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INTRODUCTION

Goal and objectives of research. Formulation of the problem.

The study is aimed at studying non-Lie algebras with �nitely many generators, describing

their irreducible representations, and constructing a spectral theory for these algebras.

From the algebraic point of view, there are two main questions in this work. First, how

to construct coherent states and the corresponding irreducible representations of algebras

with non-Lie permutation relations. Secondly, how to relate these quantum representations

to some classical symplectic leaves in a Poisson manifold. An additional task is to establish

a connection between irreducible representations, coherent states, and special functions

that arise during their construction.

In terms of physics, the main task of the study is the study of algebras that arise

naturally (as symmetry algebras) in various quantum mechanical models. Irreducible

representations and coherent states of these algebras play a decisive role in the spectral

analysis of quantum problems. At the same time there is a task of a development of an

algebraic approach, which consists in the successive application of the methods of operator

averaging and coherent transform. This approach becomes the key one for studying

quantum models with a strong degeneracy of the spectrum of the leading part of the

operator (for example, due to resonance), since the standard perturbation theory does

not work here.

Relevance and degree of development of the problem

Interest in studying algebras with non-Lie permutation relations is mostly based on

examples in the q-deformation theory and in the �quantum inverse scattering problem�;

see [1, 2, 3, 4, 5, 6], as well as some interesting examples in [7]. Another very general

direction in which non-Lie permutation relations appear is the quantum version of the

Marsden�Weinstein�Lie�Cartan reduction; see, for instance, [8, 9, 10] and [11] for more

details.

The systematic consideration of quantum algebras with nonlinear relations was started

by the schools of V.P. Maslov and L.D. Faddeev [7, 12, 13, 14, 6, 15, 3, 11] in the 70s-80s,

although the �rst attempts to use such algebras were made by physicists much earlier.

There are several directions of studying non-Lie permutation relations and quantization

of general nonlinear Poisson brackets. The �rst direction deals with computation of the

product in the enveloping algebra via the operators of regular representation (or via the

�generalized shift� or Delsart operators); for the basic facts about the generalized shift

operators, see [17], for applications to non-Lie relations, see some general formulas in

[18, 19] and the review around this topic in the book [11]. This direction is related to the

noncommutative geometry due to A. Connes [20].
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The second direction is based on the theory of deformation quantization proposed

in [21, 22]. It is a fundamental basis for the quantum group theory that related the

quantum Yang�Baxter equation and the quadratic Faddeev�Zamolodchikov algebras; see,

[23, 19, 24, 25].

The third direction of studying is the �semiclassical� approach that makes it possible to

derive all essential objects related to a non-Lie algebra, but only approximately, with an

accuracy O(ℏ∞) with respect to the Plank �constant� ℏ → 0; see [18, 14, 26] and detailed

proofs in [11]. This is the theory of asymptotic quantization.

The fourth direction is based on the notion of coherent states, initiated in the earliest

times of the quantum mechanics by Erwin Schr�odinger [27] and Werner Heisenberg [28],

in optics by R. Glauber [29, 30] (where the name �coherent states� was �rst introduced),

and de�ned in general form by J. Klauder [31, 32] and F. Berezin [33]. In fact, a version

of coherent states was also developed in the theory of holomorphic functions under the

name �reproducing kernels,� see [34, 35, 36].

From the viewpoint of the representation theory, the main property of coherent states is

the possibility to write out an irreducible representation of a given algebra via di�erential

operators acting on the space of parameters of the states. For the Heisenberg algebra, this

fact was understood already by F. A. Fock [37] and P. Dirac [38], and was generalized for a

wide class of Lie algebras [39, 40] and for certain q-analogs (see, for instance, in [41]). In the

framework of general quantization process, coherent states �rst were used in [33, 42, 32]

and were deeply involved into this theory [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]

especially in the context of the fundamental geometric quantization due to B. Kostant

and J.-M. Souriau and the representation theory [54, 55, 56, 57, 58, 8, 59, 60, 61, 62]. This

list of references is very far from being complete but shows the variety of approaches to

this area. We also stress that there are many crucial questions in this theory still being

open from the 70s.

For a long time, the list of physical systems, where the algebras with nonlinear relations

play a signi�cant role in the description of spectrum and dynamics, had been con�ned

to in�nite-dimensional �eld systems and spin chains; see the list of references in [15].

Examples of non-Lie algebras with �nitely many generators, whose properties manifest

themselves in fundamental e�ects of quantum mechanics (the Zeeman and Zeeman�Stark

e�ects), were discovered and studied in detail in [63, 9, 64, 65]. The algebras are quantum

algebras, that is, deformations of some classical Poisson algebras (with a polynomial

Poisson tensor).
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Another series of examples is the �resonant algebras� corresponding to the multifre-

quency quantum oscillator. They were found in [66, 67] and studied in detail in [68, 69,

70, 71]. These non-Lie algebras with �nitely many generators also belong to the class

of quantum algebras, and for them it is also possible to construct a complete theory

of irreducible representations. The application of resonant algebras covers a wide range

of basic models of wave optics and quantum physics, since states localized near a stable

equilibrium position play a fundamental role in them. The harmonic part of such systems,

the �oscillator�, de�nes the main component of the movement, while the anharmonic part

represents perturbation. After the quantum averaging procedure, this perturbation begins

to commute with the harmonic part, i.e., it is an element from its symmetry algebra. If

the frequencies of the harmonic part are in resonance, then the symmetry algebra is

noncommutative. In the general case, this is an algebra with polynomial commutation

relations.

Thus, the modern quantum physics and quantummathematics demonstrate the importance

of algebras with nonlinear commutation relations.

As for coherent states, interest in their study in mathematical physics and applied

mathematics steadily increases. Applications that use coherent states range from quantiza-

tion to signal and image processing. Over the past almost hundred years (since 1926,

when coherent states were introduced by E. Schr�odinger in [27]), not only their numerous

generalizations and modi�cations have appeared (see, for example, [40, 72, 73, 76, 77]),

but also signi�cant changes in the very de�nition of coherent states; see [74] about this.

At the beginning, the de�ning property was the ability of coherent states to minimize

the product of variances in the Heisenberg uncertainty relation. But later this property

turned out to be optional.

The modern de�nition of coherent states is based on the four Gaso-Klauder axioms

[78]. The �rst two basic axioms are general and obligatory for all types of coherent states.

They were formulated by J. Klauder in [79] in 1963 and rewritten almost forty years later

in [74]. They postulate the completeness of the family of coherent states and the continuity

of the overlap function in the parameters 1. The other two (special) axioms refer to the

special case where coherent states are constructed for a given Hamiltonian. The main

thing here is the property of temporal stability: the time-evolution of each coherent state

always remains a coherent state. In this case, the parameters of coherent states are usually

associated with coordinates in the corresponding phase space, and their evolution should

correspond to the classical behavior of these coordinates. These properties are needed for

physical applications; see, for example, [75].

1Coherent states form an overfull system of vectors in the Hilbert space; their pairwise inner products

depend on the parameters numbering the vectors of this family and de�ne the overlap function.
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In mathematical papers [16, 68, 70, 71] coherent states are constructed not for a given

Hamiltonian, but for a given algebra. Such coherent states are used as the kernel of an

integral transform from the space of one representation of an algebra to the space of

another representation of it. Here the property of coherent states to intertwine algebra

representations in Hilbert spaces becomes the main one. Thus, for algebras, including

those with nonlinear commutation relations, the de�ning properties of coherent states

are their completeness, the continuity of the overlapping function in parameters, and the

intertwining property.

Note that the question of the construction of coherent states for algebras with non-Lie

commutation relations remains open. It is solved only for some special cases of non-Lie

algebras and some special classes of non-Lie algebras.

Personal contribution of the author to the development of the

problem

In the works of the author of the dissertation research, several classes of non-Lie algebras

are identi�ed that allow the construction of a complete theory of irreducible representations.

For these algebras, Casimir elements are found, irreducible representations are constructed

in spaces of antiholomorphic functions, coherent states corresponding to them, reproducing

kernels, reproducing measures; correspondences of the constructed quantum representa-

tions with classical symplectic leaves in a Poisson manifold are established, complex

structures are built on them; connection between irreducible representations, coherent

states and hypergeometric or elliptic functions is revealed.

For some basic quantum models (in particular, for the hydrogen atom and for the

Dirac monopole in uniform magnetic and inhomogeneous electric �elds, for Penning

traps of various con�gurations), non-Lie symmetry algebras have been identi�ed and

studied in detail. For them, irreducible representations and families of coherent states

are constructed, which are then used to calculate the asymptotics of the eigenvalues

and construct an integral representation of asymptotics of the eigenfunctions of the

corresponding spectral problems.

Most of the results of the dissertation work were published in joint works with M. V. Ka-

rasev (see below for a list of published articles with the results of the dissertation); some

results were published in collaboration with E. V. Vyborny and O. V. Blagodyreva (see the

same list). Results belonging to the co-authors, for example, M. V. Karasev's formulas for

the Weyl and Wick products, E. V. Vyborny's formulas for tunneling spectrum splitting,

are not included in the list of results submitted for defense. The exceptions are the

formulations of problems proposed by M. V. Karasev related to the physical models
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studied in these works, the idea of consistent application of quantum averaging and

coherent transform, as well as the idea of reduction (averaging) of coherent states.

The main results submitted for defense, in particular, the construction of coherent

states, belong to the author.

Research methods

One of the main methods that makes it possible to study quantum non-integrable systems

near equilibrium points or invariant subspaces is operator averaging followed by reduction

into the algebra of integrals of motion of the model leading part of the Hamiltonian.

The quantum models considered in the dissertation are characterized by the presence of

a rich symmetry algebra in the higher part of the Hamiltonian. Moreover, the relationships

in it are usually nontrivial. This algebra is of non-Lie type, that is, it cannot be represented

as a �nite-dimensional Lie algebra; its natural generators satisfy nonlinear (e.g., polynomial)

commutation relations. To analyze this type of algebra, in this study, new methods for

constructing irreducible representations and coherent states were developed and applied

to write the averaged Hamiltonian in the form of a di�erential operator (in the space of

antiholomorphic functions over the corresponding symplectic leaf). Note that, in some

of the quantum systems under consideration, the degeneracy of the spectrum of the

main term of the Hamiltonian is not completely removed in the subprincipal term of

perturbation theory, and then it is also necessary to consider a secondary symmetry

algebra, also of a non-Lie type, for which it is again necessary to construct all the required

objects of the theory of representations and coherent states.

The analysis of reduced Hamiltonians on a given algebra is carried out using coherent

transforms over a quantum leaf or geometric coherent transforms over a Lagrangian

submanifold in a leaf. Last method gives a geometrically invariant description of the

semiclassical approximation in spaces with a general symplectic structure, i.e., generalizes

the well-known Maslov canonical operator method [80, 81, 82].

The quantum methods (on which this research is based) follow the classical methods

of mechanics, associated with normal forms and averaging; see [83, 84, 85]. The concepts

of noncommutative algebras and quantization theory used follow the methods presented,

for example, in the books [15, 11].

In this study, the algebraic averaging technique is used to work in commutator algebras

with non-Lie relations. In this case, all calculations are performed in parallel both in

the quantum version and in the classical approximation (at the level of Poisson brackets
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instead of commutators). This circumstance is fundamentally important from the point of

view of the applicability of the semiclassical approximation to reduced the Hamiltonians.

For systems with multi-frequency resonance, the thesis proposes a new approach to

calculating the coe�cients of the averaged Hamiltonian using a twisted product on the

symbol space of di�erential operators with polynomial coe�cients.

Irreducible representations and coherent states of non-Lie symmetry algebras can be

used to calculate the semiclassical asymptotics of the spectrum and eigenstates of the

original Hamiltonian through geometric objects (K�ahler form, reproducing measure, trajec-

tories of an averaged or doubly averaged Hamiltonian system on quantum symplectic

leaves).

The thesis also proposes a new approach to solving spectral problems with a continuous

spectrum. It consists in using a coherent transform, the integral kernel of which is not

ordinary coherent states, but coherent distributions that have all the key properties of

coherent states, but do not have a �nite norm in the Hilbert space.

Main results submitted for defense

1. For a special �basic� class of algebras generated by non-Lie commutation relations and

possessing a �creation-annihilation� structure, a method was developed for constructing

irreducible representations (in Hilbert spaces of antiholomorphic distributions), coherent

states and reproducing kernels. In the case of regular commutation relations, a correspon-

dence is established between irreducible representations of quantum algebra and symplectic

leaves of the Poisson algebra. Relations between irreducible representations and hypergeometric

functions are obtained.

