈3⊔1〈2⊔1〈15〉〉〉K 〈3⊔1〈6⊔1〈11〉〉〉K 〈3⊔1〈10⊔1〈7〉〉〉V 〈3⊔1〈14⊔1〈3〉〉〉V

〈4⊔1〈2⊔1〈14〉〉〉O∗ 〈4⊔1〈6⊔1〈10〉〉〉K 〈4⊔1〈10⊔1〈6〉〉〉K 〈4⊔1〈14⊔1〈2〉〉〉K

〈5⊔1〈2⊔1〈13〉〉〉C 〈5⊔1〈6⊔1〈9〉〉〉V 〈5⊔1〈10⊔1〈5〉〉〉V 〈5⊔1〈14⊔1〈1〉〉〉Hi

〈6⊔1〈2⊔1〈12〉〉〉K 〈6⊔1〈6⊔1〈8〉〉〉K 〈6⊔1〈10⊔1〈4〉〉〉K

〈7⊔1〈2⊔1〈11〉〉〉O 〈7⊔1〈6⊔1〈7〉〉〉V 〈7⊔1〈10⊔1〈3〉〉〉V

〈8⊔1〈2⊔1〈10〉〉〉K 〈8⊔1〈6⊔1〈6〉〉〉K 〈8⊔1〈10⊔1〈2〉〉〉K

〈9⊔1〈2⊔1〈9〉〉〉V 〈9⊔1〈6⊔1〈5〉〉〉V 〈9⊔1〈10⊔1〈1〉〉〉V Ha=Harnack [18]

〈10⊔1〈2⊔1〈8〉〉〉K 〈10⊔1〈6⊔1〈4〉〉〉K Hi=Hilbert [19]

〈11⊔1〈2⊔1〈7〉〉〉V 〈11⊔1〈6⊔1〈3〉〉〉V W=Wiman [43]

〈12⊔1〈2⊔1〈6〉〉〉K 〈12⊔1〈6⊔1〈2〉〉〉K G=Gudkov [16]

〈13⊔1〈2⊔1〈5〉〉〉C 〈13⊔1〈6⊔1〈1〉〉〉V K=Korchagin [21, 22]

〈14⊔1〈2⊔1〈4〉〉〉O∗ V=Viro [37, 40]

〈15⊔1〈2⊔1〈3〉〉〉K S=Shustin [34, 35]

〈16⊔1〈2⊔1〈2〉〉〉C C=Chevallier [5]

〈17⊔1〈2⊔1〈1〉〉〉V O=Orevkov [P1,P2,28]

marked by an asterisk. Near each real scheme, we indicate the author of its first
realization.

2.3. New formulas of complex orientations.
A real pseudoholomorphic (in particular, real algebraic) curve A is called sepa-

rating or Type I if A \ RA is disconnected. In this case A \ RA has two connected
components A+ and A− exchanged by the complex conjugation, and a complex
orientation of RA is the boundary orientation induced from A+ or from A−. These
orientations are obtained from each other by simultaneous reversion of the orienta-
tion of each connected component of RA.

Rokhlin [33] proved the following formula for complex orientations for separating
curves of even degree 2k in RP

2:

2(Π+ − Π−) = k2 − l,

where l is the number of ovals and Π+ (resp. Π−) is the number of positive (resp.
negative) injective pairs of ovals, i.e. pairs of ovals such that one of them is in the
interior of the other one and the complex orientations are as shown in Figure 4.
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positive negative

Figure 4. Positive and negative injective pairs

This formula was generalized by Mishachev [26] to curves of odd degree 2k + 1:

2(Π+ − Π−) + Λ+ − Λ− = k2 + k − l,

where Λ+ (resp. Λ−) is the number of positive (resp. negative) ovals; an oval O
is called positive (resp. negative) if the class of [O] = −2[J ] (resp. [O] = 2[J ])
in H1(M) where M is the non-oriented component of RP2 \ O and J is the non-
contractible component of RA (also called pseudoline); see Figure 5.

positive negative

Figure 5. Positive and negative ovals

The complex orientation formulas played a crucial role in the restriction part of
the classification of real algebraic curves of degree 7 and 8 (see [38], [P2]).

In [P1] I found new complex orientation formulas for curves with a deep nest,
i.e., curves with a nest of depth ⌊m/2⌋ where m is the degree. Let us formulate
them.

