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Abstract

This dissertations studies the problems of building nonparametric probablistic
machine learning models. The standard inference techniques applied in parametric models
with conjugate priors are inapplicable in this setting which motivates development
of new, efficient methods of approximate inference that exploit models structure. A
few important cases of such models are considered in this work: a mixture model
for interdependent objects based on sequential distance-dependent Chinese restaurant
process, a nonparametric word vector model with automatic extraction of senses of
ambiguous words in natual languages and a non-conjugate variational autoencoder
generative model for images with few-shot learning abilities. For all three cases new
variational inference algorithms are proposed that make the models computationally
efficient and therefore expand their practical applications which is demonstrated
experimentally.
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Introduction

Probabilistic modelling has become one of the most important tools of machine
learning. [1]. On the one hand, this was caused by the deep connection to probability
theory in the language of which many concepts and results in the theory of machine
learning are formulated [2; 3]. On the other hand, which is equally important,
probabilistic formalism appeared to be quite convenient for specifyingmachine learning
models and allowed a universal way of constructing new models as well as reusing
existing ones [4].

One of main tools in this formalism is Bayesian approach which consists in
decomposing a joint distribution over model’s variables (e.g. hidden parameters and
observations) into a prior distribution and a likelihood model. This substantially
simplifies model description and allows to easily add new variables which would
only require defining the corresponding conditional distributions. Besides, such
decomposition can often reflect real causal relationships between variables, as far
as the generative process is concerned [5]. In addition, in the context of many problems
and models a prior and a likelihood distributions can have a quite natural distinction
in their purpose; for example, prior may serve as a regularizer and likelihood as a
loss function or a reward model [6].

Thus, almost all areas of machine learning benefit from an account of uncertainty
that the probabilistic approach offers. However, there is a class of problems where
probabilistic models are qualitatively differ from their analogs, in particular, when
constructing nonparametric models. Nonparametric models cannot be mathematically
formulated as computations depending on parameters of some fixed dimensionality.
An example may be the well-known nearest neighbours classification model, where
the training examples play the role of model parameters which addition automatically
increases the parameter space. In a number of cases such property not only allows
formulation of simpler models, but is also principally necessary to adequately describe
the observed data.

Among such situations we will mainly consider the following ones: firstly, when
a parametric model definition is a priori impossible or cumbersome (e.g. defining a
mixture model under the unknown number of mixture components) and secondly,
when very few training examples are available and fast learning is required as new
observations arrive, which is most often implemented exactly by nonparametric models.
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In this dissertation both these cases are thoroughly studied. The first one
– from the point of view of the nonparametric Bayesian approach in which a
specially constructed prior distribution provides structural regularization on the model
complexity and a compromise between the model complexity and the fit of data is
achieved via probabilistic inference [7]. The second case is studied on the example
of a classical problem of learning a neural generative model of images with the ability
of fast incremental learning. Since traditional methods for training neural networks are
all based on gradient optimization, fast incremental learning in generative models is
arguably more convenient to implement using a specialized nonparametric architecture,
also built upon probabilistic inference.

Besides the model definition itself, equal difficulty in applying probabilistic
nonparametric approach in practice lies in performing probabilistic inference, i.e.
accessing posterior distribution over unobserved variables given the observed ones. In
the general case, exact probabilistic inference is an NP-hard problem [8; 9] whichmakes
it impossible in practice even for moderately large models. This fundamental issue acts
as a motivation for developing approximate inference methods which approximate the
true posterior distribution with another one, typically, having a simpler form but still
good enough to be used as a proxy and, thus, more affordable for computations.

One of the fastest developing research directions currently is variational inference
in which approximate inference is formulated as an optimization problem of finding
an approximation that minimizes a certain distribution approximation criterion [10].
Such view on the problem often leads to emergence of simple but still significantly
more efficient algorithms than those derived in theMonte-Carlo family, which currently
concedes in parallelization and scaling aspects [11]

Being such a popular and efficient approach, variational inference has been
studied in the context of a number of standard probabilistic models, from the simplest
Bayesian logistic regression to modern deep generative models. Nevertheless, the
experience gathered so far may be inapplicable for non-standard models differing
significantly from those already studied which require developing radically new
techniques since naive application of standard methods leads to quite inefficient
optimization procedures. Two classes of such problems studied in this dissertation is
non-conjugate and nonparametric probabilistic models.

