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The dissertation was prepared at the Center for Language and Brain at the National 

Research University Higher School of Economics.  

Publications 

The three publications were selected for defense. The author of the dissertation is the first 

author of all articles: 

1. Karpychev, V., Bolgina, T., Malyutina, S., Zinchenko, V., Ushakov, V., Ignatyev, G., 

Dragoy, O. Greater volumes of callosal sub-regions terminating in language-related 

areas predict a stronger degree of language lateralization: A tractography study // 

PLOS One. 2022. Vol. 17. № 12. P. e0276721 (list A HSE University, Q2 Web of 

Sciences / Q1 Scopus).  

2. Karpychev, V., Malyutina, S., Zhuravleva, A., Bronov, O., Kuzin, V., Marinets, A., 

Dragoy, O. Disruptions in modular structure and network integration of language-

related network predict language performance in temporal lobe epilepsy: Evidence 

from graph-based analysis // Epilepsy & Behavior. 2023. Vol.  147. P. 109407 (list A 

HSE University, Q2 Web of Sciences (Behavioral Sciences) / Q2 Scopus).   

3. Karpychev, V., Balatskaya, A., Utyashev, N., Pedyash, N., Zuev, A., Dragoy, O., 

Fedele, T. Epileptogenic high-frequency oscillations present larger amplitude both in 

mesial temporal and neocortical regions // Frontiers in Human Neuroscience. 2022. 

Vol. 16. P. 984306v (list A HSE University, Q3 Web of Sciences (Neurosciences) / Q2 

Scopus (Neurology)). 
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Conference presentations and public demonstrations of the results. 

The results of the studies were discussed at 7 international conferences in 2019-2022: 

• 35th International Epilepsy Congress | Virtual Edition (Ireland, 2023). Poster 

presentation: Language-related changes predict language performance in temporal 

lobe epilepsy: evidence from graph-based analysis. 

• 22nd International Conference on Biomagnetism | Virtual Edition (UK, 2022). Poster 

presentation: A software platform for comparison of MEG and stereoEEG findings in 

epilepsy patients. 

• 27th Annual Meeting of the Organization for Human Brain Mapping | Virtual Edition 

(USA, 2021). Poster presentation: IFOF, not the AF, asymmetry predicts functional 

lateralization for language. 

• Psychologie und Gehirn | Virtual Edition (Germany, 2021). Poster presentation: The 

association of handedness with language lateralization measured by a sentence 

completion fMRI paradigm in healthy participants. 

• 12th Annual Meeting of the Society for the Neurobiology of Language | Virtual Edition 

(USA, 2020). Poster presentation: No impact of the structural properties of the corpus 

callosum on handedness: evidence from the constrained spherical deconvolution 

approach. 

• 12th Annual Meeting of the Society for the Neurobiology of Language | Virtual Edition 

(USA, 2020). Poster presentation: Structural Asymmetry of the Arcuate Fasciculus is 

not associated with functional lateralization for language, nor with handedness. 

• 33rd International Epilepsy Congress (Thailand, 2019). Poster presentation: Pre-

surgical evaluation of stereo EEG recordings with high frequency oscillations. 
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1. Introduction 

This dissertation addressed the structural and functional organization of the language-

related network, which includes the grey matter structures and white matter tracts 

involved in language processing, in healthy participants and patients with temporal lobe 

epilepsy. We considered the association between the white matter structural connectivity 

and the involvement of left hemisphere language-related network regions and their 

homologs in language processing in healthy participants. We studied language-related 

network reorganization by comparing data from healthy participants and people with 

temporal lobe epilepsy (TLE). Focal seizures in TLE uniquely disrupt functional 

connectivity both within and outside the temporal lobe. Given that the development of 

TLE is accompanied by the formation of an epileptogenic network involved in seizure 

generation, we also estimated the spatial localization of the focus within this network to 

further compare it with the regions involved in language processing.  

It is believed that language processing is provided by a network comprising 

interconnected regions mainly located in the left hemisphere (Josse, Tzourio-Mazoyer, 

2004; Tzourio-Mazoyer, Seghier, 2016). In 10-15% of the healthy population, homologs 

of left hemisphere regions are also involved in language processing, thus reducing 

language lateralization and shifting activation during language processing to the right 

hemisphere (Knecht et al., 2000; Somers et al., 2015). It is related to manual asymmetry 

– left-hemispheric language activation is more represented in right-handers (about 95%) 

than in left-handers (about 75%; Knecht et al., 2000; Sommers et al., 2015). However, 

ontogenetic determinants of these traits of interhemispheric asymmetry differ 

(Güntürkün, Ocklenburg, 2017). Thus, there are attempts to determine the association of 

language lateralization with the properties of grey matter structures and white matter 

tracts (Ocklenburg et al., 2016; 2020). 