2. The method for constructing irreducible representations, coherent states and repro-

ducing kernels has also been developed for several di�erent generalizations of the basic

class of algebras with non-Lie commutation relations. Generalizations concern the compli-

cation of commutation relations, as well as an increase in the number of algebra generators.

3. A class of non-Lie algebras whose symplectic leaves are a cylinder or a torus

is identi�ed and studied. For such algebras, we constructed coherent transforms and

irreducible representations corresponding to complex structures on the cylinder and torus.

The reproducing kernels of Hilbert spaces (in which irreducible representations are realized)

and the coherent transforms are represented through the Riemann theta function and its

modi�cations. The corresponding reproducing measures are found.
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4. We identi�ed a class of non-Lie commutation relations that can be represented by

point operators (that is, operators whose integral kernels are generalized functions with

point supports). All operator irreducible representations are constructed for such relations.

They are realized by point operators in Hilbert spaces of antiholomorphic functions. It is

shown that the reproducing kernels of these spaces are expressed through hypergeometric

series, the theta function, as well as their modi�cations. We constructed coherent states

that intertwine abstract representations of relations with irreducible ones.

5. The developed methods for constructing irreducible representations and coherent

states are applied to a number of well-known algebras: the simplest Lie algebras, quadratic

algebras of the Zeeman e�ect and degenerate Sklyanin�Faddeev algebra. Using the deve-

loped reduction method, we calculated the coherent states of the eight-dimensional

quadratic algebra arising from the Kustaanheimo spinor regularization of the hydrogen

atom problem.

6. Algebras with polynomial commutation relations were identi�ed and studied for a

quantum particle in electric and magnetic �elds. Namely, the following quantum models

were studied: a charged particle in the Coulomb�Dirac �eld, the Zeeman e�ect in the

Coulomb�Dirac �eld, the Zeeman�Stark e�ect for the hydrogen atom. For these systems,

we performed quantum averaging with reduction into a polynomial symmetry algebra

of the principal or subprincipal part of the Hamiltonian and we studied the averaged

Hamiltonians. The asymptotic expressions of the eigenvalues and the asymptotic eigen-

functions are found.

7. We identi�ed and studied �resonant� algebras describing irreducible (with pairwise

coprime frequencies) elliptic resonance. For them, we found a �nite set of generators

subject to polynomial commutation relations and we constructed all irreducible represen-

tations and the corresponding coherent states and reproducing kernels, as well as reprodu-

cing measures.

8. A complete theory of irreducible representations, families of coherent states, reproducing

kernels and reproducing measures were constructed for algebras describing the three-fre-

quency reducible resonance in the elliptic and hyperbolic cases of resonance.

9. Resonant algebras with polynomial commutation relations were identi�ed and studied

for quantummodels with resonance in the principal part of the Hamiltonian. Namely, traps

of charged particles with partial (two-frequency) and full (three-frequency) hyperbolic

resonance were studied: a cubic Penning-Io�e trap and planar Penning and Penning�

Io�e traps with round and rectangular electrodes. For the listed systems, we performed

quantum averaging with reduction into the algebra of hyperbolic resonance and we studied

the averaged Hamiltonians. The asymptotic expressions of the eigenvalues and the asympto-

tic eigenfunctions are found.
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10. A new approach was developed to the procedure of quantum averaging of the

Hamiltonian of a resonant harmonic oscillator perturbed by a di�erential operator with

polynomial coe�cients. This approach is applied to the spectral problem for a cylindrical

Penning trap.

11. A coherent transform was constructed, the integral kernel of which is the family

of coherent Schwartz distributions of the Heisenberg algebra. This transform is applied to

the spectral problem of an inverted oscillator.

Scienti�c novelty

In the dissertation work, basic and completely new constructions of irreducible represen-

tations and coherent states of some classes of algebras with non-Lie commutation relations

having the `creation-annihilation� structure, as well as some generalizations of these classes

of algebras, were obtained.

New original results are obtained concerning the general properties of non-Lie resonant

symmetry algebras arising from frequency resonances in the elliptic and hyperbolic cases.

A completely new method for constructing irreducible representations and coherent

states of resonant algebras has been developed.

An averaging method followed by reduction into a symmetry algebra of the leading

part of the system operator and further study of the reduced operator using the theory

of representations of algebras with non-Lie commutation relations is developed.

For the �rst time, algebras with polynomial commutation relations, which arise as

symmetry algebras in basic models of mathematical physics that describe the motion of

a charged particle in a Coulomb or Coulomb�Dirac �eld and weak external electric and

magnetic �elds of various con�gurations, are identi�ed.

For a charged particle in a Coulomb or Coulomb�Dirac �eld and weak external electric

and magnetic �elds (of various con�gurations), the averaged Hamiltonian was obtained

and studied for the �rst time, presented as a function of the symmetry algebra generators

of the highest part of the Hamiltonian. Formulas for the asymptotic behavior of eigenvalues

and asymptotic eigenfunctions, written as integrals of coherent states, are also new.

Similar new results were obtained for spectral problems associated with resonant

Penning and Penning�Io�e traps. These basic trap-type quantum nanosystems cannot

be treated by traditional approaches due to the in�nite degeneracy of the spectrum of the

leading part. For these models, resonant symmetry algebras with polynomial commutation

relations are identi�ed for the �rst time. Expressions for the averaged Hamiltonian are

obtained through the generators of these algebras. New formulas are derived for the

asymptotic behavior of eigenvalues and asymptotic eigenfunctions in terms of coherent

states of resonant algebras.
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Theoretical and practical signi�cance

The theoretical signi�cance of the work lies in the creation of new approaches to the study

of algebras of non-Lie type, the development for them of new constructions of irreducible

representations and coherent states.

The practical signi�cance is that the developed technique of irreducible representations

and coherent states, as well as the developed technique of quantum averaging, can be

successfully applied to the study of quantum models with strong degeneracy of the

spectrum of the higher part of the operator, when standard approaches do not work.

Degree of reliability

All results that are submitted for defense are presented with detailed proofs in 30 articles,

of which

� 2 articles were published in the AMS Translations series of books published by the

American

Mathematical Society,

� 21 articles were published in peer-reviewed journals, cited in the WoS and Scopus

databases, including 11 articles in quartiles Q1�Q2,

� 7 articles in the journal from the Higher Attestation Commission list.

List of articles with the results of the dissertation

The list of published thirty articles, which re�ect the main scienti�c results of the thesis,

is divided into two parts.

Main list of articles with dissertation results

1a. M.V. Karasev, E.M. Novikova

Non-Lie permutation representations, coherent states, and quantum embedding.

In: �Coherent transform, Quantization, and Poisson Geometry (M.V. Karasev editor)�,

AMS Translations, AMS, Providence, 1998, 187, 1�202.

2a. M.V. Karasev, E.M. Novikova

Algebras with polynomial commutation relations for a quantum particle in electric

and magnetic �elds.

In: �Quantum Algebras and Poisson Geometry in Mathematical Physics (M.V. Karasev

editor)�. Advances in Modern Mathematics. AMS, Providence, 2005, 216, 19�135.

3a. E.M. Novikova

Minimal basis of the symmetry algebra for three-frequency resonance.

Russian Journal of Mathematical Physics, 2009,16(4), 518�528.
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4a. M.V. Karasev, E.M. Novikova

Algebra and quantum geometry of multifrequency resonance.

Izvestiya: Mathematics, 2010, 74(6), 1155�1204.

5a. O.V. Blagodyreva, M.V. Karasev, E.M. Novikova

Cubic Algebra and Averaged Hamiltonian for the Resonance 3:(-1) Penning-Io�e Trap.

Russian Journal of Mathematical Physics, 2012, 19(4), 441�450.

6a. M.V. Karasev, E.M. Novikova

Secondary Resonances in Penning Traps. Non-Lie Symmetry Algebras and Quantum

States.

Russian Journal of Mathematical Physics, 2013, 20(1), 283�294.

7a. M.V. Karasev, E.M. Novikova

Planar Penning trap with combined resonance and top dynamics on quadratic algebra.

Russian Journal of Mathematical Physics, 2015, 22(4), 463�468.

8a. M.V. Karasev, E.M. Novikova, E.V. Vybornyi

Bi-states and 2-level systems in rectangular Penning traps.

Russian Journal of Mathematical Physics, 2017, 24(4), 454�464.

9a. M.V. Karasev, E.M. Novikova

Algebra of Symmetries of Three-Frequency Resonance: Reduction of a Reducible Case

to an Irreducible Case.

Mathematical notes, 2018, 104(5-6), 833�847.

10a. E.M. Novikova

Algebra of Symmetries of Three-Frequency Hyperbolic Resonance.

Mathematical notes, 2019, 106(6), 940�956.

11a. E.M. Novikova

On calculating the coe�cients in the quantum averaging procedure for the Hamiltonian

of the resonance harmonic oscillator perturbed by a di�erential operator with

polynomial coe�cients.

Russian Journal of Mathematical Physics, 2021, 28(3), 406�410.

12a. E.M. Novikova

New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a

Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the

Spectral Problem for the Cylindrical Penning Trap.

Mathematical Notes, 2021, 109(5), Pages 777�793.

13a. E.M. Novikova

Coherent Schwartz distributions of the Heisenberg algebra and inverted oscillator.

Journal of Mathematical Physics, 2022, 63, 123507.
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Additional list of articles with dissertation results

14b. M.V. Karasev, E.M. Novikova

Coherent transform of the spectral problem and algebras with nonlinear commutation

relations.

Journal of Mathematical Sciences, 1999, 95(6), 2703�2798.

15b. M.V. Karasev, E.M. Novikova

Coherent Transforms and Irreducible Representations Corresponding to Complex

Structures on a Cylinder and on a Torus.

Mathematical Notes, 2001, 70(6), 779�797.

16b. M.V. Karasev, E.M. Novikova

Nonlinear Commutation Relations: Representations by Point-Supported Operators.

Mathematical Notes, 2002, 72(1), 48�65.

17b. M.V. Karasev, E.M. Novikova

Algebra with Quadratic Commutation Relations for an Axially Perturbed Coulomb-

Dirac Field.

Theoretical and Mathematical Physics, 2004, 141(3), 1698�1724.

18b. M.V. Karasev, E.M. Novikova

Algebra with polynomial commutation relations for the Zeeman e�ect in the Coulomb-

Dirac �eld.

Theoretical and Mathematical Physics, 2005, 142(1), 109�127.

19b. M.V. Karasev, E.M. Novikova

Algebra with polynomial commutation relations for the Zeeman-Stark e�ect in the

hydrogen atom.

Theoretical and Mathematical Physics, 2005,142(3), Pages 447�469.

20b. M.V. Karasev, E.M. Novikova

Eigenstates of the quantum Penning-Io�e nanotrap at resonance.

Theoretical and Mathematical Physics, 2014, 179(3), 729�746.

21b. M.V. Karasev, E.M. Novikova

Inserted perturbations generating asymptotical integrability.

Mathematical notes, 2014, 96(6), 965�970.

22b. M.V. Karasev, E.M. Novikova, E.V. Vybornyi

Non-Lie Top tunneling and Quantum bilocalization in Planar Penning Trap.

Mathematical notes, 2016, 100(6), 807�819.

23b. M.V. Karasev, E.M. Novikova, E.V. Vybornyi

Instantons via breaking geometric symmetry in hyperbolic traps.

Mathematical notes, 2017, 102(5-6), 776�786.
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24c. E.M. Novikova

Algebraic modeling of observables and states for hydrogen-lyke center. I.

Quadratic algebra

Nanostuctures. Mathematical physics and Modelling, 2012, 7(1), 107�124.

25c. E.M. Novikova

Coherent states of cubic non-Lie algebra and spectral problem for hydrogen

atom in resonance Zeeman-Stark e�ect.

Nanostuctures. Mathematical physics and Modelling, 2012, 7(2), 59�86.

26c. E.M. Novikova

Algebraic modeling of observables and states for hydrogen-lyke center. II.

Coherent states.

Nanostuctures. Mathematical physics and Modelling, 2012, 7(2), 87�102.

27c. O.V. Blagodyreva, M.V. Karasev, E.M. Novikova

Integral representation of eigenstates for 3:(-1) resonance Penning nanotrap.

Nanostuctures. Mathematical physics and Modelling, 2013, 9(1), 5�18.

28c. M.V. Karasev, E.M. Novikova

Stable two-dimensional tori in Penning trap under a combined frequency

resonance.

Nanostuctures. Mathematical physics and Modelling, 2015, 13(2), 55�92.

29c. E.M. Novikova

Spectral clasters in planar Penning trap with resonance breaking of axial

symmetry.

