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Introduction

In this thesis we study derived categories of coherent sheaves on algebraic varieties from several different

points of view. Let X be an algebraic variety over a field k. It has an associated abelian category Coh(X)

of coherent sheaves on X. We can take the derived category D(Coh(X)) of that abelian category. The key

object for this object is the following:

0.1. Definition. The bounded derived category of coherent sheaves Db
coh(X) is the full subcategory of

D(Coh(X)) consisting of complexes of sheaves with only finitely many nonzero cohomology sheaves.

Remark. For technical reasons it is better to use another definition of Db
coh(X): as a full subcategory in the

derived category of the abelian category of quasi-coherent sheaves, consisting of complexes with only finitely

many nonzero cohomology sheaves, for which all cohomology sheaves are coherent. Since for us X is always a

Noetherian scheme, this definition is equivalent to the one above [Huy06, Prop. 3.5].

The category Db
coh(X), which we will usually refer to as the derived category of the variety X, is a very

large invariant of the variety X. Many more comprehensible invariants, such as algebraic K-theory or

Hochschild (co)homology, can be recovered from the derived category of X. Despite the fact that the derived

category of a variety is usually too large to be "computed" in a satisfactory sense, it can be productively

studied, for example, by examining its connection to the derived categories of other varieties. Examples of

such results and descriptions of the methods employed can be found in the survey [BO02].

The study of derived categories of algebraic varieties is a rapidly developing area of algebraic geometry.

With regards to the history of this field we will mention only two classical articles that have had a significant

impact on its further development. In the 1978 article [Bei78], A. Beilinson studied the derived category

Db
coh(Pn) of projective space Pn and described it in terms of linear-algebraic objects. Using the terminology

that didn’t exist at that time, it can be said that Beilinson constructed an exceptional collection for Pn. His

article served as an important step in the future study of exceptional objects, exceptional collections, and

semi-orthogonal decompositions. A bit later, in 1981, the article [Muk81] by S. Mukai was published, where

he proved that for any abelian variety A there exists an equivalence of derived categories Db
coh(A) ' Db

coh(A∨),

where A∨ ∼= Pic0(A) is the dual abelian variety of A. This equivalence identifies degree-zero line bundles

on A with the skyscraper sheaves over the corresponding points of Pic0(A). It should be noted that the

varieties A and A∨ may not be isomorphic. This equivalence allowed Mukai to answer some questions related

to Picard bundles and demonstrated that sometimes, extra symmetries arise between derived categories, and

those symmetries can be highly non-trivial at the geometric level.

An important tool for studying derived categories is the concept of semi-orthogonal decomposition. It

is a way to represent a category as a "gluing" of several smaller subcategories. We will need an auxiliary

definition.
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0.2. Definition. A strictly full triangulated subcategory A ⊂ Db
coh(X) is called admissible if the embedding

functor A ↪→ Db
coh(X) has both left and right adjoint functors.

At first glance, the property of admissibility of a subcategory may not seem very restrictive, but its

simplicity is deceptive: admissible subcategories are, in general, a rare occurrence. The existence of adjoint

functors between "large" triangulated categories is often obtained automatically (see, for example, the article

[Nee96]), but because we are working with the "small" category Db
coh(X) rather than the unbounded derived

category of quasi-coherent sheaves, checking the admissibility condition is much more challenging.

0.3. Definition. A set of admissible subcategories 〈A1, . . . ,An〉 in Db
coh(X) is said to form a (strong) semi-

orthogonal decomposition of the category Db
coh(X) if the following conditions are satisfied:

• The subcategories A1, . . . ,An jointly generate Db
coh(X) in the sense that the smallest triangulated

subcategory of Db
coh(X) that contains each Ai coincides with Db

coh(X).

• Let Ai ∈ Ai and Aj ∈ Aj be two objects. If j > i, then Hom•Db
coh(X)(Aj , Ai) = 0 (semi-orthogonality).

Remark. In certain situations, it can be useful to weaken the concept of a semi-orthogonal decomposition

by allowing the subcategories Ai not to be admissible. In many cases (for instance, if X is a smooth and

proper variety), admissibility arises automatically. All the semiorthogonal decompositions appearing in this

work have admissible components, so we omit the qualifying adjective "strong" and simply refer to them as

semiorthogonal decompositions.

Admissible subcategories are closely related to semiorthogonal decompositions. For example, the following

fact holds.