When two ovals O and O′ form an injective pair, we set [O : O′] = 1 if this
pair is positive and [O : O′] = −1 if it is negative. Let A be a pseudoholomorphic
curve of degree m. In the case when m is even and O is not outer, we say that O
is positive if [O : O′] = 1 where O′ is the outer oval surrounding O. Otherwise O
is called negative. If m is even, we assume also that any outer non-empty oval is
negative by definition.

Suppose RA has a nest (O1, . . . , Ok−1) of depth k − 1 where k = [m/2]. This
means that the oval Oj is surrounded by Ok for j > k. It follows from Bézout
theorem that all the other ovals are empty.

Theorem 2.2. (Theorem 1.5A in [P1].) Let k+ (resp. k−) be the number of
positive (resp. negative) non-empty ovals, λ+ (resp. λ−) the number of positive
(resp. negative) empty ovals, and let πS

s , S, s ∈ {+,−} be the number of pairs
(O, o) where o is an empty oval surrounded by O and (S, s) are the signs of (O, o).
Then

π+
− − π+

+ = (k+)2, π−
+ − π−

− = (k−)2 (m is even);

π+
− − π+

+ = (k+)2, π−
+ − π−

− + (λ+ − λ−)/2 = (k−)2 + k− (m is odd).

These formulas, as well as their direct generalizations in [42] and in [30], found
numerous applications, see, e.g., [8], [9], [29], [P1], [P2].
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2.4. Trigonal curves.
The question of realizability of a given fiberwise isotopy type (not necessar-

ily smooth) by a real algebraic trigonal curve (i.e., a curve given by an equation
F (x, y) = 0 with degy F = 3) is completely answered in [P5]. A similar question
for real pseudoholomorphic curves is answered in [P7, §6] (see §4 below). By a
fiberwise isotopy type we mean an equivalence class of smooth plane curves with
finitely many singular points (the curves are supposed to be analytic near them)
where two curves are equivalent if they are related by an isotopy of R2 which maps
any vertical line to another vertical line.

With each real trigonal plane curve A given by F (x, y) = 0 we associate the
planar graph Γ = j−1(RP1) ⊂ CP

1 where j(x) is the Weierstrass j-invariant of the
elliptic curve

{(y, z) | F (x, y) = z2}.
Then the fiberwise type of RA determines the combinatorial type of Γ near RP

1,
and the problem of realizability of a given fiberwise type reduces to the problem of
existence of extension of the graph from a neighborhood of RP1 to the whole CP

1.
This is a combinatorial problem which is algorithmically solvable.

The results and ideas from [P5] found numerous applications (the paper [P5] has
34 citation according to the database MathSciNet).

2.5. Affine M-sextics.
An affine smooth irreducible real algebraic curve A in R2 of degree d is an affine

M -curve if it has maximal possible number of connected components, which is equal
to g + d where g = (d− 1)(d− 2)/2 is the genus of the complexification of A. This
condition is equivalent to the fact that the projective closure of A is an M -curve
(i.e. has g+1 connected components) and all intersections with the infinite line are
real and transverse and sit on the same connected component of the closure of A.

A classification of algebraic affine M -sextics up to isotopy was started in [23] and
completed in [P1], [P3], [P6], [P9]. In [P1] a classification of real pseudoholomorphic
M -sextics is obtained. The two classifications do not coincide. They are as follows.

The notation for isotopy types of affine M -sextics, which we represent as pairs of
a projective sextic and a real line in RP 2 (the line at infinity) is shown in Figure 6,
where a, b, c denote the number of non-nested ovals in the corresponding domains.

Theorem 2.3. (a). (Theorem 1 and Section 7.2 in [P1].) The following is a
complete list of algebraic affine M -sextics up to isotopy.







