	A. Vasin,

D. Stepanov
Moscow State University, 
New Economic School,
Y. Sosina
Moscow State University
	FORMATION 
OF THE COALITIONAL 
STRUCTURE 
IN A HETEROGENEOUS POPULATION

	
	[image: image1.wmf]n

k

£




1. Introduction
The present paper aims to study endogenous formation of coalitional structures in framework of the non-cooperative game theory. We assume that each individual of the population is characterized by some parameter (for instance, her location or bliss point). The continuous distribution over this parameter describes the whole population. We propose the following simple model of coalitions' formation. There is a large finite set of labels: «coalition 1», «coalition 2»,…, «coalition M». Each individual (player) chooses one of these labels and becomes a member of the corresponding coalition, or decides to abstain and stay alone. 

A given strategy profile determines the set of non-empty coalitions, the size and the strategy of each coalition from this set. We assume that the strategy is a point in the same parameter space. This point is determined depending on the distribution of coalition members’ parameters according to a certain rule (for instance, a median or mean rule). For each player, her payoff depends on two values: it increases in the size of the coalition including the player, and decreases in the distance between the individual parameter and the coalition strategy. 

For this game, we study Nash and coalitional equilibria and characterize corresponding coalitional structures. Coalition formation in practice is a complicated dynamical process, and we assume that some equilibrium realizes as its outcome.

There are two main streams in the literature related to endogenous formation of coalitional structures. One considers formation of jurisdictions (municipalities or regions) [Alesina, Spolaore, 2003; Weber, Le Breton, 2002; Haimanko, Le Breton, Weber, 2002] by individuals located on some line or plain. They form coalitions in order to provide for themselves public goods (a school, a library, a hospital,…). Each coalition builds a center including all these institutes. Its strategy is a location of the center. The literature considers several rules that determine the coalition strategy depending on its members’ parameters: (a) median rule, (b) Rowlsian rule, (c) mean rule. The payoff function of each individual includes two negative terms: the fixed cost of building the center is divided by the number of individuals of the coalition, and the travel cost is proportional to the distance between the locations of the individual and the center. The model assumes the good to be necessary for each individual. The authors consider this model as a cooperative game with side payments and study the core of the game. 

Savvateev (2005), Bogomolnaia, Le Breton et al. (2005) consider Nash and coalitional equilibria for similar games without side payments with a small number of players. They provide some results on existence, uniqueness and computation of equilibria. However, these results cast poor light upon the properties of the equilibria in large populations. Another stream of the literature relates to endogenous formation of political parties. 
Caplin, Nalebuff (1997), Ortuno-Ortin, Roemer (2000), Gomberg, Marhuenda, Ortuno-Ortin (2005) consider continuous distribution of players bliss points in the political space. Important difference with the present paper is that the number of parties is fixed and the payoff function of each individual does not depend on the size of his party. Meanwhile, this term of the utility seems to be practically important. Besides that, such settings do not permit to determine the number of the parties at the Nash equilibrium and the coalitional equilibrium structures. That setting seems to better describe distribution of voters over existing parties rather than their formation.

Thus, the following characters distinguish the present paper from the existing literature in this field: continuous distribution of individuals in the space, no side payments, the individual payoff dependent on the coalition size and the distance between the individual bliss point (or location) and the coalition strategy, non-cooperative solutions.

Our main results are as follows. Section 2 considers an n-dimensional Euclidian parameter space with a uniform distribution of individuals. There exist different types of Nash equilibrium (NE) structures, and we focus on the structures corresponding to the uniform rectangular grids. If any coalition corresponds to the rectangular parallelepiped with the edges parallel to the axis, only such grids determine NE coalitional structure. For these structures we consider several concepts of coalitional stability. The structure is stable with respect to a split if there exists no new coalition that is a proper subset of some coalition in the structure and provides greater payoffs to all its members. The structure is stable with respect to a local unification if there is no new coalition that is a union of several neighbor coalitions and provides greater payoffs to all its members. We obtain necessary and sufficient conditions of stability with respect to some types of unions and splits. We show that existence of non-trivial stable structures crucially depends on relation between the space dimension n and the degree k of the main term in the payoff function Taylor expenditure in the distance between the individual bliss point and the coalition strategy. If 
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 then the only possible stable structure is atomic (nobody joins any coalition) or the global union (everybody joins one coalition). The first variant takes place if the coefficient before the main term (the non-conformity coefficient) is larger than some threshold, and the second variant occurs if the coefficient is less than this threshold. For 
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 we determine the interval for the non-conformity coefficient where the non-trivial stable structures exist. 