Nanostuctures. Mathematical physics and Modelling, 2016, 15(2), 75�98.

30c. E.M. Novikova

Resonance planar Penning trap with rectangular electrodes.

Nanostuctures. Mathematical physics and Modelling, 2017, 16(2), 69�88.

Structure and scope of the dissertation

The dissertation consists of an introduction, six chapters, a conclusion and a list of

references (160 items). The volume of the dissertation is 275 pages.
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The content of the work

In the introduction, we describe the goals and objectives of the research, the

degree of development of the problem, the relevance of the dissertation work, we indicate

the author's personal contribution to the development of the problem, we describe the

research methods, scienti�c novelty, theoretical and practical signi�cance of the work, and

formulate the main results submitted for defense. The introduction also contains a list of

the author's publications on the research topic.

Chapter 1 of the dissertation consists of eight sections. Here we consider nonlinear

permutation relations with the structure �creation-annihilation�.

In section 1.1 (paper [1a], part I) we study the �basic� nonlinear commutation

relations with one creation operator B and one annihilation operator C:

[C,B] = f(A), CA = φ(A)C, AB = Bφ(A),

[Aµ,Aν ] = 0 (µ, ν = 1, . . . , k).
(1)

Structure functions f : Rk → R and φµ : Rk → R (µ = 1, . . . , k), for simplicity, are

considered polynomial.

Note that the permutation relations (1) (with various structural polynomials) describe

symmetry algebras in the problems of the hydrogen atom and the Dirac monopole in weak

external electric and magnetic �elds and are used to study these quantum models in the

dissertation work (in Chapter 3). Therefore, we will dwell on them in more detail than on

the other classes of permutation relations studied in Chapter 1.

For algebra (1), we construct all (up to equivalent) irreducible representations satisfying

the Hermitian conditions

B∗ = C, A∗
µ = Aµ (µ = 1, . . . , k) (2)

in Hilbert spaces of antiholomorphic generalized functions with a vacuum vector

CP0 = 0, AµP0 = aµP0 (µ = 1, . . . , k); ∥P0∥ = 1; (3)

we obtain the corresponding coherent states and reproducing kernels of spaces of irreducible

representations; we �nd orthonormal bases in spaces of irreducible representations and

de�n coherent transforms that intertwine abstract representations with irreducible ones.

All of the above designs use the following basic functions:

Aa(n)
def
= φ

(
. . .

(
φ
(
φ︸ ︷︷ ︸

n

(a)
)))

, Fa(n)
def
=

1

n+ 1

n∑
j=0

f
(
Aa(j)

)
. (4)
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Theorem 1. (a) There is a one-to-one correspondence between the set of irreducible

Hermitian representations of algebra (1) that possess a vacuum vector (3) and the following

subset R ⊂ Rk:

a ∈ R ⇔ {Fa(n) > 0 for n ∈ Z+ or

∃N ∈ Z+ : Fa(n) > 0 for 0 ≤ n < N and Fa(N) = 0 (property (*))}.
(5)

Such a representation corresponding to a ∈ R is �nite-dimensional if and only if there

exists an integer N = Na satisfying the property (*) in (5); in this case, the number N +1

is the dimension of the representation.

(b) Let a ∈ R. Let functions Ba and Ca (real or complex) factorize the basic function

Fa:

Fa(n) = Ba(n)Ca(n), n ≥ 0, (6)

with the single condition Ba(N) = 0 in the case (*) in (5). Then the operators

◦
B = z Ba

(
z
d

dz

)
,

◦
C = Ca

(
z
d

dz

) d

dz
,

◦
A = Aa

(
z
d

dz

)
(7)

de�ne an Hermitian representation of the algebra (1) in the Hilbert space of of anti-

holomorphic distributions that that can be represented by power series g(z) =
∑∞

n=0 gnz
n

with the inner product

(g, g′)Ps(a)

def
=

∞∑
n=0

sn(a) gn g′n, (8)

where
s0(a) = 1,

sn(a) =
n!Fa(n− 1) . . .Fa(0)

|Ba(n− 1)|2 . . . |Ba(0)|2
for 1 ≤ n ≤ N,

sn(a) = ∞ for n ≥ N + 1.

The representation (7) is irreducible and possesses the vacuum 1 in the Hilbert space Ps(a).

(c) Representations (7) assigned to di�erent vectors a ∈ R are not equivalent, but for

each chosen a ∈ R, representations assigned to di�erent factorizations (6) are equivalent.

(d) An abstract Hermitian representation of algebra (1), (2) in a Hilbert space Ha with

the vacuum vector P0 = P0(a), satisfying (3) for some a ∈ Rk, can be intertwined with

representation (7) by means of the following generalized coherent states:

Pz = Po +
∑
n≥1

1

n! Ca(n− 1) . . . Ca(0)
(zB)nP0. (9)
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The generalized �reproducing kernel,� corresponding to the (9)

Ks(a)(z, w) = (Pz,Pw)Ha , (10)

is the kernel of the unity operator in Ps(a) and is performed by the following distribution

over R2 × R2:

Ks(a)(z, w) =
∑
n≥0

(zw)n

sn(a)
. (11)

(g) The following orthonormal bases{
zn√
sn(a)

∣∣∣n ≥ 0

}
â Ps(a) and {P0}∪

{
1√

sn(a)Ba(n− 1) . . .Ba(0)
BnP0

∣∣∣n ≥ 1

}
â Ha

correspond to each other under the coherent transform

j : g 7→ p, (p, p′)Ha =
(
g, (p′,P)Ha

)
Ps(a)

, ∀ p′ ∈ Ha,

j−1 : p 7→ g, g = (p,P)Ha .

They are eigenbases for the commuting operators
◦
A1, . . . ,

◦
Ak,

◦
B

◦
C

(in the space Ps(a)) or A1, . . . ,Ak,BC (in the space Ha); the corresponding eigenvalues

are equal to (Aa)1(n), . . . , (Aa)k(n), nFa(n), 0 ≤ n ≤ N .

For commutation relations (1), the thesis also describes two types of Casimir elements.

If a function κ on Rk is preserved by the mapping φ, òî κ(A), then κ(A) is a Casimir

element of algebra (1); if a function ρ on Rk satis�es the equation

ρ
(
φ(A)

)
− ρ(A) = f(A), A ∈ Rk, (12)

then

K = BC− ρ(A) (13)

is a Casimir element of algebra (1).

Section 1.2 (paper [1a], part I) examines the �Floquet generalization�

CB = Bω(A)C+ f(A),

CA = φ(A)C+ ψ(A), AB = Bφ(A) + ψ(A),

[Aµ,Aν ] = 0 (µ, ν = 1, . . . , k),

B∗ = C, A∗
µ = Aµ (µ = 1, . . . , k)

(14)
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of basic relations (1), (2) with real structure functions ω : Rk → R, f : Rk → R,
φ : Rk → Rk, ψ : Rk → Rk, satisfying the generalized Jacobi identities (see [7, 13] or [11])

(a)
(
φµ(A)− Aµ

)
ψν(A) =

(
φν(A)− Aν

)
ψµ(A),

(b) ψµ
(
φ(A)

)
= ω(A) ⟨ψ(A), δφµ

(
φ(A), A

)
⟩,

where the vector-valued di�erence di�erentiation δ is de�ned by the formula

δF (A,A′)
def
=

∫ 1

0
∂F/∂A

(
τA+(1− τ)A′) dτ, and ⟨·, ·⟩ denotes the inner product of vectors

in Rk.

For relations (14), as well as for basic relations (1), (2), all irreducible representations

in Hilbert spaces of antiholomorphic functions with a vacuum vector, the corresponding

coherent states and reproducing kernels are constructed, and the Casimir elements are

indicated.

In section 1.3 (article [1a], part I) for the basic relations (1), (2) we formulated

conditions for the structural polynomials f and φµ (µ = 1, . . . , k), for which relations (1)

admit irreducible representations by di�erential (rather than pseudodi�erential) operators.

It is shown that coherent states and reproducing kernels corresponding to such represen-

tations are expressed through hypergeometric functions. The parameters of hypergeometric

functions are the roots of the basic functions Fa (4).

In the same section 1.3, we formulated conditions on the structure functions of basic

relations (1), (2), as well as on the structure functions of their Floquet generalization (14),

under which these relations admit irreducible representations of q-di�erentialdi�erential

- operators, i.e. polynomials in q-di�erentiation and q−1-di�erentiation operators with

polynomial coe�cients. It is shown that coherent states and reproducing kernels correspon-

ding to irreducible representations by q-di�erential operators are expressed through q-

hypergeometric functions. In this case, the parameters of q-hypergeometric functions are

related to the roots of the base function Fa (4).

In section 1.4 (article [1a], part I) from the base class of nonlinear relations (1) we

identi�ed a subclass of �regular� relations

[C,B] = ρ
(
φℏ(A)

)
− ρ(A), CA = φℏ(A)C, AB = Bφℏ(A). (15)

Compared to relations (1), here, �rstly, the semiclassical parameter ℏ is introduced;

secondly, the mapping φℏ is de�ned as the shift in time ℏ along the trajectories of the

vector �eld v =
∑k

µ=1 vµ(A) , ∂/∂Aµ on Rk, �bering Rk; thirdly, equation (12) was used.

For regular relations (15) (in addition to the main ones), a number of additional results

were obtained. Let us describe the main one - the construction of a reproducing measure

for the irreducible representation (7).
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For relations (15), the basic functions (4) have the form Aa(n) = Aa(ℏn),
Fa(n) = ρ

(
Aa(ℏn)

)
− ρ(a), where AA(t) denotes the trajectory of the �eld v, passing

through the point A ∈ Rk:

d

dt
AA = v(AA), AA

∣∣∣
t=0

= A.

Therefore, the factors Ba and Ca, which factorize the base function Fa into (6), can be

chosen in the form Ba(n) = Da(Aa(ℏ(n + 1))), Ca(n) = Ea(Aa(ℏ(n + 1)))/(n + 1), where

Da(A) Ea(A) = ρ(A)− ρ(a), Ea(a) = 0, Da

(
Aa(ℏ(N + 1))

)
= 0

(the number N is de�ned in (5)). In this case, the reproducing kernel (11) will be written

as follows:

K(z, w) = 1 +
N∑
n=1

(zw)n

H(ℏn) . . .H(ℏ)
, where H(t)

def
=

Ea(Aa(t))

Da(Aa(t))
.

Note that by choosing the factors Da and Ea it is possible to ensure a fairly rapid growth

of the numerical sequence H(ℏn) (with the help of which the coe�cients of the power law

are speci�ed series for K(z, w)). Therefore, without loss of generality, we can assume that

the function K(z, w) is analytic in z and w on the entire plane C.

Theorem 2. (a) Let ℓ be a smooth solution of the equation

H
(
− ℏx

d

dx

)
ℓ(x) = xℓ(x), x > 0,

such that
∫∞
0
xn|ℓ(x)| dx <∞ for 0 ≤ n ≤ N . We normalize ℓ by the following condition:

1
ℏ

∫∞
0
ℓ(x) dx = 1. Then for any generalized functions g, g′ ∈ P the scalar product (8) can

be written in integral form

(g, g′)Ps(a)
=

1

2πℏ

∫
C
g(z) g′(z) ℓ(|z|2) dzdz,

where dzdz = dxdφ è z =
√
x exp{iφ}. Therefore, in this case, all elements from P are

regular L2-functions on the plane.

(b) If the function ℓ from item (a) exists, then the reproducing kernel K(z, w) satis�es

the reproducing property :

1

2πℏ

∫
C
K(z, z′)K(z′, z) ℓ(|z′|2)dz′dz′ = K(z, z),
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i.e., there is a decomposition of unity

1

2πℏ

∫
Ω

K(z, z′)K(z′, z)

K(z, z)K(z′, z′)
dm(z′, z′) = 1

with reproducing measure dm(z, z) =M(|z|2)dzdz, where M(x)
def
= k(x)ℓ(x).

Further, in the thesis it is shown that for relations (15) there is a Casimir element K

(13), and there are also independent Casimir elements κ1(A), . . . , κk−1(A) (since there

are independent real smooth functions κ1, . . . , κk−1 on Rk, which are preserved under the

mapping φℏ). In the irreducible representation (7), the Casimir operators are scalar. More

precisely, conditions (3) imply the equalities

K = −ρ(a) · I, κj(A) = κj(a) · I (j = 1, . . . , k − 1).