Given that previous studies did not indicate the association between the properties 

of grey matter strictures and language lateralization (Tzourio-Mazoyer et al., 2018), it is 

focused on the interhemispheric interaction carried out via the corpus callosum (CC; 

Ocklenburg et al., 2016). Hinkley et al. (2016) and Ocklenburg et al. (2015) revealed a 

language activation shift towards the right hemisphere and, as a result, weaker language 
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lateralization in people with agenesis of CC. Hence, a larger volume of the CC is thought 

to lead to stronger language lateralization in the left language dominant hemisphere. It is 

consistent with the inhibitory model of the interhemispheric interaction, indicating the 

suppression of the non-dominant hemisphere. On the opposite, the excitatory model 

suggests that the activation of both hemispheres is supported during language tasks via 

callosal fibers (Bloom, Hynd, 2005). But how exactly two hemispheres interact during 

language tasks is unknown.  

The investigation of the structural and functional organization of the language-

related network is relevant in the scope of TLE (Baciu, Perrone-Bertolotti, 2015). TLE 

appears as disrupted interactions within and outside the temporal lobe and leads to 

alterations in cognitive networks (Tracy et al., 2014). Previous studies revealed decreased 

functional connectivity between regions within the language-related network and 

increased connectivity with the brain regions that typically are not involved in language 

processing in healthy people (Roger et al., 2020). In addition, non-language regions were 

shown to be involved in language processing in both hemispheres (Berl et al., 2014; 

Foesleitner et al., 2020). Yet, the patterns of language-related network reorganization and 

their relationship to language performance are unknown (Bullmore, Sporns, 2009; 

Gerchen et al., 2017).   

During the development of TLE, there appears a formation of an epileptogenic 

network in the brain that is responsible for seizure generation (Bonilha, Keller, 2015). For 

over 20% of people with TLE, achieving seizure freedom requires surgical removal of 

the focus of the epileptogenic network (Laxer et al., 2014). However, this network can 

encompass structures outside the temporal lobe, including areas within cognitive 

networks such as the language-related network (Caciagli et al., 2023). Therefore, surgery 

in TLE requires minimizing the removal of the language-related network to preserve 

language functions. This goal is achieved by precise spatial localization of the 

epileptogenic network and its focus. The accuracy of focus localization with the current 

approaches remains insufficient. The current rate of good seizure outcome does not 

exceed 50-60% of the total number of patients (de Tisi et al., 2011). As a result, surgery 
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may result in seizure recurrence and make it impossible to minimize tissue removal and, 

consequently, to preserve the language-related network. 

The relevance of this dissertation is explained by the fact that it is currently 

unknown how individual differences in the anatomical properties of the CC relate to the 

involvement of the left hemisphere language-related network regions and their homologs 

in language processing and how the language-related network can be reorganized in 

patients with TLE. The methodological constraints of previous studies in reconstructing 

white matter tracts and considering the CC as an entire group of fibers lead to 

controversial results in the association with language lateralization. The current analyses 

of language-related network interactions primarily focus on individual functional 

connections rather than examining the network as a whole, which has limitations in 

comprehensively understanding the patterns of language-related network reorganization 

in TLE. The insufficient accuracy of focus localization in TLE makes it impossible to 

distinguish the focus from the language-related network, which restricts seizure freedom 

and preservation of language functions after surgery.  

The goals of the study: 

• to identify the association between the anatomical properties of the CC (taking into 

account the heterogeneity of this structure) and language lateralization using cutting-

edge tractography applied to diffusion-weighted magnetic resonance imaging (MRI) 

data. 

• to identify alterations related to language-related network reorganization in TLE – 

adaptation and compensation processes – based on the graph-based analysis applied 

to functional MRI (fMRI) data during a language task.  

• to improve the accuracy of spatial localization of the epileptic focus in TLE using the 

analysis of high-frequency oscillations and machine learning applied to stereotactic 

encephalography (sEEG) data. 

The object was the language-related network in healthy participants and patients with 

TLE. The subject was the association between the anatomical properties of the CC and 

language lateralization; alterations in the functional interaction within the language-
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related network in patients with TLE; spatial localization of the epileptic focus in people 

with TLE.   

The research novelty of this dissertation was that, firstly, using advanced tractography 

based on diffusion-weighted MRI, we confirmed the association between the volume of 

the callosal sub-region, connecting areas within the language-related network in the 

temporal and parietal lobes, and language lateralization. Secondly, we compared 

language-related network organization in healthy participants and patients with TLE via 

graph-based analysis applied to fMRI during a language task. These alterations in the 

total language-related network organization in patients with TLE predicted a task 

performance specific to language processing. Thirdly, high-frequency oscillation analysis 

and machine learning classification algorithms reveal distinctions in the features of high-

frequency oscillations obtained on sEEG data between the focus and other brain regions. 