Section 3 provides more complete results for the one-dimensional parameter space – interval (0,1). We show that for any regular NE (with different strategies of different coalitions) the coalitional structure is a partition of the space into intervals corresponding to different coalitions, or including abstainers. Besides that, there might be irregular NE including two coalitions with equal sizes and strategies. Any such NE is unstable in some sense. In particular, individuals of the two coalitions are interested in their merger. 

Typically there exist many regular NE with different numbers of coalition. We call NE a weak coalitional equilibrium (WCE) if there is no new coalition that provides greater payoffs to all its members. We determine WCE for several types of payoff functions and distributions. We assume that the payoff linearly increases in the coalition size and either linearly or quadratically decreases in the distance between the coalition strategy and the individual bliss point. For linear payoff function the WCE is typically unique and corresponds to some trivial structure: if the non-conformity coefficient is less than 2 than this is a global union, and if the coefficient is more than 2 than this is an atomic structure. For a quadratic payoff function we limit our study with the case of the uniform distribution. We show that for any non-conformity coefficient below some threshold the only WCE is the global union. Above this threshold the number of WCE, the minimum and the average number of coalitions in the WCE increase in the non-conformity coefficient.

In conclusion, we consider applications of the theoretical results to formation of political parties and, more generally, development of the civil society in transition countries. Proceeding from our results, we discuss some reasons for different political structures and different number of political parties in the modern world.

2. Models with n-dimensional 
Parameter Space
Formal model. Consider a population of individuals distributed in parameter space 
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 (for instance, this might be a geographic space or a space of political parties) according to their preferences. Let A denote the set of individuals, 
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 is the set of «labels» (e.g., communists, socialists, LDP and so on, 0 means «abstainer»). If individual 
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 she stays alone. Below we consider such outcomes where each coalition is characterized by the integrable density function 
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For a given strategy profile, let 
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 denote the set of coalitions with positive sizes. Without loss of generality, let 
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 is a support of its density function. Each coalition is characterized by its size (or its share in the whole population) 
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 and its strategy 
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 In general, the density function 
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 determines this strategy. Below we consider several particular rules for such determination.
A coalitional structure is a partition of the population in coalitions and the set of abstinents. Formally we denote a coalitional structure as 
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Now, let us determine the payoff functions. If a player with a bliss point 
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 is a nonconformity coefficient. For a player with strategy 
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Below we examine the following variants of the coalition strategy determination.

a) The median rule: 
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b) The Rowlsian rule: 
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c) The mean rule: 
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 is the mass center of the corresponding coalition.

Nash equilibrium (NE) is such coalitional structure where each individual joins a coalition that maximizes her payoff: 
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Our first task is to examine possible NE structures. Figure 1 provides some examples of NE structures for the uniform distribution of players on 
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 that consists of the cells in this structure). Besides that, there exist many other types of NE structures.

[image: image317.wmf] 


Fig. 1.

Properties of NE structures. This section examines general properties and describes some particular types of NE in the game. Let 
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Theorem 1. If the term 
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and separating individual bliss points of the coalition 
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Now consider the payoff function 
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Equation (1) determines a hyperplane if and only if 
[image: image81.wmf]2

k

=

 (in this case 
[image: image82.wmf]1

V

 and 
[image: image83.wmf]2

V

 might be different) or 
[image: image84.wmf]12

VV

=

.

Now consider a coalitional structure where each coalition corresponds to some rectangular parallelepiped (see Fig. 2). In order to make the exposition short and clear, we identify a coalition and its geometric image. Let 
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Fig. 2.
Proposition 1. The coalitional structure corresponding to a uniform rectangular grid is a NE for any sufficiently small non-conformity coefficient, 
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, then this structure corresponds to a uniform rectangular grid, in particular all coalitions are equal to each other and each corner player lies on the boundaries of 
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Stability. The study above shows that, for a given space 
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 there typically exist many regular NE structures. On the other hand, proceeding from its definition, NE is stable only with respect to individual deviations. In this section we shall find out what NE are stable with respect to deviations of coalitions. Below we consider weak coalitional equilibria (WCE).

