Set-alternating schemes:
 A new class of large Condorcet domains

Alexander Karpov ${ }^{1,2}$ Klas Markström ${ }^{3}$ Søren Riis ${ }^{4}$ Bei Zhou ${ }^{4}$
${ }^{1}$ HSE University, Moscow, Russia
${ }^{2}$ Institute of Control Sciences, Russian Academy of Sciences,
Moscow, Russia
${ }^{3}$ Umeå University
${ }^{4}$ Queen Mary University of London

December 5, 2023

Condorcet domains

What is the largest size of a set of linear preference orders for n alternatives such that majority voting is transitive when each voter chooses his preferences from this set?

The latest lower bound on the size of maximum Condorcet domains 2.1890^{n} was investigated by (Karpov, Slinko, 2023).

We present a new method of constructing large Condorcet domains that leads to a new lower bound.

Condorcet domains

Let a finite set $X=[n]=\{1, \ldots, n\}$ be the set of alternatives. Let $L(X)$ be the set of all linear orders over X. Each agent $i \in N$ has a preference order P_{i} over X (each preference order is a linear order). Let $L(X)$ be the set of all linear orders over X. For brevity, we will write preference order as a string, e.g. $12 \ldots n$ means 1 is the best alternative, n is the worst.

A subset of preference orders $D \subseteq L(X)$ is called a domain of preference orders. A domain D is a Condorcet domain if whenever the preferences of all agents belong to the domain, the majority relation of any preference profile with an odd number of agents is transitive.

Peak-pit domains

Each Condorcet domain restriction of the domain to each triple of alternatives satisfies a never condition $i N j, i, j \in[3]$. $i N j$ means that $i^{\text {th }}$ alternative from the triple according to ascending order does not fill in $j^{\text {th }}$ place within this triple in each order from the domain.

A domain D is a peak-pit domain if, for each triple of alternatives, the restriction of the domain to this triple is either single-peaked (iN3), or single-dipped (iN1).

Peak-pit domains

For example restriction $a b c$ to triple $a, b, c \in[n], a<b<c$ satisfies never conditions $1 N 2,1 N 3,2 N 1,2 N 3,3 N 1,3 N 2$, but violates never conditions 1N1, 2N2, 3N3.

1N1: bac,bca,cab,cba (single-dipped domain);
$1 N 2$: abc,acb,bca,cba (group-separable domain);
1N3: abc, acb,bac,cab (single-peaked domain).

Maximal width domains

Danilov, Karzanov, Koshevoy (2012) investigated Condorcet domains of tilling type.

Danilov, Karzanov, Koshevoy (2013) investigated symmetric Condorcet domains.

Both types of domains contain orders $12 \ldots n$, and $n, \ldots 21$. This property is called maximal width.

We do not consider domains with maximal width.

Generalized Fishburn alternating scheme

Definition 1

Starting with a subset $A \subseteq[n]$ we consider the following never conditions on triples $L(X)$: For $i<j<k$ with $j \in A$ assign the never condition 2N3. For $i<j<k$ with $j \notin A$ we assign the never condition 2N1. This is the generalized Fishburn domain generated by A.

Fishburn domain

If A consist of even number, then we obtain Fishburn's domain. aving the natural ordering of alternatives we obtain the following maximal Fishburn's domains:
$F_{3}=\{123,213,231,321\}$,
$F_{4}=\{1234,1243,2134,2143,2413,2431,4213,4231,4321\}$,
The reversed domains are also Fishburn's domains. Galambos, Reiner (2008) gave the exact formula for the cardinality of F_{m} :

$$
\left|F_{m}\right|=(m+3) 2^{m-3}- \begin{cases}\left(m-\frac{3}{2}\right)\left(\begin{array}{c}
m-2 \\
m \\
2
\end{array}\right) & \text { for even } m ; \\
\left(\frac{m-1}{2}\right)\binom{m-1}{\frac{m-1}{2}} & \text { for odd } m .\end{cases}
$$

Set-alternating scheme

Definition 2

Starting with a subset $A \subseteq[n]$ we consider the following never conditions on triples $L(X)$: For $i<j<k$ with $j \in A$ assign the never condition $1 N 3$. For $i<j<k$ with $j \notin A$ we assign the never condition $3 N 1$. This is the set-alternating scheme generated by A.

We let $D_{X}(A)$ denote the Condorcet domain which is generated by this scheme and let $f_{n}(A)$ denote the cardinality of $D_{X}(A)$.

If $A=[2, \ldots, n-1]$, then all triples are assigned the $1 N 3$ never condition. This gives an Arrow's single-peaked domain, but it is not Black's single-peaked since the domain does not contain two mutually reversed orders.

Set-alternating scheme

Figure: Domain size and set size for all subsets of $\{2, \ldots, n-1\}$

Properties of set-alternating schemes

Proposition 1

Each domain defined by set-alternating scheme and generalized Fishburn alternating scheme is a copious peak-pit maximal Condorcet domain.

Proposition 2

Each domain defined by set-alternating scheme and generalized Fishburn alternating scheme is connected.

Recursive properties of set-alternating schemes

We let $f_{n}(A)$ denote the cardinality of $D_{[n]}(A)$, w - the maximal element in $A, A^{\prime}=A \backslash\{w\}$

Proposition 3
If $w=n-1$, then $f_{n}(A)=2 f_{n-1}\left(A^{\prime}\right)$.
Proposition 4
If $1<w<n-1$, then $f_{n}(A)=2 f_{n-1}(A)+f_{n-1}\left(A^{\prime}\right)-S$, where
$S=\sum_{j=w-1}^{n-2} f_{j}\left(A^{\prime}\right)$.
If $n-1$ is a member of A then $A_{1}=A \backslash n-1$ generates a domain which is at least as large as that for A. If 2 is not a member of A then $A_{2}=A \cup\{2\}$ generates a domain which is at least as large as that for A.