Non-conjugacy of a prior and a likelihood is manifested by the corresponding
posterior distribution not being in the same parametric family as the prior. This common
phenomenon substantially preventing efficient inference currently attracts a lot of
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researchers attention due to the popularity of neural network based likelihood models,
which is specifically studied in this dissertation.

The aim of the work is study and development of nonparametric probabilistic
models as well as development of variational inference algorithms for applying
those. The considered models are purposed for solving important nonparametric data
modelling problems: handling dependant observations, automatic extraction of vector
representations for word senses and fast learning in deep generative models. Applying
these models must improve performance criteria used in each of the considered
applications, which puts certain requirements on the develop inference algorithms such
as computational efficiency and adequacy of the posterior approximation.

Main results:
1. Derivation of a variational inference algorithm for sequential distance-

dependent Chinese restaurant process.
2. Development of a nonparametric Bayesian model based on Dirichlet process

for learning vector representations for word senses in a natural language.
Derivation of an efficient parallel learning algorithm for the model based on
stochastic variational inference method.

3. Using principles of meta-learning and nonparametric probabilistic modelling
for designing a deep generative model with fast incremental learning
capabilities and a corresponding neural variational inference model.

Personal contribution. Main results have been obtained by the author
himself, some results from the chapter 2 were obtained in collaboration with Dmitry
Kondrashkin and Anton Osokin.

Publications and approbation of work
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1. Sergey Bartunov and Dmitry Vetrov. Variational inference for sequential
distance dependent Chinese restaurant process. 31st International Conference
on Machine Learning, ICML 2014, 2014, pp. 3259–3267.

2. Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, and Dmitry Vetrov.
Breaking sticks and ambiguities with adaptive skip-gram. Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS 2016, 2016, pp. 130–138.
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3. Sergey Bartunov and Dmitry Vetrov. Few-shot generative modelling with
generative matching networks. 21st International Conference on Artificial
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The developments of this work have been further applied in a broader
spectrum of problems that are beyond probabilistic models and inference in them.
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Chapter 1. Variational inference for sequential distance-dependent Chinese
restaurant process

In the first chapter a variational inference algorithm is described for
nonparametric Bayesian models based on sequential distance-dependent Chinese
restaurant process (seqdd-CRP) [13]. Seqdd-CRP has been proposed as a generalization
of Chinese restaurant process [14] for nonparametric modelling of dependant data
where between each pair of observations (i, j) a distance dij ⩾ 0 is defined, such that
dii = 0 and i > j =⇒ dij = ∞.

Seqdd-CRP is traditionally introduced via the metaphor of a restaurant which
customers i = 1, 2, . . . (representing observations) are entering. Each customer i

chooses an already entered customer ci = j, j ⩽ i to share a table with them. Shall
the customer choose himself, i.e. ci = i, they sit a new table. Formally the customer
assignment process is defined with the following probability:

p(ci = j|f,D,α) ∝


f(dij), j > i,

α, i = j,

0, j < i,

(1.1)

where f(d) ⩾ 0 - is a non-negative distance transformation function and α > 0 - is a
hyperparameter governing the frequency of new tables emergence.

Customer assignments c formed according to this process induce a table
assignment z(c) consisting ofK(c) tables, each of which is associated with a modelled
group of observations such as a cluster, mixture component etc. From the generative
process point of view, for each table k = 1, . . . , K(c) a corresponding parameter
θk ∼ G is sampled from some base measure G which in its turn controls generation of
all observations having zi(c) = k. For notational convenience, one can say that each
customer i already has his own table θi defined but they might not choose to sit at it.

In most cases, a base measure plays a role of simply some prior distribution over
parameters p(θ) and generation of observations is defined via the chosen likelihood
model p(x|θ). In other words, a nonparametric mixture model based on seqdd-CRP can
be described with the following joint distribution:

p(x, c,θ|f,D,α) =

[
N∏
i=1

p(ci|f,D,α)

] N∏
j=1

p(θj)
∏

zi(c)=j

p(xi|θj)

 . (1.2)
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One can note that such formulation with the full set of N tables is fully equivalent to
the original one in terms of the marginal likelihood p(x|f,D,α).