0.4. Lemma ([BK90]). Let X be a smooth projective variety and let A ⊂ Db
coh(X) be an admissible subcategory.

Consider the full subcategory ⊥A ⊂ Db
coh(X) defined as follows:

⊥A := {F ∈ Db
coh(X) | ∀A ∈ A Hom•(F,A) = 0}.

Then ⊥A is an admissible subcategory of Db
coh(X) and the pair 〈A,⊥A〉 is a semi-orthogonal decomposition of

Db
coh(X). For an analogously defined subcategory A⊥ the pair 〈A⊥,A〉 is also a semi-orthogonal decomposition

of Db
coh(X).

Let us note an important example of a semi-orthogonal decomposition, constructed by Orlov [Orl93]:

0.5. Theorem ([Orl93]). Let X be a smooth variety, let j : Z ↪→ X be a smooth subvariety of codimension c,

and let π : Y → X be the blow-up of X along Z. Denote by j : E ↪→ Y the inclusion of the exceptional divisor

and by p : E → Z the restriction of the morphism π to E. Then there exists a semiorthogonal decomposition

Db
coh(Y ) = 〈π∗Db

coh(X),Φ0(Db
coh(Z)), . . . ,Φc−2(Db

coh(Z))〉,
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where the functors π∗ : Db
coh(X)→ Db

coh(Y ) and

Φi : F ∈ Db
coh(Z) 7→ j∗(p

∗(F )⊗Oπ(i)) ∈ Db
coh(Y )

are inclusions of admissible subcategories.

Constructing semiorthogonal decompositions on a certain class of varieties often proves to be a challenging

task. Currently, there are numerous examples of semiorthogonal decompositions, and there exist several

methods for creating new decompositions. However, many open questions remain. Note that there are

not so many known general properties of semiorthogonal decompositions that let us control their behavior.

Some facts about their general behavior tend to have a negative character; for instance, semiorthogonal

decompositions do not satisfy the Jordan–Holder property, meaning that two distinct decompositions of the

same category do not admit a "common subdecomposition" in any reasonable sense. Explicit counterexamples

to this property have been constructed in [Kuz13] and [BGS14]. On a positive note, the theorem of Kawatani

and Okawa states that admissible subcategories are closed with respect to small deformations of objects

[KO15].

The main part of this dissertation is divided into three sections, each of which heavily relies on the

concepts of semiorthogonal decompositions and admissible subcategories.

The results of this thesis are published as three articles:

(a) Pirozhkov D. Semiorthogonal Decompositions on Total Spaces of Tautological Bundles // International

Mathematics Research Notices. 2022. №3. P. 2250–2273.

(b) Pirozhkov D. Rouquier dimension of some blow-ups // European Journal of Mathematics. 2023. Vol. 9,

art. 45.

(c) Pirozhkov D. Stably semiorthogonally indecomposable varieties // Épijournal de Géométrie Algébrique.

2023. Vol. 7.

In the Appendix A of the thesis, which is described in Section 1 of this summary, a semiorthogonal

decomposition is constructed for a variety X obtained as the total space of a certain vector bundle over

the Grassmannian. This decomposition happens to be similar to the exceptional collection in the derived

category of the Grassmannian itself constructed by Kapranov. A global version of this result is also proven,

which can be regarded as a generalization of Theorem 0.5.

In the Appendix B of the thesis, which is described in Section 2 of this summary, we confirm for some class

of varieties that a certain invariant of triangulated categories, known as Rouquier dimension, of the derived

category of coherent sheaves equals the usual geometric dimension of the variety. Conjecturally this is true for

all varieties, although it is known to be the case for only a very small list. Semiorthogonal decompositions lead

to an upper bound on the Rouquier dimension in terms of the Rouquier dimensions of each of its components,
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but typically, this estimate is highly inefficient. Using some very specific semiorthogonal decompositions we

confirm the conjecture for, among other examples, the blow-up of nine distinct points on a projective plane

or for the blow-up of three points in Pn for any n.

In the Appendix C of the thesis, which is described in Section 3 of this summary, the concept of

stable indecomposability is introduced for the derived category of a variety. A simple consequence of stable

indecomposability is that the derived category of the variety is indecomposable, meaning it does not admit

non-trivial semiorthogonal decompositions, and furthermore, the same holds true for all subvarieties. Stable

indecomposability is proved for abelian varieties, and this is used for some results regarding phantom

subcategories.

1 Semiorthogonal decompositions and tautological bundles

Let V be a vector space of dimension n. Denote by X = Gr(k, V ) the Grassmannian variety of k-

dimensional linear subspaces in V . Let U and Q be, respectively, the tautological subbundle and quotient

bundle on X, fitting into a short exact sequence:

0→ U → V ⊗OX → Q→ 0.