The theoretical significance of the study:  

● We confirmed the inhibitory model of the interhemispheric interaction during 

language processing that leads to language lateralization. 

● We established the significance of using advanced tractography based on diffusion-

weighted MRI in the white-matter tract reconstruction. 

● We showed language-related network reorganization in TLE by the graph-based 

characteristics that predicted language performance in patients.  

● We revealed the significance of the functional connectivity approach (graph theory) 

to characterize language-related network organization during a task specific to 

language processing. 

● We showed distinctions in the features of high-frequency oscillations between the 

epileptic focus and the other brain areas in TLE. 

The practical significance of the study: 

● The results of the study reveal how language functions recover in cases of structural 

lesions to the language-related areas in the language dominant hemisphere. Such 

lesions may lead to the involvement of the non-dominant hemisphere areas in language 

processing via the callosal fibers. 
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● The results of the study show patterns of language-related network reorganization in 

TLE and areas of the network that become significant for language processing, which 

is necessary for surgery. 

● The results of the study allow to improve the accuracy of epileptic focus localization 

in TLE and increase the rate of good surgical outcome. 

The main results of the study and provisions for the defense: 

● Greater volumes of the sub-region, connecting areas within the language-related 

network in the temporal and parietal lobes, predict a stronger degree of language 

lateralization. It is consistent with the inhibitory model of the interhemispheric 

interaction during language processing. 

● Patients with TLE exhibited a bilateral module formed by the anterior language-

related areas and a module in the left temporal lobe, reflecting hyperconnectivity 

within the epileptic focus. They did not show a left-lateralized module, including left 

perisylvian language areas, found in healthy participants. A shift towards the 

intramodular integration of regions relative to the total network integration of regions 

relates to language performance and compensation via the increase in the number of 

connector hubs in the right hemisphere. 

● The features of high-frequency oscillations in sEEG differ between the epileptic focus 

and the other brain areas. This improves the accuracy of focus localization in TLE. 

Author contribution  

● Study 1: study conception and design, data analyses and interpretation, manuscript 

draft and revision.  

● Study 2: study conception and design, data collection, data analyses and interpretation, 

manuscript draft and revision.  

● Study 3: study conception and design, data analyses and interpretation, manuscript 

draft and revision. 
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2. Study 1. An association between volumes of the callosal sub-region and 

language lateralization 

Article selected for the defense: 

Karpychev V. et al. Greater volumes of callosal sub-regions terminating in language-

related areas predict a stronger degree of language lateralization: A tractography study // 

PLOS One. 2022. Vol. 17. № 12. P. e0276721. 

 

2.1. Introduction 

It was shown that interhemispheric interaction through callosal fibers is related to 

language lateralization (Gazzaniga, 2000). Adibpour et al. (2018) indicated their role in 

the development of language lateralization in children with agenesis of CC, which leads 

to weaker lateralization in adulthood. Thus, the CC contributes to the early development 

of language asymmetry and maintains it later. 

 Previous studies examining how the CC relates to language lateralization used 

either the midsagittal surface in structural T1-images (Josse et al., 2008; Labache et al., 

2020; Bartha-Doering et al., 2021) or diffusion-tensor imaging (DTI) based on diffusion-

weighted MRI data (Westerhausen et al., 2006; Putnam et al., 2008; Haberling et al., 

2011, Steinmann et al., 2018). However, the restrictions of both methods led to 

inconsistent results. Furthermore, to study language lateralization, earlier DTI was not 

used to reconstruct separate sub-regions but the whole CC, which is also a constraint 

given the heterogeneity of callosal fibers (Aboitiz et al., 1992). Thus, in this study, we 

used constrained spherical deconvolution (CSD; Dell'Acqua, 2010), which allows us to 

estimate the volumes and microstructural properties more precisely and, in addition, DTI 

to assess its limitations relative to CSD. 

 We measured language lateralization using fMRI, a technique that allows us to 

obtain the activation of language-related regions during a language task. As an fMRI 

paradigm, previous studies used either word generation (Putnam et al., 2008; Haberling 

et al., 2011; Westerhausen et al., 2006), which activates the anterior language-related 

regions, or listening (Steinmann et al., 2018), which activates the posterior language-

related regions. Thus, each previous DTI study reported a result that was based on 
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language lateralization in either the anterior or posterior language-related areas, but not 

in both. As a result, distinctions in the associations of the properties of callosal sub-

regions and language lateralization in the anterior or posterior language-related areas 

relied on studies with different groups of participants but not within the same group using 

the same task. Therefore, we used sentence completion as an fMRI paradigm that reliably 

activates the anterior and posterior language-related regions (Salek et al., 2017; Wilson 

et al., 2016; Elin et al., 2022). 