Using Hermitian generators S1 = (B + C)/2, S2 = i(B − C)/2, these equalities can

be rewritten in the form

S2
1 + S2

2 =
1

2

(
ρ(A) + ρ

(
φℏ(A)

))
− ρ(a) · I, κj(A) = κj(a) · I (j = 1, . . . , k − 1)

and interpreted as the equations of the symplectic leaf corresponding to irreducible

representation (7) associated with a ∈ R. This leaf is a surface (of revolution) embedded

in the space Rk+2 with classical coordinates S1, S2, A1, . . . , Ak.

For regular relations (15), we established a correspondence between quantum objects

(irreducible representations, coherent states and reproducing kernels) and classical objects

(symplectic leaves of the corresponding Poisson algebra). It is shown that the symplectic

leaves corresponding to the constructed irreducible representations with the vacuum vector

(3) are surfaces of revolution. In addition, in the regular case, operators of complex

structure are obtained, and also the semiclassical asymptotics of the quantum K?hler

potential and the density of reproducing measures were calculated.

In sections 1.5 and 1.6 we study generalizations of relations (1) and (14) to the

case of several pairs of creation-annihilation operators:

CqBp =
∑
r,s

Brω
qr
sp(A)Cs + f qp (A) (p, q = 1, . . . , d),

CpA = φp(A)Cp, ABp = Bpφp(A) (p = 1, . . . , d),

[Aµ,Aν ] = 0 (µ, ν = 1, . . . , k),

[Bp,Bq] = 0, [Cp,Cq] = 0 (p, q = 1, . . . , d),

B∗
p = Cp (p = 1, . . . , d), A∗

µ = Aµ (µ = 1, . . . , k).

(16)
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Here the functions φp are vector-valued. We assume that all structure functions are real

and satisfy the generalized Jacobi conditions:

(a) φp
(
φq(A)

)
= φq

(
φp(A)

)
,

(b) f qp (A)
(
φp(A)− φq(A)

)
= 0,

(c) ωqrsp(A)
(
φq

(
φr(A)

)
− φp

(
φs(A)

) )
= 0,

(d)
d∑
s=1

ωqrsp(A)f
s
t (A) + δrt f

q
p

(
φt(A)

)
=

d∑
s=1

ωqrst (A)f
s
p (A) + δrpf

q
t

(
φp(A)

)
,

(e)
d∑
s=1

ωqrsp
(
φt(A)

)
ωstuv(A) +

d∑
s=1

ωqtsp
(
φr(A)

)
ωsruv(A)

=
d∑
s=1

ωqrsv
(
φt(A)

)
ωstup(A) +

d∑
s=1

ωqtsv
(
φr(A)

)
ωsrup(A).

(17)

For simplicity, we consider the case when all ωqrsp, f
q
p and φp are polynomials.

From identities (17b), (17c) it follows that (by renumbering the generators B and

synchronously renumbering the generators C) matrix F = ((f rs )) and matrices Ωq
p = ((ωqrsp))

can be reduced to block-diagonal form:

f rs = 0 for φr ̸= φs; ωqrsp = 0 for φp = φq, φr ̸= φs.

In Section 1.5 we study the case of two one-dimensional blocks (i.e. d = 2, φ1 ̸= φ2):

C1B1 = B1α
1
1(A)C1 +B2α

2
1(A)C2 + f 1

1 (A),

C2B2 = B2α
2
2(A)C2 +B1α

1
2(A)C1 + f 2

2 (A),

C1B2 = B2θ(A)C1, C2B1 = B1θ(A)C2,

C1A = φ1(A)C1, AB1 = B1φ1(A),

C2A = φ2(A)C2, AB2 = B2φ2(A),

[Aµ,Aν ] = 0, [B1,B2] = 0, [C1,C2] = 0,

B∗
1 = C1, B∗

2 = C2, A∗
µ = Aµ (µ = 1, . . . , k).

(16′)

For relations (16′) in this work we constructed all irreducible Hermitian representations

(up to equivalent ones) in Hilbert spaces of antiholomorphic functions over R4 with a

vacuum vector, obtained the corresponding coherent states and reproducing kernels of

spaces of irreducible representations; found orthonormal bases in spaces of irreducible

representations and de�ned coherent transforms that intertwine abstract representations

with irreducible ones. As in the one-dimensional case, the construction uses some basic

functions, which are speci�ed by explicit formulas through the structure functions of the

relations (16′).
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In the case when the relations (16′) are regular, Casimir elements are found for them.

In an irreducible representation, these elements are scalar and de�ne the equations of

symplectic leaves. It is shown that the symplectic leaves, corresponding to the constructed

irreducible representations, are 4-dimensional birotation surfaces, i.e. these leaves are 4x-

dimensional submanifolds in Rk+4 �bered by tori.

In Section 1.6 relations (16) are �rst considered in the case of one multidimensional

block (i.e. in the case of d ≥ 2, φ1 = · · · = φk) under the condition ω
qr
sp = ω · δqs · δrp:

CqBp = Bpω(A)C
q + f qp (A),

CpA = φ(A)Cp, ABp = Bpφ(A),

[Aµ,Aν ] = 0, [Bp,Bq] = 0, [Cp,Cq] = 0,

B∗
p = Cp, A∗

µ = Aµ (p, q = 1, . . . , d, µ, ν = 1, . . . , k).

(16′′)

where the structure functions ω, φ are real-valued, matrix

F (A) =
((
f qp (A)

))
= F ∗(A) Hermitian, φ : Rk → Rk is an invertible mapping, and

the Jacobi identity holds: F
(
φ(A)

)
= ω(A) · F (A).

For the relations (16′′) in the work we described the Casimir elements. In the regular

case, the symplectic leaves Ω = Ω2d algebras (16′′) are embedded in Rk+2d as hypersurfaces.

If the structure function ω does not vanish, then the algebra (16′′) can be reduced to

the Heisenberg algebra. Therefore, the most interesting case is when ω has zeros on Rk.

If d = 2, then the symplectic leaves are four-dimensional. In this case, we constructed

all (up to equivalent) irreducible Hermitian representations of relations (16′′) in Hilbert

spaces of antiholomorphic generalized functions over R4 with a vacuum vector, obtained

the corresponding coherent states, the reproducing kernels of spaces of irreducible

representations and orthonormal bases in them, and also determined coherent transforms,

intertwining abstract representations with irreducible ones.

The design uses a basic matrix, which is speci�ed by an explicit formula through the

structure functions of the relations (16′′). Reproducing kernels are expressed through a

function that is introduced in this work and generalizes the hypergeometric function to the

case of several variables. To de�ne this function, in Section 1.6 we introduced the concept

of a matrix factorial, which generalizes the gamma function to the case of matrices.

At the end of Section 1.6, relations (16) are considered in the case of one two-

dimensional block, when the matrix ωqp is not scalar:

d = 2, φp(A) = φ(A), ωqrsp(A) = δrp · δqs · ωqp(A) (p, q, r, s = 1, 2).
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Then relations (16) take the form

CqBp = Bp ω
q
p(A)Cq + f qp (A),

CpA = φ(A)Cp, ABp = Bpφ(A),

[Aµ,Aν ] = 0, [Bp,Bq] = 0, [Cp,Cq] = 0,

B∗
p = Cp, A∗

µ = Aµ (p, q = 1, 2, µ, ν = 1, . . . , k)

(16′′′)

with the following Jacobian conditions on structure functions:

φ = φ, ωqp = ωqp = ωpq , f qp = fpq ,

ωqp
(
φ(A)

)
ωqt (A) = ωqt

(
φ(A)

)
ωqp(A),

f qp
(
φ(A)

)
= ωqt (A) · f qp (A), t ̸= p,

ω1
1 ̸= ω2

2 =⇒ f 1
2 = f 2

1 = 0.

For the relations (16′′′), the construction of Hermitian representations with a vacuum

vector is described and an interesting formula for coherent states is obtained. In this

formula, the exponential of the linear combination of creation operators Bp is applied to

the vacuum vector, and the coe�cients of this linear combination are some di�erential

operators acting on the unit function according to the complex parameters of the family

of coherent states.

In the mentioned sections 1.1 - 1.4 we assume that in the Hilbert representation

space, the spectrum of the operator BC contains a zero eigenvalue. The corresponding

eigenvector is vacuum. And in section 1.7 (paper [15b]) we study the case when neither

the operatorBC nor the operatorCB has a zero eigenvalue. The corresponding symplectic

leaves are a cylinder or a torus.

More precisely, in section 1.7 for the relations

C ·B = φ0
ℏ(BC,A), C ·A = φℏ(BC,A) ·C, Aj ·Al = Al ·Aj,

B∗ = C, A∗
j = Aj (j, l = 1, . . . , k)

(17)

we found the Casimir elements, constructed all operator-irreducible representations in

which the operators BC and CB do not have a zero eigenvalue, constructed complex

structures on the cylinder and torus, obtained coherent states in Hilbert spaces (without

a vacuum vector) and reproducing kernels, and also found reproducing measures. Coherent

states and reproducing kernels are here expressed through the theta function.
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In section 1.8 (article [16b]) we identi�ed a special special case of commutation

relations (14):

CB = qBC+Q(A1, . . . ,Ak),

AµB = B (qµAµ +Qµ(Aµ+1, . . . ,Ak)),

CAµ = (qµAµ +Qµ(Aµ+1, . . . ,Ak))C,

AµAν = AνAµ,

B∗ = C, A∗
µ = Aµ (µ, ν ∈ {1, . . . , k}),

(18)

in which q, qµ ∈ R are non-zero constants, Q : Rk → R, Qµ : Rk−µ → R are polynomials,

and Qk = const.

This special case has the following remarkable property: every operator irreducible

representation in which the commutative sublgebra

BC, A1, . . . ,Ak has a non-empty point spectrum, can be realized in the Hilbert space of

antiholomorphic functions by point operators rather than pseudodi�erential ones general

position operators. (A linear integral operator is called pointwise if its kernel is a generalized

function with pointwise support.) The work classi�es and describes all possible series of

such representations and shows that the corresponding coherent states and reproducing

kernels can be represented through hypergeometric series, the theta function, as well as

their modi�cations.

Chapter 2 of the dissertation consists of seven sections, in which the developed

methods for constructing irreducible representations and coherent states are applied to

a number of well-known algebras: the simplest Lie algebras, the quadratic algebra of

the Zeeman e�ect and the degenerate Sklyanin-Faddeev algebra. Using the developed

reduction method, we also constructed coherent states of the eight-dimensional quadratic

algebra arising from the Kustaanheimo spinor regularization of the hydrogen atom problem.

In section 2.1 (paper [1a], part II) we showed how the developed methods work in

the case of Lie algebras su(2):

[S1,S2] = iℏS3, [S2,S3] = iℏS1, [S3,S1] = iℏS2, S∗
j = Sj (j = 1, 2, 3) (19)

and su(1,1):

[S1,S2] = iℏS3, [S2,S3] = −iℏS1, [S3,S1] = −iℏS2, S∗
j = Sj (j = 1, 2, 3). (20)

Previously, instead of Hermitian generators, we de�ned the operators of creation B =

S1 − iS2, annihilation C = S1 + iS2 and the operator A = S3. Then relations (19) and

(20) are reduced to the form (1), (2), and then the constructions described in Chapter 1

are used for them. As a result, we obtained irreducible representations, coherent states,

reproducing kernels, reproducing measures, coherent transforms and complex structure

operators.
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It is interesting that using the described method for the algebra su(1,1) it is possible to

construct two (equivalent) versions of irreducible representations by di�erential operators:

a standard representation by �rst-order operators and another representation in which the

creation operator is of zero order and the annihilation operator is of second order. For

this representation, in contrast to the standard one, the reproducing measure exists for all

possible eigenvalues of the operator A on the vacuum vector. The work also constructs a

coherent transform that intertwineû two variants of representations of the algebra su(1,1).

In Section 2.2 (paper [1a], part II; paper [14b]) we studied quadratic algebra related

to the Zeeman e�ect. This algebra was discovered in [63]. It is de�ned as an algebra of

operators commuting simultaneously with the regularized Hamiltonian of the hydrogen

atom

S0 = |q|
(1
4
+ p2

)
, ãäå q = q, p = −iℏ ∂

∂q
, q ∈ R3

and with the angular momentum component M3 commuting with it M = q × p. These

operators are self-adjoint in the Hilbert space L2
−(R3) with the norm

∥φ∥− =
(
(π/4)

∫
R3 |φ(q)|2dq/|q|

)1/2
.

The algebra of their joint symmetries is formed by four generators, satisfying the following

relations [63]

[T1,T2] = iℏT0T3, [T0,T1] = 2iℏT2,

[T2,T3] = −iℏ
2

(
T0T1 +T1T0

)
, [T0,T2] = −2iℏT1,

[T3,T1] = −iℏ
2

(
T0T2 +T2T0

)
, [T0,T3] = 0.