Seqdd-CRP generalizes the classical Chinese restaurant process (and the closely
related Dirichlet process) to the case of dependent observations providing a flexible
family of priors on observation groups using only information about pairwise distances.
Thus, seqdd-CRP combines the existing strengths of CRP such as automatic adjustment
of model complexity with addition of new data and features of sequence models such
as Hidden Markov Model [15].

This functionality comes at a price of combinatorial explosion when trying to
perform exact inference on the customer assignments c. In the original paper, [13]
use Gibbs sampling as an approximate inference method with all inherent downsides
in terms of convergence speed and computational efficiency. To overcome those, we
propose a variational inference algorithm which allows to obtain a fully-factorized
variational approximation q(c,θ) =

∏N
k=1 q(θk)

∏N
i=1 q(ci), optimal from the

Kullback-Leibler divergence perspective:

KL(q(c,θ)||p(c,θ|x, f,D,α))→ min
q

. (1.3)

The corresponding variational lower bound on the marginal likelihood is then
written as:

log p(x|f,D,α) ⩾ L(q)

= Eq(c,θ)

[
N∑
i=1

(
log p(ci|f,D,α)− log q(ci)

)
+

N∑
j=1

(
log p(θj)− log q(θj) +

N∑
i=1

zij(c) log p(xi|θj)
)]

,

(1.4)

where zi(c) = j is equivalent to zij(c) = 1 и zik(c) = 0, k ̸= j.
The main difficulty in computing the lower bound and obtaining the variational

approximation is in efficient computation of the expected assignment of a customer i to
a table j or Eq(c)zij(c). In this work we managed to express this quantity via Laplacian
of the random graph constructed in seqdd-CRP.

Denote the adjacency matrix in this graph asA, whereAij = 1[ci = j] иAii = 0,
and the table assignment matrix as z(c) = (zij(c))1⩽i⩽N,1⩽j⩽N , which contains table
assignments for each customer simultaneously, the mathematical expectation of the
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Algorithm 1: Variational inference for seqddCRP
Data: Observations x, initial q(c) and q(θ), hyperparameters η = (f,D,α);
Compute R = (I − Eq(c)A)

−1;
do

for i = 1 to N do
Initialize zero vector ai ∈ RN ;
for k = 1 to i do

aik ←
∑

i⩾iRsiEq log p(xs|θk);
end
Initialize γij = log p(ci = j|η) for all j;
for j = 1 to i do

γij ← γij +
∑

k⩽i aikRjkq(ck = k);
end
Update q(ci = j) ∝ exp(γi);
Perform rank-1 update to R by Woodbury formula;

end
for k = 1 to N do

Update q(θk) ∝ p(θk)
∏

i⩾k p(xi|θk)Rikq(ck=k);
end

while not converged;

latter can be computed as

Eq(c)z(c) = (I − EqA)
−1


q(c1 = 1) 0 . . . 0

0 q(c2 = 2) . . . 0
... 0 . . . ...
0 . . . 0 q(cN = N)

 .

Using this formula, we derive the variational inference algorithm 1. A singe
iteration of this algorithm has complexity ofO(N 3), which is the same as for computing
the variational lower bound due to inversion of a full-rank matrix.

The proposed inference algorithm has been tested on a number of tasks. Figure 1.1
contains results from applying the new variational inference algorithm and the originally
proposed Gibbs sampler on synthetic data for a single-dimensional mixture model
with time dependencies and stochastic switching between mixture components. As one
can see on the Figure 1.1б, variational inference is capable of delivering predictive
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а) Example data. Colors denote different mixture components.
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Figure 1.1 –– Mixture model with time dependencies.
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Figure 1.2 ––Variational lower bound of theGaussianmixturemodel as computed by the
classical truncated stick-process based variational algorithm (DP VB) and the proposed

algorithm using seq-CRP representation (seqCRP).

efficiency comparable to the best performing Markov chains produced by the Gibbs
sampler while showing better empirical convergence speed.

We have also performed an empirical study of the proposed algorithm for the
problem of inference in a simple Dirichlet process Gaussian mixture model. Since with
a constant decay function f(d) = 1 seqdd-CRP is equivalent to the standard Dirichlet
process for which variational inference algorithms have already been developed [16],
a comparison between various inference algorithms is of some interest from both
theoretical and practical points of view.