The study aimed to compare the volumes and microstructural characteristics of 

sub-regions of CC using DTI and CSD, and to test their relations to language lateralization 

obtained by an fMRI paradigm on sentence completion. 

 

2.2. Method 

Fifty healthy individuals (32 females; Mage = 24.4, SD = 4.8, range = 18-37) participated 

in the study. According to the Edinburgh questionnaire (Oldfield, 1971), 20 participants 

with scores between +45 and +100 were classified as right-handed; 10 participants with 

scores between -45 and +45 were classified as ambidextrous; 20 participants with scores 

between -100 and -45 were classified as left-handed. All participants performed a 

language task consisting of experimental (sentence completion) and baseline blocks 

(syllable repetition). Each block consisted of three stimuli of 5 s duration (the pause 

between blocks was 2.1 s). In the experimental block, participants had to complete 

sentences that they read with a semantically and grammatically appropriate word (e.g., 

“Now the minister signs an important…”); in the baseline block, they had to read aloud 

four times the syllable written on the screen and repeat it once (“Peeeee peeeeeeeeee 

peeeeeee peeeeeee…”). The fMRI session consisted of two runs (120 stimuli – 60 

sentences, 60 syllables), lasting 14 min 37 s.    

MRI data were acquired using a Siemens 3T Magnetom Verio. We corrected 

diffusion-weighted MRI for distortions due to eddy currents, subject motion, and phase 

encoding direction. We applied DTI to diffusion-weighted MRI data using the 

ExploreDTI package (http://www.exploredti.com) in MATLAB (MathWorks; Natick, 

MA, USA). CSD reconstruction relied on the Richardson-Lucy algorithm (Dell'Acqua et 
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al., 2010) with the following parameters: fiber response = 1.5×10-3 mm2/s-1, 400 

repetitions, maximum angle for fiber = 30°, seed point resolution = 1 mm3, step size = 1 

mm. We used the StarTrack package (https://www.mr-startrack.com/) in MATLAB. We 

manually reconstructed the CC using the TrackVis package (http://trackvis.org/). We 

subdivided the CC according to a DTI-derived scheme, in contrast to other schemes based 

on structural images of a midsagittal slice of CC (Hofer and Frahm, 2006). The following 

sub-regions were identified: CC-I, whose fibers project into the prefrontal region; CC-II, 

premotor and supplementary motor cortex; CC-III, primary motor cortex; CC-IV, primary 

somatosensory cortex; CC-V, parietal, temporal, and occipital lobes (Hofer, Frahm, 2006; 

Josse et al., 2008). We extracted the volumes and microstructural properties, fractional 

anisotropy (FA) and hindrance modulated orientational anisotropy (HMOA), for each 

sub-region in DTI and CSD, respectively. An example of reconstruction using DTI and 

CSD for a subject is shown in Figure 1. 
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Figure 1. An example of reconstruction using (A) DTI and (B) CSD.  

 

fMRI data were corrected for distortions due to subject motion and phase encoding 

direction, aligned relative to the anterior and posterior commissure, and then normalized 

to the MNI template. We analyzed the fMRI data using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB. We performed a first-

level analysis to obtain individual activation maps for each participant. We used onset 

times as the main predictors in the model; the hemodynamic response function for 

modeling changes in BOLD response. fMRI activation (second-level analysis) for all 

participatns is shown in Figure 2. 
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Figure 2. Group map of the language-related activation. 

  

The language lateralization index (LI) was calculated from individual activation 

maps using the LI-toolbox package (http://www.medizin.uni-

tuebingen.de/kinder/en/research/neuroimaging/software/) in SPM12 by the formula: 

LI = [(AL – AR) / (AL + AR)], 

whereby AL, and AR – activation of a region in the left and right hemispheres, respectively.  

We calculated LI for grey matter regions corresponding to the sub-regions of the CC in 

Hofer, Frahm, (2006) – prefrontal region (PFC); premotor and supplementary motor 

cortex (includes anterior regions of the language network; PM-SMA); primary motor 

cortex (M1); primary somatosensory cortex (S1); parietal, temporal and occipital lobes 

(includes posterior regions of the language-related network; PTOLs). LI ranged from -1 

(right-hemispheric asymmetry) to +1 (left-hemispheric asymmetry). Based on Karolis et 

al. (2019), we used the absolute value of LIabs, thus +1, regardless of hemisphere, 

indicated strong asymmetry; 0 indicated no asymmetry. 