Consider the variety Y := TotGr(k,V )(U), which is the total space of the tautological subbundle on X,

and denote by π : Y → X the projection morphism. The points on Y are pairs (v ∈ V,W ⊂ V ), where W

is a k-dimensional subspace of V containing the vector v. Let p : Y → A(V ) be a forgetful morphism

that forgets the choice of a subspace. Here A(V ) is the vector space V considered as an algebraic variety,

i.e., Spec (Sym•(V ∨)).

The fiber of the morphism p over a point v ∈ A(V ) is a set of all k-dimensional subspaces of V

containing the vector v. In other words, the fiber over any nonzero vector is isomorphic to a Grassman-

nian Gr(k− 1, V/〈v〉) ' Gr(k− 1, n− 1), embedded into Gr(k, V ). The fiber over the zero vector is the whole

Gr(k, V ) ' Gr(k, n).

Consider what happens in the case when k = 1. In this case X ' Pn−1, and the morphism from Y to

A(V ) ' An is, as one can easily verify, the blow up of the affine space at the origin. For the projective space,

there exists a Beilinson exceptional collection:

Db
coh(Pn−1) = 〈OPn−1(−n+ 1), . . . ,OPn−1(−1),OPn−1〉, (1.1)

And for the blow-up of the affine space at the origin, Theorem 0.5 implies the existence of a semiorthogonal

decomposition:

Db
coh(Y ) = 〈j∗OPn−1(−n+ 1), . . . , j∗OPn−1(−1), Db

coh(An)〉, (1.2)
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where j : Pn−1 ↪→ Y is the inclusion of the exceptional divisor of the blow-up, and the subcategory equivalent

to Db
coh(An) is generated by the structure sheaf OY . Observe that the decompositions (1.1) and (1.2) have a

very similar structure. Furthermore, the case k = n− 1, where the generic fiber of the morphism p : Y → An

is isomorphic to Pn−2 and the central fiber is isomorphic to Pn−1, was studied by Orlov, who in [Orl06,

Prop. 2.10] constructed a semiorthogonal decomposition for Db
coh(Y ) similar to Beilinson’s exceptional

collection for projective space.

The main result of this section of the thesis, based on the paper [Pir22], is the existence of an analogous

semiorthogonal decomposition of Db
coh(Y ) for other values of k:

1.1. Theorem ([Pir22, Th. 3.5]). There exists a semiorthogonal decomposition

Db
coh(Y ) =

〈(
n− 1

k

)
copies of Db

coh(Vect),

(
n− 1

k − 1

)
copies of Db

coh(A(V ))

〉
.

Note that in the published version the variety Y is referred to as Tot(U).

In the case k = 1 this decomposition agrees with the Orlov’s formula (1.2) for a blow-up of a point in an

affine space. Since any blow-up of a smooth subvariety in a smooth variety locally looks like a product of

a point blow-up in an affine space times another affine space, the decomposition (1.2) for a point blow-up

can be used to deduce the general blow-up formula for derived categories (Theorem 0.5). Similarly, our

Theorem 1.1 can be transformed into a global statement:

1.2. Theorem ([Pir22, Th. 4.5]). Let X be a Cohen–Macaulay variety, let E be a vector bundle on X, and let

s ∈ Γ(X,E) be a regular global section of E. Denote by Z the zero locus of s, and by Y ⊂ GrX(k,E) the

subvariety in the relative Grassmannian of k-dimensional subspaces in the fibers of E consisting only of those

subspaces which over each point x ∈ X contain the vector s(x) ∈ Ex. Then there exists a semiorthogonal

decomposition

Db
coh(Y ) =

〈(
n− 1

k

)
copies of Db

coh(Z),

(
n− 1

k − 1

)
copies of Db

coh(X)

〉
.

Note that in the published version the variety Y is referred to as Grs(k,E).

Note that the variety we get in the basic special case where X = An, the vector bundle E is a trivial rank-n

bundle, and s is the tautological section, is exactly the variety we called Y in Theorem 1.1. This special case

together with the theory of relative semiorthogonal decompositions imply the statement in general.