As shown on the Figure 1.2, the variational approximation (1.3) is better at
describing the true posterior distribution and algorithm 1 empirically has a much better
convergence speed.
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Chapter 2. Bayesian nonparametric model for learning vector word representations

In the second chapter we consider the problem of learning vector representations
for different meaning of words in a natural language. This problem currently possesses
a high actuality due to the great efficiency of vector word representations in various
natural language processing tasks, on one hand, and to the fundamental language
ambiguity immanent to most natural languages. Thus, the same word «apple» may
mean a fruit or refer to the famous technology company and hence require different
processing depending on the context.

The proposed in this work Adaptive Skip-Gram model or AdaGram is based
on the principles of Bayesian nonparametrics and allows to automatically discover a
number of different meanings for each word with a required semantic resolution. Thus,
for each word in the dictionary v ∈ 1, . . . , V is learned an infinite number of D-
dimensional real vectors or prototypes inv,k ∈ RD, k = 1, 2, . . .. Then the conditional
model for predicting context words y based on the current word x and its meaning
z is defined as:

p(y|x, z = k, θ) =
∏
j

p(yj|x, z = k, θ), (2.1)

p(v|w, z = k, θ) =
∏

n∈path(v)

σ(ch(n)inTw,koutn),

where outn ∈ RD – us a vector representation for a node n in the binary tree where
leaves are words 1, 2, . . . , V . Function path(v) deterministically maps each word v into
a path in this tree, and function ch(n) returns +1, if node n is a left child and −1
otherwise. Function σ(x) = 1/(1 + exp(−x)) is the sigmoid function which maps
real numbers into [0, 1] interval. One can show that a conditional model defined this
way is a correctly defined discrete distribution over dictionary elements which allows
efficient computation of the conditional probability even for a large dictionary [17].

Prototypes for each word w are modelled independently using Dirichlet
process [14] in the stick-breaking form [18]:

p(βwk|α) = Beta(1,α), k = 1, 2, . . .

p(z = k|w,β) = βwk

k∏
r=1

(1− βwr)

p(θwk) = Uniform(θwk).
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Therefore, the number of prototypes for each word is not fixed a priori but can be
inferred from data. Parameter α adjusts the expected number of prototypes each of
which is assumed to be distributed according to the improper prior uniform over RD.

Learning in the model is expressed as maximization of the marginal likelihood of
the observed sequence of words o1, o2, . . . oN split into independent word predictions
of form (2.1). For each word indexed by i the corresponding training example is the
current word xi = oi and its context yi = ot|t−i|⩽C/2 of length C (ignoring words
on each end of the sequence for notational convenience). Thus, the likelihood of all
observed contexts is

log p(Y, θ|X,α) = log p(θ) +
N∑
i=1

C∑
j=1

log p(yij|xi, θ,α). (2.2)

Since direct optimization of the likelihood is computationally intractable due to
the necessity of performing full Bayesian inference over hidden variables, a variational
EM-algorithm with the fixed upper bound on the number of prototypes T has been
employed for learning in AdaGram. Thus, the variational inference over the hidden
variables has the following form:

q(B,Z) =
N∏
i=1

q(zi)
V∏

w=1

T∏
k=1

q(βwk)
∏
k>T

q̄(βwk), q̄(βwk) = Beta(1,α).

The corresponding variational lower bound can be written as:

L(q, θ) =Eq

[
V∑

w=1

T∑
k=1

log p(βwk|α)− log q(βwk)

+
N∑
i=1

(
log p(zi|xi,β)− log q(zi) +

C∑
j=1

log p(yij|xi, zi, θ)

)]
+ const.