Statistical analyses were performed in JASP (https://jasp-stats.org) and RStudio, 

version 4.2.0 (https://www.rstudio.com) using the BayesFactor package 

(https://github.com/richarddmorey/BayesFactor). We presented the results of each 

analysis based on both frequency statistics and Bayesian statistics via BF01. To compare 

the volumes reconstructed in DTI and CSD, we used a paired t-test (Bonferroni correction, 

α = .072); to compare microstructural characteristics across sub-regions, we used 
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ANOVA separately for FA and HMOA (Bonferroni correction, α = .025). To assess the 

association between LIabs and the properties of each sub-region, we applied multiple linear 

regression separately for DTI and CSD. 

 

2.3. Results 

For all sub-regions of the CC, volumes were significantly greater in CSD than in DTI, 

with evidence in favor of the differences (BF01 > 105). The results are shown in Table 1. 

Table 1. Results of paired t-tests comparing the volumes of the sub-regions.  

Sub-region Volume in DTI Volume in CSD t(49) p-value BF10 M SD M SD 
CC-I 16.1 2.7 33.7 9.2 14.36 < 0.001 > 105 
CC-II 18.8 3.4 44.5 12.8 16.09 < 0.001 > 105 
CC-III 9.9 2.2 18.0 5.8 12.26 < 0.001 > 105 
CC-IV 8.5 2.0 14.8 7.0 7.10 < 0.001 > 105 
CC-V 35.3 6.3 67.8 19.8 12.40 < 0.001 > 105 

  

ANOVA revealed significant differences across all sub-regions in FA in DTI 

(F(4,245) = 94.38, p < .001) and in HMOA in CSD (F(4,245) = 86.41, p < .001). BF10 > 104 

for both tests showed evidence in favor of significant differences. Post-hoc two-sample 

t-tests (Bonferroni correction, α = .05/10 = .005) showed that all sub-regions differed in 

FA in DTI except for CC-II and CC-IV (t(49) = 2.12, p = .04), BF10 = 1.4; CC-III and CC-

V (t(49) = -2.43, p = .02), BF10 = 1.75. Post hoc two-sample t-tests (Bonferroni correction, 

α = .05/10 = .005) also showed that all sub-regions differed in HMOA in CSD except CC-

III and CC-IV (t(49) = -1.84, p = .07), BF10 = 0.74. Figure 3 shows the distribution of FA 

and HMOA of sub-regions. 
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Figure 3. FA и HMOA across all sub-regions. 

 

Using multiple linear regression models, we found only one significant association 

between LIabs in PTOLs and the volume of CC-V in CSD (β = 4.4, SE = 1.4, t(48) = 3.1, p 

= .003), which reached a level of significance (α = .005), BF10 = 4.0. For the rest of the 

sub-regions in DTI and CSD, we found no significant relationships with the LIabs of the 

respective regions. 
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2.4. Conclusion 

To conclude, this is the first study that investigated the relationship between the volumes 

and microstructural properties of the callosal sub-regions, and the degree of language 

lateralization using both DTI and CSD. We found no association between the 

microstructural properties of the CC and the degree of language lateralization, regardless 

of the tractography method. In line with the inhibitory model, a greater volume in CSD, 

but not in DTI, predicted a stronger degree of language lateralization in cortical areas 

containing posterior regions of the language-related network in the temporal and parietal 

lobes. Thus, the association between the sub-regions of the CC and the degree of language 

lateralization is anatomically specific. In addition, we confirmed that CSD is a more 

suitable approach in tractography as it can reconstruct lateral fibers when lateral crossing 

projections are in focus. 

 

  



 17 

3. Study 2. Language-related network reorganization in temporal epilepsy. 

Article selected for the defense: 

Karpychev V. et al. Disruptions in modular structure and network integration of language-

related network predict language performance in temporal lobe epilepsy: Evidence from 

graph-based analysis // Epilepsy & Behavior. 2023. Vol. 147. P. 109407. 

 

3.1. Introduction 

An investigation of language-related network reorganization is particularly relevant in 

TLE (Baciu, Perrone-Bertolotti, 2015). TLE manifests as a disruption of interactions 

between regions within and outside the temporal lobe, leading to changes in the 

functioning of cognitive networks, including the language-related network (Tracy et al., 

2014; Berl et al., 2014). Previous studies investigating language-related network 

reorganization used mostly fMRI activation (Balter et al., 2019). However, it does not 

give us insight into the interaction between regions. Thus, the reorganization in TLE 

remains poorly understood (Tomasi et al., 2014). 