Coalitional structure is a weak coalitional equilibrium (WCE) if no new coalition exists such that it provides greater payoffs to all its members.

We focus on stability analysis of rectangular parallelepiped coalitional structures under a homogeneous distribution of agents in the parameter space. (So we assume the corresponding form of the space 
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). Our approach to the stability investigation is as follows. 

For any 
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 Thus, for a coalitional structure under investigation, we should consider possible deviating coalitions and check this condition. Below we consider deviations of coalitions corresponding to rectangular parallelepipeds with the sides parallel to the axes in the original structure. In this case, some corner agent 
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First we establish the conditions of stability with respect to unification of several coalitions from the rectangular homogeneous structure. We consider following types of unification:

I) the union of 
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 neighbor coalitions;

II) the union of 
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 neighbor coalitions;

III) the union of 2 neighbor coalitions.

Lemma 1. The rectangular homogeneous coalitional structure is stable with respect to the union of 
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Note. A similar stability condition for the union of 
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Lemma 2. The rectangular homogeneous coalitional structure is stable with respect to the union of two neighbor coalitions if and only if
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What condition – (2) or (3) – is stronger, depends on relations among 
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 then the right-hand side of (3) tends to infinity and determines the minimal value of 
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 then the right-hand side of (2) exceeds the right-hand side of (3). In general the both conditions (2) and (3) are necessary for stability with respect to unification types I, II.

Now we find out under what conditions some proper subset of the coalition in the NE structure can profitably separate. As above, we consider the coalitional structure corresponding to a uniform rectangular grid, so the original coalition corresponds to the rectangular parallelepiped.

Let 
[image: image126.wmf]i

 denote the original coalition, and 
[image: image127.wmf]j

 with 
[image: image128.wmf]ji

XX

Ì

 be the separating coalition. The following conditions are necessary for any profitable split.
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Below we derive propositions on stability with respect to 3 types of the split and thus obtain necessary conditions of WCE for the structure under consideration:

I) the split of similar coalition with the sides 
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II) the split of coalition with the sides 
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III) the split of coalition with the sides 
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Lemma 4. The coalition 
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 is stable with respect to the split of a similar coalition (type I) if and only if
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Lemma 5. The coalition 
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 is stable with respect to the split type II if and only if
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The inequality (4) implies the condition (5). Moreover, this inequality is equivalent to the non-negative payoff requirement for a corner agent of the coalition 
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 and this is a necessary and sufficient condition for the coalition structure to be a NE. Thus any NE structure generated by the uniform rectangular grid is stable with respect to the considered types of split. 

Lemma 6. The coalition 
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 is stable with respect to the split type III if and only if
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Summarizing abovementioned results on stability of the homogenous rectangular structure, we obtain the following stability condition with respect to all considered types of unification and split.

Proposition 2. A homogenous rectangular coalitional structure is stable with respect to the mentioned types of unification and split if and only if
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Let us find out, what conditions on the parameters of the model provide non-emptiness of this set. 
Proposition 3.

a) For 
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b) For 
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c) For 
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, stable structures with respect to the mentioned deviations exist whenever (6) holds.

3. Models for One-Dimensional 
Space
A coalition formation game. Let 
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The payoff function of a player with bliss-point 
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where 
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Nash equilibria. Let each player join the coalition that maximizes his gain (or stays alone if this is the most profitable strategy). Formally this individual rationality means that the strategy profile is a Nash equilibrium (NE).

For any subset 
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 The theorem below specifies the structure of NE and facilitates their determination.

Theorem 2. For any NE structure 
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Thus, a coalition member with the most distant bliss point gets the payoff not less then the payoff to an abstinent, and any other coalition member get the grater payoff.

If the term 
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The theorem implies that coalitions with the same strategy should be of the same size at any NE. If the strategies differ then there exists a separating point such that the bliss points for members of one coalition lie to the left, and the bliss points for the other coalition lie to the right of this point.