For optimizing the variational lower bound over the variational approximation
q(B,Z) and all vector representations θ a streaming algorithm 2 is proposed which
is based on the stochastic variational inference method [19]. Such algorithm has
the asymptotic complexity analogous to the original Skip-gram learning algorithm
(with respect to N ) and in practice works no more than T times slower. A sparse
implementation of the algorithm can be practically independent of the maximal number
of prototypes T .
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Algorithm 2: Training AdaGram model
Data: training set {(xi,yi)}Ni=1, hyperparameter α
Initialize nw1 = nw and nwk = 0 for k > 1;
Initialize representations θ;
for i = 1 to N do

Select word w = xi and its context y⃗i;
for k = 1 to T do

γik = Eq(βw)[log p(zi = k|β⃗, xi)];
for j = 1 to C do

γik ← γik + log p(yij|xi, k, θ);
end

end
end
q(zi = k)← exp(γik)/

∑
ℓ exp(γiℓ);

ρt ← 0.025(1− i/N), λt ← 0.025(1− i/N);
for k = 1 to T do

Update nwk ← (1− λt)nwk + λtnwγik;
end
Update θ← θ+ ρt∇θ

∑
k

∑
j γik log p(yij|xi, k, θ);

Return {q(βwk) = Beta(1 + nwk,α+
∑T

r=k+1 nwr)}1⩽w⩽V,1⩽k⩽T , θ;

After training, learned vector representations can be used either on their own, as
feature vectors, similarly to Skip-gram vectors, or for the word sense disambiguation
task, which is choosing the word sense for a word depending on the context:

p(z = k|x,y, θ) ∝ p(y|x, z = k, θ)

∫
p(z = k|x,β)q(β)dβ).

AdaGram has been trained on the standard for such studies corpus of «Wikipedia»
articles up to April 2010 [20] and studied in terms of semantics of learned vectors and
their use in downstream tasks. Figure 2.2 displays statistics on the number of learned
senses for different values of α which controls semantic definition of the model. It can
be seen that larger values of α generally lead to extracting more senses and that for
more frequent words more senses is discovered.

To assess agreement between learned senses and conventional semantic
inventories a number of standard «SemEval» test collections [21] were used, and,
in addition, new collection «WWSI» has been automatically extracted based on the
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«Wikipedia» articles and metadata. Each collection contains examples of use contexts
of different words assigned to one of the senses. A word-sense induction system
such as Skip-gram independently maps each of the contexts into senses it extracted
after which the produced assignment is compared to ground truth used Adjust Rand
index (ARI) [22].

AdaGram was compared to a number of analogous models for learning vector
representations for word senses: Multi-sense Skip-gram (MSSG) and Nonparametric
Multi-sense Skip-Gram [23] (NP-MSSG). These two models employ learning
principles similar to the ones used in AdaGram as well as EM-like learning algorithms
but either assume the number of senses fixed (in MSSG) or determine it heuristically
(in NP-MSSG). In addition, we considered Multi-prototype Skip-Gram model
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Table 1 –– Word-sense induction task evaluation using adjusted Rand index (ARI) on
different collections.

Model Dimensionality SE-2007 SE-2010 SE-2013 WWSI

MSSG 300 0.048 0.085 0.033 0.194
NP-MSSG 50 0.031 0.058 0.023 0.163
NP-MSSG 300 0.033 0.044 0.033 0.110
MPSG 300 0.044 0.077 0.014 0.160
AdaGram α = 0.15 300 0.069 0.097 0.061 0.286

(MPSG) [24] as a simple baseline which only assumes uniform distribution over
word senses. Results of the comparison are shown in Table 1.

Besides this, AdaGram along with the competing approaches has been evaluated
in the search results diversification task for ambiguous queries on the SemEval
2013 [25] collection. In this task it is assumed that under high uncertainty about
the implied sense of the query, search results are better to be shown not just ranked
according to some lexical relevance, but also trying to cover all possible interpretations
of the query. Therefore, a diversification system (in this case, a multi-sense vector
representation model) has to cluster search results according to the senses it managed
to discover. Quality of the system is then determined by the recall of the represented
senses (as determined by the expert clustering) in the first K search results and the
precision level necessary to achieve the corresponding recall value [25]. Figure 2.1
contains comparison of the studied models for single-word queries (because for them
word vector representations can be used straightforwardly). As one can see, both recall
and precision curves for AdaGram almost uniformly cover from the above curves for
other models which demonstrates its superiority in this task.
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Chapter 3. Deep generative model with fast learning capabilities

In the third chapter of the dissertation, a novel neural network-based generative
model is proposed which is capable to incrementally learn from a small set of new
observations. We assume that the true distribution of the observed objects x ∈ X can
be expressed as pd(x) =

∫
pd(x|γ)pd(γ)dγ, i.e. as amixture of conditional distributions

depending on some parameter γ and that that dependency is smooth. Further, without
overly restricting generality of the approach we will assume that the observation space
is included in the set of D-dimensional binary vectors: X ⊆ {0, 1}D1.