The decompositions in Theorems 1.1 and 1.2 are constructed explicitly. We have noted above the similarity

between the decomposition (1.1) for the projective space and the decomposition (1.2) for a point blow-up,

which is the k = 1 case of Theorem 1.1. In general, an important ingredient of the proof of Theorem 1.1 is a

specific semiorthogonal decomposition (more precisely, an exceptional collection) of the derived category of

the Grassmannian Gr(k, V ). Note though, that unlike the cases k = 1 and k = n−1, the standard exceptional

collection on the Grassmannian, constructed by Kapranov in [Kap84], is not suitable for constructing the
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desired semiorthogonal decomposition of Db
coh(Y ). Instead, we use a particular mutation of the Kapranov’s

collection.

2 Rouquier dimension of some blow-ups

Let T be a triangulated category. In the paper [Rou08] Rouquier defined an invariant of T which later

became known as the Rouquier dimension. In order to define it, we need a piece of notation introduced in

the paper [BV03]: for an object E ∈ T and an integer k ∈ Z≥0 we denote by 〈E〉k the following inductively

defined subset of objects in T :

• 〈E〉0 is the set of finite direct sums of shifts of the copies of the object E, as well as direct summands of

all objects like that. In other words, this is the set of objects that may obtained from E using only three

kinds of operations: direct sums, shifts in the triangulated category, and passing to a direct summand.

• 〈E〉k is defined as the set of all objects F ∈ T that fit into a distinguished triangle F0 → F → Fk−1,

where F0 ∈ 〈E〉0 and Fk−1 ∈ 〈E〉k−1, as well as all direct summands of such objects F .

An object E such that for some k ∈ Z≥0 we have 〈E〉k = T is called a strong generator of the category T .

We are mostly interested in the geometric setting, and for the derived categories of coherent sheaves on

smooth varieties strong generators always exist [BV03].

2.1. Definition. The Rouquier dimension of a triangulated category T is the smallest integer k ∈ Z≥0 such

that there exists a strong generator E ∈ T with 〈E〉k = T . By convention the dimension is ∞ if there are no

strong generators in T . The Rouquier dimension is denoted by rdim(T ).

Determining the Rouquier dimension of a category is a difficult task since we need to consider all possible

strong generators. In a geometric situation, i.e., for the triangulated category Db
coh(X) where X is a smooth

variety, Rouquier proved the following inequality

dim(X) ≤ rdim(X) ≤ 2 dim(X).

Here and below we use the shorthand notation rdim(X) instead of rdim(Db
coh(X)) when X is a smooth variety.

It turns out that for all varieties X where rdim(X) could be computed exactly the Rouquier dimension is

always equal to the usual geometric notion of dimension. Orlov conjectured that this should always be the

case:

2.2. Conjecture ([Orl09]). For any smooth projective variety X the inequality rdim(X) = dim(X) holds.

There are not so many varieties for which Rouquier dimension can be computed. In the paper [Pir23a], on

which this section of the thesis is based, we add some new varieties to the list of known cases of Conjecture 2.2.

The varieties we consider are some blow-ups of projective spaces. The proof involves a construction of a
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semiorthogonal decomposition with special properties, which we use to bound the Rouquier dimension from

above by the geometric dimension. The main result is the following theorem:

2.3. Theorem ([Pir23a, Th. 4.1]). Let {Zb}b∈B be a set of at most three pairwise disjoint linear subspaces in Pn,

where each Zb is either a point or a linear subspace of codimension 2. Let X be the blow-up of Pn in the

union of those subspaces. Then X satisfies Orlov’s conjecture, i.e., rdim(X) = dim(X) = n.

Note that in the published article the notation for the blow-up is Y rather than X.

If the dimension n of the projective space is equal to 2 or 3, the construction of a semiorthogonal

decomposition with special properties on the blow-up can be applied multiple times, which leads to stronger

and more interesting statements:

2.4. Theorem ([Pir23a, Prop. 4.2]). Consider a tower of blow-ups

X3 → X2 → X1 → Xo = P2,

where each map Xi → Xi−1 is a blow-up in at most three distinct points. Then X3 satisfies Orlov’s conjecture,

i.e., rdim(X3) = 2.

Remark. Note that we can use a tower of this form to get as the resulting surface X3 a blow-up of any nine

distinct points on P2, as well as any del Pezzo surface. For del Pezzo surfaces Orlov’s conjecture was proved

in [BF12] using a completely different method.

2.5. Theorem ([Pir23a, Prop. 4.4]). Consider a tower of blow-ups

X2 → X1 → X0 = P3,

where each map Xi → Xi−1 is a blow-up of a disjoint union of some points and some lines, no more than

three connected components per blow-up. Here by a line we mean a strict preimage of one-dimensional linear

subspace in P3 = X0. Then X2 satisfies Orlov’s conjecture, i.e., rdim(X2) = 3.