A1(a, b), (a, b) = (1, 8), (5, 4),

A2(a, b, c), (a, b, c) = (1, 8, 1), (8, 1, 1), (0, 5, 5), (1, 4, 5),

(4, 1, 5), (5, 0, 5), (0, 1, 9), (1, 0, 9),

A3(a, b, c), (a, b, c) = (4, 5, 1), (7, 2, 1), (2, 3, 5), (4, 1, 5), (0, 1, 9),

(0, 5, 5),

A4(a, b, c), (a, b, c) = (1, 8, 1), (5, 4, 1),

B1(a, b), (a, b) = (1, 8), (5, 4),

B2(a, b, c), (a, b, c) = (1, 8, 1), (0, 5, 5), (5, 0, 5), (0, 1, 9), (1, 0, 9),

B3(a, b, c), (a, b, c) = (3, 6, 1), (1, 4, 5), (2, 3, 5),

C1(a, b, c), (a, b, c) = (0, 9, 1), (7, 2, 1), (0, 5, 5), (3, 2, 5), (0, 1, 9),

C2(a, b, c), (a, b, c) = (1, 7, 2), (5, 3, 2)
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2A  (a,b,c)A  (a,b)1

a

b

c

a

b

3A  (a,b,c)

c
ba

2C  (a,b,c)

a

b

c

3B  (a,b,c)
b

ac

1C  (a,b,c)

c

b a

2B  (a,b,c)4A  (a,b,c)

c

b

a

B  (a,b)1

b
ca

b

a

Figure 6. Encoding the isotopy types of affine M -sextics

(b) (Theorem 5 in [P3], Theorem 1 in [P9], and Theorem 1.1 in [P6] respec-
tively.) The following isotopy types are realizable pseudoholomorphically but not
algebraically.

A4(1, 4, 5), B2(1, 4, 5), C2(1, 3, 6) . (1)

3. On algebraic unrealizability of isotopy types

realizable by real pseudoholomorphic curves

As we mentioned above, real pseudoholomorphic curves share many topological
properties of real algebraic curves. Therefore, in the cases when an isotopy type
is pseudoholomorphically realizable, essentially new methods should be involved to
prove that it is unrealizable algebraically. In this section we present the methods
developed and/or applied by the author to this end.

3.1. Hilbert – Rohn – Gudkov method (joint work with E. I. Shustin).
We already gave a brief outline of this method in Section 1. This method was

developed and used by Gudkov to obtain a classification of real algebraic curves
of degree 6. Later on, a topological proof was found, and Gudkov’s result about
sextic curves became a partial case of much more general facts concerning curves
of any even degree. So, there was an impression that the Hilbert–Rohn–Gudkov
method is no longer needed. However, the discovery of algebraically unrealizable
pseudoholomorphic curves gave a new life to it.

In the series of joint papers with E. I. Shustin started with [P3], [P6] we applied
this method to exclude the three affine sextics mentioned in Section 2.5 as well as to
prove the algebraic unrealizability of certain curves on the quadratic cone. To apply
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the Hilbert–Rohn–Gudkov method in our setting, we found new sufficient conditions
for existence of a one-dimensional equisingular deformation of a curve with An-
singularities passing through a given set of fixed points, such that a certain quantity
monotonically decreases. The latter condition guarantees that the obtained family
of curves converges to some more degenerate curve.

3.2. Trigonal curves.
The results of [P5] (see Section 2.4) provide an algorithm to decide if a given

fiberwise arrangement is realizable by an algebraic trigonal curve of a given bidegree.
For example, the fiberwise arrangement in Figure 7 is unrealizable by a curve of
bidegree (3, 15) on the Hirzebruch surface Σ5. The real locus RΣ5 is a Klein bottle.
It is represented in Figure 7 by a rectangle with identified opposite sides. The
horizontal sides represent the exceptional section (whose self-intersection number
is −5) and the vertical sides represent a fiber of the fibration Σ5 → P1.

Figure 7. A fiberwize arrangement which is unrealizable by a smooth
real algebraic trigonal curve of bidegree (3, 15) in Hirzebruch surface Σ5

but realizable pseudoholomorphically in the same homology class

The algebraic unrealizability of Figure 7 is used in the final step of the proof in
[P9] of the algebraic unrealizability of the pseudoholomorphic affine sextic B2(1, 4, 5)
(see (1) in Section 2.5 above). Notice that this fiberwise arrangement is realizable
pseudoholomorphically. In order to prove this fact, it is enough to show that the
braid

b := σ−4
2 σ1σ

−1
2 σ−4

1 σ2σ
−1
1 σ−4

2 σ1σ
−1
2 ∆3

is quasipositive (∆ is the Garside half-twist σ1σ2σ1). Indeed, one easily checks that

b = (σ−3
2 σ1σ

3
2)(σ−2

1 σ2σ
2
1)(σ−1

2 σ−3
1 σ2σ

3
1σ2).