At the training stage, the model has access to a sample from this distribution
pd(x):

Xtrain = {Xm}Mm=1, Xm = {xmr}Rm
rm=1, xmr ∼ pd(x|γm), γm ∼ pd(γ).

At inference time, the model receives a similarly constructed incremental or
conditioning training set X:

X′ = {X ′m}M
′

m=1, X ′m = {x′mr}R
′
m

rm=1, x′mr ∼ pd(x|γ′m), γ′m ∼ pd(γ),

which is substantially smaller than the training set (M ′ ≪ M,R′m ⩽ Ru).
The goal of learning in such a model is to construct a distribution p(x|X′) as close

as possible to the true pd(x|X′) =
∑M ′

m=1 pd(x|γ′m). By fast learning or fast adaptation
we mean that the model can incrementally take into account the new training set X′

with the computational complexity only linearly dependant on the total number of the
new objects T =

∑M ′

m=1R
′
m.

The key quality of the «Generative Matching Networks» (GMN) proposed in
this chapter is that it combines the flexibility of deep neural networks and high speed of
incremental learning (in the sense defined above) which is in principle not achievable
with gradient based learning methods for neural networks [26; 27]. Besides that,
conceptually and empirically GMNworks with heterogeneous incremental training sets
(with M ′ > 1) better than previously proposed analogs [28––30].

GMN is built upon generative principles arising from variational autoencoders [31––33]
which model data using a vector of latent variables z ∈ RL. GMN expresses the

1Firstly, since computer-stored data is somehow discretized it can be represented as binary vectors. Secondly,
it only requires to change the likelihood model in all further constructions in order to work with continuous
observations



20

conditional distribution of interest as

p(x|X;θ) =

∫
p(z|X;θ)p(x|z,X;θ)dz,

where θ are model parameters.
Both the prior distribution p(z|X;θ) = N (z,µprior(X;θ),Σprior(X;θ)), and the

decoder p(x|z,X;θ) =
∏D

j=1 Bernoulli(xj|νj(z,X;θ)) are paremtrized using neural
networks implementing functions µprior, Σprior and {νj}Dj=1.

The traditional method for training in similar models consists of direct
maximization of the marginal likelihood of the whole available training data Xtrain

However, in the considered setting this would be difficult since there is no guarantee
that generalization to the new observations will occur. Instead, for training GMNs it is
proposed to use the meta-learning paradigm [34––37]. In our work the paradigm has
been adapted to the needs of generative modelling. Thus, from the available training set
Xtrain we randomly generate subsets X′ = {X ′m}M

′

m=1 where objects X ′m = {x′mr}R
′
m

rm=1

are chosen without return from a randomly chosen subset Xum
, where u – is a set of

random indices from 1 to M of size M ′. The learning itself can be then expressed as
maximization of the expected marginal likelihood of X′:

EX′ log p(X′;θ) = EX′

[
T∑
t=1

log p(x′t|X′<t;θ)

]
→ max

θ
. (3.1)

As one can see, the recurrent application of the chain rule for distributions allows us to
connect the task of adaptive modelling of conditional distributions p(x|X;θ) and the
task of learning the whole incremental training set.

Since the direct optimization of the marginal likelihood log p(x|X; ) is infeasible,
we apply variational inference for training GMNs:

log p(x|X;θ) ⩾ L(θ,φ) = Eq(z|x,X;φ)

[
log p(z|X;θ)

+ log p(x|z,X′;θ)− log q(z|x,X;φ)
]
. (3.2)

The key idea for implementing all model components that depend on the
conditioning data X is in using the attention mechanism for choosing similar objects
fromX for generation (decoding) or recognition (encoding) [38; 39]. Since GMN does
not have access to the true generative process p(x|γ), the model learns its own internal
representation for objects such that the linear interpolation between representations of
similar objects (generated by the same value of γ) adequately approximates the true
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1. Computing attention kernel 2. Aggregating prototypes

gG(xt)

fG(z)
 G

�G
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X

t

aG(z,xt) G(xt)
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Matching space
Prototype space