T∗
j = Tj (j = 0, 1, 2, 3).

(21)

First of all, for this algebra we considered those values of the Casimir operators that

are implemented in this quantum model. For such values, in [14b] not only irreducible

representations, coherent states, reproducing kernels and reproducing measures in spaces

of antiholomorphic functions were constructed, but also representations and coherent

states over Lagrangian curves on symplectic leaves. The representation operators for such

geometric coherent states have a simple geometric meaning (see Proposition 3.1 in [14b]),

due to which they are very convenient to use for constructing the semiclassical asymptotics

of the eigenvalues and eigenfunctions of the Hamiltonian.

In [1a] for algebra (21), we studied all possible values of the Casimir elements correspon-

ding to representations with a vacuum vector (and not just those values that are realized

for the corresponding physical model). For this purpose, the structure �creation-annihila-

tion� is introduced in algebra (21) B = T1−iT2, C = T1+iT2, A1 = −T0, A2 = T3, and

algebra (21) is presented as a special case of algebra (1) with k = 2, f(A) = −2ℏA1A2,

φ1(A) = A1 + 2ℏ, φ2(A) = A2 − ℏA1 − ℏ2. All irreducible Hermitian representations with

a vacuum vector in spaces of antiholomorphic functions are constructed. Moreover, for
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each set of values of Casimir elements, all possible variants of (equivalent) representations

by di�erential (rather than pseudodi�erential) operators are written out. For each such

representation, coherent states and reproducing kernels are constructed, and the question

of the existence of a reproducing measure is investigated and, in cases where this is

possible, the measure is also obtained. Coherent states, reproducing kernels and measures

are expressed here through hypergeometric functions.

In addition, the corresponding classical algebra is studied and a complete description

of its symplectic leaves, as well as complex structures on symplectic leaves corresponding

to irreducible representations, is given.

In Section 2.3 (paper [1a], part II) the degenerate case of the Faddeev�Sklyanin

algebra is studied. This is an algebra with four generators S0, S1, S2 and S3 with quadratic

commutation relations

[S0,S1] = iµ(S2S3 + S3S2), [S1,S2] = iℏ(S0S3 + S3S0),

[S0,S2] = −iµ(S1S3 + S3S1), [S2,S3] = iµ(S0S1 + S1S0),

[S0,S3] = 0, [S3,S1] = iµ(S0S2 + S2S0),

S∗
j = Sj, j = 0, 1, 2, 3.

(22)

Here µ and ℏ are parameters, 1 > µ > 0, ℏ > 0. Note that the relations (22) cannot be

represented by di�erential operators.

In algebra (22) we introduced the structure �creation�annihilation� B = S1 − iS2,

C = S1 + iS2, A1 = S3 + S0, A2 = S3 − S0, and wrote down relations (22) to the form

(1), (2) c k = 2, f(A) = ℏ(A2
1−A2

2), φ1(A) = qA1, φ2(A) = A2/q, where q = (1−µ)/(1+µ)
is a new parameter, 0 < q < 1.

In this work, representations with discrete spectrum S0 and S3 are studied. For such

representations there is a vacuum vector (3). Therefore, such representations can be

searched using the developed scheme.

For algebra (22), Casimir elements are found and all irreducible Hermitian repre-

sentations with a vacuum vector in spaces of antiholomorphic functions are constructed.

Moreover, for each set of values of Casimir elements, three variants of (equivalent) represen-

tations by q-di�erential operators are written. For each such representation, coherent

states and reproducing kernels are constructed, complex structure operators are written,

and reproducing measures are found for one of the three variants considered. Coherent

states and reproducing kernels are here expressed through q-hypergeometric series.

In addition, the corresponding classical algebra is studied and a complete description

of its symplectic leaves is given, as well as complex structures on symplectic leaves

corresponding to irreducible representations.
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In section 2.4 (article [1a], part II) we consider weakly nonlinear commutation

relations

[Cq,Bp] =
ℓ∑

α=1

fαqpRα + f qp (A),

[Rα,Bp] =
d∑
r=1

Brψα
r
p, [Cq,Rα] =

d∑
r=1

ψα
q
rC

r,

ABp = Bpφ(A), CpA = φ(A)Cp,

[Rα,Rβ] =
ℓ∑

γ=1

χγαβRγ, [Aµ,Rα] = 0,

[Aµ,Aν ] = 0, [Bp,Bq] = 0, [Cp,Cq] = 0,

B∗
p = Cp, R∗

α = Rα, A∗
µ = Aµ

p, q = 1, . . . , d, µ, ν = 1, . . . , k, α, β = 1, . . . , ℓ.

(23)

where Fα = ((fαqp)), Ψα = ((ψα
q
p)), X

α = ((χαβγ)) are matrices whose elements are either

constant or are φ-invariant functions of A, i.e.

fαqp
(
φ(A)

)
= fαqp(A), ψα

q
p

(
φ(A)

)
= ψα

q
p(A), χαβγ

(
φ(A)

)
= χαβγ(A).

It is assumed that the number of pairs of creation-annihilation operators is d > 1, and

that the structure constants and structure functions in (23) correspond to the Hermitian

conditions φ = φ, F = F ∗, Fα = (Fα)∗, Ψα = Ψ∗
α, Xα = −Xα = (Xα)∗, where

F = ((f qp )), and also the following generalized Jacobi conditions are satis�ed:

ℓ∑
ε=1

(χεαβχ
δ
εγ + χεβγχ

δ
εα + χεγαχ

δ
εβ) = 0 (α, β, γ, δ = 1, . . . , ℓ);

[Ψα,Ψβ] =
∑
γ

χγαβΨγ (α, β = 1, . . . , ℓ);

ℓ∑
α=1

(fαqrψα
s
p − fαqpψα

r
s) = δsr

(
f qp (φ(A))− f qp (A)

)
− δsp

(
f qr (φ(A))− f qr (A)

)
(p, q, r, s = 1, . . . , d);

[Fα,Ψβ] =
ℓ∑

γ=1

χαβγF
γ (α, β = 1, . . . , ℓ);

[F (A),Ψα] = 0 (α = 1, . . . , ℓ).
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Under such assumptions for relations (23), we constructed representations in spaces

of antiholomorphic functions (of d complex variables) with a vacuum vector P0, subject

to the conditions

AµP0 = aµP0 (µ = 1, . . . , k), RαP0 = 0 (α = 1, . . . , ℓ),

CqP0 = 0 (q = 1, . . . , d), ∥P0∥ = 1.
(24)

In addition, we obtained coherent states that intertwine abstract representations with a

vacuum vector with the constructed anti-holomorphic representations.

Under some additional assumptions, in the space of the Hermitian representation

with a vacuum vector there is a second vacuum vector satisfying conditions (24). In

this case, coherent states with two vacuum vectors are constructed for algebra (23). The

corresponding representation space is decomposed into a direct sum of two irreducible

components, each of which is generated from its own vacuum vector.

In Section 2.5 (paper [1a], part II) we consider an algebra with eight generators

subject to the following quadratic relations

[ρp,ρq] = 0, [ρp,σq] = −iℏ (δpqρ2 − ρpρq), [σp,σq] = −iℏ (σpρq − σqρp),

ρ∗
p = ρp, σ∗

p = σp (p, q = 0, 1, 2, 3).
(25)

Here ρ2
def
=

∑3
p=0 ρ

2
p, ℏ > 0. The Jacobian conditions for these relations are satis�ed

automatically.

The algebra (25) has two Casimir elements K1 = ρ2, K2 =
(〈
ρ,σ

〉
+

〈
σ,ρ

〉)
/2,

where
〈
ρ, σ

〉 def
=

∑3
p=0 ρpσp. In our thesis we constructed a representation of algebra (25),

in which K1 = I, K2 = 0. These equations can be understood as the equations of the

symplectic leaf corresponding to the irreducible representation of relations (25), i.e. like

equations {ρ2 = 1,
〈
ρ, σ

〉
= 0} of surface embedded in space R8 with classical coordinates

ρ, σ. This surface is di�eomorphic to T ∗S3.

First, with the help of some transform, relations (25) are reduced to weakly nonlinear

relations (23), in which d = 3, k = 1, f rqp = −2iℏ εpqr, f qp (A) = 2ℏ δqpA, ψ r
pq = iℏ εpqr,

χ r
pq = iℏ εpqr, φ(A) = A + ℏ, and for such relations (using the construction from Section

2.4) an anti-holomorphic representation with two vacuum vectors is constructed, as well

as coherent states, a reproducing kernel and a reproducing measure. Note that the coherent

states and the reproducing kernel are here expressed through the zero-order Bessel function,

and the density of the reproducing measure through the zero-order Macdonald function.

Then, using the inverse transform, we derive the antiholomorphic representation, coherent

states, reproducing kernel and reproducing measure for the original quadratic algebra (25).
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In section 2.6 (article [1a], part II) we considered an example of reduction of coherent

states by the symmetry group. This approach was proposed in the work of [8]. It was with

the help of this approach that representations of quadratic algebras (21) and (25) were

�rst obtained, as well as the corresponding coherent states in the works [63], [64], [?], [10].

The reduction starts with the usual Heisenberg algebra and standard Gaussian coherent

states over Rn. In this case, two types of reduction are possible.

The reduction of the �rst type is performed in the space of an irreducible representation

of operator algebra. With such a reduction, the coherent states of a given algebra are

projected onto the eigenspace of some of its elements (called a reduction generator).

The result is a new family of coherent states corresponding to subalgebra of operators

commuting with the reduction generator.

Reduction of the second type is performed in the space of parameters of coherent

states, more precisely, in the space antiholomorphic representation of operator algebra. In

this case, we consider both the reduction generator and its symbol, which is element of the

corresponding Poisson algebra. �New� coherent states are obtained from �old� coherent

states by averaging (over parameters) along the trajectories of the Hamiltonian �eld of

this symbol.

We use an operator of type �action� as a reduction generator. This operator, divided

by the semiclassical parameter ℏ, has an integer spectrum, and its symbol de�nes a 2π-

periodic Hamiltonian �ow. Under such conditions, the reduction (of the �rst type) of

coherent states in the space of an irreducible representation is equivalent to the reduction

(of the second type) in terms of parameters. It is convenient to keep in mind both of these

types of reduction and study some properties using the �rst type reduction, and others

using the second type of reduction.

The two types of reduction described in Section 2.6 apply to Gaussian coherent

states of the Heisenberg algebra for dimension n = 4. The operator associated with the

Kustaanheimo spinor regularization is taken as a reduction generator. As a result of the

reduction, we obtain operators of the antiholomorphic representation, coherent states,

a reproducing kernel, and a reproducing measure for algebra (25). In the semiclassical

limit, the constructed quantum objects correspond to a symplectic leaf of algebra (25),

di�eomorphic to T ∗S3.

The reduction method described in Section 2.6 is used in Chapter 4 when calculating

reproducing measures for symmetry algebras of multi-frequency resonance.

In section 2.7 (paper [15b]) we give two examples of constructing irreducible represen-

tations and coherent states, corresponding to the cylinder and torus. The scheme from

section 1.7 is applied here.

The �rst example is the algebra su(1, 1). For it in Section 2.1 we constructed represen-

tations corresponding to symplectic leaves di�eomorphic to the plane; in the space of

each such representation there is a vacuum vector annulled by the annihilation operator.
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And in Section 2.7, for this algebra, representations corresponding to symplectic leaves

di�eomorphic to the cylinder are constructed; these representations are without a vacuum

vector. The coherent states and reproducing kernels of such representations are expressed

through the theta function.

The second example is the degenerate Sklyanin-Faddeev algebra

[S1,S2] = i(S0S3 + S3S0), [S0,S1] = −iµ2(S2S3 + S3S2),

[S2,S3] = i(S0S1 + S1S0), [S0,S2] = iµ2(S3S1 + S1S3),

[S3,S1] = i(S0S2 + S2S0), [S0,S3] = 0,

(26)

where µ > 0 (the structure constants of this algebra are di�erent from the structure

constants of the algebra (22)).

By replacing the structure constant µ with a new constant

q =
1 + iµ

1− iµ
= eiφ, where µ = tg

φ

2
, (27)

and introducing new generators A =
√
µS3 + iS0/

√
µ B = S1 − iS2, C = S1 + iS2 (here,

to simplify the notation, the non-Hermitian generator A is used instead of its real and

imaginary parts A = A1 + iA2), algebra (26) is reduced to the algebra

[C,B] = −i
(
A2 − (A∗)2

)
, [A,A∗] = 0,

CA = qAC, AB = qBA, B∗ = C

of type (17), where ℏ = 1 and

φ0
t (A0, A) = A0 +

q(q2t − 1)A2 + q(q2t − 1)A
2

i(q − q)
, φt(A0, A) = qtA.