3.3. Cubic resolvents of quadrigonal curves.
Let A be a real algebraic quadrigonal curve, i.e., a curve given by F (x, y) = 0,

degy F = 4. By a birational change of variables, the question of realizability of a
given fiberwise isotopy type by such a curve can be reduced to realizability of some
other fiberwise isotopy type by a curve of the form

y4 + a2(x)y2 + a1(x)y + a0(x) = 0.

The fiberwise isotopy type of this curve determines that of its cubic resolvent
R(x, y) = 0 with respect to y and its relative position with respect to the line
y = 0. Recall that the cubic resolvent (called also resolvent cubic) of a polynomial

y4 + a2y
2 + a1y + a0 = (y − y1)(y − y2)(y − y3)(y − y4)
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is the polynomial (y − z1)(y − z2)(y − z3) where

z1 = (y1 + y2)(y3 + y4), z2 = (y1 + y3)(y2 + y4), z3 = (y1 + y4)(y2 + y3).

Since R = 0 is a trigonal curve, the question of its algebraic realizability can be
solved (see Section 2.4). Moreover, even when the required fiberwise type is alge-
braically realizable by R(x, y) = 0, sometimes it is possible to prove that the re-
quired fiberwise type of yR(x, y) is unrealizable even pseudoholomorphically, which
implies the algebraic unrealizability of the initial quadrigonal fiberwise arrange-
ment.

This method was successfully applied in [P6], [P9] in order to prove the algebraic
unrealizability of the affine sextic curves (1) (see Section 2.5).

3.4. Separating morphisms and Abel Theorem.
Recall that by a non-singular real algebraic curve in RP

2 we mean a non-singular
algebraic curve in CP

2 invariant under the complex conjugation (x : y : z) 7→ (x̄ :
ȳ : z̄). If such a curve is denoted by A, then we denote the set of its real points by
RA. A curve A is called separating (or type I ) if A \ RA is not connected. In this
case A\RA has two connected components exchanged by the complex conjugation,
and the boundary orientation induced by the complex orientation of any of these
components is called a complex orientation of RA. It is defined up to simultaneous
reversing of the orientation of each connected component of RA.

The main result of the paper [P10] is an inequality for the isotopy type of a
plane nonsingular real algebraic curve endowed with a complex orientation (i.e., for
the complex scheme of such curve according to Rokhlin’s terminology [33]) which
implies in particular that the oriented isotopy type shown in Figure 8, that is the
complex scheme (in the notation of Viro [39])

J ⊔ 9− ⊔ 1−〈1+〈1−〉〉 (2)

is unrealizable by a real algebraic curve of degree 9 in RP
2. Since this complex

scheme is easily realizable by a real pseudoholomorphic curve it provides the first
example of a complex scheme of a non-singular plane real projective curve which is
algebraically unrealizable but pseudoholomorphically realizable. Similar examples
for any degree congruent to 9 modulo 12 are also constructed in [P10].

. . .

︸ ︷︷ ︸

9 negative ovals

Figure 8. The complex scheme (2)

Let A be a non-singular separating real algebraic curve in RP
2 of an odd degree

m = 2k+1. We fix a complex orientation on RA. Let r be the number of connected
components of RA. Then l = r−1 is the number of ovals (components of RA whose
complement in RP

2 is not connected). The component which is not an oval is called
pseudo-line and we denote it by J . Recall that an oval is even (resp. odd) if it is
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encircled by an even (resp. odd) number of other ovals. An oval O is called positive
if [O] = −2[J ] in H1(M) where M is the closure of the non-orientable component
of RP2 \O. Otherwise O is called negative. Traditionally, the number of even (resp.
odd) ovals is denoted by p (resp. by n), and the number of positive (resp. negative)
ovals is denoted by Λ+ (resp. Λ−). Let

Λp
+ = the number of positive even ovals,

Λp
− = the number of negative even ovals,

Λn
+ = the number of positive odd ovals,

Λn
− = the number of negative odd ovals.