Functional connectivity analysis is an alternative to fMRI activation. This approach 

estimates the correlational value between time-series of regions to represent their 

interaction (Friston, 2011). Previous studies examined language-related network 

reorganization in TLE through functional connectivity but were restricted by the resting-

state fMRI data (Doucet et al., 2015). In contrast to the task-based fMRI data (He et al., 

2018), the resting-state does not cover all the processes occurring between regions in 

cognitive networks (Cohen, D'Esposito, 2016). Moreover, previous studies considered 

individual pairwise connections between regions without describing reorganization at the 

level of processes occurring in the total language-related network. To complement the 

previous results, we applied the graph-based analysis, which allows us to describe 

interactions within the total network, to task-based fMRI data from healthy participants 

and patients with TLE (Bullmore and Sporns, 2009).  

We used sentence completion as a task specific to language processing. It also 

contrasts ours from previous graph-based fMRI studies, which aimed to activate language 

and memory networks (Banjac et al., 2021). We believe that it reduces the sensitivity of 
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the analysis of language-related network reorganization. Thus, we expected that our 

analysis would provide insights into the reorganization specifically within the language-

related network, and the graph-based characteristics would predict the accuracy of the 

language-related task in people with TLE. 

 

3.2. Method 

Twenty-eight patients with drug-resistant left TLE participated in the study (14 females; 

age: M = 37.6, SD = 6.2, range = 28–50; age of onset: M = 14.3, SD = 10.6, range = 0–

42; duration: M = 21.6, SD = 13.3, range = 4–50). MRI indicated sclerosis in the left 

hippocampus (n = 20; one of these participants also had focal cortical dysplasia in the 

insular cortex in both hemispheres), sclerosis in both hippocampi (n = 1), gliosis in the 

left temporal lobe (TL; n = 4), encephaloceles in the left TL (n = 1) or both TLs (n = 1); 

two participants were MR-negative (n = 2). Nineteen controls with no history of 

psychiatric or neurological diseases participated in the study (15 females; age: M = 40.7, 

SD = 6.5, range = 30–53). All participants were right-handed native Russian speakers. 

They underwent scanning at the National Medical and Surgical Center named after N.I. 

Pirogov (Moscow, Russia) and performed a language task described in a previous study 

(see 2.2. Method).  

 MRI data were acquired using a 3T Siemens Magnetom Skyra. We corrected fMRI 

data for distortions due to subject motion and EPI using the fMRIPrep-20.2.6 package 

(https://fmriprep.org/en/20.2.6/#). We regressed out global signal, white matter and 

cerebrospinal fluid obtained with aCompCor. As regions of the language-related network, 

we considered the 36 regions defined in Labache et al. (2019). We performed the 

correlational psychophysiological interaction (cPPI) analyses on the time-series of the 

regions to examine the functional connectivity within the experimental block of the 

language task excluding the baseline block using the cPPI-toolbox 

(https://www.nitrc.org/projects/cppi_toolbox/) in MATLAB. For each participant, we 

obtained a correlation matrix containing positive correlational coefficients. The 

correlational coefficients within each matrix were Fisher-transformed to z-scores. 



 19 

 We applied the graph-based analysis to the correlation matrices of healthy 

participants and patients with TLE to determine how the language-related network was 

divided into modules; the difference in the integration of regions in the total network, 

Eglob, and within modules, Eloc, as well as the difference between them, IS = Eglob - Eloc 

(Roger et al., 2020). To assess the integration of regions between modules, we considered 

connector hubs, regions that are highly functionally connected within their module, and 

with regions of other modules (Guimerà & Nunes Amaral, 2008). We estimated their 

number in both hemispheres (Nhubs), in the left hemisphere (Nhubs-L) and right hemisphere 

(Nhubs-R).  

 Statistical analyses were performed in RStudio, 4.2.0 (https://www.rstudio.com). 

We tested differences in Eglob, Eloc, IS, Nhubs, Nhubs-L, and Nhubs-R between healthy 

participants and patients with TLE using a two-sample t-test for independent samples 

(Bonferroni correction, α = .05/6 = .008). To test the association of language task 

performance characteristics (RA = response accuracy; RT = response time), with network 

characteristics and given their interaction with the duration of epilepsy, we constructed 

two multiple linear regressions (α = .05/2 = .025). Given that IS and Nhubs are a linear 

combination of Eglob, Eloc, and Nhubs-L, Nhubs-R, respectively, we used only them in the 

regressions. 

 

3.3. Results 

Figure 4 shows how the language-related network was divided into modules for healthy 

participants and patients with TLE. The healthy subjects had a left-lateralized module 

containing anterior and posterior regions of the language-related network, as well as 

regions in the right temporal pole; patients with TLE showed a bilateral module formed 

by the anterior language-related areas and a module consisting only of regions of the left 

temporal lobe – the epileptic focus. 
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Figure 4. Modular structures of the language-related network in healthy controls and 

patients with TLE. (A) Connectivity matrices averaged across participants in each 

group. Dotted squares indicate unique modules for each group: module-3 in healthy 

controls, and module-4 in people with TLE. (B) Spatial distribution of the modular 

structure in each group. Each color indicates a single module in each group. 