3. Decoding an observation

z rG

Decoder 
(deconv net)

p(x|z,X)

z ⇠ p(z)

 G(xt)

Figure 3.1 –– Illustration of the generative process modelled by GMNs.

distribution p(x|γ). Thus, our model is governed by the following equations:

aG(z,xt,hk) =
exp(< fG(z,hk), gG(xt,hk) >)∑T
t′=0 exp(< fG(z,hk), gG(xt′,hk) >)

, (3.3)

rk+1
G =

T∑
t=0

aG(z,xt,hk)ψG(xt,hk),

hk+1 = NNh,G(hk, r
k
G),

νj = NNνj ,G(z, r
K
G ),

where functions fG, gG, ψG, NNh,G and NNνj ,G - are nonlinear neural networks
parametrized by θ, and < ·, · > denote vector dot product Equations (3.3) define
sequential application of the described attentionmechanism overK steps where on each
step objects xt ∈ X and latent variables z are projected in the shared matching space
ΦG after which the transformed matching results aG(x, z,hk) are used to interpolate in
the prototype space ΨG. Schematically this process forK = 1 is shown on Figure 3.1.

Similarly the recognitionmodel is defined q(z|x,X;φ) = N (z|µR(x,X;φ),ΣR(x,X;φ)):

aR(x,xt,hk) =
exp(< fR(x,hk), gR(xt,hk) >)∑T
t′=0 exp(< fR(x,hk), gR(xt′,hk) >)

, (3.4)

rk+1
R =

T∑
t=0

aR(x,xt,hk)ψR(xt,hk),

hk+1 = NNh,R(hk, r
k
R),

µR(x,X) = NNµR(r
K
R ),

ΣR(x,X) = NNΣR
(rKR ),

where functions fR and gR, correspondingly, map the object x being recognized and
objects xt ∈ X into the shared space ΦR, with interpolation happening in the spaceΨR.
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Finally, the prior p(z|X;θ) is modelled as:

aP (xt,hk) =
exp(< fP (hk), gP (xt,hk) >)∑T
t′=0 exp(< fP (hk), gP (xt′,hk) >)

, (3.5)

rk+1
P =

T∑
t=0

aP (xt,hk)ψP (xt,hk),

hk+1 = NNh,P (hk, r
k
P ),

µP (X) = NNµP (r
KP

P ),

ΣP (X) = NNΣP
(rKP

P ).

One can note that equations (3.3), (3.4) and (3.5) involve matching with x0

(or a pseudo-input as we call it) which is necessary for the model to support empty
conditioning sets. The pseudo-input is not modelled explicitly as an observation, only
as supposed output values of neural networks that formally take it as in input with these
values being trainable parameters.

The optimization problem (3.1) is solved via the stochastic training algorithm 3.

Algorithm 3: An iteration of the GMN training algorithm.
Data: Training setX
SampleX′ of size T fromX;
for t = 1 to T do

Sample z ∼ q(zt|x′t,X′<t;φ);
Estimate
L̂t = log p(z|X′<t;θ) + log p(x′t|z,X′<tθ)− log q(z|x′t,X′<t;φ);

end
Update θ and φ using gradients ∇θ,φ

∑T
t=1 L̂t;

GMN has been evaluated on the «Omniglot» dataset [40] consisting of 1623
classes of various hand-written characters, each of which only containing just 20
examples, which fully corresponds to the training regime assumed in this chapter. The
model only had access to binarized 28 × 28 images of the characters. During training
we used conditioning sets X′ of 20 objects and Ctrain = 2 classes.

Firstly, GMN has been evaluated on the conditional density fitting task and
compared with competing Neural Statistician [30] and One-shot VAE [29] models
which were implemented using the exact same neural network architectures and
differing only in the adaptation mechanisms. Results of this empirical comparison on
the Omniglot test set are contained in Table 2.
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Table 2 –– Negative conditional log-likelihood on the Omniglot test set. Ctrain и Ctest

denote the maximal number of classes present in the conditioning set during training
and inference correspondingly.