Some combinatorial results

Proposition 5

For $k=1$, we have $f_{n}(\{n-k\})=2^{n-1}$ and $f_{n}(\{k\})=2^{n-1}$. For $k>1$ and $n \leq k+1$, we have $f_{n}(\{n-k\})=2^{n-1}$ and $f_{n}(\{k\})=2^{n-1}$. For $k>1$ and $n>k+1$, we have $f_{n}(\{n-k\})=5 \cdot 2^{n-3}-2^{n-k-2}$ and $f_{n}(\{k\})=5 \cdot 2^{n-3}-2^{k-2}$.

Proposition 6
The size of the domain on n alternatives which for each triple satisfies never conditions 1N3 and 3N1, is the $(n+1)^{\text {th }}$ Fibonacci number.

New schemes

Definition 3
$D_{X}\left(A_{n}\right)$ is the result of the even $1 N 33 N 1$-alternating scheme if

$$
A_{n}=\left\{2,4,6, \ldots, n-2+p_{n}\right\},
$$

where $p_{n}=(n \bmod 2)$.
Definition 4
$D_{X}\left(B_{n}\right)$ is the domain given by the odd 1 N 33 N 1 - alternating scheme if

$$
B_{n}=\left\{2,3,5, \ldots, n-3+p_{n}\right\},
$$

where $p_{n}=(n \bmod 2)$.

$n=6$ example

Figure: The median graph for the even $1 N 3,3 N 1$-alternating scheme for $n=6$.

Conjectures

Regarding the maximum domain size we conjecture the following.
For each $n \geq 5$, the maximum size of set-alternating domain is the size of the odd $1 N 33 N 1$-alternating domain. This conjecture has been verified computationally for $n \leq 24$.
We believe that the conjecture holds in a more general form as well.
For each $n \geq 16$, the largest unitary domain D produced by any N_{1}, N_{2} set-alternating scheme, using general pairs of never conditions N_{1}, N_{2}, occurs if and only if D is given either by the odd 1 N33N1-alternating scheme or its reverse complement. This conjecture has been verified computationally for $n \leq 20$. For $n<16$ the maximum cardinality occurs of the Fishburn's alternating scheme.

Main result

We partition all orders in $D_{X}\left(A_{n}\right)$ on orders that start from set $\{1,2\}$, orders that start from set $\{1,2,3,4\}$, but not from set $\{1,2\}$, orders that start from set $\{1,2,3,4,5,6\}$, but not from set $\{1,2,3,4\}$, etc. Orders from part k start from [2k], but not [2($k-1$)].
Orders from the first part start from 12, 21. There are $2 a(n-2)$ such orders. Orders from the second part start from 1324, $1342,3124,3142,3412$. There are $5 a(n-4)$ such orders.
Lemma 5
In all orders from $k^{\text {th }}$ part of $D_{X}\left(A_{n}\right)$ alternatives from $A_{2 k}$ are in ascending order.

Lemma 6
In all orders from $k^{\text {th }}$ part of $D_{X}\left(A_{n}\right)$ alternatives from $\overline{A_{2 k}}$ are in ascending order.

Dyck words

Definition 7
A sequence $a_{1} a_{2} \ldots a_{2 k}$ of k elements u and k elements d such that for all $1 \leq j \leq 2 k$ we have
$\left.|i \in[j]| a_{i}=u\right\}\left|\geq|i \in[j]| a_{i}=d\right\} \mid$ is a Dyck word.
Proposition 7
(Deutsch, 1999) The number of Dyck words of size $2 k$ is C_{k}, where C_{k} is the $k^{\text {th }}$ Catalan number.

Bijection

The first element in Dyck words is u. It has no correspondence in orders. Each consequent element in top $2 k$ elements segment of an order from $k^{\text {th }}$ part of $D_{X}\left(A_{n}\right)$ corresponds with consequent element in Dyck word: if the element belongs to $A_{2 k}$ then d, if not, then u. The last element in Dyck word is d. It has no correspondence in orders.

Top 4 elements	Dyck word
1324	ududud
1342	uduudd
3124	uuddud
3142	uududd
3412	uuuddd

Main result

For $m=n / 2$, even n we define $w(m)=a(n)$. From bijection we have

$$
\begin{equation*}
w(m)=\sum_{k=1}^{m} C_{k+1} w(m-k) \tag{1}
\end{equation*}
$$

where C_{k+1} is the $k+1$ Catalan number. Solving the recurrence we get
Proposition 8
For even n we have

$$
a(n) \sim \frac{\sqrt{2}}{4}(\sqrt{2+2 \sqrt{2}})^{n}
$$

for odd n we have $a(n) \sim \frac{\sqrt{\sqrt{2}-1}}{2}(\sqrt{2+2 \sqrt{2}})^{n}$.

Conclusions

We show that the domain size for sufficiently high n exceeds 2.1973^{n}, improving the previous record 2.1890^{n}.

Details can be found in
Karpov, A., Markström, K., Riis, S., Zhou, B. 2023. Set-alternating schemes: A new class of large Condorcet domains. Arxiv preprint arXiv:2308.02817.

Finally

Any comments will be greatly appreciated.
Thanks for your attention!