Note. This theorem holds for any variant of coalition strategy determination if a single player cannot change a strategy of any coalition with a positive size.
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. Below we show that at any NE the boarder agents may belong to any of the neighbor coalitions since it does not influence the payoffs. 

Without loss of generality, let coalitions in a regular structure be enumerated from the left to the right: 
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Fig. 3.

Proposition 4. NE coalitional structure 
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Proposition 5. (Irrelevance condition for boarder agents). Let 
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Strong equilibria and weak coalitional equilibria. Under general assumptions on the distribution of agents and the payoff function, there exist many diffe-rent NE structures. For instance, any partition in 
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 equal coalitions is such structure under the homogeneous distribution and the linear payoff with nonconformity coefficient
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. This section aims to find out what NE structures are stable with respect to deviations of coalitions of players. 
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Below we also employ two particular stability concepts.
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Lemma 8. Regular coalition structure 
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 is locally stable if it is stable with respect to a split and local unit. Obviously, any WCE structure is locally stable. Below we show that, under certain assumptions, any profile with the locally stable coalitional structure is a WCE.

A model with the homogeneous distribution of players. This section studies coalition formation under the following assumptions:

· Distribution of players over bliss-points is homogeneous:
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· Individual payoff linearly depends on the coalitional size: 
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We consider two variants of the payoff dependence on the distance between the individual bliss-point and coalitional strategy:

· the linear dependence 
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Below we describe WCE structures for these variants. Proceeding from Theorem 3, we consider only regular coalitional structures and assume that the coalitions are enumerated from the left to he right: 
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The following two theorems characterize regular NE structures for each variant.

Theorem 4 (regular NE for the linear payoff). Let 
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Theorem 5 (regular NE for the quadratic payoff).
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No other regular NE structure exists in this case.

Now let us describe locally stable coalitional structures.

Theorem 6 (locally stable structures for the linear payoff). 
Let 
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1) Regular NE structure is stable with respect to the local split if and only if 
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 Thus all the structures specified in Theorem 4, pp. 2, 3, are stable with respect to the local split under this condition.

2) Regular NE structure including 
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Theorem 7 (locally stable structures for the quadratic payoff). 
Let 
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Theorem 8 (WCE structures for the linear payoff). 
Let 
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Theorem 9 (WCE structures for the quadratic payoff). 
Let 
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Thus, for the quadratic payoff function, the set of WСE structures coincides with the set of locally stable structures. For any 
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Fig. 4.
4. Conclusion
Self-organization of individuals plays an important role in formation of political parties and other voluntary unions of citizens in the modern society. Of course, other forces also take part in this process: the state services, as well as private centers possessing financial and informational resources, aim to form the political stru​cture according to their own interests. Professional politicians, who often consider political structures in concern with their power and welfare, also make an essential impact on the process. Nevertheless, voluntary unification of individuals pro​ceeding from their interests is a crucial factor of the process in many cases. In the present paper we constructed and studied a mathematical model of such unification. 

In our analysis we assumed that the result of the process should be a political structure stable with respect to individual and coalitional deviations. We showed that the properties of the stable coalitional structures essentially depend on the parameters of the individual utility functions: the non-conformity coefficient and the sensitivity to the distance between the coalition strategy and the individual bliss point. In particular, we distinguished the class of utility functions (including linear functions) such that only trivial stable structures (the atomic structure where individuals abstain from coalition formation, and the global union where all individuals join one coalition) may exist for the functions from this class. Under variation of the environment, the society with such utility functions may suffer a sharp transition from one stable structure to the other. We also determined another class of the functions (with the grater sensitivity) that permit non-trivial stable structures, and examined how the number and the characters of stable structures depend on the non-conformity coefficient. 

Proceeding from these results, we put forward the following conjecture: the variety of political structures and transition processes in different countries may concern with the differences between the utility functions of the population in these countries. The grater sensitivity to the distance between the coalition strategy and the individual bliss point and the grater non-conformity coefficient usually imply the grater number of coalitions (in particular, political parties) in the stable structure and the smoother transition under the change of the environment. 

Of course, there exist other factors that can essentially influence the political structure of the country. (The recent paper by Polterovich et al. (2006), distinguish the resource abundance). Nevertheless we suppose that the conjecture on the role of the utility functions is worth the careful empirical and theoretical analysis.
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