 

A two-sample t-test showed that Nhubs-R was significantly lower in healthy 

participants compared to people with TLE. Differences in IS and Nhubs reached the 

significance level of α = .05, but not the Bonferroni-corrected level (α = .05/6 = .008). In 

addition to Nhubs-R, hubs differed between the two groups. Figure 5 shows their spatial 

distribution. 
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Figure 5. Hubs in healthy controls and people with TLE. 

 

Multiple linear regression showed a significant association between greater RA 

with greater IS value (b = 454.4, SE = 164.1, t(14) = 2.8, p = .014); also with a greater IS 

interaction with duration of epilepsy (b = 580.4, SE = 153.0, t(14) = 3.8, p = .002) – a 

decrease in the difference between integration of regions within the total network and 

integration of regions in modules with epilepsy duration leads to lower RA. 

 

3.4. Conclusion 

This is the first study aimed at language-related network reorganization in TLE using the 

graph-based analysis applied to fMRI data acquired during a task that was specific to 

language processing. During language processing in patients with TLE, a bilateral module 

formed by the anterior regions of the language-related network and their homologs was 

identified, as well as a left hemispheric module reflecting the epileptic focus. In contrast 

to healthy participants, the left hemispheric module containing the anterior and posterior 

regions of the language-related network, as well as regions in the right temporal pole, was 

not found in patients with TLE. As a result of such reorganization, for the group of people 

with TLE, we found that an imbalance towards integration of regions within modules 
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predicted decreased response accuracy and compensation through the involvement of 

additional hubs in the right hemisphere. 

 

4. Study 3. Improving the accuracy of focus localization in temporal lobe 

epilepsy. 

Article selected for the defense: 

Karpychev V. et al. Epileptogenic high-frequency oscillations present larger amplitude 

both in mesial temporal and neocortical regions // Frontiers in Human Neuroscience. 

2022. Vol. 16. P. 984306. 

 

4.1. Introduction 

During the TLE development in the brain, an epileptogenic network appears in the brain 

that is responsible for seizure generation (Bonilha and Keller, 2015). For over 20% of 

patients with TLE, achieving good seizure outcome requires surgical removal of this 

network (Laxer et al., 2014). However, the epileptogenic network can encompass 

structures outside the temporal lobe, including areas within the language-related network 

(Caciagli et al., 2023). Therefore, surgery in TLE aims to remove only critical regions 

within the epileptogenic network – its focus while minimizing the removal of the 

language-related network. The rate of good surgical outcomes does not exceed 50-60% 

of the total number of patients (de Tisi et al., 2011). Thus, the accuracy of focus 

localization using current techniques based on seizure dynamics analysis is insufficient 

to achieve seizure freedom and reduce the removal of tissue within the language network 

in TLE to preserve language functions.  

 High-frequency oscillations (HFO) in EEG, divided into ripples (80-250 Hz) and 

fast ripples (250-500 Hz; Bragin et al., 1999), are believed to be reliable biomarkers of 

the epileptic focus in TLE. While HFO demonstrated high accuracy in identifying the 

epileptic focus (van't Klooster et al., 2015; Fedele et al., 2017), both ripples and fast 

ripples were also detected in other brain regions (Frauscher et al., 2018). To distinguish 

ripples and fast ripples between the epileptic focus and other regions is thought to be 

effective to use their morphological features – amplitude, duration, and spectral frequency 
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(Chen et al., 2021). Previous studies revealed differences in some morphological features 

between the epileptic focus and other regions but were restricted using univariate statistics 

(von Ellenrieder et al., 2016).  

In this study, we examined HFO and their features as biomarkers of the epileptic 

focus in TLE. We used machine learning to classify HFO into events occurring within 

epileptic focus and other regions. The detected HFO events were classified into events 

that appear within the epileptic focus and outside using machine learning. 

 

4.2. Method 

Twelve patients with TLE participated in the study (6 women; age: M = 36.9, SD = 11.8, 

range = 26-69 years; postoperative period: M = 30.5, SD = 11.0, range = 13-44 months). 

All participants underwent sEEG implantation to detect the epileptic focus and its further 

removal by surgery at the Pirogov National Medical and Surgical Center. The surgical 

outcome of the patients was estimated according to the recommendations of the 

International League Against Epilepsy (ILAE; https://www.ilae.org/). Seizure freedom 

(ILAE = 1) after surgery was achieved for 11 participants. 