Conditioning set size
Model Ctest 0 1 2 3 4 5 10 19
GMN 1 89.7 83.3 78.9 75.7 72.9 70.1 59.9 45.8
GMN 2 89.4 86.4 84.9 82.4 81.0 78.8 71.4 61.2
GMN 3 89.6 88.1 86.0 85.0 84.1 82.0 76.3 69.4
GMN 4 89.3 88.3 87.3 86.7 85.4 84.0 80.2 73.7
VAE 89.1
One-shot VAE 1 83.9
Neural statistician, Ctrain = 1 1 102 83.4 77.8 75.2 74.6 71.7 71.5
Neural statistician, Ctrain = 2 2 86.4 82.2 82.3 80.6 79.7 79.0

Table 3 –– Classification accuracy (%) for different number of classes and conditioning
examples.

5 classes 20 classes
Model 1-shot 5-shot 1-shot 5-shot
GMN 82.7 97.4 64.3 90.8
One-shot VAE [29] 90.2 – 76.3 –
Neural statistician [30] 82.0 94.8 63.1 87.6
Matching networks [39] 98.1 98.9 93.8 98.5

As can be seen, GMN has a much better predictive performance for unseen
characters when using only a handful available conditioning examples and the
advantage is persistent even for larger conditioning sets. This is even more prominent
for heterogeneous sets consisting of two and more character classes when attention-less
models perform significantly worse.

An example of an incrementally generated sample from GMN is shown on
Figure 3.2. One can see that as more conditioning objects are provided, GMN
indeed is adapting its predictive distribution and generates more objects similar to the
conditioning ones, importantly, not by simply copying them.

Finally, we applied GMN in the Omniglot classification task. Since for
a well-trained model the predictive distribution p(x|X;θ) would assign higher
probability to objects similar to X than to dissimilar ones, this distribution can
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Figure 3.2 –– GMN-generated samples. Left-most column contains the conditioning
examples. Each row i (counting from the top to the bottom) contains independently
generated samples from p(x|X<i;θ). The top-most row corresponds to an empty

conditioning setX = {}.

be used a voting function when building a classifier. Thus, when provided with
training sets X1,X2, . . . ,XC containing examples for each of the C classes, a GMN-
based classifier chooses a class c about object x according to the following rule:
c = argmax log p(x|Xc;θ).

We report accuracy on the test set of Omniglot for this classifier, evaluated
on 1000 random classification tasks in Table 3. GMN demonstrates competitive
performance for the one-shot learning case and out-marches the competitive generative
approaches, even getting close to the specialized Matching Networks classification
model. By this, we demonstrate the usefulness of GMN for tasks that are not directly
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connected to density modelling but which can still be formulated through probabilistic
inference.
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Conclusion

In this work, the following results have been obtained:
1. A variational inference algorithm is developed for sequential distance-

dependent Chinese Restaurant Process (seq-ddCRP) which connects the
key statistics in the process and Laplacian of the modelled random
graph. This algorithm allows to deterministically perform approximate
probabilistic inference in seq-ddCRP based models and empirically shows
faster convergence than Monte-Carlo methods while preserving high quality
of the predictions. Besides, the obtained results are applicable to widely
used models based on the Dirichlet process where they also lead to a novel
algorithm capable of faster convergence and better variational lower bound
than the standard one based on the truncated stick-breaking representation.

2. The novel nonparametric probabilistic AdaGram model is proposed for the
problem of learning vector representations for multi-sense words. AdaGram
relies on Dirichlet process for modelling the unknown number of senses for
each of the words and is able to automatically determine it with a desired
semantic resolution. Thanks to the developed stochastic variational EM-
algorithm, AdaGram can be trained on large corpora taking advantage of
parallel compute. Various quantitative studies of the model show the good
quality of the learned word sense vectors comparing to competing approaches.

3. The problem of learning neural generative models with the incremental
learning ability was studied. A nonparametric generative model called
Generative Matching Network (GMN) has been proposed that is based
on the variational auto encoders framework. GMN is capable of dynamically
adapting its prior distribution, likelihood and amortized variational posterior
as more data becomes available. Thanks to the attention mechanism, GMN
handles heterogeneous incremental training sets better than simpler models
which only maintain a single representation for the whole conditioning data.
Experiments on Omniglot dataset has shown the rapid adaptation of GMN in
terms of the predictive likelihood improvement on hold-out data after addition
of each new observation, as well as applicability of GMN for problems
different from pure generative modelling such as few-shot classification.
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