For this algebra, according to the scheme from Section 1.7, all operator irreducible

representations, coherent states, reproducing kernels and reproducing measures are

constructed. The corresponding symplectic leaves are embedded in R4 as a torus.

We separately studied the case when the structure constant q (27) is the Nth root of

1. In this case, in addition to the �classical� Casimir elements

K = BC− qA2 + q(A∗)2

i(q − q)
, κ = AA∗,

there are �nonclassical� Casimir elements: BN , CN , AN and (A∗)N . The corresponding

operator irreducible representations are �nite-dimensional.

If qN ̸= 1 for no N ∈ N, then operator irreducible representations are in�nite-

dimensional (although they correspond to compact symplectic leaves).
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Chapter 3 of the thesis consists of six sections and contains a description of a series

of works [2a], [14b], [17b], [18b], [19b] on the motion of a charged particle in the Coulomb-

Dirac �eld, which is perturbed by electric and (or) uniform magnetic �elds.

The �rst three sections of Chapter 3 are supporting sections.

Section 3.1 (articles [2a], [17b]) contains the de�nition of the Hamiltonian H0 of a

particle in the Coulomb-Dirac �eld, the regularization of this Hamiltonian, i.e. reducing

it to the operator S0 with equidistant spectrum, solving the spectral problem for S0 (on

the negative part of the spectrum), as well as describing the algebra Fquant of quantum

integrals of motion of the regularized operator S0.

In Section 3.2 (articles [2a], [14b], [17b]) for the perturbed operator S0+εS1, where S0

is an operator with equidistant spectrum, ε is a small parameter, we described a scheme

of quantum averaging method with reduction into the algebra Fquant of symmetries of

the leading part of S0. Using the above scheme, we can �nd a unitary transform that

reduces the operator S0 + εS1 to the form S0 + εT, where the new perturbing operator

T = εS1+ ε
2S2+ . . . (it is called averaged) commutes (in all orders in ε) with the leading

part of S0, i.e. is an element of the algebra Fquant of its symmetries.

Note that if both operators S0 and S1 commute with some operator G, then the

averaged operator T is element of the subalgebra Gquant of symmetries G in the algebra

Fquant.

In Section 3.3 (papers [2a], [14b], [17b]) we described a coherent transform method

that allows us to write the averaged perturbation T in an irreducible representation of the

algebra Fquant (or its subalgebras Gquant) in the form of some operator
◦
T in the space of an

irreducible representation. In this case, the eigenfunctions of the averaged perturbation

T are represented as an integral of the eigenfunctions of the operator
◦
T and the coherent

states of the algebra Fquant (or its subalgebras Gquant).

The next three sections contain solutions of three spectral problems.

In Section 3.4 (articles [2a], [17b]) the problem of a particle in an axially perturbed

Coulomb-Dirac �eld is studied. The presence of axial symmetry leads to the existence

of the operator G (this is the corresponding component of angular momentum), which

commutes with the higher part (i.e. the regularized Hamiltonian S0 of the particle in

the Coulomb-Dirac �eld) and with the perturbation S1 (describing the external electric

potential). In the algebra Fquant of symmetries S0, the subalgebra Gquant of symmetries of
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the operator G is given by quadratic commutation relations

[B1,B2] = iℏ(B0B3 + µB4), [B0,B1] = 2iℏB2,

[B2,B3] = −iℏ
2

(
B0B1 +B1B0

)
, [B0,B2] = −2iℏB1,

[B3,B1] = −iℏ
2

(
B0B2 +B2B0

)
, [B0,B3] = 0,

[B4,B0] = [B4,B1] = [B4,B2] = [B4,B3] = 0.

For this subalgebra, in the work we constructed all irreducible representations (correspon-

ding to the possible values of the Casimir operators in a given physical model), coherent

states, reproducing kernels and reproducing measures. The averaged Hamiltonian is

explicitly expressed as a function of the generators of the subalgebra Gquant, and its highest
term (in terms of the external �eld value) is written in an irreducible representation in

the form of the ordinary di�erential Hein operator [96] . For the eigenfunctions of the

original problem, an integral representation is constructed through polynomial solutions

of the Hein equation and coherent states of the subalgebra Gquant.

In section 3.5 (articles [2a], [18b]) for a particle in a Coulomb-Dirac �eld perturbed

by a uniform magnetic �eld, it is shown that the degeneracy of the higher part of the

spectrum can be removed only in distant (quadratic or higher) terms of perturbation

theory in the magnetic �eld.

Removal of degeneracy is controlled by dynamic algebra with polynomial commutation

relations

[Ai,Aj] = 0, [C,B] = f(A1,A2,A3,A4),

A1B = B(A1 − rℏ), CA1 = (A1 − rℏ)C,

A2B = B(A2 + lℏ), CA2 = (A2 + lℏ)C,

A3B = B(A3 + 2rℏA1 − r2ℏ2), CA3 = (A3 + 2rℏA1 − r2ℏ2)C,

A4B = B(A4 − 2lℏA2 − l2ℏ2), CA4 = (A4 − 2lℏA2 − l2ℏ2)C,

(28)

where the polynomial f in four variables is de�ned by the formula

f(A1, A2, A3, A4)
def
= ℏ

(
r
l−1∏
q=0

(
A4 + (2q + 1)ℏA2 − q(q + 1)ℏ2

)
×

r−1∑
j=0

(
2A1 + (r − 1− 2j)ℏ

) j−1∏
p=j+1−r

(
A3 + (2p+ 1)ℏA1 − p(p+ 1)ℏ2

)
− l

r−1∏
p=0

(
A3 + (2p+ 1)ℏA1 − p(p+ 1)ℏ2

)
×

l−1∑
j=0

(
2A2 + (l − 1− 2j)ℏ

) j−1∏
q=j+1−l

(
A4 + (2q + 1)ℏA2 − q(q + 1)ℏ2

))
.
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The structure of algebra (28) is determined by the arithmetic proportion

n+ 1 + |k|
2
+ k

2

n+ 1 + |k|
2
− k

2

=
l

r

between the principal quantum number n and quantum number k of magnetic charge.

Irreducible representations of dynamic algebra are realized in the space of polynomials

and de�ne model di�erential equations with polynomial solutions that determine the

leading term of asymptotics of eigenfunctions in the Zeeman e�ect.

In section 3.6 (articles [2a], [19b]) we studied the Zeeman-Stark e�ect in the hydrogen

atom (in addition, a non-uniform electric potential may be present). It is shown that in

the spectrum of a hydrogen atom, which is placed in crossed electric and magnetic �elds

(values ε), It is possible that resonant clusters may appear in which the eigenvalues are

located at a distance of O(ε2) from each other. In the remaining (non-resonant) clusters,

the spectral points are separated from each other by a distance of O(ε). In Section 3.6 we

present the main terms of the asymptotic behavior of the eigenvalues and eigenfunctions

in both resonant and non-resonant clusters. Resonant clusters are controlled by algebras

with polynomial permutation relations (28), which also arise in the problem of the Dirac

monopole in a uniform magnetic �eld. But the parameters l and r of the structure functions

of algebra (28) are determined here from the resonance condition

|H − 3nE|
|H + 3nE|

=
l

r

between electric and magnetic �elds E and H.

In this work, we constructed irreducible representations of algebra (28) (corresponding

to the possible values of the Casimir operators in a given physical model) by di�erential

operators acting on one variable, as well7 as its hypergeometric coherent states. Using

these states, the eigenfunctions of the original problem are expressed through solutions of

the model ordinary di�erential equation.

In Chapter 4 (articles [3a], [4a], [9a], [10a]) we study the symmetry algebra of a

quantum resonant harmonic oscillator (for brevity it is called �resonant�) in the case

of three or more frequencies . This algebra plays an essential role in the study of the

dynamics and spectrum of multidimensional physical systems, when states localized near

a stable equilibrium position are studied. Resonance algebra is described using a �nite

number of generators and polynomial relations. For the classical version of this algebra,

symplectic leaves and complex structures on them are studied, and for the quantum

version, irreducible representations, coherent states, reproducing kernels and reproducing

measures are constructed.
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In sections 4.1 � 4.7 (articles [3a], [4a]) we study the case of elliptic �irreducible�

resonance, when the oscillator frequencies are pairwise relatively prime natural numbers.

In section 4.8 (paper [9a]) we describe the reduction of the case of �reducible� elliptical

resonance, where frequencies are not necessarily coprime, to the case of irreducible reso-

nance. And in the last section 4.9 (article [10a]) we study three-frequency hyperbolic

resonance, when two frequencies are positive and the third is negative.

In Section 4.1 (papers [3a], [4a]) in the space L2(Rn) we consider the Hamiltonian

Ĥ[f ] =
1

2

n∑
j=1

(
− ℏ2

∂2

∂q2j
+ f 2

j q
2
j − ℏfj

)
(29)

of quantum harmonic oscillator with natural pairwise mutually prime frequencies f1, . . . , fn.

Its symmetries are given by the formulas

Ŝj
def
= ẑ∗j ẑj (j = 1, . . . , n), Âρ

def
= ẑ∗ρ+ ẑρ− (ρ ∈ R). (30)

Here ẑj = (ℏ∂/∂qj + fjqj)/
√

2fj are annihilation operators; R = {ρ ∈ Zn | ⟨f, ρ⟩ = 0} is

the set of �resonant� vectors; and for each vector ρ ∈ Zn the following two operations are

de�ned:

(ρ+)j
def
=

ρj, ρj ≥ 0,

0, ρj ≤ 0,
, (ρ−)j

def
=

0, ρj ≥ 0,

−ρj, ρj ≤ 0
(j = 1, . . . , n). (31)

Since the operators Âρ are not independent, the problem arises of selecting a minimal

basis from an in�nite set of such generators; this problem reduces to the problem of

describing the set M ⊂ Zn of vectors ρ numbering the generators Âρ. In the work [97]

it was shown that the set M is �nite and consists of �minimal� resonant vectors, which

cannot be obtained by adding two non-zero vectors from the intersection of the resonant

lattice mathcalR with one of the Cartesian quadrants.

Note that any resonant vector can be decomposed into a sum of minimal ones with

non-negative integer coe�cients:

σ =
∑

κ∈Mσ

nσκ · κ, nσκ ∈ Z+, Mσ ⊂ M. (32)

Here Mσ is the set of minimal vectors in the Cartesian quadrant to which the vector σ

belongs.

In the two-frequency case n = 2 the description of the set M is trivial. In the three-

frequency case n = 3, the problem of explicitly describing the set M of minimal resonant

vectors was solved in [3a].

Theorem 3. Let n = 3, and let frequencies f1, f2, f3 be pairwise relatively prime natural
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numbers. Let a pair of integers µ and ν be a solution to the Diophantine equation µf1 +

νf2 + f3 = 0 with the condition 0 ≤ ν ≤ f1 − 1.

Then the set M of minimal vectors in the resonant lattice R is the union of the

following subsets: M = M23 ∪M31 ∪M12 ∪M1 ∪M2 ∪M3.

If f1 = 1, then M23 consists of two vectors: (−f3, 0, f1) and (−f2, f1, 0).
If f1 ≥ 2, then in addition to these two vectors the subset M23 contains a sequence of

vectors
(
− (lf3+ν

(l)f2)/f1, lν (mod f1), l
)
, l = 1, . . . , f1−1. In this case, the vector with

number l is stored in this sequence only on condition that ν(l) < ν(j) for all j = 1, . . . , l−1.

The minimal vectors of the subsets M31 and M12 are obtained from the previous

descriptions of vectors in M23 by cyclic permutation of indices 1, 2, 3.

The minimal vectors in the subset Mj have the form (−σ), where σ is the minimal

vector in the subset Mkl, k and l are numbers that complement the number j to the triple

of indices 1, 2, 3.

In section 4.2 (article [4a]) we described the Poisson algebra of symmetries of a

resonant oscillator with real generators Sk (k = 1, . . . , n) and complex generators Aρ

(ρ ∈ M), subject to connections of Hermitian, commutative and noncommutative types,

as well as polynomial relations with respect to the Poisson bracket.

In Section 4.3 (paper [4a]) we describe the symplectic leaves Ω of this algebra.