To detect ripples and fast ripples in sEEG data from patients during non-REM 

sleep, we used an automatic detector of HFO (Fedele et al., 2017). For each participant, 

we obtained the distribution of HFO-events across all bipolar sEEG channels. We 

compared the spatial distribution of the epileptic focus (resection area after the surgery) 

and those channels (HFO-channels) whose number of HFO-events exceeded the 95% 

threshold relative to the total number of events across all channels. We defined HFO-

events as epileptic if HFO-channels were within the resection area in patients who 

reached seizure freedom (ILAE = 1). HFO-events across the channels outside the 

resection area were defined as non-epileptic events occurring in other regions. For all 

HFO-events divided into ripples and fast ripples, we extracted their features – amplitude, 

duration, and spectral frequency. 

We applied the random forest algorithm to build a machine learning model. To 

train and validate the models, we used a 5-fold cross-validation method consisting of 

inner and outer cycles (Krstajic et al., 2014). For each model, within each of the five steps 
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of the inner cycle of internal cross-validation, we used a grid search method to determine 

the optimal number of decision trees, nodes in each of the trees, and randomly selected 

features for each of the nodes. We checked the accuracy of the models using the “area 

under the error curve” (AUC). We extracted the significance of the features for the 

classification model as the Gini-value. 

 

4.3. Results 

Figure 6 shows an example of the HFO-channels and their comparison with the resection 

area in a patient with ILAE = 1. For data from 11 patients out of 12, we extracted the 

morphological features of HFO-events to apply machine learning and classify them. 

Thus, all HFO-events (ripples and fast ripples) were divided into two classes: class 1, 

epileptic events, and class 2, events within the healthy tissues. For the machine learning 

model, class 1 contained 4,807 events, class 2 - 1,929 events. 
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Figure 6. An example of the HFO-channels and their comparison with the resection area 

in a patient (ILAE = 1) (A) spatial distribution of the stereo-EEG electrodes. (B) sEEG 

channels, defined as HFO-channels (red) and resection area (green). The HFO-channels 

were included in the resection region. (C) Stereo-EEG signal during seizure onset (red 

line). (D) T1-image before and after surgery (thermocoagulation was performed for this 

participant). 

 

A

B
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 The 5-fold cross-validation method based on the random forest algorithm showed 

AUC = 79.6% (SD = 0.8%). For the machine learning model, the most important features 

for classifying HFO-events were the amplitudes of fast ripples (M = 0.44, SD = 0.05) and 

ripples (M = 0.15, SD = 0.03). 

 

4.4. Conclusion 

In this study, we showed that the feature of HFO-events allows us to classify the events 

occurring in the epileptic focus and separate them from those occurring in other regions. 

Our findings can significantly improve current methods of focus localization in patients 

with TLE, reducing seizure recurrence and minimizing the removal of the language-

related network to preserve language functions. The results obtained in this study 

highlight the importance of considering HFO features as a potential biomarker of 

epileptic focus while studying the reorganization of the language-related network and its 

separation from the epileptogenic network. 

 

  



 27 

5. Conclusion 

This dissertation included articles that focused on the structural and functional 

organization of the language-related network. We considered the association between CC 

and language lateralization in healthy participants. We investigated the language-related 

network reorganization in patients with TLE compared to healthy subjects. We showed 

how using HFO features improves the accuracy of focus localization in TLE. This result 

can increase the current rate of good seizure outcome in surgery and minimize the 

removal of the language-related network.  

In Chapter 2 (Study 1), we investigated how the structural properties of the CC, 

reconstructed using tractography, DTI and CSD, relate to language lateralization. We used 

a fMRI task specific to language processing for measuring language lateralization. The 

findings indicated that a larger volume of the callosal sub-region, connecting posterior 

regions in the temporal and parietal lobes, was associated with a stronger degree of 

language lateralization. Notably, it was possible to achieve this result using CSD, which 

overcomes the limitations of DTI in white matter reconstruction.  

In Chapter 3 (Study 2), using the graph-based analysis, we investigated language-

related network reorganization in people with TLE characterized by disrupted functional 

connectivity between regions. Our findings revealed that language-related network 

reorganization appears as a shift in the modular structure of the total network. 

Consequently, there emerges an imbalance between the integration of regions across the 

total network and the integration of regions within modules. This imbalance results in a 

decline in the accuracy of language task performance. In addition, compensatory 

mechanisms become evident, such as an increase in the number of hubs in the right 

hemisphere. 

 In Chapter 4 (Study 3), we considered the features of HFO-events extracted from 

the sEEG data within the epileptic focus and other regions in patients with TLE. By 

applying machine learning to classify these HFO features, we showed an improvement in 

focus localization. The most significant feature was the amplitude of the HFO-events. 
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Thus, our findings allowed us to describe language-related network organization 

in healthy participants and patients with TLE. In addition, we demonstrated an approach 

to minimize the removal of the reorganized language-related network in TLE. 
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