Theorem 3.1. (Theorem 1.1 in [P10].) If k > 0, then

Λp
+ + Λn

− + 1 ≥ l − k2 + 2k

2
and Λn

+ + Λp
− ≥ l − k2 + 2k

2
. (3)

Setting l = g − 2s one can equivalently rewrite (3) in the form

Λp
+ + Λn

− + 1 ≥ k2 + k

2
− s and Λn

+ + Λp
− ≥ k2 + k

2
− s. (4)

For the complex scheme (2) we have l = 12 and Λp
+ = Λn

− = 0, thus the left
inequality in (3) is not satisfied for k = 4. So we obtain:

Corollary 3.2. (Corollary 1.2 in [P10].) The complex scheme (2) is unrealizable
by a real algebraic curve of degree 9.

c)

b)

a)

Figure 9. Pseudoholomorphic realization of complex scheme (2)

The main interest of Corollary 3.2 is that the complex scheme (2) admits a
very simple realization by a real pseudo-holomorphic curve of degree 9. Indeed, let
C = {f = 0} be a real cubic curve with an oval, and L = {l = 0} be the union
of three lines, each cutting the pseudo-line of C at three distinct real points. Let
Asing = {fg = 0} with g = (f +εl)(f−εl) and 0 < ε ≪ 1. Then Asing is a reducible
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algebraic curve of degree 9 with nine triple points. Its real locus consists of three
nested ovals and a union of three pseudolines arranged as shown in Figure 9(a). In
the class of real pseudoholomorphic curves, it can be perturbed as in Figure 9(b).
If we consider f and l as holomorphic sections of the line bundle OCP2(3) rather
than homogeneous polynomials, then the perturbation can be realized by replacing
f with f + h where h is a C1-small smooth (non-analytic) conjugation-invariant
section which is complex analytic in some neighborhoods of the triple points. If h
is small enough, the obtained curve is analytic near all double points. Finally, we
perturb the double points by adding to (f +h)g a yet smaller conjugation-invariant
section of OCP2(9) whose signs at the double points are chosen so that the real locus
of the resulting curve A is the union of three nested ovals with the curve shown in
Figure 9(c). If the complex orientations of the cubics are chosen as in Figure 9(a),
the perturbation is coherent with them (see Figure 10), and hence the resulting
curve of degree 9 is separating and its complex scheme is (2). The non-analytic
part of A is close to Asing, hence A is symplectic.

Figure 10. A perturbation of transversal intersection according to com-
plex orientations

Note that since (2) is algebraically unrealizable, so is the intermediate nodal
curve. This fact however is much easier: it immediately follows from Abel’s theorem
applied to the divisors cut by any two of the cubic curves on the third one. This
observation was the initial hint that (2) is algebraically unrealizable and that Abel’s
theorem might be used in the proof.

The proof of Theorem 3.1 is based on the Abel Theorem combined with the
following result due to Gabard [11]. Let A be a real algebraic curve, i.e., a Riemann
surface endowed with an antiholomorphic involution. Let g be the genus of A and r
be the number of connected components of RA. Then there exists a real morphism
f : A → P1 of degree at most (r + g + 1)/2 which is separating, which means that
f−1(RP1) = RA.

If one of inequalities (3) does not hold, then, using Poincaré residues, one can
construct a real holomorphic 1-form on A which contradicts Abel Theorem applied
to the divisor of f (viewed as a meromorphic function on A).

4. Algorithmic recognition of quasipositive braids

As it is pointed out in Section 2.1, pseudoholomorphic realizability of a fiberwise
isotopy type is equivalent to the quasipositivity of a certain braids. In general, the
algorithmic problem to decide whether a given braid is quasipositive, is open and it
seems to be very hard. However, in [P7] it is solved in some particular cases using
the Garside Theory (which was founded in [12] and further developed in [3], [6],
[7], [13] and in many other papers by different authors).

Let Bn be the group of braids with n strings. Let e : Bn → Z be the homomor-
phism defined by σi 7→ 1 for each i. Then e(b) is the algebraic length of b (called
also the exponent sum of b).
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4.1. Quasipositivity problem for braids with three strings.
The braid group B2 is isomorphic to Z, thus the recognition of quasipositive

braids with two strings is evident. An algorithmic solution of the quasipositivity
problem for braids with three strings is given in [P7, §6]. It is as follows. Any braid
with three strings can be written in the form

b = ∆−px1 . . . xn, xi ∈ {σ1, σ2} (5)

where ∆ = σ1σ2σ1 = σ2σ1σ2.