Here the concept of a resonant basis is introduced. This is a set of linearly independent

minimal resonant vectors ρ(1), . . . , ρ(n−1) ∈ M such that for any resonant vector σ ∈ R
coe�cients of its expansion into vectors ρ(k) are integers:

σ =
n−1∑
k=1

N (k)
σ ρ(k), N (k)

σ ∈ Z. (33)

An atlas of maps covering symplectic leaves is described; in each map the corresponding

coordinate functions w1, . . . , wn−1 have no singularities; when moving from one map to

another, i.e. from a resonant basis {ρ(j)} to another resonant basis {ρ̃(j)}, these coordinates
change w → w̃ according to the power law. In addition, Darboux coordinates were

introduced and the K�ahler potential was calculated.

In section 4.4 (article [4a]) for each number M ∈ Z+ the Diophantine skeleton is

de�ned∆[M ]
def
= {k ∈ Zn+ | ⟨f, k⟩ =M}, the question of the number of d[M ] points in it is

considered (i.e., the question of the multiplicity of the eigenvalue ℏM of the Hamiltonian

of the oscillator (29)), and the concept of a vertex r ∈ ∆[M ] of a Diophantine skeleton

was introduced.

The point r ∈ ∆[M ] is called the vertex of the Diophantine skeleton ∆[M ] if there

exists a resonant basis such that for all l ∈ ∆[M ] all coe�cients of the expansion of the

vector l−r in basis vectors are non-negative. The vertex r and the corresponding resonant
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basis {ρ} constitute the frame R = (r, {ρ}) of the Diophantine skeleton ∆[M ]; rappers R

number the maps in the atlas.

In Section 4.5 (article [4a]) for each number M ∈ Z+ such that d(M) ̸= 0, we

constructed the Hilbert space L(Ω) antiholomorphic polynomials with inner product

(φ, ψ) =
1

(2πℏ)n−1

∫
Cn−1

φψJR dw dw. (34)

Here w are local complex coordinates in the map with number R (where R is the frame

of the Diophantine skeleton ∆[M ]); M = ⟨f, r⟩; the density of the JR measure is given

by the formula

JR =
Sr−Σρ

r!ℏ|r|
Q[M ](S), Q[M ](s)

def
=
s1 . . . sn

ℏ

∫ ∞

0

yM+|f |−1 exp

{
− 1

ℏ

n−1∑
j=1

sjy
fj

}
dy,

in which
∑
ρ =

∑n−1
j=1 ρ

(j).

In this paper, the reproducing kernel K of this space is calculated. In local complex

coordinates w in the map with number R it is a polynomial

KR =
∑
σ∈Rr

r!

ℏ|σ+|−|σ−|(r + σ)!
wNσwNσ . (35)

Here the subset Rr ⊂ R is given by the condition σ ∈ Rr ⇐⇒ (r + σ) ∈ ∆[M ], and the

vectors Nσ ∈ Zn−1
+ are determined by expansion (33) of the vectors σ in a resonant basis

from the frame R with vertex r.

In section 4.6 (article [4a]) the quantum resonance algebra A is described. For this

purpose, generalized Pochhammer symbols are prede�ned (s)ρ
def
= (s1)ρ1 . . . (sn)ρn , where

for any a ∈ R, m ∈ Z:

(a)m
def
=


(a+ ℏ) . . . (a+mℏ) for m ≥ 1,

1 for m = 0,

a(a− ℏ) . . . (a− ℏ(|m| − 1)) for m ≤ −1.

In addition, the following auxiliary operations are introduced on the lattice Zn (index j

runs through all values 1, . . . , n):

α, β → α · β, (α · β)j
def
= αjβj,

α, β → [α|β], [α|β]j
def
= min{(α−)j, (β+)j} −min{(β−)j, (α+)j},

α, β → [α, β], [α, β]
def
= α+ · β− − α− · β+,

where the operations α → α± are given in (31). Lattice vectors α, β are considered to

commute if their commutator [α, β] is equal to zero.
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The resonance algebra A is de�ned as an algebra with involution, generated by the

generators Aσ (σ ∈ M), Sj (j = 1, . . . , n) and the following constraints and commutation

relations.

� Quantum constraints of Hermitian type: S∗
j = Sj (j = 1, . . . , n), A∗

σ = A−σ (σ ∈ M).

� Quantum constraints of commutative type:
∏

ρ(Aρ)
kρ =

∏
σ(Aσ)

mσ for any families of

commuting vectors ρ, σ ∈ M and numbers kρ,mσ ∈ N such that
∑

ρ kρρ =
∑

σmσσ.

� Quantum constraints of noncommutative type: if the minimal vectors ρ and σ do not

commute and ρ ̸= −σ, then the relation AρAσ = gρ,σ(S)
∏

κ∈Mρ+σ
(Aκ)

nρ+σ
κ holds; here

gρ,σ(s)
def
= (s−ℏρ)[σ|ρ], s ∈ Rn; nρ+σκ are the coe�cients of decomposition (32) of the vector

ρ+ σ in minimal vectors.

� Commutation relations:

[Sj,Sk] = 0, [Sj,Aρ] = ℏρjAρ, [A−ρ,Aρ] = ℏF−ρ,ρ(S) (j, k = 1, . . . , n, ρ ∈ M),

where the polynomials Fρ,σ are given by the formula Fρ,σ = (gρ,σ − gσ,ρ)/ℏ .

In Section 4.7 (article [4a]) irreducible representations and coherent states of the

resonance algebra A are constructed.

In the abstract representation of resonance algebra by the operators Sj (j = 1, . . . , n),

Aσ (σ ∈ M) in some Hilbert space H each non-minimal resonant vector σ is associated

with the operator

Aσ =

I, if σ = 0,∏
κ∈Mσ

A
nσ
κ

κ , if σ ̸= 0,

where the subsets are Mσ and the numbers nσκ de�ned according to (32).

For a given number M ∈ Z+ such that d[M ] ̸= 0 it is assumed that for at least one

frame R = (r, {ρ}) in the space H there exists a normalized �vacuum� vector pR such that

AρpR = 0 (ρ ∈ R−
R), SjpR = ℏrjpR (j = 1, . . . , n), (36)

where the subset R−
R ⊂ R is given by the condition ρ ∈ R−

R ⇔ (r + σ) ̸∈ ∆[M ].

Theorem 4. (a) In a local map with number R = (r, {ρ}), the coherent states of the

algebra A are given by the formula

PR(w) =
∑

t∈∆[M ]

√
ℏ|r|r!
ℏ|t|t!

n−1∏
k=1

wN
(k)
t−rpt, where pt

def
= (ℏr)−1/2

t−r At−rpR.

Here the non-negative exponents N
(k)
t−r are determined by the decomposition (33) of the

resonance vector t− r with respect to the basis {ρ}.
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Vectors {pt t ∈ ∆[M ]} form an orthonormal basis in the space HM of an irreducible

representation of the algebra A, where the Casimir operator

f1S1 + · · · + fnSn takes the value ℏM . The operators of representation of the algebra

A in this basis have the form Sjp
t = ℏtjpt (j = 1, . . . , n), Aρp

t = (ℏt)1/2ρ pρ+t , (ρ ∈ R).

(b) Inner product of coherent states (P,P)H coincides with the reproducing kernel (35)

of the space L(Ω).

(c) Di�erential operators

◦
Sj

def
= ℏr + ℏ

n−1∑
k=1

ρ(k)wk
∂

∂wk
(j = 1, . . . , n),

◦
Aσ

def
= (

◦
S)σ−

n−1∏
k=1

(wk)
Nσ

k (σ ∈ M), (37)

given in local maps, are consistent on the intersections of maps and de�ne an irreducible

representation quantum resonance algebra A in Hilbert space L(Ω) antiholomorphic poly-
nomials with scalar product (34). The corresponding vacuum vector is the identity function.

(d) Using the coherent transform P : L(Ω) → H given by

P [ψ]
def
=

1

(2πℏ)n−1

∫
Cn−1

ψ(w)P(w)JR dw dw,

abstract representation of the resonant algebra A in Hilbert space H with vacuum vector

(36) is intertwined with the irreducible representation (37):

AσP [ψ] = P [
◦
Aσψ], SjP [ψ] = P [

◦
Sjψ].

If H = L2(Rn), and the representation of the algebra A is given by formulas (30), for

the basis vectors pt and coherent states PR(w), explicit formulas are obtained through

Hermite polynomials.

coprime

Sections 4.1 � 4.7 are devoted to the study of �irreducible� resonance, when all

frequencies fj of the oscillator Ĥ[f ] (29) are coprime natural numbers.

In section 4.8 (paper [9a]) we study the �reducible� elliptic case of three-frequency

resonance, when the frequencies g1, g2, g3 of the oscillator Ĥ[g] are arbitrary natural

numbers (of course, it is assumed that GCD{g1, g2, g3} = 1).

In this work, the reducible frequency vector (g1, g2, g3) is associated with an irreducible

frequency vector (f1, f2, f3) according to the formula fj = gj/(mkml), where mj =

GCD{gk, gl},
(j, k, l) is a cyclic permutation of the numbers (1, 2, 3), and it is shown that the study

of the symmetry algebra of the oscillator Ĥ[g] reduces to the study of the symmetry

algebra of the oscillator hatH[f ]. As a result, irreducible representations in Hilbert spaces

of antiholomorphic polynomials, coherent states, reproducing kernels and reproducing

measures were obtained for reducible resonance.
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In section 4.9 (paper [10a]) we studied three-frequency hyperbolic resonance, i.e.

the case when two frequencies of the oscillator Ĥ[g] (29) are positive, and the third is

negative.

The study of the hyperbolic case of resonance is in many ways similar to the study of

the reducible case elliptical case. Moreover, the relations de�ning the algebra of hyperbolic

resonance, formally coincide with the relations for the elliptic case. But the signs of the

structural constants of resonant algebra in the elliptic and hyperbolic cases are, of course,

di�erent. Therefore the situation in the elliptic and hyperbolic cases are fundamentally

di�erent. Thus, in the elliptic case the symplectic leaves of Poisson algebra have compact

closure, and irreducible representations of quantum resonant algebras are �nite-dimensional.

And in the hyperbolic case, symplectic leaves (of maximal dimension) have noncompact

closure, and irreducible representations are in�nite-dimensional.

Chapter 5, consisting of �ve sections, contains a series of problems on traps of charged

particles [86, 87, 88].

In all problems of this cycle, the leading term of the Hamiltonian describes the so-called

ideal Penning trap and represents the Hamiltonian of a hyperbolic harmonic oscillator

with three frequencies. If these frequencies are in resonance, then the spectrum of the

Hamiltonian has in�nite degeneracy. In this case, standard perturbation theory is not

applicable to the total Hamiltonian of the system. But it is possible to apply quantum

averaging followed by reduction into the symmetry algebra of an ideal trap. This is

resonant algebra, described in Chapter 4. In this work, we consider the question of at

what trap parameters a frequency resonance can occur, and what resonant proportions

arise. We studied the lower partial resonance, when only two of the three frequencies are

commensurate, and the lower full resonance, when all three frequencies are commensurate.

The traps studied here di�er not only in their resonant proportion, but also in the

con�guration of the electric and magnetic �elds. The electric �eld is created by electrodes

of various shapes; These are plates that form a cube, �at round or rectangular electrodes,

and a cylindrical electrode. The perturbing magnetic �eld is either a uniform or

inhomogeneous Io�e �eld.

For each such system, the averaged Hamiltonian is explicitly calculated and written as

a function of the generators of the resonance algebra of an ideal trap. In some problems

of this cycle, the spectrum degeneracy is not removed in the subprincipal term of the

averaged Hamiltonian. Then we examine its �secondary� symmetry algebra, which again

turns out to be resonant, and the averaging procedure in the next term of perturbation

theory is performed again. The twice averaged Hamiltonian is written as a function of the

generators of the secondary resonant algebra.

Next, the technique of irreducible representations and coherent states is used. More

precisely, using the integral representation of eigenfunctions through coherent states, the

spectral problem is rewritten in an irreducible representation. As a result, �rstly, the
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dimension of the space in which solutions are sought is reduced, and, secondly, the original

partial di�erential equation is reduced to an ordinary di�erential equation.

In Section 5.1 (papers [5a], [27c]) we study the cubic Penning-Io�e trap with resonance

3 : (−1) and algebra with cubic commutation relations

[Â1, Â2] = 0, [Â1, Â4] = −2iℏÂ5, [Â1, Â5] = 2iℏÂ4,

[Â2, Â4] = −6iℏÂ5, [Â2, Â5] = 6iℏÂ4, [Â3, Âk] = 0 (k = 1, 2, 4, 5),

[Â4, Â5] = iℏ(15ℏ2Â1 + 23ℏ2Â2 + 9Â1Â
2
2 + Â3

2).