3 Stable indecomposability of triangulated categories

As noted above, constructing semiorthogonal decompositions in derived categories of coherent sheaves on

varieties can be very helpful for understanding those categories. However, not every derived category admits

a nontrivial semiorthogonal decomposition. We say that the derived category is indecomposable in that case.

Which varieties have indecomposable derived categories is an interesting and important question.

Some examples of varieties with indecomposable derived categories are smooth proper varieties with trivial

canonical bundle [Bri99], curves of positive genus [Oka11], and, more generally, varieties whose canonical

linear system is globally generated [KO15].
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The notion of indecomposability invites certain natural question. For example, assume that a variety X has

an indecomposable derived category, and let Y be some other variety. Is it then true that any semiorthogonal

decomposition of the category Db
coh(X × Y ) is induced from a semiorthogonal decomposition of Db

coh(Y )?

The induction here is the following process: if A ⊂ Db
coh(Y ) is an admissible subcategory, consider the

subcategory Db
coh(X) �A ⊂ Db

coh(X × Y ) generated by the objects of the form E � F , where E ∈ Db
coh(X)

is an arbitrary object and F ∈ Db
coh(Y ) is an object from the subcategory A. Then this subcategory is

admissible in Db
coh(X × Y ) and one can check that a semiorthogonal decomposition of Db

coh(Y ) induces in

this way a semiorthogonal decomposition of Db
coh(X × Y ) (see, e.g., [Kuz11]).

The answer to this question is unknown in general. In the paper [Pir23b], on which this section of the

thesis is based, we have introduced the notion of an NSSI variety (noncommutatively stably semiorthogonally

indecomposable variety). If X is an NSSI variety, its derived category is indecomposable, and the same

holds for any closed subvariety of X; moreover, this property also implies the positive answer to the question

above, meaning that for any variety Y any semiorthogonal decomposition of Db
coh(X × Y ) is, in fact, induced

from Db
coh(Y ) provided that X is NSSI. In that paper we also establish the NSSI property for some class of

varieties, including, for instance, abelian varieties (see Theorem 3.2 below).

The definition of the NSSI property is given in terms of “categories linear over Perf(X)”, where X is a

scheme and Perf(X) is the triangulated category of perfect complexes on it. Roughly speaking, this is a

triangulated category D together with the action of the tensor-triangulated category Perf(X), i.e., for each

object E ∈ Perf(X) we are given an endofunctor of D which is “multiplication by the object E”, and this set

of endofunctors is compatible with the tensor product in Perf(X). In practice the triangulated structure

happens to be too weak for notions like that to have nice properties and one needs to work with some

enhancements. The rigorous definition of Perf(X)-linear categories that we use and some of its properties

are given in [Per18], with a brief reminder in [Pir23b]. As an illustration let us note that for any scheme Y

the projection morphism X × Y → X makes Perf(X × Y ) a Perf(X)-linear category: the action functor

corresponding to an object E ∈ Perf(X) is the endofunctor of Perf(X × Y ) given by the tensor product with

the pullback of E to X × Y .

3.1. Definition. The scheme X is said to be NSSI if for arbitrary choices of

1. D, a Perf(X)-linear category which is proper over X and has a classical generator

2. A ⊂ D — an admissible subcategory of D;

the subcategory A is linear over Perf(X).

Despite the fact that this definition is highly abstract, for some schemes we can prove that the NSSI

property holds. The two main results are below:
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3.2. Theorem ([Pir23b, Th. 1.4]). Let X be a scheme over a field k that admits an affine morphism into some

abelian variety over k. Then X is an NSSI scheme.

Remark. If X is a smooth proper variety whose Albanese morphism alb: X → Alb(X) is a finite morphism,

Theorem 3.2 implies that X is NSSI. In particular, all abelian varieties and all curves of positive genus

are NSSI.

3.3. Theorem ([Pir23b, Th. 1.5]). Let π : X → B be a flat proper morphism of quasi-compact separated schemes

over the field k. Assume that B is an NSSI scheme and that for any closed point b ∈ B the fiber Xb := π−1(b)

is an NSSI scheme. Then X is NSSI.

Remark. In the published version of the paper in both theorems the notation for the scheme is Y rather

than X.

Remark. If X is a bielliptic surface, then its Albanese morphism alb: X → E is a fibration over an elliptic

curve, and all fibers are elliptic curves. Thus by Theorem 3.2 all the assumptions of Theorem 3.3 are satisfied,

and hence X is an NSSI variety.
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