Theorem 4.1. A braid b given by (5) is quasipositive if and only if some letters
can be removed from x1 . . . xn so that the resulting word represents the braid ∆p.

This theorem provides an algorithm of complexity O(ne(b)+c) where c is a con-
stant (1, 2 or 3) depending on a precise definition of the complexity. Notice that
in applications to real algebraic or real pseudoholomorphic curves with many ovals
(the case which is traditionally considered as most interesting) the algebraic length
of the appeared braids is small.

Using a kind of the branch-and-bounds method, this algorithm is improved in
[P7, §6]. The resulting algorithm is still exponential in e(b) but the base of ex-
ponent is considerably reduced. A C-program implementing this algorithm is also
presented in [P7, §6].

4.2. Quasipositivity problem for braids of algebraic length 2.
We start this section by introducing some notions from the Garside Theory

which are needed to formulate our results. We follow the definitions and notation
introduced in [14]. Given elements a, b of a group G, we denote ab = b−1ab,
aG = {ab | b ∈ G}, and a ∼ b ⇔ b ∈ aG.

A Garside structure on a group G is a triple (G,P,∆) where P is a submonoid in
G satisfying P ∩ P−1 = {1} (called the monoid of positive elements) and a special
element ∆ ∈ P (called the Garside element) such that the following properties hold:

(G1) The partial order 4 defined on G by a 4 b ⇔ a−1b ∈ P is a lattice order.
That is, for every a, b ∈ G there exist a unique least common multiple a∨ b
and a unique greatest common divisor a ∧ b with respect to 4.

(G2) The set [1,∆] = {a ∈ G | 1 4 a 4 ∆}, called the set of simple elements,
generate G.

(G3) Conjugation by ∆ preserves P. That is, (X ∈ P) ⇒ (X∆ ∈ P).
(G4) For all X ∈ P \ {1}, one has:

‖X‖ = sup{k | ∃a1, . . . , ak ∈ P \ {1} such that X = a1 . . . ak} < ∞.

Similarly to 4 we define the order < by a < b ⇔ ab−1 ∈ P. A Garside structure
(G,P,∆) is said to be of finite type if the set of simple elements [1,∆] is finite. An
element a ∈ P \ {1} is called an atom if ‖a‖ = 1. We denote the set of atoms by A.

The following three notions are introduced in [P7]. A Garside structure (G,P,∆)
is called homogeneous if for any X, Y ∈ P one has ‖XY ‖ = ‖X‖+ ‖Y ‖. It is called
symmetric if for any simple elements u, v one has u 4 v ⇔ v < u, and it is called
square free if there do not exist U, V ∈ P and x ∈ A such that Ux2V ∈ [1,∆].

We say that a decomposition X = ∆p ·A1 · . . . ·An, Ai ∈ [1,∆] \ {1,∆}, is in left
normal form if Ai = ∆ ∧Ai . . . An for each i.
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Then the infimum, supremum, and canonical length of X are defined as inf X = p,
supX = p + n, ℓ(X) = n respectively. The initial and final factor of X are
ι(X) = ∆pA1∆−p and ϕ(X) = An respectively. The summit length and the super
summit set of X are defined as

ℓs(X) = min
Y ∈XG

ℓ(Y ), SSS(X) = {Y ∈ XG | ℓ(Y ) = ℓs(X)}

respectively. The cycling and cyclic sliding are the mapping s : G → G and c :
G → G respectively defined by

c(X) = Xι(X), s(X) = Xp(X), p(X) = ι(X) ∧ (ϕ(X)−1∆).

The ultra summit set and the set of sliding circuits of X are defined as

SC(X) = {Y ∈ SSS(X) | ∃k > 0 such that s
k(Y ) = Y },

USS(X) = {Y ∈ SSS(X) | ∃k > 0 such that ck(Y ) = Y }.

It is known (see [14]) that SC(X) ⊂ USS(X). Given X ∈ USS(X), the cycling orbit
of X is defined as {ck(X) | k > 0}.