(38)

For algebra (38), we constructed irreducible representations by second-order di�erential

operators acting in Hilbert spaces of antiholomorphic functions of one complex variable,

found reproducing measures with the help of which the inner product is de�ned in

representation spaces, and also obtained hypergeometric coherent states.

The averaged Hamiltonian is expressed as a function of the generators of this algebra

and rewritten in an irreducible representation as an ordinary di�erential operator of Heun

type [96].

For asymptotic eigenfunctions of the Penning trap Hamiltonian, we constructed an

integral representation in terms of the hypergeometric coherent states of the cubic resonant

algebra and in terms of solutions of the spectral problem for Heun's ordinary di�erential

equation.

In Section 5.2 (papers [6a], [20b], [21b]) we study the double resonance in the

Penning-Io�e trap. The main resonance 2 : (−1) : 2 arises in the leading term of the

Hamiltonian between the frequencies of the ideal Penning trap. It corresponds to an

algebra with quadratic commutation relations:

[Ŝ+, Âρ] = ℏÂρ, [Ŝ0, Âρ] = −ℏÂρ, [Ŝ+, Âσ] = ℏÂσ, [Ŝ−, Âσ] = 2ℏÂσ,

[Ŝ−, Âθ] = 2ℏÂθ, [Ŝ0, Âθ] = ℏÂθ, [Âρ, Â
∗
σ] = −ℏA∗

θ, [Âρ, Âθ] = ℏÂσ,

[Âσ, Â
∗
θ] = −4ℏ

(
Ŝ− +

ℏ
2

)
Âρ, [Â∗

σ, Âσ] = ℏ(4Ŝ+Ŝ− + Ŝ2
− + 2ℏŜ+ + 3ℏŜ− + 2ℏ2),

[Â∗
ρ, Âρ] = ℏ(Ŝ0 − Ŝ+), [Â∗

θ, Âθ] = ℏ(Ŝ2
− + 4Ŝ−Ŝ0 + 3ℏŜ− + 2ℏŜ0 + 2ℏ2)

(other commutators are either conjugates to those listed or equal to zero)

(39)

and constraints

ÂρÂ
∗
ρ − Ŝ+(Ŝ0 + ℏ) = 0, ÂσÂ

∗
σ − Ŝ+Ŝ−(Ŝ− − ℏ) = 0, ÂθÂ

∗
θ − Ŝ0Ŝ−(Ŝ− − ℏ) = 0,

ÂρÂ
∗
σ − Ŝ+Â

∗
θ = 0, ÂσÂ

∗
θ − Ŝ−(Ŝ− − ℏ)Âρ = 0, ÂρÂθ − (Ŝ0 + ℏ)Âσ = 0,

Ŝ∗
0 = Ŝ0, Ŝ∗

− = Ŝ−, Ŝ∗
+ = Ŝ+.

(40)
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The secondary resonance k : l arises in the subprincipal term of the Hamiltonian. This

resonance is described by algebra with polynomial commutation relations. In the case of

lower resonance 1 : 0, this algebra is quadratic:

[Â0, B̂] = 2ℏB̂, [Â−, B̂] = 2ℏB̂, [Â+, B̂] = 0,

[B̂∗, B̂] = 2ℏ(Â2
0 + 2Â0Â− + 3ℏÂ0 + ℏÂ− + 2ℏ2),

Â∗
0 = Â0, Â∗

− = Â−, Â∗
+ = Â+.

(41)

For algebra (41), the following results were obtained in the work: irreducible

representations of antiholomorphic functions by ordinary di�erential operators of second

order in Hilbert spaces; reproducing kernels de�ned by the hypergeometric series; families

of coherent states, which are the result of applying the Bessel function from the creation

operator B̂∗ to the vacuum vector; reproducing measures expressed through the Tricomi

function.

Using a coherent transform, the doubly averaged spectral problem for the trap

Hamiltonian is rewritten in the irreducible representation of algebra (41) in the form

of a second-order ordinary di�erential equation.

For the eigenstates of the Hamiltonian under study, we constructed an integral

representation in terms of the solution of this di�erential equation and in terms of coherent

states of algebra (41), to which two unitary averaging operators (arising in two averaging

procedures) are applied.

In section 5.3 (articles [7a], [22b], [28c], [29c]) for a planar trap with round electrodes

we studied the case of main resonance 2 : (−1) : 2 and secondary resonance 6 : (−1). The

main resonance is described by algebra (39), (40), and the secondary resonance is described

by its subalgebra with quadratic commutation relations. In this problem, in addition to

the quantum reduction of the trap Hamiltonian, its classical version is studied; here the

emphasis is on the study of the doubly averaged Hamiltonian, written as a function of

the generators of the Poisson 6 : (−1)-resonant algebra

{A,B} = 2iB, {B,B} = i(6A2 + 4dA), A = A.

We investigated the dependence of the picture of its equilibrium points on the trap

parameters.

In Section 5.4 (papers [8a], [23b], [30c]) we studied the planar Penning trap with

rectangular electrodes. We have obtained a relationship between the control (geometric

and physical) parameters of the trap, leading to a 3 : (−1) resonance between the oscillator

frequencies. This resonance is described by algebra (38). In addition to the quantum

version of this algebra, we also considered the classical one - the Poisson algebra of

symmetries of a 3 : (−1)-resonant oscillator. On the symplectic leaves of this algebra,

the level lines of the averaged Hamiltonian are studied.

39



In Section 5.5 ([11a], [12a]), the last problem of this cycle - about a cylindrical

Penning trap with resonance 2 : (−1) : 2 - is studied using a new approach to calculating

the coe�cients of the averaged Hamiltonian. Namely, with the help of a twisted product,

the procedure for averaging the Hamiltonian of a harmonic oscillator (including a hyperbolic

one) perturbed by a di�erential operator with polynomial coe�cients is transferred to

the space of a graded symbol algebra. The averaging procedure performed in symbol

space immediately gives an expression for the averaged Hamiltonian as a function of the

generators Ŝj, Âρ (30) of the resonance algebra described in Section 4.6.

The developed approach is based on the fact that an arbitrary di�erential operator

Ĥ with polynomial coe�cients on Rn can be uniquely represented as a �nite linear

combination Ĥ =
∑

ρ∈Zn pρ(Ŝ)Âρ with polynomial coe�cients pρ of the �actions� Ŝj,

and it can be uniquely associated with its symbol, called the vs-polynomial in the paper.

On the space of vs-polynomials, we de�ned the ∗-product operation corresponding to the

usual associative product of di�erential operators with polynomial coe�cients. Next, the

quantum averaging procedure is rewritten in symbol space. In this form, the cumbersome

routine calculations associated with averaging are easily transferred to a computer and

implemented, for example, in the Wolfram Mathematica symbolic computing package.

In Chapter 6 (paper [13a]), consisting of three sections, instead of the family of

ordinary coherent states of the Heisenberg algebra in L2(R), it is proposed to use a family

of distributions in a rigged Hilbert space � Gelfand's triple. It is formed from two families

of functionals on the Schwarz space. Each of these families has the key properties of

ordinary coherent states: it intertwines representations of a given algebra, has the property

of completeness, and minimizes the product of uncertainties in the Heisenberg relation.

But, unlike ordinary coherent states, which are eigenstates of the annihilation operator,

the constructed functionals belong to the continuous spectrum of Hermitian generators

of the Heisenberg algebra. The inner product of functionals from di�erent families has

the main properties of the overlap function of ordinary coherent states: it is continuous

in parameters, satis�es the reproducing identity, and has the corresponding geometric

meaning. The listed properties give grounds to call the union of the constructed two

families of functionals a family of coherent Schwarz distributions.

In Section 6.1 in a rigged Hilbert space (Gelfand triple) S ⊂ L2(R) ⊂ S ′, where S
is a Schwartz space, and S ′ is the conjugate space of tempered distributions, we de�ned

coherent distributions of the Heisenberg algebra and described their properties.

The family of coherent Schwartz distributions is de�ned as the union

{X+
x+ , X

−
x− |x+, x− ∈ R} of the following two families of functionals:

X± =
{
X±
x (q) = exp

{
± i

h
x q ∓ i

4h
x2
}
X±

0 (q) | x ∈ R
}
, (42)
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where

X±
0 (q) =

1√
2πh

exp
{
∓ i

2h
q2 ± iπ

8

}
.

Theorem 5. (a) The functionals X±
x (q) (42) are generalized eigenfunctions of the

continuous spectrum of Hermitian generators Â± = q̂∓ p̂ (where q̂ ≡ q, p̂ = −ih ∂/∂q) of
Heisenberg algebra [Â−, Â+] = −2ihÎ. They satisfy the equations

Â∓X
±
x (q) = xX±

x (q), Â±X
±
x (q) = ∓2ih

∂

∂x
X±
x (q).

(b) Every family X±
x is complete in S. Any vector ψ ∈ S can be expanded into

functionals {X±
x | x ∈ R}:

ψ =

∫
R
⟨ψ, X±

x ⟩X±
x dx.

(c) The inner product of two functionals from the same family has the form

⟨X±
x′ , X

±
x′′⟩ = δ(x′ − x′′). The scalar product of two functionals from di�erent families

is given by the function

K(x+, x−)
def
= ⟨X+

x+ , X
−
x−⟩ =

1

2
√
πh

exp
{ i

2h
x+ x−

}
(43)

and satis�es the reproducing property∫
R
dy+

∫
R
dy−K(x+, y−)K(y+, x−)M(y+, y−) = K(x+, x−)

with (complex) density measure

M(x+, x−) =
1

2
√
πh

exp
{
− i

2h
x+ x−

}
. (44)

(d) Coherent transform K[±] : L2(Rq) → L2(Rx±), given by the formula

K[±][ψ(q)] = ⟨ψ(q), X±
x±(q)⟩,

is unitary. The inverse transform is given by the formula

(K[±])−1[φ(x±)] =

∫
R
φ(x±)X±

x±(q) dx
±.

The transform K[±] intertwines an irreducible Hermitian representation of the Heisenberg

algebra by operators Â− = q − ih∂/∂q, Â+ = q + ih∂/∂q in the space L2(Rq) with an

equivalent irreducible Hermitian representation of this algebra by operators
[±]

A∓ = x±,
[±]

A± = ±2ih ∂/∂x± in the space L2(Rx±):

K[±] ◦ Â− =
[±]

A− ◦ K[±], K[±] ◦ Â+ =
[±]

A+ ◦ K[±].
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In Section 6.1 we also discuss the geometric meaning of the generalized reproducing

kernel K(x+, x−) (43) and density M(x+, x−) (44) of the reproducing measure.

In section 6.2 (paper [13a]) we showed that the sequence of wave packets

{ψ±
x,n(q)

def
=

∫
R
δn(x− y)X±

y (q) dy |n ∈ N}, where δn(x)
def
= ne−n

2x2/
√
π,

approximates the coherent distribution (42), and the normalized wave packets

ψ̃±
x,n(q)

def
= ψ±

x,n(q)/∥ψ±
x,n(q)∥L2(Rq)

of this sequence provide a minimum to the product of uncertainties in the Heisenberg

relation

(∆ψÂ+) · (∆ψÂ−) ≥ h

for operators Â− and Â+. But for the operators of coordinate q̂ and momentum p̂ the

product of uncertainties on the sequence of normalized wave packets ψ̃±
x,n for n to∞ tends

to in�nity.

In section 6.3 (article [13a]), using a coherent transform, the integral kernel of which

is coherent distributions, we solved the spectral problem of the continuous spectrum of

the Hamiltonian of an inverted oscillator

Ĥ =
1

2

(
− h2

∂2

∂q2
− q2

)
. (45)

This shows that coherent distributions can be used to solve problems with a continuous

spectrum.

In addition, in this section it is proven that the family of coherent distributions (42)

satis�es not only the �rst two (general) Gazeau-Clauder axioms

(the axiom of continuity of the overlap function with respect to parameters and the

property of completeness), but also two other (special) axioms of coherent states - the

axiom of temporal stability and the so-called identity of action. These axioms hold

for a normalized family of coherent distributions X̃±
x =

√
|x|X±

x with respect to the

Hamiltonian (45) of the inverted oscillator. According to these axioms, the evolution of a

normalized coherent distribution over time always remains a coherent distribution; in this

case, the evolution of the parameters of coherent distributions corresponds to the classical

evolution of coordinate functions (with which the parameters of coherent distributions are

associated) in the phase space of the inverted oscillator.

At the conclusion of the dissertation, the results obtained are brie�y listed.
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