Theorem 4.2. (Theorem 1 in [P7].) Let (G,P, δ) be a symmetric homogeneous
square-free Garside structure of finite type with set of atoms A. Let x, y ∈ A and
k > 0, l ≥ 0 be integers. Suppose that X ∈ (xk)G(yl)G. Then either X ∈ (xk

1y
l
1)G

or any cycling orbit in SC(X) contains an element whose left normal form is

δ−n ·An · . . . ·A1 · xk
1 ·B1 · . . . ·Bn · yl1

where n ≥ 1, x1 ∈ xG ∩ A, y1 ∈ yG ∩ A, and Ai, Bi are simple elements such that
Aiδ

i−1Bi = δi.

In particular, this theorem gives an algorithm to decide whether a given braid
of algebraic length ≤ 2 is quasipositive. Indeed the Birman-Ko-Lee [3] Garside
structure (Bm,P, δ) on the braid group Bm satisfies the required properties (i.e.,
it is symmetric, homogeneous, and square-free). This Garside structure is defined
as follows. Let σi,j , 1 ≤ i < j ≤ m, be the band generators σi,j = a−1σj−1a,
a = σj−1 . . . σi. Then A = {σi,j | 1 ≤ i < j ≤ m}, P is the monoid generated by
A, and δ = σm−1 . . . σ2σ1. The algorithms of computation of all objects involved
in Theorem 4.2 can be found in [3].

5. Plane complex curves with small Betti numbers

5.1. Rational cuspidal curves.
In [P4] I study rational cuspidal curves, i.e. rational complex algebraic curves in

CP
2 homeomorphic to the 2-sphere. The word ‘cuspidal’ in this context means that

all singularities are analytically irreducible (cusps). Using logarithmic Bogomolov-
Miyaoka-Yau inequality, Fujita theory of Zariski decompositions on affine surfaces,
and computations with resolution graphs (more precisely, with Eisenbud-Neumann
splice diagrams), I prove the following results. The logarithmic Kodaira dimension
κ(V ) of an affine complex algebraic variety V is the (KX + D)-dimension of X
where D is a simple normal crossing divisor on a smooth compact variety X such
that X \D = V .

Let α = (3+
√

5)/2. Let φ0, φ1, . . . be Fibonacci numbers indexed so that φ0 = 0,
φ1 = 1, φk+2 = φk + φk+1.
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Theorem 5.1. (Theorems A and B in [P4].) Let C be a rational cuspidal curve
of degree d in CP 2. Let m be the maximal multiplicity of its cusps. Let κ̄ be the
log-Kodaira dimension of CP 2 \ C. Then:

(1) d < α(m + 1) + 1/
√

5;
(2) if κ̄ = −∞, then d < αm;
(3) κ̄ 6= 0;

(4) if κ̄ = 2, then d < α(m + 1) − 1/
√

5.

In the same paper (Theorem C in [P4]) I have also shown that these estimates
are sharp in the sense that there do not exist constants α′ and β′ such that α′ < α
and the inequality d ≤ α′m + β′ holds for any rational cuspidal curve. Namely,
for any j > 0, j 6≡ 2 mod 4, I constructed a rational cuspidal curve Cj of degree
dj = φj+2 which has a single cusp of multiplicity mj = φj , thus limj→∞ dj/mj = α.

5.2. Lin – Zaidenberg Conjecture.

Lin and Zaidenberg [24, 25] (see also [1; §5]) asked the following questions.

(Q1) Does there exist a connection between the topology of an irreducible plane

affine complex algebraic curve and the number of its irreducible singularities? (Q2)
Is it true, for example, that the number of irreducible singularities of such a curve

A does not exceed 1 + 2b1(A) where b1(A) is the first Betti number of A?

Conjecturally, the answer to the both questions is positive. The first and the most
fascinating case of this conjecture was proven by Lin and Zaidenberg themselves
[45]: if b1(A) = 0, then an automorphism of C2 transforms A into xp = yq, in

particular, A has at most one singular point. Borodzik and Żo la̧dek [4] proved that
the answer to Question (Q2) is positive in one more particular case. Namely, if A
is homeomorphic to an annulus, then A has at most three singular points.

If we pass from A to its closure in CP
2, then the number of singular points may

only increase whereas the first Betti number may only decrease. Thus a positive
answer to (Q1) follows from the analogous conjecture for plane complex projective
curves. A particular case of the projective conjecture was proven in [46]: if a
projectively rigid curve in CP

2 is homeomorphic to a sphere, then it has at most
9 singular points. Then Tono [36] proved a much stronger result: if a curve in
CP

2 is homeomorphic to a Riemann surface of genus g, then it has no more than
(21g + 17)/2 singular points (thus no more than 8 when g = 0).

In my paper [P8] I extended Tono’s arguments to the case of an arbitrary plane
projective curve and obtained a proof of the projective analog of the conjecture and
hence, a positive answer to Question (Q1).

Let us give precise statements. Let C be an algebraic curve in CP
2. A singular

point of C is called a cusp if C has a single local analytic branch at it. Let s be the
number of all singular points of C and c the number of cusps. Let bi = bi(C) be
the i-th Betti number of C. So, b2 is the number of irreducible components. Let
g = g(C) be the total genus of C, i.e., the sum of the genera of the normalizations
of all the irreducible components.

Theorem 5.2. If κ̄(CP2 \ C) = 2 (by [41] this is so, for example, when one of
irreducible components of C has ≥ 3 singular points), then c ≤ 9

2
b1 + 3

2
g− 6b2 + 29

2

and s ≤ 11
2 b1 − 1

2g − 5b2 + 27
2 .



17

Corollary 5.3. If C is irreducible, then c ≤ 9
2b1 + 3

2g + 17
2 ≤ 21

4 b1 + 17
2 and

s ≤ 11
2
b1 − 1

2
g + 17

2
≤ 11

2
b1 + 17

2
.

Let Caff be the intersection of C with some fixed affine chart and let baffi =
bi(C

aff). We denote the number of singular points, the number of cusps, and the
number of points at infinity of Caff by saff , caff , and p respectively.

Corollary 5.4. If κ̄(CP2 \ C) = 2, then caff ≤ 9
2(baff1 − baff0 − p) + 3

2 (g − b2) + 19

and saff ≤ 11
2 (baff1 − baff0 − p) + 1

2 (b2 − g) + 19.

Corollary 5.5. If C is irreducible, then caff ≤ 9
2(baff1 −p)+ 3

2g+13 ≤ 9
2b

aff
1 + 3

2g+ 17
2

and saff ≤ 11
2 (baff1 − p) − 1

2g + 14 ≤ 11
2 baff1 − 1

2g + 17
2 .

In the same paper I observed that [36] easily implies Zaidenberg’s conjecture
about the finiteness of the number of graphs (considered up to homeomorphism)
realized as the dual graph at infinity of a minimal compactification of a Q-acyclic
affine algebraic surface of general type. More precisely, the following holds.

Let D = D1 + · · · + Dn be a reduced curve with simple normal crossings on a
smooth algebraic surface V and let Γ be the dual graph of D. We set β(Di) =
Di(D − Di) (the degree of the corresponding vertex of Γ). If β(Di) = 1, we say
that Di is a tip of D. We assume that D does not contain any rational (−1)-curve
Di with β(Di) ≤ 2. Zaidenberg [44; p. 16] conjectured that only finite number

of pairwise non-homeomorphic graphs Γ can be obtained in this way under the

condition that κ̄(V \D) = 2 and bi(V \D) = 0 for i > 0.

Proposition 5.6. (Remark 3 in [P8].) The number of tips of D is at most 17,
hence Zaidenberg’s conjecture holds true.
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P9. S. Fiedler-LeTouzé, S. Orevkov, E. Shustin, Corrigendum to the paper “A flexible affine M-

sextic which is algebraically unrealizable”, J. Alg. Geom. 29 (2020), 109–121.

P10. S. Yu. Orevkov, Algebraically unrealizable complex orientations of plane real pseudoholomor-

phic curves, GAFA – Geom. and Funct. Anal. 31 (2021), 930–947.

References

[1] S. S. Abhyankar and A. Sathaye, Uniqueness of plane embeddings of special curves, Proc.
Amer. Math. Soc. 124 (1996), 1061–1069.



18

[2] V. I. Arnold, The arrangement of the ovals of real plane algebraic curves, involutions of four-
dimensional manifolds and the arithmetics of integral quadratic forms, Funk. anal. i prilozh.

5 (1971), no. 3, 1–9 (Russian); English translation, Funct. Anal. Appl. 5 (1971), 169–175.

[3] J. Birman, K.-H. Ko, S.-J. Lee, A new approach to the word and conjugacy problems in the
braid groups, Adv. Math. 139 (1998), 322–353.
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